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Crossing of two Coulomb blockade resonances

Hans A. Weidenmu¨ller
Max-Planck-Institut fu¨r Kernphysik, D-69029 Heidelberg, Germany

~Received 14 March 2003; published 29 September 2003!

We investigate theoretically the transport of noninteracting electrons through an Aharanov-Bohm~AB!
interferometer with two quantum dots~QD’s! embedded into its arms. In the Coulomb blockade regime,
transport through each QD proceeds via a single resonance. The resonances are coupled through the arms of
the AB device, but may also be coupled directly. In the framework of the Landauer-Bu¨ttiker approach, we
present expressions for the scattering matrix which depend explicitly on the energies of the two resonances and
on the AB phase. We pay particular attention to the crossing of the two resonances.
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I. INTRODUCTION

The crossing of two Coulomb blockade resonances
studied in two recent experiments.1,2 In both cases, two
quantum dots~QD’s! were embedded into the arms of a
Aharanov-Bohm~AB! interferometer. By changing the pa
rameters of the experiment~various gate voltages and th
magnetic flux through the AB device!, it was possible to
study the crossing properties of two isolated Coulomb blo
ade resonances, one each due to one of the two QD’s. In
present paper we present a theoretical framework for
analysis of both experiments.

Figure 1 shows a schematic representation of both exp
ments. The AB ring contains the two QD’s labeled QDL a
QDR, where L and R stand for left and right, respective
The QD’s are separated by barriers from the rest of the
device. The latter consists of two parts. In Fig. 1, the low
~upper! part is labeled 1~2!. Both parts are coupled to th
outside world by a number of leads. In Fig. 1, this numbe
two ~three! for part 1 ~part 2!. In our theoretical treatment
the number of leads coupled to each part will be arbitra
Typically, one of the leads coupled to part 1~part 2! serves as
source~sink! for the electrons. While the two QD’s are no
coupled directly to each other in the first experiment,1 such a
coupling does exist in the second experiment.2 This coupling
is indicated schematically by the dotted horizontal line re
resenting the wire connecting QDL and QDR. In Ref. 2 t
strength of that coupling was controlled by a further ga
Figure 1 does not show the plunger gates that make it p
sible to control the energies of the Coulomb blockade re
nances in either QD. Thereby it is possible to have the e
gies of both Coulomb blockade resonances coinc
Experimentally, such crossings are seen in three-dimensi
plots of the conductance versus the plunger gate voltageVL
andVR applied on QDL and QDR, respectively. Each Co
lomb blockade resonance corresponds to a ridge. The rid
of resonances in QDL~QDR! run essentially parallel toVR
(VL !. The crossing of two such ridges marks the crossing
two Coulomb blockade resonances. The coincidence of
resonances also affects the interference pattern of the tr
mission of an electron through the AB device. This patte
depends upon the magnetic fluxF through the device. The
flux is due to a homogeneous magnetic field perpendicula
the plane of the drawing. We are interested in weak magn
0163-1829/2003/68~12!/125326~8!/$20.00 68 1253
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fields only.~We recall that for a complete AB oscillation, th
magnetic-field strength typically changes at most by sev
ten mT.! Therefore, we take into account only the AB pha
due to the magnetic flux and neglect the influence of
magnetic field on the orbital motion of the electron. Gau
invariance then allows us to link the AB phase to the pass
of the electron through a particular part of the AB device.
the absence of a direct coupling between the two QD’s~i.e.,
without the dotted line in Fig. 1!, we choose the barrier sepa
rating QDL from part 1. Whenever the electron leaves~en-
ters! QDL for part 1 ~from part 1!, it picks up the phase
factor exp(2ipF/F0) @exp(22ipF/F0)#, whereF0 is the el-
ementary flux quantum. For brevity, we write the phase f
tor as exp(if). In the presence of a direct link between th
two QD’s, the topology of the AB interferometer chang
from that of a ring to that of a figure eight, and we use
different convention in Sec. V.

In Sec. II we define the Hamiltonian for the system.
Sec. III we use the Landauer-Bu¨ttiker approach and presen
the generic form of the scattering matrix which describes
experimental setup of Ref. 1. In Sec. IV, this scattering m
trix is analyzed especially with regard to the crossing of t
Coulomb blockade resonances. In Sec. V, we generalize
treatment to include the setup of Ref. 2. In Sec. VI we list t
approximations and summarize our approach and res
Moreover, we address some of the approximations made
particular, we discuss the neglect of the mutual Coulo
interaction between the two electrons which are added to
system as the resonances become populated, and that o

FIG. 1. Schematic representation of an AB interferometer w
five external leads and two quantum dots labeled QDL and Q
embedded into its arms. The dotted line represents a link betw
the two quantum dots.
©2003 The American Physical Society26-1
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Coulomb interaction between each of these electrons
those on the dots. We also address the role of the spin
both quantum dots and of the two added electrons. Throu
out the paper, we disregard temperature averaging for s
plicity. Likewise, we disregard decoherence effects, althou
these are known to play some role in the actual experime
We do so because part of the transport through the devic
known to proceed coherently. Only this part will display
dependence on the AB phase. Moreover, decoherence
been thoroughly discussed in the literature, see, for insta
Ref. 3.

