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Thomas-Fermi-Poisson theory of screening for laterally confined and unconfined two-dimensional
electron systems in strong magnetic fields
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We examine within the self-consistent Thomas-Fermi-Poisson approach the low-temperature screening prop-
erties of a two-dimensional electron g&DEG) subjected to strong perpendicular magnetic fields. Numerical
results for the unconfined 2DEG are compared with those for a simplified Hall-bar geometry realized by two
different confinement models. It is shown that in the strongly nonlinear-screening limit of zero temperature the
total variation of the screened potential is related by simple analytical expressions to the amplitude of an
applied harmonic modulation potential and to the strength of the magnetic field.
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[. INTRODUCTION of these interesting nonlinear screening effects is, however,
apparently not available in the literature.
A two-dimensional electron ga@DEG) in a strong per- Models for half-space and Hall-bar geometries with pla-

pendicular magnetic field has unusual low-temperaturear charge distributions have been proposed that allow
screening properties’ since the highly degenerate Landau- closed solutions of Poisson’s equati@®., calculation of the
guantized energy levels lead to a strong variation of the therpotential for a given electron densjfyand estimates of po-
modynamic density of statg§DOS) with varying strength  sition and widths of the incompressible strips have been
of the magnetic field, i.e., with varying filling factorof the  given!®* By adding the nonlinear Thomas-Fermi approxi-
Landau level$LL's). If a LL is close to half filled, the TDOS mation for the calculation of the electron density from the
is very high (inversely proportional to the temperatuf, potential, that work was extended to a self-consistent ap-
and static potential fluctuations are nearly perfectly screenedroach, which allows us to calculate both electron density
We will consider only spin-degenerate 2DEG's, so that thihd electrostatic potential for arbitrary temperattiré. This
happens if the value of is close to an odd integer, while at &PProach, which we will employ in the following, shows that
even-integew the Fermi energy lies in the gap between tvvoth‘,a existence and width of incompressible strips depe_nd sen
adjacent LL's and a spatial redistribution of electrons ands_mvely on temperature and allows us to calculat_e their POSI-

) . . . tion and width for given background charges without addi-
therefore, a screening ¢fveak potential fluctuations is im-

possible. In an inhomogeneous 2DEG with sufﬁcientlytlonal assumptions.

¢ | density fluctuat ; Hocts | The purpose of the present work is a systematic investi-
strong fong-range density L‘fc ua |ons,_scr"een|r'19 Elects 1€afation of the nonlinear low-temperature screening of har-
to quasimetallic(so-called “compressible’ regions with

: ) : S __monic electrostatic potential modulations in laterally con-
high TDOS, in which screening is nearly perfect and a LL iSgineq and unconfined 2DEG's subjected to a quantizing
pinned” to the Fermi energy, and to insulatorlike *incom- nerpendicular magnetic field. We will demonstrate that in
pressible” regions, which separate adjacent compressible r%‘eneral edge effects do not qualitatively change the screen-
gions. In the incompressible regions the Fermi energy fall§ng properties of the 2DEG, even if the sample width is not
into the gap between two LL's and the electron densifir)  ych larger than the period of the imposed potential modu-
is constant(even-integer filling factgr while in the com-  |ation. There are, however, peculiar differences between con-
pressible regionng(r) adjusts itself so that the self- fineq and unconfined 2DEGs in situations in which the latter
consistent electrostatic potential eneigfr) of an electron  paye no states near the Fermi energy. To understand this in
differs from the Fermi energymore precisely the electro- getail, we first discuss the screening of a potential modula-
chemical potential.™) by a Landau energyiw.(n+1/2),  tion imposed on a homogeneous 2DESec. 1) and then
wherew.=eB/m is the cyclotron frequency in the magnetic consider, for two different boundary models, edge effects on
field B. As a consequencé/(r) becomes nearly constant screening in Hall-bar geometriéSec. I1)).

