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Thomas-Fermi-Poisson theory of screening for laterally confined and unconfined two-dimensiona
electron systems in strong magnetic fields

A. Siddiki and Rolf R. Gerhardts
Max-Planck-Institut fu¨r Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

~Received 9 April 2003; published 16 September 2003!

We examine within the self-consistent Thomas-Fermi-Poisson approach the low-temperature screening prop-
erties of a two-dimensional electron gas~2DEG! subjected to strong perpendicular magnetic fields. Numerical
results for the unconfined 2DEG are compared with those for a simplified Hall-bar geometry realized by two
different confinement models. It is shown that in the strongly nonlinear-screening limit of zero temperature the
total variation of the screened potential is related by simple analytical expressions to the amplitude of an
applied harmonic modulation potential and to the strength of the magnetic field.
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I. INTRODUCTION

A two-dimensional electron gas~2DEG! in a strong per-
pendicular magnetic field has unusual low-temperat
screening properties,1,2 since the highly degenerate Landa
quantized energy levels lead to a strong variation of the th
modynamic density of states~TDOS! with varying strength
of the magnetic field, i.e., with varying filling factorn of the
Landau levels~LL’s !. If a LL is close to half filled, the TDOS
is very high ~inversely proportional to the temperatureT),
and static potential fluctuations are nearly perfectly screen
We will consider only spin-degenerate 2DEG’s, so that t
happens if the value ofn is close to an odd integer, while a
even-integern the Fermi energy lies in the gap between tw
adjacent LL’s and a spatial redistribution of electrons a
therefore, a screening of~weak! potential fluctuations is im-
possible. In an inhomogeneous 2DEG with sufficien
strong long-range density fluctuations, screening effects
to quasimetallic ~so-called ‘‘compressible’’! regions with
high TDOS, in which screening is nearly perfect and a LL
‘‘pinned’’ to the Fermi energy, and to insulatorlike ‘‘incom
pressible’’ regions, which separate adjacent compressible
gions. In the incompressible regions the Fermi energy f
into the gap between two LL’s and the electron densitynel(r )
is constant~even-integer filling factor!, while in the com-
pressible regionnel(r ) adjusts itself so that the self
consistent electrostatic potential energyV(r ) of an electron
differs from the Fermi energy~more precisely the electro
chemical potentialm!) by a Landau energy\vc(n11/2),
wherevc5eB/m is the cyclotron frequency in the magnet
field B. As a consequence,V(r ) becomes nearly constan
within a compressible region and differs by integer multip
of \vc between different compressible regions. Landau le
pinning and the interplay of compressible and incompre
ible regions lead to strongly nonlinear screening effects. T
screening scenario was established some time ago1,2 and was
applied, e.g., to calculate, at zero temperature, the electr
DOS ~Ref. 3! and transport4,5 through 2DEG’s in smooth
periodic and random potentials. The explanation6,7 of several
experimental results, e.g., on quantum Hall devices un
high currents close to the breakdown of the quantized H
effect8,9 relies also on these ideas. A systematic investiga
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of these interesting nonlinear screening effects is, howe
apparently not available in the literature.

Models for half-space and Hall-bar geometries with p
nar charge distributions have been proposed that al
closed solutions of Poisson’s equation~i.e., calculation of the
potential for a given electron density!, and estimates of po
sition and widths of the incompressible strips have be
given.10,11 By adding the nonlinear Thomas-Fermi approx
mation for the calculation of the electron density from t
potential, that work was extended to a self-consistent
proach, which allows us to calculate both electron dens
and electrostatic potential for arbitrary temperature.12,13This
approach, which we will employ in the following, shows th
the existence and width of incompressible strips depend
sitively on temperature and allows us to calculate their po
tion and width for given background charges without ad
tional assumptions.

The purpose of the present work is a systematic inve
gation of the nonlinear low-temperature screening of h
monic electrostatic potential modulations in laterally co
fined and unconfined 2DEG’s subjected to a quantiz
perpendicular magnetic field. We will demonstrate that
general edge effects do not qualitatively change the scre
ing properties of the 2DEG, even if the sample width is n
much larger than the period of the imposed potential mo
lation. There are, however, peculiar differences between c
fined and unconfined 2DEG’s in situations in which the lat
have no states near the Fermi energy. To understand th
detail, we first discuss the screening of a potential modu
tion imposed on a homogeneous 2DEG~Sec. II! and then
consider, for two different boundary models, edge effects
screening in Hall-bar geometries~Sec. III!.

We will assume the 2DEG to be located in the planez
50 with a~surface! number densitynel(x) and consider only
situations with translation invariance in they direction. The
~Hartree! contribution VH(x) to the potential energy of an
electron caused by the total charge density of the 2DEG
be written as13

VH~x!5
2e2

k̄
E

xl

xr
dx8K~x,x8!nel~x8!, ~1!
©2003 The American Physical Society15-1
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A. SIDDIKI AND ROLF R. GERHARDTS PHYSICAL REVIEW B68, 125315 ~2003!
where2e is the electron charge,k̄ an average backgroun
dielectric constant,13 and the kernelK(x,x8) describes the
solution of Poisson’s equation with appropriate bound
conditions atxl andxr . The electron density in turn is ca
culated in the Thomas-Fermi approximation13 ~TFA!

nel~x!5E dED~E! f „@E1V~x!2m!#/kBT…, ~2!

with D(E) the relevant~single-particle! density of states,
f (e)5@11ee#21 the Fermi function, andm! the electro-
chemical potential and withV(x)5Vext(x)1VH(x) the total
potential energy of an electron, which differs fromVH(x) by
the contribution due to external charges, e.g., a homogen
positively charged background and a charge distribution
ating a periodic modulation potential. The local~but nonlin-
ear! TFA is much simpler than the corresponding quant
mechanical calculation and expected to yield essentially
same results ifV(x) varies slowly in space, i.e., on a leng
scale much larger than typical quantum lengths such as
extent of wave functions or the Fermi wavelength.

II. HOMOGENEOUS 2DEG

We start with a homogeneous 2DEG described by
DOS D0(E)5D0u(E), with D05m/(p\2), for B50, and
by the Landau DOS

DB~E!5
1

p l m
2 (

n50

`

d~E2En!, En5\vc~n11/2! ~3!

for finite B. The effective mass of an electron is denoted
m, the magnetic length byl m5A\/(mvc). In both cases we
assume spin degeneracy and neglect collision broadenin
fects. The constant electron densityn̄el is given by Eq.~2!

with n̄el5nel(x), V(x)[0, andm!5m the chemical poten-
tial. For these simple models the energy integral in Eq.~2! is
readily carried out. We tacitly assume that the elect
charges are neutralized by a homogeneous backgroun
positive charges.

