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We investigate theoretically the transport of noninteracting electrons through an Aharanov{B&)m
interferometer with two quantum do{€)D’s) embedded into its arms. In the Coulomb blockade regime,
transport through each QD proceeds via a single resonance. The resonances are coupled through the arms of
the AB device, but may also be coupled directly. In the framework of the Landaitékéduapproach, we
present expressions for the scattering matrix which depend explicitly on the energies of the two resonances and
on the AB phase. We pay particular attention to the crossing of the two resonances.
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I. INTRODUCTION fields only.(We recall that for a complete AB oscillation, the
magnetic-field strength typically changes at most by several
The crossing of two Coulomb blockade resonances waten mT) Therefore, we take into account only the AB phase
studied in two recent experimenits.In both cases, two due to the magnetic flux and neglect the influence of the
quantum dots(QD’s) were embedded into the arms of an magnetic field on the orbital motion of the electron. Gauge
Aharanov-Bohm(AB) interferometer. By changing the pa- invariance then allows us to link the AB phase to the passage
rameters of the experimenivarious gate voltages and the of the electron through a particular part of the AB device. In
magnetic flux through the AB devigeit was possible to the absence of a direct coupling between the two QDes,
study the crossing properties of two isolated Coulomb blockwithout the dotted line in Fig.)1 we choose the barrier sepa-
ade resonances, one each due to one of the two QD’s. In tti@ting QDL from part 1. Whenever the electron leaves-
present paper we present a theoretical framework for théers QDL for part 1 (from part 3, it picks up the phase
analysis of both experiments. factor exp(2m®/dy) [ exp(—2imd/Dy)], whered,, is the el-
Figure 1 shows a schematic representation of both experementary flux quantum. For brevity, we write the phase fac-
ments. The AB ring contains the two QD’s labeled QDL andtor as expig). In the presence of a direct link between the
QDR, where L and R stand for left and right, respectively.two QD’s, the topology of the AB interferometer changes
The QD’s are separated by barriers from the rest of the ABrom that of a ring to that of a figure eight, and we use a
device. The latter consists of two parts. In Fig. 1, the lowerdifferent convention in Sec. V.
(upped part is labeled 1(2). Both parts are coupled to the In Sec. Il we define the I—!gmiltonian for the system. In
outside world by a number of leads. In Fig. 1, this number isSec. Il we use the Landauer-Biker approach and present
two (three for part 1 (part 2. In our theoretical treatment, the generic form of the scattering matrix which describes the
the number of leads coupled to each part will be arbitraryexperimental setup of Ref. 1. In Sec. IV, this scattering ma-
Typically, one of the leads coupled to partdart 2 serves as  trix is analyzed especially with regard to the crossing of two
source(sink) for the electrons. While the two QD’s are not Coulomb blockade resonances. In Sec. V, we generalize our
coupled directly to each other in the first experimestich a  treatment to include the setup of Ref. 2. In Sec. VI we list the
coupling does exist in the second experim?eﬁhis coupling  approximations and summarize our approach and results.
is indicated schematically by the dotted horizontal line rep-Moreover, we address some of the approximations made. In
resenting the wire connecting QDL and QDR. In Ref. 2 theparticular, we discuss the neglect of the mutual Coulomb
strength of that coupling was controlled by a further gateinteraction between the two electrons which are added to the
Figure 1 does not show the plunger gates that make it posystem as the resonances become populated, and that of the
sible to control the energies of the Coulomb blockade reso-
nances in either QD. Thereby it is possible to have the ener-
gies of both Coulomb blockade resonances coincide.
Experimentally, such crossings are seen in three-dimensional
plots of the conductance versus the plunger gate voltdges
and Vg applied on QDL and QDR, respectively. Each Cou-
lomb blockade resonance corresponds to a ridge. The ridges
of resonances in QDIQDR) run essentially parallel t¥/
(V). The crossing of two such ridges marks the crossing of
two Coulomb blockade resonances. The coincidence of two
resonances also affects the interference pattern of the trans-
mission of an electron through the AB device. This pattern FIG. 1. Schematic representation of an AB interferometer with
depends upon the magnetic fldx through the device. The five external leads and two quantum dots labeled QDL and QDR
flux is due to a homogeneous magnetic field perpendicular tembedded into its arms. The dotted line represents a link between
the plane of the drawing. We are interested in weak magnetithe two quantum dots.
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Coulomb interaction between each of these electrons and HL:ELdIdLy
those on the dots. We also address the role of the spins of
both quantum dots and of the two added electrons. Through- Hg=Erdldg. (1)

out the paper, we disregard temperature averaging for sim-

plicity. Likewise, we disregard decoherence effects, althoughiopping between the separate parts is induced by interaction
these are known to play some role in the actual experimentéerms containing tunneling matrix elements,