within a compressible region and differs by integer multiples  \\e will assume the 2DEG to be located in the plane

of ﬁ(_uc between d_ifferent compressible regions. L.andau level o with a(surfacg number densityi,(x) and consider only
pinning and the interplay of compressible and incompresss;tyations with translation invariance in tiyedirection. The

ible regions lead to strongly nonlinear screening effects. Th'?Hartree contribution V4(x) to the potential energy of an

screening scenario was established some timéaayud was  electron caused by the total charge density of the 2DEG can
applied, e.g., to calculate, at zero temperature, the electronjgs \yritten a3

DOS (Ref. 3 and transpoft® through 2DEG’s in smooth

periodic and random potentials. The explanatioof several

experimental results, e.g., on quantum Hall devices under 262 (x

high currents close to the breakdown of the quantized Hall Vy(X) = Tf rdx’K(x,x’)ne|(x’), 1)
effec® relies also on these ideas. A systematic investigation Kk Jx
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where —e is the electron charges an average background as response to the density fluctuatioy. Summing over
dielectric constant® and the kermneK(x,x’) describes the harmonics(for g#0),'® we obtainV,(x,z=0) from Eq.(1)
solution of Poisson’s equation with appropriate boundarywith —x,=x,=a/2 and the kernel

conditions atx; andx, . The electron density in turn is cal-

culated in the Thomas-Fermi approximafidiTFA) K(xx' )= —In|2 sinz(x—x’)
' a

. (6)

nel(X)=fdED(E)f([E+V(X)—M*]/kBT). (2 , ,
B. Breakdown of linear screening

with D(E) thelreIevant(single-particle density of states, 1. Zero magnetic field

f(e)=[1+e]”* the Fermi function, andu* the electro- Lo . A
chemical potential and with/(X) = Vex(x) + Vi(x) the total lrgzt)h?eg?étes t_OO’ T—0 and withE=u*(B=0,T=0),
potential energy of an electron, which differs fram(x) by 9
the ppntrlbutlon due to external charges, e.g., a hqmo_geneous Ne(X) = Do(Ep— V(X)) 8(Er— V(X)) )
positively charged background and a charge distribution cre-

ating a periodic modulation potential. The lo¢blUt nonlin-  which is a linear relation betweelW(x) and ng(x) for
eap TFA is much simpler than the corresponding quantumV(x)<Eg. With Eq. (5) we find for a harmonic potential
mechanical calculation and expected to yield essentially thenodulationV,,(x) = VJ, cosgx a harmonic density modula-
same results i¥/(x) varies slowly in space, i.e., on a length tion sng(x)=ndcosgx and the self-consisteritscreened”
scale much larger than typical quantum lengths such as thgotentialV(x) = VV9cosgx with

extent of wave functions or the Fermi wavelength.

VI=Vd/e(@), e(@)=1+Qo/[al. ®

The dielectric functiore(q) can be expressed in terms of the
We start with a homogeneous 2DEG described by theffective Bohr radius ag:?hzl(mez) (for GaAs aj

DOS DO(E): DOQ(E), with DO:m/(’ﬂhz), for B=0, and =98 nm), since QOZZWeZDO/;: 2/ag.l,16 With q

by the Landau DOS =2mla, the screening strength is thus determined by the

dimensionless parameter

Il. HOMOGENEOUS 2DEG

oo

Dg(E)= !
° _Wlén:

, AE-Ey), En=fing(n+1/2) (3) w=mal/a. ©

for finite B. The effective mass of an electron is denoted by/Vé Will assumea<1, ie., e(q)=1+1/e>1, so that the

. TFAis valid forB=1 T, i.e.,[ ;=30 nm. Since in the linear
m, the magnetic length bly,= V%/(mw.). In both cases we : . P m .
assume spin degeneracy and neglect collision broadening gicreening regime the minimum value of the electron density

— is Ng(0)=Dy(E—V9), linear screening breaks down if the
fects. The constant electron density is given by EQ.(2)  mgquiation strength becomes so large M3=Eg, i.e., for

With Ne=ne(x), V(X)=0, andu”=u the chemical poten- /9 >¢(q)Eg. For larger modulation amplitude the redistri-
tial. For these simple models the energy integral in@jis  pution of electrons is hindered: while the electron density at
readily carried out. We tacitly assume that the electronpe minimum ofV,(X) still increases, the electron density at
charges are neutralized by a homogeneous background gfe maximum oM,(x) cannot decrease further. Instead the

positive charges. density minimum becomes broader. This means that the elec-
trons are depleted from strips along the maximavegfi(x)
A. Kernel for periodic modulation and the 2DEG breaks off into a system of parallel quasi-one-