II. HAMILTONIAN

In defining the Hamiltonian of the system, we proceed
full analogy to Refs. 4 and 5. These papers addressed the
phase for a single QD placed in one of the arms of an
interferometer.~For a review of work on this problem, se
Ref. 6.! We introduce fictitious barriers separating parts
and 2 of the AB device from the attached leads. Likewise,
consider parts 1 and 2 as separated from the two QD’s.
impose boundary conditions on all these barriers such tha
a result, we obtain self-adjoint single-particle Hamiltonia
H lead for the leads,H1 andH2 for the now separated parts
and 2, andHL and HR for the two QD’s labeled QDL and
QDR, respectively. HereH lead possesses a continuous spe
trum while the spectra ofH1 , H2 , HL , andHR are discrete.
We label the leads attached to part 1~part 2! by s
51, . . . ,S (t51, . . . ,T). The transverse modes~channels!
in lead s ~t! are labeleda51, . . . ,Ns (a51, . . . ,Nt), and
correspondingly for the creation and annihilation operat
c† andc. The associated energies are labelede. The eigen-
values ofH1 (H2) are labeledE1 j (E2 j ), with j 51, . . . ,̀
and associated creation and annihilation operatorsc1 j

† (c2 j
† ),

and c1 j (c2 j ). We assume that transport through either Q
occurs in the Coulomb blockade regime where the intrin
widths of individual resonances are small compared to th
spacings.~The spacing includes, of course, the charging
ergy.! We also assume that the temperature is small in c
parison with the spacings. Under these conditions, it is leg
mate to assume that transport through either QD
dominated by a single Coulomb blockade resonance. We
lieve that this situation is met or nearly met in the expe
ments of Refs. 1 and 2. Thus, we admit only a single bou
state with energyEL (ER) in QDL ~QDR!, with associated
creation and annihilation operatorsdL

† (dR
†) anddL (dR). The

energiesEL and ER include the charging energies. Alto
gether, we have

H lead5(
sa

E deecsa
† ~e!csa~e!1(

ta
E de ecta

† ~e!cta~e!,

H15(
j

E1 j c1 j
† c1 j ,

H25(
j

E2 j c2 j
† c2 j ,
12532
nd
of
h-

-
h
ts.
is

as
e,

B

e
e

as
s

-

s

c
ir
-
-

i-
is
e-
-
d

HL5ELdL
†dL ,

HR5ERdR
†dR. ~1!

Hopping between the separate parts is induced by interac
terms containing tunneling matrix elements,

H lead15(
sa; j

E de@Vsa;1 j~e!csa
† ~e!c1 j1H.c.#,

H lead25(
ta; j

E de@Vta;2 j~e!cta
† ~e!c2 j1H.c.#,

H1L5(
j

~V1 j ;Lc1 j
† dL1H.c.!,

H2L5(
j

~V2 j ;Lc2 j
† dL1H.c.!,

H1R5(
j

~V1 j ;Rc1 j
† dR1H.c.!,

H2R5(
j

~V2 j ;Rc2 j
† dR1H.c.!. ~2!

The direct coupling of QDL and QDR~dashed line in Fig. 1!
is given by

HLR5VLR~dL
†dR1H.c.!. ~3!

In the absence of any direct coupling between QDL a
QDR (VLR50) we use gauge invariance to put the entire A
phase onto a single one of the barriers. Without loss of g
erality, we choose the barrier separating QDL and par
Then, all the matricesV in Eqs. ~2! are real and symmetric
except forV1 j ;L which obeys

V1 j ;Lexp~2 if!5VL;1 jexp~ if!5v1 j ;L ~4!

with v1 j ;L real and symmetric. ForVLRÞ0, a modification is
necessary and discussed in Sec. V below. The HamiltoniaH
of the system is the sum of the terms defined by Eqs.~1!–~3!.
We have not considered the possibility of spin-orbit coupli
on either QD.