We do so because part of the transport through the device is

known to proceed coherently. Only this part will display a _ A t ,

dependence on the AB phase. Moreover, decoherence has H'eadl‘sza;j fde[vsa;“(e)csa(e)c“+H'C']'

been thoroughly discussed in the literature, see, for instance,

Ref. 3. N
Hleadzzgj fdE[Vta;Zj(f)Cta(f)Czj+H-C-]:

II. HAMILTONIAN

In defining the Hamiltonian of the system, we proceed in Hi=2 (Vqj,cl;d +H.c),
full analogy to Refs. 4 and 5. These papers addressed the AB !

phase for a single QD placed in one of the arms of an AB

interferometer.(For a review of work on this problem, see _ A

Ref. 6) We introduce fictitious barriers separating parts 1 Ha ; (Vo Cqid+H.c),

and 2 of the AB device from the attached leads. Likewise, we

consider parts 1 and 2 as separated from the two QD’s. We +

impose boundary conditions on all these barriers such that as Hir= 2 (VijreajdrtH.C),

a result, we obtain self-adjoint single-particle Hamiltonians :

Heaq for the leadsH,; andH, for the now separated parts 1

and 2, andH, andHg for the two QD’s labeled QDL and Hor= 2 (Voj.rChdr+H.C). 2
QDR, respectively. Herél g pOSsesses a continuous spec- )

trum while the spectra dfi,, Hp, H\, andHg are discrete.  The direct coupling of QDL and QDRlashed line in Fig. 1

We label the leads attached to part (part 2 by s s given by

=1,...S(t=1,....T). The transverse modéshannels

in lead's () are labeleda=1,... Ng (a=1,...N,), and H r=V r(d/dg+H.c). 3
correspondingly for the creation and annihilation operators ) )

¢ andc. The associated energies are labetedhe eigen- [N the absence of any direct coupling between QDL and
values ofH; (H,) are labelecEy; (E,), with j=1, ... & QDR (V g=0) we use gauge invariance to put the entire AB
and associated creation and annihilation operalﬁr:{czj), phase onto a single one of the barriers. Without loss of gen-

andcy; (Cy). We assume that transport through either qperality, we choose the barrier separating QDL and part 1.
occurs in the Coulomb blockade regime where the intrinsic! "€ all the matrice¥ in Egs. (2) are real and symmetric
widths of individual resonances are small compared to theifX¢ePt forVaj; which obeys
spacings(The spacing includes, of course, the charging en- N N
ergy) We also assume that the temperature is small in com- Vi X =i d) = Vi expi¢)=vyj @
parison with the spacings. Under these conditions, it is legitiwith vy, real and symmetric. Fo¥, z# 0, a modification is
mate to assume that transport through either QD isecessary and discussed in Sec. V below. The Hamiltdtian
dominated by a single Coulomb blockade resonance. We b&f the system is the sum of the terms defined by Etjs«(3).
lieve that this situation is met or nearly met in the experi-We have not considered the possibility of spin-orbit coupling
ments of Refs. 1 and 2. Thus, we admit only a single boungn either QD.
state with energye, (Eg) in QDL (QDR), with associated We have been very explicit in the constructiontaf The
creation and annihilation operatai% (d;) andd, (dg). The reason is that we wanted to show tihis a sum of single-
energiesE, and Eg include the charging energies. Alto- particle Hamiltonians. This fact allows us to use the
gether, we have Landauer-Bttiker approach to describe transport through the
system. The ensuing use of the scattering matrix enables us
to display explicitly the phase dependence and energy depen-
Hiead= > f deec(€)Csal€)+ 2 f de ecl,(€)Cia(€), dence of the conductance coefficients. We have omitted the
sa @ spins of, as well as any possible interaction between, the two
electrons that will eventually populate the two resonances
HF; Elch'Clj ’ caused by, andEg. These points are taken up in Sec. VI.
lll. SCATTERING MATRIX: RING TOPOLOGY

H,=> E,chc,, The transport through the device is described by the
? EJ: 2] Landauer-Bttiker formula
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trices do not depend on the magnetic ftixx see the remark

ls=> GegVe+ X GsVy,5=1,... S, at the end of Sec. I. Time-reversal invariance then implies
s’ ‘ that bothS*) andS? are symmetric. Thus, we can write for
i=1,2,
l,= G/ Vi + GV,tzl,,T 5 ; i i
t tE wVit 2 GV ) S0 =y, ©