We now add a periodic external modulation described b)?lmens;onf_ll lr\lj:)bons. Thuf’ tge 'lmposed hharmor_nc dmod_t:la—
a potential energWq,(X) = Ve X+a). The 2DEG will re- ion potentialVex(x) now leads to an anharmonic density

spond with a density modulation and a Hartree potential 01di5tribl.‘ti(l)7n and, therefore, an anharmonic _ screened

the same periodh. To exploit the periodicity, we expand potential. Mathemaﬂca!ly, Eq(1) with .(6) and Eq.(7) now

density and potentials into Fourier series according to represents a nonlinear integral equation that must be solved
numerically. In Fig. 1 we plot the total variance Vi

dx =V(0)—V(a/2) as a function of the amplitudéd, =V, of
Ze*'qXV(x), (4) the imposed modulation potential for several values of the
magnetic field. The result fdB=0 andT=0 is shown as a
thick solid line. In the linear screening regime, Mi
=2V9=2V,/€(q). As linear screening breaks down, a kink
appears in the line and the variance increases much faster
than in the linear regime. With increasing temperature this
kink is rounded off, while the VaW]-vs-V, curve as a whole
_ is not much affectedshown forkgT/E-=0.04 by the open
Vii(2)=(2me? k|q|)e”1%ng () circles in Fig. 2. Here and in the following we measure

. al2
V(x) =2, Vielwx, Vq:f
q —a2
with q=2mn/a and integen. To maintain charge neutrality,

we requirend=ny, in any case. With the boundary condi-
tions V,(x,2)—0 for |z|—o, Poisson’s equation yields
(see, e.g., Ref. 24
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3.0 ' "] We Vp vn| Qo
s ); €aB=1tiT 2 ( 2/l P
—-— v=1, KT/E.=0.001 f
T KTRS004 j! For exactly half filling,u=E,, this is a rather good approxi-
w20 —-—v5 T mation, as can be seen from Fig. 1, which shows numerical
a ] f results forv=vy=1 (n=0) at two different temperatures
§ ) . g (two lowest curves &V /Er>15). We see that the screening
S S ol B at finite magnetic field depends much stronger on tempera-
>10¢ ture than aB=0. The linear approximation breaks down if
the amplitude of the screened potential becomes of the order
2kgT.
s RSt This yields, in the limit of low temperatures and fof,
0.0 & fogesadboumy =m0 ! =1, the estimate for the linear screening regime,
0 10 20 30 40
e Vgxrs €(q;B) 2keT _ €l@) (13)
FIG. 1. Variance of the screened potential vs amplitude of the Er ' Er v

harmonic potential modulation imposed on a spin-degenerate ho-

mogeneous 2DEG with a half-filled Landau level, for several odd-with €(q)=¢€(q;B=0)=1+1/a. For a larger modulation

integer values of the filling factor. Default temperatugT/E the redistribution of electrons within the considered LL is not

=0.001, (q) =41. efficient enough to screen the imposed modulation potential,

and similar to theB=0 case, the variance of the screened

P : . _— potential increases much stronger than in the linear regime.

energies M unis of ﬂje Fermi enery =na/Do (for GaAs In Fig. 1 we show low-temperatur&gT/Er=0.001) results

with ng~3x 10 cm 2, Ep~10 meV), and we keep the _ — .

— .. for odd-integerv values, calculated numerically from Egs.
mean _electron den_sﬂyeh and thugEF, constant. We will (1), (6), and(10). For this temperature, the linear increase of
focus n the TOHOW'.ng on _the regim¥o=€(q)Er, where the screened potential with the applied modulation amplitude
screening is linear in the limB=0, T=0. V, is not resolved on the scale of Fig. 1. However the rapid
increase of the variance of the screened potentid dEr

~e(q)/_;is clearly seen for the indicated values.