We have been very explicit in the construction ofH. The
reason is that we wanted to show thatH is a sum of single-
particle Hamiltonians. This fact allows us to use t
Landauer-Bu¨ttiker approach to describe transport through t
system. The ensuing use of the scattering matrix enable
to display explicitly the phase dependence and energy de
dence of the conductance coefficients. We have omitted
spins of, as well as any possible interaction between, the
electrons that will eventually populate the two resonan
caused byEL andER. These points are taken up in Sec. V

III. SCATTERING MATRIX: RING TOPOLOGY

The transport through the device is described by
Landauer-Bu¨ttiker formula
6-2
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CROSSING OF TWO COULOMB BLOCKADE RESONANCES PHYSICAL REVIEW B68, 125326 ~2003!
I s5(
s8

Gss8Vs81(
t

GstVt ,s51, . . . ,S,

I t5(
t8

Gtt8Vt81(
s

GtsVs ,t51, . . . ,T. ~5!

Here I s(I t) is the current through leads ~lead t) andVs(Vt)
is the voltage applied to that lead. The conductance co
cientsGss8 are given by

Gss85 (
a51

Ns

(
a851

Ns8

@ uSsa;s8a8~E,F!u22dss8# ~6!

and correspondingly for the index combinations (st),(ts),
and (tt8). The symbolSsa;s8a8(E,F) denotes the element o
the scattering matrixS(E,F) which connects channela in
leads with channela8 in leads8 at energyE and magnetic
flux F. Time-reversal symmetry requires the scattering m
trix to obey the relation

S~E,F!5ST~E,2F!, ~7!

whereT denotes the transpose.
The observableO describing a given experimental setu

is determined by the experimental arrangement cho
~which of the leads are grounded, and in which of the lead
a current measured!. For any such setup,O will be given as
a rational function of the conductance coefficientsG. This
follows directly from Eq.~5!. In order to present a genera
framework useful for the analysis of any such experime
we focus attention on the scattering matrixS. With the help
of the formulas forS given below, it is possible to work ou
the dependence of theG’s and, hence, ofO on the energies
of the two Coulomb blockade resonances, and on the
phaseF.

It is possible to derive the form ofS from the Hamiltonian
H. This can be done along the lines of Refs. 4 and 7. We
not follow this course here because the explicit solution
volves some lengthy algebra. Rather, we simply present
result which we believe to be intuitively obvious. In this an
the following section, we focus attention on the ring top
ogy and putVLR50.

The scattering matrixS can be written as the product o
three unitary matrices,

S~E,F!5US(res)~E,F!UT. ~8!

Without any coupling between each of the QD’s and part
and 2 of the AB device~this condition can be met exper
mentally by increasing the heights of the two barriers de
ing each QD!, the resonant partS(res)(E,F) is equal to the
unit matrix, andS(E,F) is, thus, equal toUUT. The form of
the latter matrix follows from the observation that parts
and 2 are unlinked. A unitary scattering matrixS(1) (S(2))
describes the nonresonant electron transport through
linked part 1~unlinked part 2!. We assume that the energ
dependence of both matrices is smooth over the energy
terval defined by the widths of the two Coulomb blocka
resonances introduced below. We accordingly neglect the
ergy dependences of bothS(1) andS(2). Moreover, both ma-
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trices do not depend on the magnetic fluxF, see the remark
at the end of Sec. I. Time-reversal invariance then imp
that bothS(1) andS(2) are symmetric. Thus, we can write fo
i 51,2,

S( i )5U ( i )@U ( i )#T. ~9!

Equation~9! holds for every unitary and symmetric matrix
As explained in Refs. 8 and 5 the unitary transformationU ( i )

accomplishes the transformation from the space of phys
channels to the space of eigenchannels. We accordingly w
the matricesU ( i ) explicitly in the form Usa;a

(1) and Uta;b
(2) .

Here Usa;a
(1) is the product of an orthogonal matrixOsa;a

(1)

which diagonalizes the symmetric matrixS(1) and of a diag-
onal matrix with entries exp(ida

(1)), where theda
(1)’s are the

eigenphaseshifts ofS(1), and similarly forS(2). The indexa
(b) runs from 1 toN1 (N2). Here the total number of chan
nelsN1 in part 1 (N2 in part 2! is given byN15(sNs (N2
5( tNt). The matrixU is defined in the total space ofN
5N11N2 channels. It is block diagonal and given by

U5S U (1) 0

0 U (2)D . ~10!

Inspection of Eq.~8! shows that forS(res)51N , the unit ma-
trix in N dimensions, the scattering matrixS is block diago-
nal and consists of the two matricesS(1) andS(2), as it must.