A. Kernel for periodic modulation

We now add a periodic external modulation described
a potential energyVext(x)5Vext(x1a). The 2DEG will re-
spond with a density modulation and a Hartree potentia
the same perioda. To exploit the periodicity, we expan
density and potentials into Fourier series according to

V~x!5(
q

Vqeiqx, Vq5E
2a/2

a/2 dx

a
e2 iqxV~x!, ~4!

with q52pn/a and integern. To maintain charge neutrality
we requirenel

0 5n̄el in any case. With the boundary cond
tions VH(x,z)→0 for uzu→`, Poisson’s equation yield
~see, e.g., Ref. 14!

VH
q ~z!5~2pe2/k̄uqu!e2uqzunel

q ~5!
12531
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as response to the density fluctuationnel
q . Summing over

harmonics~for qÞ0),15 we obtainVH(x,z50) from Eq.~1!
with 2xl5xr5a/2 and the kernel

K~x,x8!52 lnU2 sin
p

a
~x2x8!U. ~6!

B. Breakdown of linear screening

1. Zero magnetic field

In the limit B50, T→0 and withEF5m!(B50,T50),
Eq. ~2! reduces to

nel~x!5D0„EF2V~x!…u„EF2V~x!…, ~7!

which is a linear relation betweenV(x) and nel(x) for
V(x),EF . With Eq. ~5! we find for a harmonic potentia
modulationVext(x)5Vext

q cosqx a harmonic density modula
tion dnel(x)5nel

qcosqx and the self-consistent~‘‘screened’’!
potentialV(x)5Vqcosqx with

Vq5Vext
q /e~q!, e~q!511Q0 /uqu. ~8!

The dielectric functione(q) can be expressed in terms of th
effective Bohr radius aB

!5k̄\2/(me2) ~for GaAs aB
!

59.8 nm), since Q052pe2D0 /k̄52/aB
! .1,16 With q

52p/a, the screening strength is thus determined by
dimensionless parameter

a5paB
!/a. ~9!

We will assumea!1, i.e., e(q)5111/a@1, so that the
TFA is valid for B*1 T, i.e.,l m&30 nm. Since in the linear
screening regime the minimum value of the electron den
is nel(0)5D0(EF2Vq), linear screening breaks down if th
modulation strength becomes so large thatVq>EF , i.e., for
Vext

q >e(q)EF . For larger modulation amplitude the redistr
bution of electrons is hindered: while the electron density
the minimum ofVext(x) still increases, the electron density
the maximum ofVext(x) cannot decrease further. Instead t
density minimum becomes broader. This means that the e
trons are depleted from strips along the maxima ofVext(x)
and the 2DEG breaks off into a system of parallel quasi-o
dimensional ribbons. Thus, the imposed harmonic modu
tion potentialVext(x) now leads to an anharmonic densi
distribution and, therefore, an anharmonic screen
potential.17 Mathematically, Eq.~1! with ~6! and Eq.~7! now
represents a nonlinear integral equation that must be so
numerically. In Fig. 1 we plot the total variance Var@V#
5V(0)2V(a/2) as a function of the amplitudeVext

q [V0 of
the imposed modulation potential for several values of
magnetic field. The result forB50 andT50 is shown as a
thick solid line. In the linear screening regime, Var@V#
[2Vq52V0 /e(q). As linear screening breaks down, a kin
appears in the line and the variance increases much fa
than in the linear regime. With increasing temperature t
kink is rounded off, while the Var@V#-vs-V0 curve as a whole
is not much affected~shown forkBT/EF50.04 by the open
circles in Fig. 1!. Here and in the following we measur
5-2
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THOMAS-FERMI-POISSON THEORY OF SCREENING . . . PHYSICAL REVIEW B68, 125315 ~2003!
energies in units of the Fermi energyEF5n̄el /D0 ~for GaAs
with n̄el'331011 cm22, EF'10 meV), and we keep the
mean electron densityn̄el , and thusEF , constant. We will
focus in the following on the regimeV0&e(q)EF , where
screening is linear in the limitB50, T50.

2. Half-filled Landau levels

With the Landau DOS@see Eq.~3!# and the definition of a
position-dependent chemical potential,m(x)5m!2V(x),
Eq. ~2! yields

nel~x!5\vcD0(
n

f „En2m~x!…. ~10!

We may also write the argument of the Fermi function
En(x)2m! and interpret En(x)5En1V(x) as position-
dependent Landau energies, which is correct if the Thom
Fermi approximation holds. It will be useful to define,
addition to the average LL filling factorn̄52p l m

2 n̄el , a local
filling factor n(x)52p l m

2 nel(x).
For kBT!\vc and a homogeneous 2DEG with part

filled nth Landau level,m;En , n̄52n1nn , where nn
'2 f (En2m) is the filling factor of thenth Landau level, the
TDOS is1

DT~m;B![
]n̄el

]m
5

\vc

kBT

nn

2 S 12
nn

2 DD0 , ~11!

which is peaked aroundm5En with a maximum value
\vcD0 /(4kBT) and a width of orderkBT @a crude approxi-
mation is DT(m;B)'(\vcD0/4kBT)u(2kBT2uEn2mu)].
Linearizing Eq.~10! with respect to the screened potent
V(x), we obtain the Eq.~8! with Q0 replaced byQB
5Q0DT(m;B)/D0@Q0,

FIG. 1. Variance of the screened potential vs amplitude of
harmonic potential modulation imposed on a spin-degenerate
mogeneous 2DEG with a half-filled Landau level, for several o
integer values of the filling factor. Default temperaturekBT/EF

50.001,e(q)541.
12531
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e~q;B!511
\vc

kBT

nn

2 S 12
nn

2 D Q0

uqu
. ~12!

For exactly half filling,m5En , this is a rather good approxi
mation, as can be seen from Fig. 1, which shows numer
results for n̄5n051 (n50) at two different temperature
~two lowest curves atV0 /EF.15). We see that the screenin
at finite magnetic field depends much stronger on temp
ture than atB50. The linear approximation breaks down
the amplitude of the screened potential becomes of the o
2kBT.

This yields, in the limit of low temperatures and fornn
51, the estimate for the linear screening regime,

Vext
q

EF
&e~q;B!