For =1 the situation is very similar to thB=0 case,
apart from the fact that screening in the linear regime is

2. Half-filled Landau levels

With the Landau DO$see Eq(3)] and the definition of a
position-dependent chemical potentigk(x)=u*—V(x),

Eq. (2) yields much strongef“perfect screening,” “pinning of lowest LL
to Fermi level”) due to the higher DOS. Far>1 new phe-
ne|(X)=ﬁcho; F(E, — (). (19  "omena occur, which we will now discuss.

C. Emergence of incompressible strips
We may also write the argument of the Fermi function as

E. (X)—u* and interpretE,(x)=E,+V(x) as position- 1. Odd-integer filling factorw

dependent Landau energies, which is correct if the Thomas- e start with filling factor v=3 and investigate the
Fermi approximation holds. It will bg useful_to define, in changes of the electron densifig. 2) and of the total po-
addition to the average LL filling factar=2ml2ng, alocal  tential (Fig. 3 with increasing amplitud®, of the imposed

filling factor v(x)=2712ne(x). modulationVe,(X) = Vocosgx, giving explicit results for the
For ksT<hw. and a homogeneous 2DEG with partly six typical V, values indicated by open circles in Fig. 2.
filled nth Landau level,u~E,, =2n+ vy, Where v, For Vo=11E., close to the breakdown of linear screen-
~2f(E,— u) is the filling factor of thenth Landau level, the ing (case 1, the density is strongly modulatédee thin line
TDOS i in lower inset of Fig. 2 but the modulation appears still

cosine like. The potential is so effectively screened that the
— second-lowest LLif=1) is pinned(within a fewkgT) to the
Dy(u:B)= ane|: haoc ﬁ(l_ E)Do (11) Fermi energy{see Fig. 81)]. For case 2V,=13.7E¢, the
' du kT 2 2 ’ total potential has developed locally confined maxima and
minima, while it remains rather flat in betwe¢hRig. 3(2)].
which is peaked aroungk=E, with a maximum value Near these extremgE,(x) — u*| becomes so large that the
hw:Dy/(4kgT) and a width of ordekgT [a crude approxi- LL n=1 is completely occupiednear x=a/2) or empty
mation is D1(u;B)~(fiw.Dy/4kgT) O(2kgT—|E,— u|)]. (nearx=0), and incompressible strips with local filling fac-
Linearizing Eq.(10) with respect to the screened potential tors v(x) =4 andv(x)=2 develop near the potential minima
V(x), we obtain the Eq.(8) with Qg replaced byQg and maxima, respectivelysee thick solid line in the lower
=QoD1(u;B)/Dg>Qq, inset of Fig. 2 and Fig. @)]. Increasing the modulation to
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3.0 strip [see dashed line in the upper inset of Fig. 2 and Fig.
3(4)]. Further increase o, up toV,=38.%E (case % wid-
ens the compressible strips and leads to a strong increase of
the density modulation due to a redistribution of electrons
w20 from the n=0 to then=2 LL. This results in a strong

= screening, similar to that in the linear screening regime at

8 weak modulation, and, apart from a weak increase with a

i slope proportional tokgT, the variance Vav]=V(0)

% 10 b —V(a/2) remains constant at the value Mdi=u”
—Eo(0)—[u*—Ey(al2)]=2%w.. This plateau behavior of
the VafV]-vs-V, curve is obviously an immediate conse-
quence of the pinning of LLs to the Fermi level, i.e., of the

0.0 nearly perfect screening.
) In case 5 we reach a situation in which the lowest (