It is now obvious thatS(res) differs from the unit matrix by
terms that represent the two Coulomb blockade resonan
one each in QDL and QDR. Moreover, it is also clear th
S(res) is defined in the space of eigenchannels of bothS(1)

and S(2). In this space, the coupling matrix elementsWrP
describing the hopping of an electron from the resonanc
QDP~with P5L or R) to the eigenchannelr ~with r5a for
part 1 andr5b for part 2! can be shown8 to be real, save for
the AB phase. We accordingly have forr51, . . . ,N and P
5L,R

WPr5WPr* 5WrP unless P5L and r5a, ~11!

while

WLaexp~ if!5WaLexp~2 if!5wLa ~12!

with wLa real. We note that theWPr’s differ from but are
linear in theVP;sa’s andVP;ta’s introduced in Sec. II.

We can now expressS(res) in terms of the matrix element
WPr , and of the energiesEP of the two Coulomb blockade
resonances. The latter can be varied experimentally
changing the plunger gate voltage on either QD. We obse
that the matricesWPr map the space ofN eigenchannels onto
the space of the two Coulomb blockade resonances, and
versa forWrP. The matrixS(res) takes the form

Srr8
(res)

5drr822ip(
PP8

WrP@D21#PP8WP8r8 . ~13!

The 232 matrix DPP8 has the form (P5L,R)

DPP85dPP8@E2EP#1 ip(
r

WPrWrP8 . ~14!
6-3
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HANS A. WEIDENMÜLLER PHYSICAL REVIEW B 68, 125326 ~2003!
Equations~6!,~8!,~13!, and ~14! constitute the central resu
of this section. It is easy to check that the scattering ma
defined by these equations is unitary and obeys Eq.~7!.

For the benefit of the reader, we rewrite theS matrix in a
form that displays more clearly the physical role of the m
tricesU ( i ) with i 51,2. We define the complex coupling m
trix elements

W̄sa;P5(
a

Usa;a
(1) WaP,

W̄ta;P5(
b

Uta;b
(2) WbP. ~15!

ThenS takes the form

Ssa;s8a85Ssa;s8a8
(1)

22ip(
PP8

W̄sa;P@D21#PP8W̄P;s8a8 ,

Sta;t8a85Sta;t8a8
(2)

22ip(
PP8

W̄ta;P@D21#PP8W̄P;t8a8 ,

Ssa;ta8522ip(
PP8

W̄sa;P@D21#PP8W̄P;ta8 ,

Sta;sa8522ip(
PP8

W̄ta;P@D21#PP8W̄P;sa8 . ~16!

The matrixD has the same form as in Eq.~14!, but can also
be written as

DPP85dPP8@E2EP#1 ip(
sa

W̄P;saW̄sa;P8

1 ip(
ta

W̄P;taW̄ta;P8 . ~17!

Transformation~15! introduces complex matrix elementsW̄
which guarantee unitarity ofS in the presence of the nond
agonal unitary matricesS(1) andS(2).

IV. ANALYSIS: CROSSING OF TWO RESONANCES

The effect of the two resonances that dominate the s
tering matrix is contained entirely in the matrixD defined in
Eq. ~14!. It is useful to displayD in matrix form,

D5S E2EL1~ i /2!GL ~ i /2!GLR

~ i /2!GRL E2ER1~ i /2!GR
D , ~18!

where

GL52p(
r

WLrWrL ,

GR52p(
r

WRrWrR,
12532
ix

-

t-

GLR52p(
r

WLrWrR,

GRL52p(
r

WRrWrL . ~19!

Our explicit notation combined with Eqs.~11! and ~12!
shows thatGL andGR are real, positive, and independent
the magnetic fluxF, and that the only dependence onF
occurs inGLR and inGRL . The latter two quantities are com
plex and related by

GLR5GRL* . ~20!

We use Eqs.~18!–~20! to display the structure of certai
elements of the scattering matrixS. We recall thatS decays
into two independent scattering matricesS(1) andS(2) when-
ever we haveWPr50 for all P, r. Parts 1 and 2 of the AB
interferometer are linked only by the two Coulomb blocka
resonances with energiesEL and ER. If the two resonance
energies are sufficiently different so that

uEL2ERu@GL ,GR,uGLRu, ~21!

we can use perturbation theory inGLR to invert D. Keeping
only the lowest order terms in the expansion, we find

Stb;sa522ip(
ba

Utb;b
(2) $WbL@E2EL1~ i /2!GL#21WLa

1WbR@E2ER1~ i /2!GR#21WRa%Usa;a
(1) . ~22!