Herel (1) is the current through leasl(leadt) andV¢(V,) Equation(9) holds for every unitary and symmetric matrix.
is the voltage applied to that lead. The conductance coeffiAs explained in Refs. 8 and 5 the unitary transformatih
cientsGgy are given by accomplishes the transformation from the space of physical
N channels to the space of eigenchannels. We accordingly write
P , the matricesU®") explicitly in the form U{Y), and Ug)lg
GSS':El Z [ISsasar (B, )"~ ds¢] ®)  Here U, is the product of an orthogonal matr@{%),
e which diagonalizes the symmetric mat®) and of a diag-
and correspondingly for the index combinatiors)((ts),  onal matrix with entries expf), where thes{*'s are the
and (t'). The symbolS;, ¢ 2/ (E,P) denotes the element of ejgenphaseshifts &), and similarly forS®?). The indexa
the Scattering matri)S(E,d)) which connects channel in (,B) runs from 1 toNl (NZ) Here the total number of chan-
leads with channela’ in leads’ at energyE and magnetic nelsN; in part 1 (N, in part 2 is given byN;=3Ng (N,

flux ®. Time-reversal symmetry requires the scattering ma= 3 N,). The matrixU is defined in the total space of

trix to obey the relation =N;+N, channels. It is block diagonal and given by
S(E,®)=S"(E,—®), (7) u® o
U= 2. (10)
whereT denotes the transpose. 0 u®

The observable describing a given experimental setup . ¢ h hat foiS(es— h .
is determined by the experimental arrangement choseH‘.SPec“O”. 0 Eq_(8) shows that .O'S _1'\." the um; ma-
(which of the leads are grounded, and in which of the leads i§'X In N dimensions, the scattering mat$ds block diago-
a current measuredFor any such setug) will be given as  nal and consists of the two matric88) andS?, as it must.

a rational function of the conductance coefficie@®s This Itis now obvious tha6"*® differs from the unit matrix by
follows directly from Eq.(5). In order to present a general terms that represent the two Coulomb blockade resonances,

tone each in QDL and QDR. Moreover, it is also clear that
S(es) s defined in the space of eigenchannels of b&th
and S). In this space, the coupling matrix elemeip

framework useful for the analysis of any such experimen
we focus attention on the scattering mat8xWith the help

of the formulas forS given below, it is possible to work out . , .
the dependence of th@'s and, hence, ob on the energies describing the hopping of an electron from the resonance in

of the two Coulomb blockade resonances, and on the AERDP (With P=L orR) to the eigenchannel (with p=a for
phased. part 1 andp= 3 for part 2 can be showhto be real, save for

It is possible to derive the form @from the Hamiltonian  the AB phase. We accordingly have for=1, ... N and P

H. This can be done along the lines of Refs. 4 and 7. We d& L.R
not follow this course here because the explicit solution in-
volves some lengthy algebra. Rather, we simply present the
result which we believe to be intuitively obvious. In this and while
the following section, we focus attention on the ring topol-
Ogy and putVLR= 0. WLanqi ¢) = WaLqu —i ¢) = WLD( (12)
The scattering matrixX& can be written as the product of
three unitary matrices,

Wp,=Wg,=W,p unlessP=L and p=«, (11

with w,, real. We note that th&Vp,’s differ from but are
linear in theVp.g,'s andVp,,’'s introduced in Sec. II.
S(E,®)=USE,o)UT. (8) We can now expresS_(’eS) in terms of the matrix elements

_ _ Wp,, and of the energiegp of the two Coulomb blockade
Without any coupling between each of the QD’s and parts ¥esonances. The latter can be varied experimentally by
and 2 of the AB devicethis condition can be met experi- changing the plunger gate voltage on either QD. We observe
mentally by increasing the heights of the two barriers definthat the matrice8Vp, map the space df eigenchannels onto
ing each QD, the resonant pa*(E,®) is equal to the  the space of the two Coulomb blockade resonances, and vice
unit matrix, andS(E,®) is, thus, equal ttJUT. The form of  versa forw 5. The matrixS™) takes the form
the latter matrix follows from the observation that parts 1 .
and 2 are unlinked. A unitary scattering mat&® (S)) (res) . _
describes the nonresonant electron transport through un- Spp! :5PP’_2'7TE W, D" lpp Wer ) -
linked part 1(unlinked part 2. We assume that the energy PP
dependence of both matrices is smooth over the energy inFhe 2X2 matrix Dpp has the form P=L,R)
terval defined by the widths of the two Coulomb blockade
resonances introduced below. We accordingly neglect the en- _ _ ;
ergy dependences of bo8" andS?). Moreover, both ma- Dep = dpplE EP]JHW};;: Wep W 4