=0) LL is nearly empty at the potential maximum and the
_ _ . higher (©=2) LL nearly full at the potential minimum. In
FIG;Z. Variance of the total potential %, for average filling 550 6 Vo=41.E;) the total potential again develops local
factor v=3. The insets show the local filling factar(x) in one  extrema, similar to the situation depicted in Fig23 But
modulation period (&x/a<1) for the sixV, values indicated by  now the incompressible strip created at the potential maxi-
circles. ParameterssT/Er=0.01, €(q) =41, g=2m/a. mum is due to the depopulation of the lowest LL, i.e., due to
vanishing electron density. With further increasiwg the
Vo= 14.5 (case 3leads to more pronounced local extremadepletion regions become wider and the density near the po-
and broader incompressible strips, but does not change thential minima increases, but screening remains much poorer
situation qualitatively. The overall change of the density disthan in the plateau region.
tribution is rather smal(see lower inset of Fig.)2indicating We see from Fig. 2 that the global appearance of the den-
poor screening. Indeed the slope of the[Varvs-V, curve  sity modulation, apart from a fine structure related to the
in this regime isAVar/AVy~1, i.e., only slightly smaller incompressible strips, is more or less cosine like. We will use
than in the absence of any screening, which would yieldhis finding for a rough estimate of the plateau width of the
AVar/AV,=2. We note that in the incompressible strips thevar V]-vs-V, curves. First we conclude from the cosinelike
local filling factor (i.e., the densityis constant, while in the form of the induced density variation that in the high-
pinning regions, i.e., the compressible strips, the screeneskreening plateau region, along with E€®.and(8), the first
potential still has a finite slope, proportional kgT.*? relation of Eq. (13) holds qualitatively and relates the
As V increases further to case ¥{=17E¢), the modu-  changessV of the total potential to the changé¥, of the
lation becomes so strong that the maximum of the lowest LLexternally applied potential byV~ e(q;B) 5V,. For Q/|q|

Eo(0), and theminimum of the lowest unoccupied LL, =1, this yields for the change of the variance [Wa} across
E,(a/2), reach the Fermi levek™ (to within kgT). Then  the plateau of widthAV,:
thermal population of the higher LInE2 nearx=a/2) and

depletion of the lower LL =0 nearx=0) starts and com- 8kgT
prepssible strips emerge ir?the center of)each incompressible AvarV]~ hoge(q) AVo, (14
: : . i.e., an estimate for the slope of the Mdi-vs-V, curve in
20+ (1) - () . (3) the plateau region. Since the modulation induces density
i VSK—/H’—JL changessng mainly within the compressible regions of high
> 1.0 i > T o 7 TDOS, we estimate  Sng~—D(u;B) 6V~
o —(hwJdkgT)DosV (which holds for »,=1 and |dV|
g 00 =<2kgT). In terms of sv=2ml26n, this yields 6V
‘ ~2kgT Sv, and together with Eq14) the relation
—~ 20 @
o BVo &)\ var o] (15)
§ 1.0 \—\H EF 2v
g 0.0 \\\f/— between the plateau widthV, and the change of the filling
factor variance Vdw]=v(a/2)— v(0) (defined at fixedvy)
00 05 00 05 00 05 10 across the plateau. This criterion applies also to the sthall-
x/a x/a x/a linear-screening regime, in whiclk(x) varies within the

same LL, with V. increasing from 0 to 2, i.eAVa
FIG. 3. Total potentia(thick solid lines and the three lowest of av] 9 Avar v]

the corresponding Landau levéthin solid lineg together with the =2 [S?e Eq..(13)]. The I‘eSultlﬂg Wldth of the “nearf
electrochemical potentidthick dashed linesfor the sixV, values ~ SCreening regimeAVo/Eg~e(q)/v, describes the numeri-
indicated in Fig. 2. Parameters as in that figure. cal results of Fig. 1 for odd-integer=2n+1 quite well.
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From the discussion of Figs. 2 and 3 we expect that,nfor 3.0

>0, the linear regime of the V&¥](V,) curve is terminated ! /;‘:\\ 1 8223*)
by a step of height 2w.=4Eg /v, which is followed by a fommzass N ---- 100
plateau. WhileV, sweeps through the plateau, in addition to

N
o

the LL with indexn the two LL's with indicesn—1 andn

+1 are locally pinned to the Fermi level and lead to a total
changeAVarf v]=4 (for v=3 from Vafv]=v(a/2)—»(0)

=2 on the left side to Vgw]=6 on the right side of the
plateau, as seen from the upper inset of Fig.This yields
the plateau widtlAVy/Er~2e€(q)/v. If n—1=0, the pla-
teau will be followed by the breakdown regime. nf-1
>0, the plateau will be followed by a further step of the
same height to a plateau of the same width. 0.0

To summarize: at very low temperatures and odd-integer

filing factors v=2n+1, the variance VW] of the
screened potential as function of the imposed modulation FIG. 4. Asin Fig. 1 but for even-integer values of teerage
amp”tude VO shows a linear Screening regime fMO fl|||ng factor (kBT/EF:0.001,€(q)=41). The thin solid line indi-

<e(q)Eg /v which is followed byn successive steps of cates the result foB=0, T=0; the thin dashed line has slope 2.