The two amplitudes on the right-hand side of Eq.~22! can be
interpreted in terms of two paths of the electron on its w
from part 1 to part 2. The electron may pass either throu
QDL ~first term! or QDR ~second term!. As it passes through
QDL, it picks up the AB phase contained inWLa . This phase
will affect the interference pattern due to the product of t
amplitudes corresponding to the two paths. Whenever
equality ~21! holds, the electron will not complete one o
several loops within the AB ring as it passes from part 1
part 2. It is instructive to consider also the terms of ne
order. These terms are given by

22ip(
ba

Utb;b
(2) $WbL@E2EL1~ i /2!GL#21GLR

3@E2ER1~ i /2!GR#21WRa1WbR@E2ER

1~ i /2!GR#21GRL

3@E2EL1~ i /2!GL#21WLa%Usa;a
(1) . ~23!

The path associated with the first amplitude leads the e
tron first through QDR and then through QDL, and vi
versa for the second amplitude. WithGLR given by Eq.~19!,
we see that along the first path QDL can be reached fr
QDR either via part 1 or via part 2, and correspondingly
path 2. In the first~second! case, the AB phase does n
~does! contribute to the scattering amplitude. This is corre
because only in the second case does the electron comp
loop around the AB ring. A similar analysis ofSsa;s8a8 and of
6-4
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CROSSING OF TWO COULOMB BLOCKADE RESONANCES PHYSICAL REVIEW B68, 125326 ~2003!
Stb;t8b8 shows that whenever inequality~21! holds, the scat-
tering is dominated byS(1) andS(2), respectively. The con
secutive passage through both Coulomb blockade resona
is strongly inhibited. We conclude that inequality~21! de-
fines a fairly uninteresting regime of parameters of the pr
lem.

Interest, therefore, focusses on the regime where this
equality does not hold and where our perturbation expan
is not appropriate. This is the regime where the two Coulo
blockade resonances may cross. We shall see that the c
ing displays important features. Prior to calculating the ex
result, it is useful to visualize the outcome in terms of
perturbation expansion in powers ofGLR andGRL . This ex-
pansion generates terms of the same form as in formula~23!,
but of higher order inGLR and GRL . Each propagator@E
2EP1( i /2)GP#21 occurring in the expansion signals a vis
of the associated path to QDP withP5L,R. The intermittent
factors GLR and GRL signal passage of the electron fro
QDR to QDL and vice versa. The passage may proceed
part 1 or part 2. Thus, the perturbation series stands for
infinite number of possibilities to connect the channels
fined by the indices of the scattering matrix, by paths. Th
paths may loop around the AB ring a number of times, th
change direction, loop again, change direction back etc. u
the electron leaves the AB ring. The AB phase picked up
the electron is the sum of all such phases picked up in
individual loops and given in terms of the total number
completed counterclockwise loops minus the total numbe
completed clockwise loops. We are about to calculate
form of the scattering matrix by diagonalizing the matrixD.
This procedure amounts to summing over all the paths
mentioned. This is why the AB phase will show up in th
denominator of the result, see Eq.~27!. ~Experimentally, de-
coherence will actually limit the number of loops that co
tribute significantly to the amplitude, see Ref. 1!.

We simplify the algebra by considering an AB ring th
contains two perfectly identical QD’s and which itself is pe
fectly symmetric about a vertical axis through the middle
Fig. 1. Then,GL5GR5G ~this defines the widthG). We
write the complex eigenvalues of the matrixD in the form
E2« i with i 51,2. Then

«1,25
1

2
~EL1ER2 iG!6

1

2
A~EL2ER!22uGLRu2. ~24!

Let us suppose that we change the resonance energies o
dots in such a way that (EL1ER) is kept fixed whileu
5uEL2ERu decreases monotonically from an initially larg
value @in the sense of inequality~21!#. Then, the difference
u«12«2u also decreases monotonically. Both resonances
proach each other, retaining equal widths. The difference
resonance energies vanishes when (EL2ER)25uGLRu2: The
two resonances coincide in energy and width. We deal w
an exceptional point in the sense of Ref. 9. At this point,
system possesses only a single eigenfunction. As we
creaseu further, the two resonances separate, retain eq
resonance energies but acquire different widths. Atu50, the
widths differ by uGLRu, the maximum amount possible.
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The value ofuGLRu determines both, the value ofu where
the resonances coincide and the maximum difference of t
widths. This value depends upon the AB phaseF. Indeed,
from Eq. ~19! we have

uGLRu254p2F S (
a

wLawaRD 2

1S (
b

WLbWbRD 2

12 cosf(
a

wLawaR(
b

WLbWbRG . ~25!