(13
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Equations(6),(8),(13), and (14) constitute the central result

of this section. It is easy to check that the scattering matrix

defined by these equations is unitary and obeys(&q.
For the benefit of the reader, we rewrite tBenatrix in a

form that displays more clearly the physical role of the ma-
tricesU® with i =1,2. We define the complex coupling ma-

trix elements

U(l) W,p,

Saa

V_Vsa; = E

[e3

Waip= 2, UiZsWe- (15
ThenStakes the form
ssasra;sg;?s,a,—zm% Wead D pp Woigrar
Sta:t’a’zsg;)t/a'_zmg Wia:ll D~ YIppWeyrar
Ssatar = — 2i W% Wzl D™ Hpp Weyar |
s[a;saf=—2iw§ Wiad D ppWea - (16)

The matrixD has the same form as in E{.4), but can also
be written as

Dpp = 5pp[E— Ep] +i 772; V_VP;saV—Vsa;P’

i WogaWigpr (17

Transformation(15) introduces complex matrix elemerité
which guarantee unitarity dbin the presence of the nondi-
agonal unitary matriceS™") and S,

IV. ANALYSIS: CROSSING OF TWO RESONANCES

PHYSICAL REVIEW B 68, 125326 (2003
FLR: 2772 WLPWPR’
p

FRL: 2#; WRprL . (19)
Our explicit notation combined with Eqg11) and (12
shows thafl’, andI' are real, positive, and independent of
the magnetic flux®, and that the only dependence dn
occurs inl' g and inT'g, . The latter two quantities are com-
plex and related by

I'r=Tg - (20)

We use Eqs(18)—(20) to display the structure of certain
elements of the scattering mati$ We recall thatS decays
into two independent scattering matricgé) andS? when-
ever we haveNp,=0 for all P, p. Parts 1 and 2 of the AB
interferometer are linked only by the two Coulomb blockade
resonances with energi®€§ and Eg. If the two resonance
energies are sufficiently different so that

|E —Er/>T.Tr,IT R, (21)

we can use perturbation theory I i to invertD. Keeping
only the lowest order terms in the expansion, we find

Sih:sa= — 2 WBE U@ AW [E-E +(i/2T ]7*W,,

+ W E—Eg+(i/2)T ] *Wg UL

Sqa "

(22

The two amplitudes on the right-hand side of E2R) can be
interpreted in terms of two paths of the electron on its way
from part 1 to part 2. The electron may pass either through
QDL (first term) or QDR (second term As it passes through
QDL, it picks up the AB phase contained\i4 , . This phase
will affect the interference pattern due to the product of the
amplitudes corresponding to the two paths. Whenever in-
equality (21) holds, the electron will not complete one or
several loops within the AB ring as it passes from part 1 to
part 2. It is instructive to consider also the terms of next
order. These terms are given by

—2i WBZ U@ W [E—E +(i/2)T]7'T &

The effect of the two resonances that dominate the scat-

tering matrix is contained entirely in the matiixdefined in
Eq. (14). It is useful to displayD in matrix form,

(i2)T' g
E—Eg+(i/2)TR)’

E—E +(i/2)T,

(12T 189

where

FLZZWZ WLPWPL’
p

FRZ 2772 WRPWPR f
p

X[E—Eg+(i/2)Tr] *Wg,+ W E—Eg
+(i/2)Tr] g

X[E—E+ (/2T ] *W JULY,,. (23)

The path associated with the first amplitude leads the elec-
tron first through QDR and then through QDL, and vice
versa for the second amplitude. Withg given by Eq.(19),

we see that along the first path QDL can be reached from
QDR either via part 1 or via part 2, and correspondingly for
path 2. In the first(second case, the AB phase does not
(does contribute to the scattering amplitude. This is correct
because only in the second case does the electron complete a
loop around the AB ring. A similar analysis 8,5, and of
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Sib:tnr Shows that whenever inequali@1) holds, the scat- The value ofiT" x| determines both, the value afwhere

tering is dominated by and S, respectively. The con- the resonances coincide and the maximum difference of their

secutive passage through both Coulomb blockade resonancefdths. This value depends upon the AB phdse Indeed,

is strongly inhibited. We conclude that inequalit®l) de- from Eq.(19) we have

fines a fairly uninteresting regime of parameters of the prob-

lem. T R|?=4m2
Interest, therefore, focusses on the regime where this in- LR

equality does not hold and where our perturbation expansion

is not appropriate. This is the regime where the two Coulomb

blockade resonances may cross. We shall see that the cross- 2 cos¢§ W"“W“R% WisWer

ing displays important features. Prior to calculating the exac

result, it is useful to visualize the outcome in terms of a

perturbation expansion in powers Bfg andI'g, . This ex-

pansion generates terms of the same form as in for23a 5 L !