2kBT

EF
'

e~q!

n̄
, ~13!

with e(q)5e(q;B50)5111/a. For a larger modulation
the redistribution of electrons within the considered LL is n
efficient enough to screen the imposed modulation poten
and similar to theB50 case, the variance of the screen
potential increases much stronger than in the linear regi
In Fig. 1 we show low-temperature (kBT/EF50.001) results
for odd-integern̄ values, calculated numerically from Eq
~1!, ~6!, and~10!. For this temperature, the linear increase
the screened potential with the applied modulation amplitu
V0 is not resolved on the scale of Fig. 1. However the ra
increase of the variance of the screened potential atV0 /EF

;e(q)/ n̄ is clearly seen for the indicatedn̄ values.
For n̄51 the situation is very similar to theB50 case,

apart from the fact that screening in the linear regime
much stronger~‘‘perfect screening,’’ ‘‘pinning of lowest LL
to Fermi level’’! due to the higher DOS. Forn̄.1 new phe-
nomena occur, which we will now discuss.

C. Emergence of incompressible strips

1. Odd-integer filling factorn̄

We start with filling factor n̄53 and investigate the
changes of the electron density~Fig. 2! and of the total po-
tential ~Fig. 3! with increasing amplitudeV0 of the imposed
modulationVext(x)5V0cosqx, giving explicit results for the
six typical V0 values indicated by open circles in Fig. 2.

For V0511EF , close to the breakdown of linear scree
ing ~case 1!, the density is strongly modulated~see thin line
in lower inset of Fig. 2!, but the modulation appears sti
cosine like. The potential is so effectively screened that
second-lowest LL (n51) is pinned~within a fewkBT) to the
Fermi energy@see Fig. 3~1!#. For case 2,V0513.7EF , the
total potential has developed locally confined maxima a
minima, while it remains rather flat in between@Fig. 3~2!#.
Near these extremauE1(x)2m!u becomes so large that th
LL n51 is completely occupied~near x5a/2) or empty
~nearx50), and incompressible strips with local filling fac
torsn(x)54 andn(x)52 develop near the potential minim
and maxima, respectively@see thick solid line in the lower
inset of Fig. 2 and Fig. 3~2!#. Increasing the modulation to
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A. SIDDIKI AND ROLF R. GERHARDTS PHYSICAL REVIEW B68, 125315 ~2003!
V0514.5EF ~case 3! leads to more pronounced local extrem
and broader incompressible strips, but does not change
situation qualitatively. The overall change of the density d
tribution is rather small~see lower inset of Fig. 2!, indicating
poor screening. Indeed the slope of the Var@V#-vs-V0 curve
in this regime isDVar/DV0'1, i.e., only slightly smaller
than in the absence of any screening, which would yi
DVar/DV052. We note that in the incompressible strips t
local filling factor ~i.e., the density! is constant, while in the
pinning regions, i.e., the compressible strips, the scree
potential still has a finite slope, proportional tokBT.12

As V0 increases further to case 4 (V0517EF), the modu-
lation becomes so strong that the maximum of the lowest
E0(0), and theminimum of the lowest unoccupied LL
E2(a/2), reach the Fermi levelm! ~to within kBT). Then
thermal population of the higher LL (n52 nearx5a/2) and
depletion of the lower LL (n50 nearx50) starts and com-
pressible strips emerge in the center of each incompres

FIG. 2. Variance of the total potential vsV0, for average filling

factor n̄53. The insets show the local filling factorn(x) in one
modulation period (0<x/a<1) for the sixV0 values indicated by
circles. Parameters:kBT/EF50.01, e(q)541, q52p/a.

FIG. 3. Total potential~thick solid lines! and the three lowest o
the corresponding Landau levels~thin solid lines! together with the
electrochemical potential~thick dashed lines! for the sixV0 values
indicated in Fig. 2. Parameters as in that figure.
12531
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strip @see dashed line in the upper inset of Fig. 2 and F
3~4!#. Further increase ofV0 up toV0538.5EF ~case 5! wid-
ens the compressible strips and leads to a strong increa
the density modulation due to a redistribution of electro
from the n50 to the n52 LL. This results in a strong
screening, similar to that in the linear screening regime
weak modulation, and, apart from a weak increase wit
slope proportional tokBT, the variance Var@V#5V(0)
2V(a/2) remains constant at the value Var@V#5m!

2E0(0)2@m!2E2(a/2)#52\vc . This plateau behavior o
the Var@V#-vs-V0 curve is obviously an immediate cons
quence of the pinning of LLs to the Fermi level, i.e., of th
nearly perfect screening.

In case 5 we reach a situation in which the lowestn
50) LL is nearly empty at the potential maximum and t
higher (n52) LL nearly full at the potential minimum. In
case 6 (V0541.2EF) the total potential again develops loc
extrema, similar to the situation depicted in Fig. 3~2!. But
now the incompressible strip created at the potential ma
mum is due to the depopulation of the lowest LL, i.e., due
vanishing electron density. With further increasingV0 the
depletion regions become wider and the density near the
tential minima increases, but screening remains much po
than in the plateau region.

We see from Fig. 2 that the global appearance of the d
sity modulation, apart from a fine structure related to t
incompressible strips, is more or less cosine like. We will u
this finding for a rough estimate of the plateau width of t
Var@V#-vs-V0 curves. First we conclude from the cosinelik
form of the induced density variation that in the hig
screening plateau region, along with Eqs.~5! and~8!, the first
relation of Eq. ~13! holds qualitatively and relates th
changesdV of the total potential to the changesdV0 of the
externally applied potential bydV;e(q;B)dV0. For Q/uqu
@1, this yields for the change of the variance Var@V# across
the plateau of widthDV0:

DVar@V#;
8kBT

\vce~q!
DV0 , ~14!

i.e., an estimate for the slope of the Var@V#-vs-V0 curve in
the plateau region. Since the modulation induces den
changesdnel mainly within the compressible regions of hig
TDOS, we estimate dnel;2DT(m;B)dV;
2(\vc/4kBT)D0dV ~which holds for nn51 and udVu
&2kBT). In terms of dn52p l m

2 dnel this yields dV
;2kBTdn, and together with Eq.~14! the relation

DV0

EF
;

e~q!