The value of uGLRu2 oscillates periodically with magnetic
flux F between the maximum value 4p2((awLawaR
1(bWLbWbR)2 and the minimum value 4p2((awLawaR
2(bWLbWbR)2. From Schwarz’s inequality we conclud
that the widths of the two resonances are always positive
estimate the relative size ofG and of uGLRu, we note from
Eq. ~19! that G5GL5GR is a sum of squares whileGLR is a
sum over terms that, aside from the AB phase, may h
either sign. We expect that due to impurity scattering in pa
1 and 2 of the AB device, theWPa’s are Gaussian random
variables, see Ref. 5. As a consequence, we haveG}N while
uGLRu fluctuates strongly with a root-mean-square varian
that grows likeAN. Thus, the maximum difference of th
widths of the two resonances is expected to be of the orde
G/AN.

The possibility of complete coalescence of two res
nances displayed above is a phenomenon that is opposi
the well-known Wigner-von Neumann level repulsion effe
for bound states. The latter occurs whenever two bou
states interact via a Hermitian interaction. Equation~18!
shows that in the present case, we deal with resonances
complex resonance energies to begin with, and with a c
pling that is due to a Hermitian interaction multiplied byi,
the imaginary unit. This unusual form of interaction occu
because the two resonances are not coupled directly bu
the open channels in parts 1 and 2. Both differences con
ute towards a behavior that differs from standard Wigne
von Neumann level repulsion. Such behavior has been
cussed previously in the literature. To the best of o
knowledge, the coupling of two resonances was first stud
explicitly by von Brentanoet al.10 in the context of nuclear
physics. This work was followed by an experiment
investigation.11 Related work was published in Ref. 12. R
cent work13 has focussed on the properties of exceptio
points.

To display the features of the exceptional point whe
(ER2EL)25uGLRu2 and whereGL5GR, we consider two
slightly asymmetric QD’s for which the two resonanc
widths GL andGR are not exactly equal. Then, the eigenva
ues «1,2 will never coincide exactly. This is seen from th
expression of the discriminant which now has the value

A@EL2ER2~ i /2!~GL2GR!#22uGLRu2. ~26!

Imagine now a change of the parameters of the system
such a way that the argument of the square root describ
closed loop in the complex plane around the exceptio
point. This could be achieved as follows. We putER52EL
5uGLRu1a/2,GL52GR5b with a,b real and uau
6-5
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!uGLRu,ubu!uGLRu. The discriminant becomes approx
mately equal toA2uGLRu(a2 ib). Changinga from a small
negative to a small positive value while keepingb.0 fixed
and small, then keepinga fixed and changingb from its
small positive value to a small negative one, then keepinb
fixed and changinga back to its original value and doing
finally, the same forb yields a rectangle in the comple
plane with the exceptional point in its interior. While und
this operation the phase of (a2 ib) changes by 2p, the
phase ofA2uGLRu(a2 ib) changes only byp: Under this
operation, the two eigenvalues«1,2 are interchanged, and s
are the two eigenfunctions, including an additional pha
factor.13 In comparison with the work of Refs. 13, the prese
system seems to offer an additional degree of freedom
terms of the AB phase. The latter determines the value
uGLRu, the location of the exceptional point, and the form
the two eigenfunctions as linear combinations of the two Q
states.

Unfortunately, all these appealing features have no b
ing on the properties of the scattering matrixS. This is be-
cause the energyE is always real. As a consequence, we c
never reach the exceptional point, and the determinant of
matrix D never vanishes for real values ofE. The two eigen-
functions ofD remain distinct. In view of the recent intere
in exceptional points, we have, nevertheless, felt that a
cussion of this topic is appropriate in the present contex

We return to the symmetric case. The matrixD can be
diagonalized by a matrixA so that D5A21(E122«)A
where« denotes the diagonal matrix diag(«1 ,«2). Using this
form in Eq. ~13!, we obtain

Srr8
(res)

5drr822ip (
PP1P8

WrPAPP1

21 @E2«P1
#21AP1P8WP8r8 .

~27!

Inserting this matrix into Eq.~6! yields the conductance co
efficients and, hence, the dependence of any observabl
the AB phase. The AB phase appears explicitly not only
the eigenvalues«1,2 but also in the matrixA and, of course,
in some of theWrP’s. The matrixA can easily be calculated
Details are not given here.

For the sake of completeness, we discuss the limitati
of a two-lead experiment. These limitations have playe
role in previous studies of AB devices.6 We recall that the
scattering matrix S is unitary and obeysST(E,2F)
5S(E,F). It follows that, in general, we haveSsa;s8a8(E,
2F)5Ss8a8;sa(E,F) and correspondingly for the lead ind
ces (s,t) and (t,t8). The cases where the two lead indic
coincide are special and yield Ssa;sa8(E,2F)
5Ssa8;sa(E,F) and Sta;ta8(E,2F)5Sta8;ta(E,F). For the
conductance coefficients, this means thatGss8(E,2F)
5Gs8s(E,F), Gtt8(E,2F)5Gt8t(E,F), and Gst(E,2F)
5Gts(E,F), while Gss(E,2F)5Gss(E,F) and Gtt(E,
2F) 5Gtt(E,F). Unitarity then shows that for a two-lea
experiment theG’s are even inF, while this is not the case
for the off-diagonalG’s when we deal with more than tw
leads. This conclusion, first drawn by Bu¨ttiker,14 is seen to be
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quite general and not affected by the topology of our AB ri
with two QD’s. A simplified two-lead situation was studie
in Ref. 17.