but of higher order inl',z and I'r, . Each propagatofe ~ _ ~sWipWpr)". From Schwarz's inequality we conclude

—Ep+(i/2)Tp] " * occurring in the expansion signals a visit tha.t the widths of Fhe tv_vo resonances are always positive. To

of the associated path to QDP with=L,R. The intermittent estimate the relative size df and of I x|, we note from

factorsI' g and I'g, signal passage of the electron from Eq. (19 thatF:FLh:FR is_da S;Jm of;quaresr\]/vhiIELR Is ah
QDR to QDL and vice versa. The passage may proceed vigiM OVer terms that, aside from the AB phase, may have
ither sign. We expect that due to impurity scattering in parts

part 1 or part 2. Thus, the perturbation series stands for th : , .
infinite number of possibilities to connect the channels de @nd 2 of the AB device, th#/p,’s are Gaussian random
ariables, see Ref. 5. As a consequence, we had while

fined by the indices of the scattering matrix, by paths. Thes - -
paths may loop around the AB ring a number of times, the I' g fluctuates strongly with a root-mean-square variance

change direction, loop again, change direction back etc. untihat grows like N. Thus, the maximum difference of the
the electron leaves the AB ring. The AB phase picked up byVidths of the two resonances is expected to be of the order of
the electron is the sum of all such phases picked up in th&/VN.
individual loops and given in terms of the total number of ~The possibility of complete coalescence of two reso-
completed counterclockwise loops minus the total number ofiances displayed above is a phenomenon that is opposite to
completed clockwise loops. We are about to calculate thé&he well-known Wigner-von Neumann level repulsion effect
form of the scattering matrix by diagonalizing the matiix ~ for bound states. The latter occurs whenever two bound
This procedure amounts to summing over all the paths justtates interact via a Hermitian interaction. Equatid®)
mentioned. This is why the AB phase will show up in the Shows that in the present case, we deal with resonances with
denominator of the result, see H&7). (Experimentally, de- complex resonance energies to begin with, and with a cou-
coherence will actually limit the number of loops that con-Pling that is due to a Hermitian interaction multiplied by
tribute significantly to the amplitude, see Ref. 1 the imaginary unit. This unusual form of interaction occurs
We simplify the algebra by considering an AB ring that Pecause the two resonances are not coup!ed directly but yia
contains two perfectly identical QD’s and which itself is per- the open channels in parts 1 and 2. Both differences contrib-
fectly symmetric about a vertical axis through the middle ofute towards a behavior that differs from standard Wigner—
Fig. 1. Then,I',=I'j=T (this defines the widtH). We von Neumann level repulsion. Such behavior has been dis-
write the complex eigenvalues of the matfxin the form  cussed previously in the literature. To the best of our
E—e, withi=1,2. Then knowledge, the coupling of two resonances was first studied
explicitly by von Brentancet al® in the context of nuclear
physics. This work was followed by an experimental
investigationt! Related work was published in Ref. 12. Re-
cent work® has focussed on the properties of exceptional
points.
oth 10 display the features of the exceptional point where

2

2
> Wi Wer| + % WLBWBR)

. (25

II'he value of|T'|g|? oscillates periodically with magnetic
flux ® between the maximum value 7 (2 W, W,
+3 W, sWggr)? and the minimum value #%(S W ,W,g

1 ) 1
81,2:§(EL+ ER_lr)tE\/(EL_ER)Z_ ITRl?. (29

Let us suppose that we change the resonance energies of b > 5 y
dots in such a way thatE( +Eg) is kept fixed whileu  (ErR—EL) =|I' g and vyhereFL=_l“R, we consider two
—|E,_—Eq| decreases monotonically from an initially large Sightly asymmetric QD's for which the two resonance

value[in the sense of inequalit{21)]. Then, the difference WidthsI'L andI'g are not exactly equal. Then, the eigenval-

|e,—e,| also decreases monotonically. Both resonances apleseL? will never coincide exactly. This is seen from the

proach each other, retaining equal Widthsz. The di;ference ofxpression of the discriminant which now has the value
resonance energies vanishes whep<{Eg)“=|I" g|*: The —— — 7 5