2n̄
DVar@n# ~15!

between the plateau widthDV0 and the change of the filling
factor variance Var@n#5n(a/2)2n(0) ~defined at fixedV0)
across the plateau. This criterion applies also to the smalV0
linear-screening regime, in whichn(x) varies within the
same LL, with Var@n# increasing from 0 to 2, i.e.,DVar@n#
52 @see Eq. ~13!#. The resulting width of the linear-
screening regime,DV0 /EF'e(q)/ n̄, describes the numeri
cal results of Fig. 1 for odd-integern̄52n11 quite well.
5-4
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From the discussion of Figs. 2 and 3 we expect that, fon
.0, the linear regime of the Var@V#(V0) curve is terminated
by a step of height 2\vc54EF / n̄, which is followed by a
plateau. WhileV0 sweeps through the plateau, in addition
the LL with index n the two LL’s with indicesn21 andn
11 are locally pinned to the Fermi level and lead to a to
changeDVar@n#54 „for n̄53 from Var@n#5n(a/2)2n(0)
52 on the left side to Var@n#56 on the right side of the
plateau, as seen from the upper inset of Fig. 2…. This yields
the plateau widthDV0 /EF'2e(q)/ n̄. If n2150, the pla-
teau will be followed by the breakdown regime. Ifn21
.0, the plateau will be followed by a further step of th
same height to a plateau of the same width.

To summarize: at very low temperatures and odd-inte
filling factors n̄52n11, the variance Var@V# of the
screened potential as function of the imposed modula
amplitude V0 shows a linear screening regime forV0

&e(q)EF / n̄ which is followed by n successive steps o
height 2\vc54EF / n̄ and width DV0'2e(q)EF / n̄. The
plateau of thenth step ends at the breakdown of the 2DE
into a pattern of isolated 1D systems, which leads to p
screening and is indicated in the Var@V#(V0) curve by a
slope of order unity. At finite temperature, the plateaus
sume finite positive slopes, which are estimated from
~14! as DVar@V#/DV0'4n̄kBT/@e(q)EF#. These results
which describe the content of the numerically calcula
Figs. 1–3 very well, depend, of course, on the high symm
try of the situations considered so far.

2. Even-integer filling factorn̄

Another situation of high symmetry is that of an eve
integer filling factorn̄52n12, wheren is the index of the
highest occupied LL and the Fermi energyEF5\vc(n11)
lies in the middle between two adjacent LL’s. According
Eqs. ~13! and ~12!, the linear-screening regime shrinks
zero, sincenn52. Thus, at very low temperature (kBT
!\vc/2) a weak modulationVext(x)5V0cosqx will not be
screened, i.e., the local filling factor will be independent
the modulation,n(x)[n̄, and the total potential will equa
the external one, with variance Var@V#(V0)52V0. This situ-
ation changes when the modulation potential becomes
large that uV02\vc/2u;kBT; i.e., the maximum energy
En(0) of the highest occupied and the minimum ener
En11(a/2) of the lowest unoccupied LL approach the Fer
energy. Then, with increasingV0 the LL n is depleted near
x50 while the LL n11 is populated nearx5a/2, forming
compressible strips with local filling factorsn(x), n̄ and
n(x). n̄, respectively.

This is demonstrated in the inset of Fig. 4, which sho
the local filling factorn(x) for kBT/EF50.001 and the av-
erage filling factorn̄52, i.e.,\vc5EF , and for the modu-
lation strengthsV0 indicated by circles in the main figure
For V0 /EF50.45 in the nonscreening region the deviati

@n(x)2 n̄ # is practically zero~numerically ,1026), while
for V0 /EF50.6 it is finite, although small~in the inset en-
hanced by a factor of 20!, with narrow compressible strips
12531
l

r

n

r

-
.

d
-

f

so

y
i

s

BetweenV0 /EF50.5 andV0 /EF'41 the width of the com-
pressible strips and the deviation@n(x)2 n̄ # increase con-
tinuously, while the variance Var@V#'\vc5EF remains
constant. Since screening is due to the redistribution of e
trons at the Fermi energy, i.e., to electrons in the compre
ible strips where the TDOS is large, we may again use
~15! to estimate the plateau width. At the beginning of t
first plateau the filling factor is constant,n(x)[n̄, i.e.,
Var@n#50. At the end of the plateau, the LLn is depleted at
the potential maximum,n(0)5 n̄22, and at the potentia
minimum the LL n11 is full, n(a/2)5 n̄12, i.e., Var@n#
54. Thus, we have to use Eq.~15! with DVar@n#54 and
obtain for the plateau widthDV0;2e(q)EF / n̄.

This estimate is obviously in good agreement with t
numerical calculations presented in Fig. 4. For filling fac
n̄52, i.e.,n50, the first plateau ends at the transition to t
poor-screening breakdown regime, since then the lowest
n50 is completely depleted at the potential maxima~thick
dash-dotted line in the inset of Fig. 4!. For n̄52n12 with
n.0 a behavior similar to that discussed in Fig. 3 occurs.
V0 increases slightly beyond the plateau regime, a nar
local maximum ofV(x) develops nearx50, accompanied
by an incompressible strip of fillingn(x)52n due to the
local depletion of the LLn. Simultaneously, a narrow loca
minimum ofV(x) develops nearx5a/2, accompanied by an
incompressible strip of fillingn(x)52n14 due to the local
occupation of the LLn11. Then, in a narrowV0 interval
these new extrema become more pronounced and the ac
panied incompressible strips widen a little. However, the
companied density change is small, resulting in a p
screening and a rapid increase of the Var@V#(V0) curve. This
interval ends when the new maximumEn21(0) of the Lan-
dau leveln21 and the new minimumEn12(a/2) of the LL
n12 come close to the Fermi level~within a few kBT).

FIG. 4. As in Fig. 1 but for even-integer values of the~average!
filling factor (kBT/EF50.001,e(q)541). The thin solid line indi-
cates the result forB50, T50; the thin dashed line has slope
The inset shows the local filling factorn(x) in one modulation

period for average fillingn̄52 and the five values ofV0 indicated
by circles in the main figure. *! For V0 /EF50.60 the deviation
@n(x)22# is enhanced by a factor of 20.
5-5
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Then, with further increasingV0, new compressible strip
open at the locations of the potential extrema, and a pla
region of the Var@V#(V0) curve with ‘‘perfect’’ screening
sets in. We thus again find a step behavior like in Fig. 1 w
step heightDVar@V#52\vc54EF / n̄. During theV0 sweep
through the corresponding plateau, the LLn21 will be de-
pleted nearx0, while the LL n12 is occupied nearx5a/2.
Thus, we can estimate the plateau width from Eq.~15! with
DVar@n#54. The last plateau is the one corresponding to
local depletion of then50 LL.