V. FIGURE-EIGHT TOPOLOGY

If the two QD’s are connected by a wire, the topolog
differs from that of a ring analyzed so far. The necess
modifications are quite straightforward, however. The A
ring is divided into two parts by the wire connecting the tw
QD’s. Let F1 (F2) be the flux through the lower~upper!
part. In a manner completely analogous to Eqs.~11! and~12!,
we put F1(F2) onto WaL (WbL). With f i52pF i /F0 , i
51,2, Eqs.~11! and ~12! are thus replaced by

WRr5WRr* 5WrR, ~28!

while

WLaexp~ if1!5WaLexp~2 if1!5wLa ,

WLbexp~2 if2!5WbLexp~ if2!5wLb ~29!

with wLr real. A further modification accounts for the pre
ence of the wire which furnishes a direct link between t
two QD’s. We represent this link by a real hopping matr
elementVLR5VRL . This element appears in the matrixD
which now takes the form

DPP85dPP8@E2EP#1 ip(
r

WPrWrP81~12dPP8!VRL .

~30!

Except for these modifications, all formulas in Sec. III r
main unchanged.

For a discussion of the form of the matrixD in Eq. ~30!,
we distinguish two limiting cases, whereuGLRu dominates
uVRLu or vice versa. It is obvious that foruVRLu!uGLRu we
~approximately! retrieve our previous results sincef11f2
5f. The distribution of the AB phase over two sets of m
trix elements only complicates the notation. Therefore,
interesting limiting case is the one whereuVRLu@uGLRu. We
neglectGLR in comparison withVRL and consider again the
symmetric case withGL5GR5G. Explicitly, the matrixD is
given by

D5S E2EL1~ i /2!G VLR

VRL E2ER1~ i /2!G
D . ~31!

The matrixD does not depend upon the AB phase@which
now appears only in the matrix elementsW in Eq. ~13!#.
Moreover, the interactionVLR causes standard level repu
sion between the two resonances. The AB phase depend
of the conductance coefficients becomes complicated not
cause of the matrixD but because the electron may traver
several different paths on its way from the entrance chan
to the exit channel. For instance, if the source~sink! is lo-
cated in part 1~part 2! of the AB device, there are fou
possible paths. One enters and leaves QDL, one enters
6-6
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leaves QDR, one enters QDL but leaves QDR, and one
ters QDR and leaves QDL. The relative weight of the fo
contributions depends upon the eigenvectors and eigenva
of the matrixD. Again, these can be worked out straightfo
wardly.
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Corrections to these limiting cases can easily be ca
lated in terms of a power-series expansion inVLR , or in GLR
andGRL . A full diagonalization of the matrixD in Eq. ~30! is
also possible, covers all the intermediary cases, and yi
interesting results. The eigenvalues«1,2 are given by
«1,25
1

2
@EL1ER2~ i /2!~GL1GR!#6

1

2
A@EL2ER2~ i /2!~GL2GR!#214@VLR1~ i /2!GLR#@VRL1~ i /2!GRL#. ~32!
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The eigenvalues coincide whenever the argument of
square root vanishes, i.e., whenever

@EL2ER2~ i /2!~GL2GR!#2524@VLR1~ i /2!GLR#

3@VRL1~ i /2!GRL# .

~33!

Equation~33! extends the definition of an exceptional poi
to the figure-eight topology. We note that the right-hand s
of Eq. ~33! is a periodic function off.

VI. SUMMARY AND DISCUSSION

We have presented a very general approach to the tr
port properties of an AB device containing two QD’s. O
main assumptions are the following.

~i! The electrons do not interact. Then, we can use
Landauer-Bu¨ttiker approach and express every observable
terms of the conductance coefficientsG. The latter are given
as squares of the elements of the scattering matrixS.

~ii ! For the description of the the two Coulomb blocka
resonances, we use the single-level approximation.

~iii ! The only relevant energy dependence ofS is due to
the two Coulomb blockade resonances, one in either Q
Then, scattering in parts 1 and 2 of the AB device is ind
pendent of energy, and the scattering matrixS attains the
form of Eq. ~8!, with U (1) and U (2) independent of energy
and AB phase.