two resonances coincide in energy and width. We deal with VIEL - Er=(i2)(T - TR~ [Tisl" (26)
an exceptional point in the sense of Ref. 9. At this point, thdmagine now a change of the parameters of the system in
system possesses only a single eigenfunction. As we deuch a way that the argument of the square root describes a
creaseu further, the two resonances separate, retain equallosed loop in the complex plane around the exceptional
resonance energies but acquire different widthaiAD, the  point. This could be achieved as follows. We = —E,
widths differ by|T" 5|, the maximum amount possible. =|l'g|+al2]l' =-Tg=B with «,8 real and |
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<[l g,|BI<|Tg|. The discriminant becomes approxi- quite general and not affected by the topology of our AB ring
mately equal toy2|T" g|(a—i8). Changinga from a small  with two QD’s. A simplified two-lead situation was studied
negative to a small positive value while keepiAg-0 fixed in Ref. 17.

and small, then keeping fixed and changing3 from its

small positive value to a small negative one, then keepging V. FIGURE-EIGHT TOPOLOGY

fixed and changingy back to its original value and doing,

finally, the same forB yields a rectangle in the complex If the two QD’s are connected by a wire, the topology

plane with the exceptional point in its interior. While under diﬁers_ fr(_)m that of a fing a_nalyzed so far. The necessary
modifications are quite straightforward, however. The AB

thﬁzs(;pggag?lrj tT(e agk;’a;)ecﬁgf Ie’i ) Ocr::arz)g@ lt.)J>r/1 d%e,r EEE ring is divided into two parts by the wire connecting the two
b LR 9 y oy QD’s. Let @, (®,) be the flux through the loweuppe)

operation, the two eigenvalues , are interchanged, and so
are the two eigenfunctions, including an additional phas . o ;
factor® In comparison with the work of Refs. 13, the presentvi/e put®,(®z) onto Wy, (Wpi). With ¢; =27 D; /Do, |
system seems to offer an additional degree of freedom in 1,2, Eqs(11) and(12) are thus replaced by
terms of the AB phase. The latter determines the value of
IT' (x|, the location of the exceptional point, and the form of Wg,=Wg,=W,g, (28)
the two eigenfunctions as linear combinations of the two QByhile
states.

Unfortunately, all these appealing features have no bear- ) )
ing on the properties of the scattering mat8xThis is be- Wi exXpli 1) =Wy eXpl—id1) =W,
cause the energy is always real. As a consequence, we can
never reach the exceptional point, and the determinant of the Wi gexp( —iy) =Wz explidy) =Wz (29

matrix D never vanishes for real values Bf The two eigen- ) .
functions ofD remain distinct. In view of the recent interest with Wpr Leal. A furtr?.eL TOd',f'ﬁat'on apcou?tskfor the prei—
in exceptional points, we have, nevertheless, felt that a disS"C€ Of the wire which furnishes a direct link between the

cussion of this topic is appropriate in the present context. WO QD’S. We represent this link by a real hopping matrix
We return to the symmetric case. The matbixcan be €l€mentVig=Veg . This element appears in the matix

diagonalized by a matrixA so that D=A"1(El,—¢)A  Which now takes the form

wheree denotes the diagonal matrix diag(,e,). Using this

form in Eqg. (13), we obtain

éoart. In a manner completely analogous to Ed@$) and(12),

Dpp = Spp[E—Epl+im> Wp,W,pr + (1~ pp )VRL -
p

(30)
Sf,rsrs): Sppr =207 2, WpPA;él[E_8P1]71AP1P’WP’p’- Except for these modifications, all formulas in Sec. Il re-
PR P’ main unchanged.
(27) For a discussion of the form of the matiixin Eq. (30),

we distinguish two limiting cases, whet€ g| dominates
Inserting this matrix into Eq(6) yields the conductance co- |Vrd| or vice versa. It is obvious that fdWVg | <|T" g we
efficients and, hence, the dependence of any observable ¢approximately retrieve our previous results sine + ¢,
the AB phase. The AB phase appears explicitly not only in=¢. The distribution of the AB phase over two sets of ma-
the eigenvalues; , but also in the matriXA and, of course, trix elements only complicates the notation. Therefore, the
in some of theW p's. The matrixA can easily be calculated. interesting limiting case is the one wheiég [>|I' |. We
Details are not given here. neglectl’ g in comparison withVg, and consider again the