In summary, forn̄52n12 and very low temperature, th
Var@V#(V0) curve shows a linear increase with slope 2
0<V0<EF / n̄, followed by a plateau of height\vc

52EF / n̄ and widthDV0;2e(q)EF / n̄. This plateau is fol-
lowed byn steps of height 2\vc and approximately the sam
width DV0. The plateau of the last step is followed by th
breakdown regime.

3. Noninteger filling factor n̄

In Fig. 5 we show Var@V#(V0) curves for a few noninte-
ger values of the average filling factorn̄52n1nn , with 0
,nn,2. Although these results may, at a first glance, lo
confusing, we will now demonstrate that they can easily
understood, and even predicted, from a few simple p
ciples.

To estimate the width of the linear-screening regime
small V0 values, we follow the reasoning of Sec. II B,Vext

q

'e(q;B)Vq, but we note that the linear approximation to t
Taylor expansion ofnel(x) with respect toV(x) @see Eq.
~10!# no longer holds foruV(x)u;2kBT, since fornnÞ1 the
second-order term@}]2nel /]m25(]nel /]m)(12nn)/kBT#
yields already noticeable contributions for smallerV(x). To
take this into account, we use the linear approximation o
for uV(x)u&2kBT/(11u12nnu) and obtain as a condition
for the linear-screening regime

V0

EF
&

e~q!

n̄

nn~22nn!

11u12nnu
. ~16!

FIG. 5. As in Fig. 1 but for some noninteger values of t
~average! filling factor and for higher temperature,kBT/EF50.01
@e(q)541#.
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For nn51 this reduces to the estimate~13!. But in addition,
Eq. ~16! states that for even-integer fillingnn→0 or nn
→2, the linear-screening regime shrinks to zero, and it p
vides a good description of the widths of the linear screen
regimes in the examples shown in Fig. 5.

We will now use Eq.~15! to obtain estimates of the pla
teau widths and heights of the Var@V#-vs-V0 curves, which
contain the estimate~16! for the linear-screening regime as
special case. Our estimates are based on the observation
in all cases we have studied the density modulation is ne
symmetric about the average density, so that the averag
extreme values of the local filling factor is close to the av
age filling,n(0)1n(a/2)'2n̄. Nearly perfect screening oc
curs, if at both the potential maxima and the minima a LL
pinned to the Fermi level, so that electrons can easily
redistributed between these LL’s and bothn(0) andn(a/2)
are different from even integers. If, with increasingV0 , n(0)
approaches an even-integer valuen(0)52k, the LL k is de-
pleted atx50 and a local maximum ofV(x) starts to de-
velop there. Screening remains poor, and Var@V#(V0) in-
creases rapidly, until the LLk21 reaches the Fermi level a
x50. Then a step of height\vc is completed and the nex
plateau with perfect screening starts. A similar step begin
n(a/2) reaches the value 2k8. Then the LLk821 is com-
pletely filled atx5a/2 and a local potential minimum start
to develop there. Perfect screening begins again if the LLk8
reaches Fermi level atx5a/2 and the increase of Var@V#
3(V0) by \vc is completed.

We combine now these considerations with the estim
~15!. For convenience, we introduce the dimensionless v
ables

v5
V

EF
v05

V0

e~q!EF
, V5

\vc

EF
, ~17!

and focus on the regime 0,v0,1, in which for T50 and
B50 screening is linear and leads to Var@v#(v0)52v0. To
keep the discussion simple, we consider the two poss
cases of nonintegern̄52n1nn separately.

a. 0,nn,1. In this case the end of the linear-screeni
region, wherev!V, is reached whenn(0)52n. Then
n(a/2)'n̄1nn and Var@n#52nn , and across the linear
screening regime we findDVar@n#52nn . According to Eq.
~15!, linear screening ends atV0 /EF;e(q)nn / n̄, in agree-
ment with Eq. ~16!. Neglecting potential variations}kBT
!V, we note

Var@v#'0, if 0,v0,12nV, ~18!

sincenn5 n̄22n andV52/n̄. If n50, largerV0 lead to the
poor-screening quasi-1D ribbon regime.

For n.0, the next plateau terminates whenn(a/2)52n
12. Then n(0)'2n22(12nn), i.e., Var@n#52(22nn).
Across this plateau we haveDVar@n#54(12nn), and with
Eq. ~15! DV0'2e(q)EF(12nn)/ n̄. This yieldsDv0'(2n
11)V22 and

Var@v#'V, if 12nV,v0,~n11!V21. ~19!
5-6
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This plateau is followed by another one along whichn(0)
decreases to 2(n21), while n(a/2) increases to'2n12
12nn and thus Var@n# to 412nn . Thus, across that platea
we find DVar@n#54nn andDv05222nV, which leads to

Var@v#'2V, if ~n11!V21,v0,12~n21!V.
~20!

If n51, this plateau is followed by the poor-screeni
quasi-1D ribbon regime. Ifn.1, we are in the same situa
tion as at the end of the low-V0 linear-screening regime, an
a double step of total widthV, consisting of one step o
height V and plateau widthDv05(2n11)V22 and an-
other one of heightV and widthDv05222nV, will follow.
Thus, we obtain for 0,k<n

Var@v#'~2k21!V,

if 1 2~n112k!V,v0,~n1k!V21, ~21!

Var@v#'2kV, if ~n1k!V21,v0,12~n2k!V.
~22!

Thus, the linear screening regime is followed byn double
steps, which sum up to a total widthDv051, and on the last
plateau~before breakdown! we have Var@v#52(12nn / n̄).
For 0,nn,0.5, the first plateau of the double step is wid
than the second one, as for the dash-dotted line in Fig
( n̄52.33), while for 0.5,nn,1 the second plateau of th
double step is the wider one, as for the short-dashed
( n̄52.67).

We should mention three limits. Fornn→0 the low-V0
linear-screening regime shrinks to zero and the first plat
of the double step exhausts its full width, so that the sec
step merges with the first one of the following double st
Thus, we observe at smallV0 a step of heightV, followed
by steps of the double height 2V, and all plateaus have th
same widths, as we found previously. Fornn50.5 we get an
even number of steps which all have the same heights
widths. For nn→1 the width of the first plateau of eac
double step shrinks to zero, so that the low-V0 linear-
screening regime is followed by steps of height 2V and
width V, as we have seen before.

b. 1,nn,2. In this case we have at the end of the line
screening regimen(a/2)52n12 andn(0)'2n12(nn21)
.2n, with Var@n#52(22nn). From Eq.~15! we obtain

Var@v#'0, if 0,v0,~n11!V21, ~23!

and see that now the linear screening regime is always
lowed by a step of heightV to a plateau of perfect screenin
For n50 ~i.e., 1,V,2) this plateau covers the intervalV

21,v0,1 ~see, e.g., thin dashed line of Fig. 5 forn̄
51.33). To estimate forn.0 height and width of the fol-
lowing steps and plateaus, respectively, we proceed as
fore, exploiting that at the end of each plateau eithern(0) or
n(a/2) reaches an even integer value and thatn(0)
1n(a/2)'2n̄. The result is, for 0,k<n, a double step of
total width V,
12531
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Var@v#'~2k21!V,

if ~n1k!V21,v0,12~n112k!V, ~24!