. — . — The inset shows the local filling factar(x) in one modulation
hltalght Zwe=4Eg/v and width AVo~2&(q)Ep/v. The period for average filling/=2 and the five values o¥, indicated
plateau of thenth step ends at the breakdoyvn of the 2DEGby circles in the main figure.)*For V,/Er=0.60 the deviation
into a pattern of isolated 1D systems, which leads to POOf ,(x)— 2] is enhanced by a factor of 20.
screening and is indicated in the V&f(V,) curve by a

slope o_f _order u_r_lity. At finite temperature, _the plateaus aSBetweenV,/Ex=0.5 andV,/Ex~41 the width of the com-
sume finite positive slopgs, which are estimated from Eq'pressible strips and the deviaticﬁm(x)—?] increase con-
(14) as AVarV]/AVo~4vkgT/[(q)Eg]. These results, (inyously, while the variance VBW]~#%w.=E¢ remains
which describe the content of the numerically calculatedgnstant. Since screening is due to the redistribution of elec-
Figs. 1-3 very well, depend, of course, on the high symmegqns at the Fermi energy, i.e., to electrons in the compress-
try of the situations considered so far. ible strips where the TDOS is large, we may again use Eq.
(15) to estimate the plateau width. At the beginning of the

o ' . first plateau the filling factor is constani(x)=v, i.e.,
Another situation of high symmetry is that of an even-varf »]=0. At the end of the plateau, the LiLis depleted at

integer filling factorv=2n+2, wheren is the index of the the potential maximump(0)=7—2, and at the potential

highest occupied LL and the Fermi enelfy=fiwc(n+1)  minimum the LLn+1 is full, »(a/2)=v+2, ie., Vafv]
lies in the middle between two adjacent LL's. According t0 — 4 Thus. we have to use E(L5) with AVaf»]=4 and

Egs. (13) and (12), the linear-screening regime shrinks to

zer in =2. Th very low temperatur . . . . . .
ero, sincevn us, at very low temperaturekgT This estimate is obviously in good agreement with the

<fw/2) a weak modulatiorVq(x) =Vycosgx will not be . ) o -
screecnezj, i.e. the local fiIIinge?t:gczor V\?i" bg independent Ofiumencal calculations presented in Fig. 4. For filling factor

the modulation,v(x)zj, and the total potential will equal v=2, |.e.,nf0, the first plateaL_J ends_ at the transition to the
the external one, with variance Vaf](Vo) = 2V,. This situ- poor-screening breakdown regime, since then the lowest LL

ation changes when the modulation potential becomes s%zo IS complletelly dep!eted at the potenﬂal maxmtia.CK
large that|Vo—fw/2|~kgT; i.e., the maximum energy dash-dotted line in the inset of Fig).4~or v=2n+2 with
E.(0) of the highest occupied and the minimum energy">0 @ behavior similar to that discussed in Fig. 3 occurs. As
Ens1(a/2) of the lowest unoccupied LL approach the Fermi Vo increases slightly beyond the plateau regime, a narrow
energy. Then, with increasind, the LL n is depleted near '0cal maximum ofV(x) develops neak=0, accompanied
x=0 while the LLn+1 is populated neax=a/2, forming by @n incompressible strip of filling(x)=2n due to the
compressible strips with local filling factors(x)<» and cha_l depletion of the LLn. Simultaneously, a narrow local
= ivel minimum of V(x) develops neax=a/2, accompanied by an
V(thsvisrzzFﬁgr:\s/ter;[-ed in the inset of Fig. 4, which show incompressible strip of filling/(x) =2n+4 due to the local

. Soccupation of the LLn+1. Then, in a narrow/, interval
the local filling factor»(x) for kgT/E¢=0.001 and the av-  hege new extrema become more pronounced and the accom-

erage filling factorv=2, i.e.,fiw.=Eg, and for the modu- panied incompressible strips widen a little. However, the ac-
lation strengthsV, indicated by circles in the main figure. companied density change is small, resulting in a poor
For Vo/Er=0.45 in the nonscreening region the deviationscreening and a rapid increase of the[VA(V,) curve. This
[v(x)—v] is practically zero(numerically <10 ®), while interval ends when the new maximut_(0) of the Lan-
for Vo/Eg=0.6 it is finite, although smaliin the inset en- dau leveln—1 and the new minimunk, ,,(a/2) of the LL
hanced by a factor of 20with narrow compressible strips. n+2 come close to the Fermi levéwithin a few kgT).