For the sake of completeness, we discuss the limitationsymmetric case witlh', =T"'r=T". Explicitly, the matrixD is

of a two-lead experiment. These limitations have played @iven by
role in previous studies of AB devic83\Ve recall that the
scattering matrix S is ur)ltary and obeysS'(E,—®) E—E +(i/2T ViR
=S(E,®). It follows that, in general, we hav8y,s 4/ (E, = Vv E_E T
—®)=S,4.s4(E,P) and correspondingly for the lead indi- RL rT(112)
ces ,t) and ,t"). The cases where the two lead indicesThe matrixD does not depend upon the AB phdsehich
coincide are special and yield S50 (E,—®)  now appears only in the matrix elementé in Eq. (13)].
=Ssar:sa(E,P) and Sip.1a/ (E, — @) =Siar1a(E, P). For the  Moreover, the interactiolVV, g causes standard level repul-
conductance coefficients, this means thaty(E,—®)  sion between the two resonances. The AB phase dependence
=Gy s(E,P), Gy (E,—P)=Gi(E, @), and Gg(E,—P)  of the conductance coefficients becomes complicated not be-
=G(E, @), while G(E,—P)=Gs{E,®) and Gy(E, cause of the matri® but because the electron may traverse
—®) =Gy(E,®). Unitarity then shows that for a two-lead several different paths on its way from the entrance channel
experiment thes’s are even in®, while this is not the case to the exit channel. For instance, if the soufs&k) is lo-
for the off-diagonalG’s when we deal with more than two cated in part 1(part 2 of the AB device, there are four
leads. This conclusion, first drawn by iker,'is seen to be  possible paths. One enters and leaves QDL, one enters and

(31)
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leaves QDR, one enters QDL but leaves QDR, and one en- Corrections to these limiting cases can easily be calcu-
ters QDR and leaves QDL. The relative weight of the fourlated in terms of a power-series expansioVjg, orinI' 5
contributions depends upon the eigenvectors and eigenvaluasdI g, . A full diagonalization of the matri in Eg. (30) is

of the matrixD. Again, these can be worked out straightfor- also possible, covers all the intermediary cases, and yields
wardly. interesting results. The eigenvalueg, are given by

1 1
e12=5[ELF ER_(i/Z)(rL_l'FR)]iE\/[EL_ER_(ilz)(FL_FR)]2+ AVt (11T RI[ VR +(i112TR]. (32

The eigenvalues coincide whenever the argument of th@D. Inclusion of the Coulomb interaction would make it

square root vanishes, i.e., whenever impossible to use the LandaueriBker approach as we have
_ . done. Alternatives are discussed in a recent reviefihe
[EL.—Er—(i/2)(I ~TR)1?=—4[V g+ (i/2)T r] standard procedure employs rate equations for the occupa-

tion probabilities of the single-particle levels. However, this

approach is manifestly unsuited to deal with phase correla-
(33 tions between scattering amplitudes. The latter are of central
importance for an AB device. A more elaborate appréach
dises a description in terms of an effective Hamiltonian. This
approach assumes that the single-particle states in the QD are
described by random-matrix theory. The effective Hamil-
tonian for the isolated QD is obtained as the leading term in
a systematic expansion in inverse powersgpthe dimen-

We have presented a very general approach to the transionless conductance. The two-terminal conductance is then
port properties of an AB device containing two QD’s. Our obtained from the Kubo formula and another effective
main assumptions are the following. Hamiltonian that includes the coupling to the leads. The lat-

(i) The electrons do not interact. Then, we can use theer is determined via a nontrivial theoretical derivation which
Landauer-Bitiker approach and express every observable inn turn involves approximations. To the best of our knowl-
terms of the conductance coefficie@sThe latter are given edge, this approach has never been used for a multiterminal

X[Vr +(i112)Tr].

Equation(33) extends the definition of an exceptional point
to the figure-eight topology. We note that the right-hand sid
of Eq. (33) is a periodic function ofp.

VI. SUMMARY AND DISCUSSION

as squares of the elements of the scattering mé&rix device involving an AB ring. Therefore, it is not known
(ii) For the description of the the two Coulomb blockadewhether the approach is able to account for the phases that
resonances, we use the single-level approximation. are relevant for the present system. At sufficiently low tem-

(iii) The only relevant energy dependenceSaf due to  peratures, the Coulomb interaction leads to Kondo-like ef-
the two Coulomb blockade resonances, one in either QDfects in QD’s. Remarkably, the calculation of the phase of a
Then, scattering in parts 1 and 2 of the AB device is inde-QD embedded in an AB ring has recently been worked out in
pendent of energy, and the scattering maSiattains the the Kondo regimé®in spite of the difficulties just mentioned
form of Eq. (8), with U® and U® independent of energy to deal with the Coulomb interaction outside this regime.
and AB phase. In view of this situation, we can only offer a few qualita-