Var@v#'2kV,

if 1 2~n112k!V,v0,~n1k11!V21, ~25!

which is followed by a final single step

Var@v#'~2n11!V, if ~2n11!V21,v0,1, ~26!

of height V and plateau width 22(2n11)V. The linear-
screening regime@width (n11)V21], the n double steps,
and this final plateau cover together the interval 0,v0,1,
as in the case 0,nn,1. The variance of the screened p
tential in the last plateau is Var@v#52@12(nn21)/n̄ #.

For 1,nn,1.5 the first plateau of each double step
wider than the other plateaus, as seen in Fig. 5 for the lo
dashed line (n̄53.25), which exhibits one double step fo
lowing the initial single step. For 1.5,nn,2 these first pla-
teaus are the narrower ones, as seen for the thick solid
( n̄53.75). Fornn51.5, the double steps consist of two in
dividual steps of equal heights and plateau widths, as is
lustrated by the thin solid line (n̄57.5).

In the limit of odd-integern̄, nn→1, the width of the first
single step together with the second plateau width of e
double step shrinks to zero, so that only steps with s
height 2V and plateau widthV occur. ~For n̄51, i.e., n
50, no double step exists and the single step merges
the breakdown regime.! In the even-n̄ limit, nn→2, the
width of the first plateau of each double step shrinks to ze
Thus, the first step of widthV and heightV is followed by
n steps of the same plateau width but double step heigh

c. Summary.Summarizing the estimates of this Sec. II
we note that the Eqs.~18!–~26! define a set of straight line
in thev0-V plane, which separate areas in each of which
variance Var@v#(v0) equals an integer multiple ofV. This is
schematically shown in Fig. 6. The position and height of
steps of the Var@v#(v0) curve for a given value ofn̄ can
immediately be read off from this figure along the vertic
line at V52/n̄.

D. Sweeping the magnetic field

We now consider the screening of an external cosine
tential Vext(x)5V0cosqx of fixed amplitudeV0 as function
of the magnetic fieldB, keeping the average electron dens
at the fixed value of the positive background charge dens
Then, with increasingB the average filling factorn̄
52EF /\vc decreases. For the unmodulated 2DEG (V0
50), this leads to the well-known sawtooth behavior of t
chemical potential, which at low temperatures is pinned
the LL’s, i.e. follows half-integer multiples of the cyclotro
energy,

m!5\vc~n11/2! if 1/~n11!,V,1/n. ~27!
5-7
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In the modulated 2DEG (V0.0), pinning of LL’s to the
electrochemical potential causes the total variance of
screened potential to be an integer multiple of the cyclot
energy. Thus, for the variance Var@V# as function ofB we
expect a similar sawtooth behavior as for them!-vs-B curve.
Numerical results for several values ofV0 are shown in Fig.
7. The uppermost curve for the largest modulation amplitu
looks indeed similar to am!-vs-B curve. However, wherea
the latter with decreasingB always jumps to the next highe
LL, the Var@V#-vs-B curves can also jump back to the ne
lower LL, as is more clearly seen for the curves with sma
modulation amplitudes. This seemingly irregular behavior
the Var@V#(V) curves in Fig. 7 can easily be understo
from Fig. 6, where we now have to follow horizontal line

FIG. 6. The solid lines indicatev05kV21 andv0512kV for
v05V0 /@EFe(q)#, V5\vc /EF , andk51,2, . . .,15. Even-~odd-!
integer values of the average filling factor are indicated by da
dotted~dashed! vertical lines. Within each area defined by the so
lines the value of Var@V#/EF equals an integer multiple ofV. This
value increases byV if a solid line is crossed in the upward direc
tion. The regionv0.1 corresponds to the poor-screening regime
parallel, disconnected, quasi-1D electron systems.

FIG. 7. Variance of the screened potential vsVc5\vc /EF for
V0 /EF51,5,10,15,25,35~from bottom to top!. The straight dashed
lines indicate integer multiples of the cyclotron energy@kBT/EF

50.01, e(q)541].
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For fixedv0
05V0 /@EFe(q)# and decreasingV, the variance

Var@V#/EF increases byV if the horizontal linev05v0
0 in-

tersects one of the straight linesv05kV21 and decrease
by V if it intersects one of the straight linesv0512kV. For
large V0 (v0.0.6), the variance jumps with decreasingB
monotonically to higher multiples of the cyclotron energ
until B becomes so small thatV512v0

0. Then, for smallerB
also jumps back to lower multiples occur. For small mod
lation amplitude (v0

0&0.1) one has perfect screening if th
average filling factor is not too close to an even integer. N
such values linear screening breaks down and Var@V#/EF
approachesV, provided 2V0.\vc ~otherwise Var@V#
52V0). For sufficiently smallB, of course, the variance wil
equal higher multiples of the cyclotron energy, so that
correct linear-screening limit is obtained in the limit of ze
magnetic field. Thus, if one adds the smoothing effect
finite temperature, one can understand all properties of
apparently irregular Var@V#(V) traces in Fig. 7 in terms of
the peculiar but regularv0-vs-V pattern sketched in Fig. 6.

III. HALL-BAR GEOMETRY

A. Boundary conditions and kernels

We now consider a 2DEG with lateral confinement in t
x direction and translation invariance in they direction, i.e.,
an idealized Hall-bar geometry. To study boundary effects
the screening properties, we will apply an additional perio
external modulation potential inx direction. We will consider
two different sets of boundary conditions, which lead
slightly different confinement potentials.

1. In-plane gates

Following Refs. 10–13 we first assume that all charg
reside in the planez50 and that the half-planesz50, x,
2d andz50, x.d are kept at constant electrostatic pote
tial, V(x,y,z50)50 for uxu.d ~in-plane gates!.11,13 Then
the electrostatics can be solved using the theory of comp
functions, and the kernel in Eq.~1!, with 2xl5xr5d, is
obtained as13

K i~x,t !5 lnUA~d22x2!~d22t2!1d22tx

~x2t !d
U. ~28!