[V(0)-V(a/2)JE,

-
o

2. Even-integer filling factory

obtain for the plateau width Vo~ 2e(q)Er/v.
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3.0 - For v,=1 this reduces to the estimatE3). But in addition,
Tt v=43,0-15 Eqg. (16) states that for even-integer filling,—0 or v,
—-— v=7/3, Q=0.8567 . . . . .
---- v=8/3,0=075 —2, the linear-screening regime shrinks to zero, and it pro-
- zjgﬁj’ gzggg vides a good description of the widths of the linear screening
W20 b —— va15/2, 0=0.267 regimes in the examples shown in Fig. 5.
= We will now use Eq.(15) to obtain estimates of the pla-
8 teau widths and heights of the Yat]-vs-V, curves, which
i contain the estimat€l6) for the linear-screening regime as a
% 10 b | special case. Our estimates are based on the observation that
————————————— in all cases we have studied the density modulation is nearly
symmetric about the average density, so that the average of
extreme values of the local filling factor is close to the aver-
0.0 ; age filling, »(0)+ v(a/2)~2v. Nearly perfect screening oc-
0 10 20 30 40 curs, if at both the potential maxima and the minima a LL is

Vo/Ee pinned to the Fermi level, so that electrons can easily be
- : redistributed between these LL's and bot{D) andv(a/2)
FIG. 5. As in Fig. 1 but for some noninteger values of the - . Sy
(averagge filling factor and for higher temperatur&gT/E=0.01 are different from even integers. If, Wlth mcreaSMg’.V(O)
[e(q)=41] approaches an even-integer val(@) =2k, the LL k is de-
' pleted atx=0 and a local maximum of/(x) starts to de-
Then, with further increasingy/,, new compressible strips Vvelop there. Screening remains poor, and[V4(V,) in-
open at the locations of the potential extrema, and a plateatreases rapidly, until the Lk—1 reaches the Fermi level at
region of the VarV](V,) curve with “perfect” screening Xx=0. Then a step of heightw. is completed and the next
sets in. We thus again find a step behavior like in Fig. 1 withplateau with perfect screening starts. A similar ste;p begins as
step height\Var{ V]= 2% w.=4E¢ /v. During theV, sweep  »(&/2) reaches the valuek2. Then the LLk’—1 is com-
through the corresponding plateau, the bt 1 will be de-  Pletely filled atx=a/2 and a local potential minimum starts
pleted neax,, while the LLn+2 is occupied neax=a/2.  to develop there. Perfect screening begins again if th&'LL
Thus, we can estimate the plateau width from Bd) with ~ reaches Fermi level at=a/2 and the increase of Var]

AVar v]=4. The last plateau is the one corresponding to the<(Vo) by 7. is completed. . . .
local depletion of then=0 LL. We combine now these considerations with the estimate

In summary, forr=2n4+2 and very low temperature, the (15). For convenience, we introduce the dimensionless vari-

VarfV](Vy) curve shows a linear increase with slope 2 forabIeS
0<Vy<Er/v, followed by a plateau of heightiw. Vv VA o,
=2E¢/v and widthAVy~2¢(q)Eg/v. This plateau is fol- V=E. VT (B, 0= E. (17)

lowed byn steps of height 2w, and approximately the same

width AV,. The plateau of the last step is followed by the and focus on the regime<Qv,<1, in which forT=0 and

breakdown regime. B=0 screening is linear and leads to Maf(vq)=2v,. TO
keep the discussion simple, we consider the two possible

cases of noninteger=2n+ v,, separately.