Under these assumptions, we have presented a com
hensive description of an AB device with the topology of
ring or of a figure eight. In particular, we have display
explicitly the dependence of theS matrix upon energy and
AB phase. We have shown that an unfamiliar situation ari
in the case of a ring topology. Here the two resonances~with
complex energies! are coupled via the channels in part 1 a
part 2 of the AB device. This coupling is given by a Herm
ian matrix multiplied by the imaginary uniti. This case dif-
fers fundamentally from the standard coupling of two bou
states by a Hermitian interaction. The latter case lead
level repulsion, the former may lead to coalescence of lev
It seems that this phenomenon has been observed in Re

We now address the approximations we have made.
haps most importantly, we have neglected the Coulomb
teraction between the two electrons populating the two QD
and that between each of these and the electrons on e
e

e

s-

e
n

.
-

re-

s

d
to
s.
1.
r-
-

s,
her

QD. Inclusion of the Coulomb interaction would make
impossible to use the Landauer-Bu¨ttiker approach as we hav
done. Alternatives are discussed in a recent review.15 The
standard procedure employs rate equations for the occ
tion probabilities of the single-particle levels. However, th
approach is manifestly unsuited to deal with phase corr
tions between scattering amplitudes. The latter are of cen
importance for an AB device. A more elaborate approac15

uses a description in terms of an effective Hamiltonian. T
approach assumes that the single-particle states in the QD
described by random-matrix theory. The effective Ham
tonian for the isolated QD is obtained as the leading term
a systematic expansion in inverse powers ofg, the dimen-
sionless conductance. The two-terminal conductance is
obtained from the Kubo formula and another effecti
Hamiltonian that includes the coupling to the leads. The
ter is determined via a nontrivial theoretical derivation whi
in turn involves approximations. To the best of our know
edge, this approach has never been used for a multiterm
device involving an AB ring. Therefore, it is not know
whether the approach is able to account for the phases
are relevant for the present system. At sufficiently low te
peratures, the Coulomb interaction leads to Kondo-like
fects in QD’s. Remarkably, the calculation of the phase o
QD embedded in an AB ring has recently been worked ou
the Kondo regime,16 in spite of the difficulties just mentioned
to deal with the Coulomb interaction outside this regime.

In view of this situation, we can only offer a few qualita
tive remarks in support of the present approach. First,
Coulomb interaction has likewise been neglected in Refs.
and 6, which addressed the AB phase for a single QD e
bedded in an AB ring. The results offered what seem
realistic and useful description of the overall phase dep
dence of experimental observables. Second, our use of
single-level approximation for each QD lends greater plau
bility to the inclusion of the charging energy in the definitio
of the energies labeledEP. We admit, however, that the Cou
lomb energy between the two electrons~one on each QD! is
not covered by this argument. Our neglect of the Coulo
interaction is not restricted to the neglect of the charg
energy. We have likewise neglected the spin-dependent in
action between electrons. The latter is induced via the
change term and lifts the degeneracy between singlet
triplet states.3,15 This spin-dependent interaction plays
prominent role in Kondo-type effects. We expect that this
6-7
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likewise the case in the present situation, especially when
two resonances overlap. Therefore, our approach can on
expected to work above the Kondo temperature.

We believe that our other approximations are less sev
The single-level approximation should work at and near
isolated Coulomb blockade resonance whenever reson
width and temperature are small compared to the charg
energy. The neglect of all other energy dependence but
due to the resonances in the scattering matrix should be
cellent, barring very special circumstances.
12532
he
be

e.
n
ce
g
at
x-

ACKNOWLEDGMENTS

The author learned of the experiments~Refs. 1 and 2! at a
workshop on zero-dimensional conductors held at the M
Planck Institut fu¨r Physik komplexer Systeme in Novemb
2002 in Dresden. He is grateful to the organizers for hav
invited him. He is also grateful to P. von Brentano for
discussion and useful suggestions. He thanks K. Ensslin f
copy of the Diploma thesis by M. Sigrist,1 and both A. Hu¨ttel
and C. Dembowski for a communication.
ys.

.

1K. Ensslin~private communication!; and M. Sigrist, Diploma the-
sis, ETH Zürich ~unpublished!.
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14M. Büttiker, Phys. Rev. Lett.57, 1761~1986!.
15I.L. Aleiner, P.W. Brouwer, and L.I. Glazman, Phys. Rep.358,

309 ~2002!.
16P.G. Silvestrov and Y. Imry, Phys. Rev. Lett.85, 2565~2000!; 90,

106602~2003!.
17B. Kubala and J. Ko¨nig, Phys. Rev. B65, 245301~2002!.
6-8