Positive background charges of the 2D charge densityen0
between the in-plane gates will produce the confinement
tential ~written as potential energy of an electron!

Vbg~x!52E0A12~x/d!2, E052pe2n0d/k̄, ~29!

which can be calculated from Eq.~1! using the kernel~28!
and replacingnel(x8) by 2n0.

2. Perpendicular gates

Another simple set of boundary conditions is obtain
assuming the 2DEG to be laterally confined by two equip
tential planes located atx56d parallel to they-z plane,
V(x56d,y,z)50. This is a reasonable model for a fre
standing mesa-etched Hall bar with free or metallized s

-

f
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THOMAS-FERMI-POISSON THEORY OF SCREENING . . . PHYSICAL REVIEW B68, 125315 ~2003!
faces atx56d, which accommodate a large number of~par-
tially occupied! surface states. The electrostatics with the
boundary conditions is well known.15 In our notation it is
expressed by the kernel

K'~x,t !52 lnS cos2
p

4d
~x1t !1g2

sin2
p

4d
~x2t !1g2

D ~30!

for g→0. Inserting this withg5sinh(pz/4d) into Eq. ~1!,
where 2xl5xr5d, yields the electrostatic potentia
VH(x,y,z) due to the 2DEG at a position separated by
distanceuzu from the plane of the 2DEG. Corresponding
we can use this to calculate the confinement potential p
duced in the plane of the 2DEG by a plane, positive ba
ground charge at a distancez from the 2DEG. Typical con-
finement potentials are shown in Fig. 8. Forg50 the
potential minimum is Vbg(0,y,0)/E0528G/p2

520.742 46, with Catalan’s constant18 G50.915 965 594.
The positive background charge density and sample w

define the characteristic energyE0, Eq. ~29!. Measuring en-
ergies in units ofE0, lengths in units ofd, and density of
states in units ofD0, we obtain from Eq.~2! the dimension-
less electron densityñ(x/d)5nel(x)/E0D0, so that Eq.~1!
assumes a dimensionless form with the prefactor 1/aconf,
where

aconf5paB
! /2d ~31!

measures the relative strength of the Coulomb interact
similar to a of Eq. ~9!. We will usually assumeaconf
50.01, i.e., for GaAs, a sample width 2d;3 mm, since this
allows us to calculate density profiles with clearly visib
incompressible strips on a mesh of relatively few (;500)
points across the sample. For much largerd, we would need
a much finer mesh, i.e., more ambitious numerics, and
incompressible strips would be hardly visible on that sca
although the physics would not change qualitatively.

FIG. 8. Confinement potentialVbg(x,y,z50)/E0 due to a ho-
mogeneous plane of charge densityen0 at distancez. The dash-
dotted line is obtained from model~28! with z50; the other lines
are for model~30!.
12531
e

e

o-
-

th

n,

e
,

Figure 9 shows some density and potential profiles
tained for the two sets of boundary conditions in the limit
zero temperature and magnetic field, wherenel(x)/n0
5(p/aconf)m(x)u„m(x)…/E0, with m(x)5m!2V(x). Ap-
parently the density profiles are very similar if we assume
same depletion length, the same sample width, and vanis
spacer between 2DEG and background charges~i.e.,z50) in
both cases.

B. Unmodulated system in a magnetic field

In the ideal homogeneous 2DEG at low temperatures,
chemical potential as a function of magnetic field exhib
the well-known sawtooth behavior, Eq.~27!. With decreasing
B it follows a Landau energy (n11/2)\vc until the filling
factor n52EF /\vc reaches the value 2(n11), and then it
jumps to the next higher LL. In the confined system, t
self-consistently calculated ‘‘chemical potential’’m(0)5m!

2V(0) in the center,x50, shows the same behavior, as
seen in Fig. 10~c!, where m(x50;B,T) in units of m0
[m(x50;0,0) is plotted as function ofV5\vc /m0.

However, in contrast to the chemical potential oscillatio
in a homogeneous 2DEG, the corresponding oscillations
the confined system are realized by strong spatial variat
of the electrostatic potential in the interior of the samp
This is demonstrated in Fig. 10~b!, which shows the self-
consistent total potential in the interior of the sample for t
four values ofV indicated by open circles in Fig. 10~c!.
Figure 10~a! shows the corresponding density profiles, n
malized as the local filling factor,n(x)52p l 2nel(x). For
n(x)<n(0)'2/V,2 the LL n50 is pinned to the electro
chemical potentialm! nearly everywhere in the 2DEG. Fo
n(0)*2 the LL n51 must be partially populated in th
center of the sample. This forces the potential to develo
local minimum near the center, with a decrease ofV(0) by
an amount;\vc , so that a compressible strip starts to d
velop in the center. With further increasingn(0), this central
compressible strip becomes broader and the adjacent inc

FIG. 9. Some consistent density profiles~upper panel! and po-
tentials ~lower panel! calculated for the in-plane-gate model~28!
and the perpendicular-gate model~30!, respectively. The depletion
length is chosen asd/5 for the short-dashed curves and asd/10
otherwise. Thin horizontal lines indicate the corresponding elec
chemical potentials.a5paB

! /2d, T50, B50.
5-9
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A. SIDDIKI AND ROLF R. GERHARDTS PHYSICAL REVIEW B68, 125315 ~2003!
pressible strips, together with the related potential ste
move towards the sample edges. Similar drastic change
the potential distribution are found near all jumps of t
chemical potential. Thus, pinning and screening lead alre
to drastic effects in the confined 2DEG even in the abse
of any additional potential modulation.

C. Confined system with modulation

We now add a symmetric external modulation potentia
the confinement potential and investigate how this affects
self-consistent potential. We takeVext(x)5V0cos(2.5px/d)
which is in accordance with our general boundary conditio
and exhibits just one full oscillation period in the interior
the sample, so that we can expect similar screening effe
as in a homogeneous unbounded system, and possibly s
effects of the nearby sample edges. The period of this mo
lation is a52d/2.5, so that the choiceaconf50.01 implies
a51/40 @see Eq.~9!# and the results can be compared im
mediately with the previous one for the unbounded 2DE
For this comparison it will be important whether the pote
tial of the unmodulated system has a strong variation in
center region or not, i.e., whether the filling factorn(0) in
the center is slightly larger than an even integer or not.