Under these assumptions, we have presented a compréve remarks in support of the present approach. First, the
hensive description of an AB device with the topology of aCoulomb interaction has likewise been neglected in Refs. 5,4
ring or of a figure eight. In particular, we have displayedand 6, which addressed the AB phase for a single QD em-
explicitly the dependence of th® matrix upon energy and bedded in an AB ring. The results offered what seems a
AB phase. We have shown that an unfamiliar situation arisesealistic and useful description of the overall phase depen-
in the case of a ring topology. Here the two resonarieéth  dence of experimental observables. Second, our use of the
complex energiesare coupled via the channels in part 1 andsingle-level approximation for each QD lends greater plausi-
part 2 of the AB device. This coupling is given by a Hermit- bility to the inclusion of the charging energy in the definition
ian matrix multiplied by the imaginary unit This case dif- of the energies labeldd,. We admit, however, that the Cou-
fers fundamentally from the standard coupling of two boundomb energy between the two electraiasie on each QPis
states by a Hermitian interaction. The latter case leads taot covered by this argument. Our neglect of the Coulomb
level repulsion, the former may lead to coalescence of leveldnteraction is not restricted to the neglect of the charging
It seems that this phenomenon has been observed in Ref. &nergy. We have likewise neglected the spin-dependent inter-

We now address the approximations we have made. Peaction between electrons. The latter is induced via the ex-
haps most importantly, we have neglected the Coulomb inehange term and lifts the degeneracy between singlet and
teraction between the two electrons populating the two QD'striplet states:*® This spin-dependent interaction plays a
and that between each of these and the electrons on eithprominent role in Kondo-type effects. We expect that this is

125326-7



HANS A. WEIDENMULLER PHYSICAL REVIEW B 68, 125326 (2003

likewise the case in the present situation, especially when the ACKNOWLEDGMENTS
two resonances overlap. Therefore, our approach can only be
expected to work above the Kondo temperature. The author learned of the experimefRefs. 1 and Rat a

We believe that our other approximations are less severavorkshop on zero-dimensional conductors held at the Max
The single-level approximation should work at and near arPlanck Institut fu Physik komplexer Systeme in November
isolated Coulomb blockade resonance whenever resonan2@02 in Dresden. He is grateful to the organizers for having
width and temperature are small compared to the chargingvited him. He is also grateful to P. von Brentano for a
energy. The neglect of all other energy dependence but thaliscussion and useful suggestions. He thanks K. Ensslin for a
due to the resonances in the scattering matrix should be exopy of the Diploma thesis by M. Sigrisand both A. Hitel

cellent, barring very special circumstances. and C. Dembowski for a communication.
1K. Ensslin(private communication and M. Sigrist, Diploma the- (2000.
sis, ETH Zirich (unpublishel 10p_ yon Brentano and M. Phillipp, Phys. Le#54B, 171 (1999.
2A. Huttel (private communication See also A.W. Holleitner See also P. von Brentanibjd. 238B, 1 (1990; and Nucl. Phys.
et al, Science297, 70 (2002; and A.W. Holleitneret al, Phys. A 550 143(1992.
Rev. Lett.87, 256802(2001). v, Phillipp, P. von Brentano, G. Pascovici, and A. Richter, Phys.
3G. Burkard, D. Loss, and D.P. DiVincenzo, Phys. Re%32070 Rev. E62, 1922(2000.
(1999. 124, Estrada, L.S. Cederbaum, and W. Domcke, J. Chem. Bdys.
4G. Hackenbroich and H.A. Weideniter, Phys. Rev. B53, 1 (1986.
16 379(1996; and Europhys. Lett38, 129 (1997. 13¢. Dembowskét al., Phys. Rev. Lett86, 787(2001); 90, 034101
SH.A. Weidennilier, Phys. Rev. B85, 245322(2002. (2003.
6G. Hackenbroich, Phys. Rep43 464 (2001). 14M. Bittiker, Phys. Rev. Lett57, 1761(1986.
’C. Mahaux and H.A. Weidentiier, Shell-Model Approach to °L.L. Aleiner, P.W. Brouwer, and L.I. Glazman, Phys. R&58
Nuclear ReactiongNorth-Holland, Amsterdam, 1969 309 (2002.
8H. Nishioka and H.A. Weidenriier, Phys. Lett.157B 101  ®P.G. Silvestrov and Y. Imry, Phys. Rev. Le86, 2565(2000); 90,
(1985. 106602(2003.

SW.D. Heiss, Eur. Phys. J. B, 1 (1999; Phys. Rev. E61, 929  7B. Kubala and J. Koig, Phys. Rev. B55, 245301(2002.

125326-8