1. Weak boundary effects on screening

To describe the screening of an external modulation
tential, it seems natural to calculate the differen
DV(x;V0)5V(x;V0)2V(x;0) of the self-consistent poten
tials with and without the modulation. IfV(x;0) is flat in the
interior of the sample, we expect that screening is very si
lar to that in an unconfined system and thatDV(x;V0) con-
tains essentially the same information asV(x;V0), apart
from an unimportant constant offset. This is indeed true
n(0) is not closely above an even integer. As an example,
compare in Fig. 11 numerical results for the two confinem
models and for the unconfined 2DEG. The results for
density of the confined 2DEG differ only slightly in the edg
regions. In the interior, the filling factorsn(x) are practically

FIG. 10. ~a! Filling factor n(x) and ~b! potentialV(x) for the
values ofV5\vc /m0 given in the legend and indicated by ope
circles in ~c!, which shows the ‘‘chemical potential’’m5m!

2V(0), calculated with model~28! for parameter valuespaB
! /2d

50.01, m0 /E050.002 84,kBT/E05231025.
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the same and agree well with that of the unconfined 2D
with the same modulation potential. Also the screened po
tials are equivalent and differ only by a constant offs
which results from the asymmetry of the density modulat
with respect to the unmodulated electron density profile.

2. Strong confinement effect on screening

Things become more complicated if already without a
ditional external modulation the potential near the center
the Hall bar varies strongly, as happens forn(0)52n1nn
with 0,nn!1. Then, for small modulation amplitude (V0
!\vc), the self-consistent potentialV(x;V0) follows
V(x;0), with a minimum atx50, and only the difference
DV(x;V0) reminds us of an oscillatory potential with th
phase of the external modulation; see solid lines in Fig.
For stronger modulation (V0&\vc), V(x;V0) develops a
local maximum atx50 and the total variation ofV(x;V0) in
the center regionuxu&d/2 is of the order ofV0,\vc ; see
Fig. 12~a!. The variation ofDV(x;V0) is now, however, by
an amount of\vc larger. In this small-V0 regime screening
is rather poor and very nonlinear. AsV0 increases further, the
variance Var@V#(V0)5V(0;V0)2V(a/2;V0) ~note thata/2
50.4d) approaches the plateau value\vc and then behaves
as a function ofV0 just as for the unconfined 2DEG. Th
variance of the ‘‘screened potential’’DV(x;V0), on the other
hand, will be by about\vc larger in the plateau region.

To summarize, if we neglect the relatively narrowV0 in-
terval between the plateaus, we find that the variance of
self-consistent potentialV(x;V0) as a function ofV0 shows
the same behavior as for the unconfined 2DEG. For m
magnetic field values, the variance of the ‘‘screened pot
tial’’ DV(x;V0) also shows the same characteristics. Only
the filling factorn(0) in the center of the unmodulated co
fined 2DEG is slightly larger than an even integer does

FIG. 11. ~a! Filling factor n(x) and ~b! screened potentia
DV(x;V0) for the confinement models~28! ~solid lines! and ~30!
~dash-dotted lines! and for the unconfined 2DEG~dashed lines!.
Thin lines shown(x) without modulation, withn(0)52.8574 for
all models. The screened potential for the unbounded 2DEG
shifted by a constant and actually oscillates symmetrically aro
zero (aconf50.01, m0 /E050.002 842, \vc /m050.7, V0 /m0

524.63,kBT/m050.007).
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spatial variation of the self-consistent potentialV(x;0) of the
unmodulated system cause the variance ofDV(x;V0) to be
about\vc larger than the variance ofV(x;V0). If we plot
the variance ofDV(x;V0) at fixed V0 as a function ofV
5\vc /m0, we get sawtoothlike traces as in Fig. 7, howev
with additional spikes of heightV at V&1/k for integerk.

IV. SUMMARY

We have investigated the screening of a harmonic exte
potential by an unconfined two-dimensional electron gas
well as by confined 2DEG’s in a simplified Hall geometry,
strong perpendicular magnetic fields, and at low tempe
tures. Our numerical results within the self-consiste
Thomas-Fermi-Poisson approach show that screening is
nonlinear and dominated by the phenomenon of pinning
Landau levels to the electrochemical potential, which le
to compressible regions with position-dependent elect
density, where this pinning takes place, and to incompre
ible regions of constant density and position-dependent e
trostatic potential in between. At fixed magnetic field, t
total variation~‘‘variance’’ Var@V#) of the self-consistently

FIG. 12. ~a! Self-consistent potentialV(x;V0) and ~b! screened
potential DV(x;V0), for several V0. For clarity, ~b! shows
10DV(x;V0) for the weakest modulationV05631024E0. For V0

50 @thin solid line in ~a!# n(0)52.03 (aconf50.01, m0 /E0

50.002842,\vc /m050.985,kBT/m050.01).
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calculated potential energy increases with increasing mo
lation amplitudeV0 in a steplike fashion, exhibiting plateau
where the value of Var@V# is close to an integer multiple o
the cyclotron energy and shows a weak linear increase w
V0, with a slope proportional to the temperature. The cor
sponding modulation of the electron density is, in contras
the potential, not strongly affected by the magneticB. The
occurrence of incompressible strips leads to local modifi
tions, but the overall density profile is roughly the same
for B50, as has already been emphasized by Chklov
et al.10 Exploiting this observation together with the pinnin
phenomenon and the relations between density modula
and external and screened potential valid in the line
screening regime, we were able to derive simple analyt
expressions for step heights and plateau widths of
Var@V#-vs-V0 curves for arbitraryB andT50. This simple
analytical description of nonlinear screening in an unco
fined 2DEG is summarized in Fig. 6 and allows also an e
understanding of the complicated traces obtained while p
ting Var@V# as a function ofB at fixedV0 ~see Fig. 7!.

Finally we have investigated the corresponding screen
properties of a confined 2DEG in a simplified Hall geome
for two different types of boundary conditions, which lead
different confinement potentials, but nearly identical dens
profiles, apart from slight deviations in the edge regio
Considering the effect of an external modulation poten
Vext(x)5V0cos(2.5px/a) in the interior of the sample~more
than abouta/2 from the edges!, we find essentially the sam
properties as for the unbounded 2DEG. Care must be ta
however, if in the center of the unmodulated system a n
Landau level starts to be occupied, since then the s
consistent potential varies strongly in the center region. T
is an interesting confinement effect, but it can be eas
eliminated from the discussion of screening if the modu
tion amplitudeV0 is large enough.
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