In Fig. 5 we show VgV ](V,) curves for a few noninte- a. 0<p,<1. In this case the end of the linear-screening
ger values of the average filling facter=2n+v,, with 0 region, wherev<Q, is reached when(0)=2n. Then
<v,<2. Although these results may, at a first glance, lookv(a/2)~v+ v, and Vafv]=2v,, and across the linear-
confusing, we will now demonstrate that they can easily bescreening regime we findVarf v]=2v, . According to Eg.
understood, and even predicted, from a few simple prin{15), linear screening ends at,/Er~ €(q) v,/ v, in agree-

ciples. _ _ _ _ ment with Eq.(16). Neglecting potential variations kgT
To estimate the width of the linear-screening regime at<(), we note

small V, values, we follow the reasoning of Sec. Il B3,
~¢(q;B)VY, but we note that the linear approximation to the
Taylor expansion ofng(x) with respect toV(x) [see Eq. o o
(10)] no longer holds fofV(x)|~2kgT, since forv,#1 the  sincev,=v—2n andQ=2/v. If n=0, largerV, lead to the
second-order tern{ «d?ng/du?=(dnglduw)(1—v,)/kgT]  poor-screening quasi-1D ribbon regime.
yields already noticeable contributions for smaN&ix). To For n>0, the next plateau terminates whe(a/2)=2n
take this into account, we use the linear approximation only2. Then v(0)~2n—2(1-v,), i.e., Vafv]=2(2—v,).
for |V(x)|=<2kgT/(1+|1—v,|) and obtain as a condition Across this plateau we havkVafi v]=4(1-v,), and with
for the linear-screening regime Eqg. (15 AVo~2€(q)Eg(1—v,)/v. This yields Avy~(2n
+1)Q)—-2 and

3. Noninteger filling factor v

Vafv]=0, if 0<vy<1l-nQ, (18

V0<ﬂ vn(2—vp) (16)

Er 5, 1+[1-y Vafu]~Q, if 1-nQ<v,<(n+1)Q—1. (19
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This plateau is followed by another one along whig0) Vafv]~(2k—1)Q,
decreases to A1), while v(a/2) increases to=2n+2
+2v, and thus Vdrv] to 4+2v,. Thus, across that plateau if (N+K)Q—1<vy<l—(n+1—k)Q, (24)

we find AVarl v]=4v, andAvy=2-2n(), which leads to
Vafu]~2Q, if (n+1)Q—1<v,<1—(n—1)Q. Varlv ]~ 2k,
(20

If n=1, this plateau is followed by the poor-screening
quasi-1D ribbon regime. Ih>1, we are in the same situa- which is followed by a final single step

tion as at the end of the loWy linear-screening regime, and

a double step of total widtlf), consisting of one step of Vafv]~(2n+1)Q, if (2n+1)Q—-1<v,<1, (26
height ) and plateau widthAvy=(2n+1)Q2—2 and an-
other one of heigh©) and widthAvy=2—2n(}, will follow.
Thus, we obtain for &.k<n

if 1—(n+1-KQ<vo<(n+k+1)Q—1, (25

of height ) and plateau width 2 (2n+1)Q. The linear-
screening regiméwidth (n-+1)Q —1], the n double steps,
and this final plateau cover together the interval <1,

Varv]~(2k—1)Q, as in the case @v,<1. The variance of the screened po-
tential in the last plateau is Mar]=2[1—(v,—1)/v].
if 1—(n+1-K)Q<vy<(n+k)Q-—-1, (21) For 1<wv,<1.5 the first plateau of each double step is
wider than the other plateaus, as seen in Fig. 5 for the long-
Varfv]=~2kQ, if (n+k)Q—1<vy<l—(n—k)Q. dashed Iine?=3.25), which exhibits one double step fol-

(22)  lowing the initial single step. For 15v,<2 these first pla-
teaus are the narrower ones, as seen for the thick solid line

(7=3.75). Forv,=1.5, the double steps consist of two in-

plateau(before breakdownwe have Vafo]=2(1— v /;) dividual steps of equal height_s and plateau widths, as is il-
n . . .
For 0<»,<0.5, the first plateau of the double step is Wlderlustrated by the thin solid Imev(—? 5).
than the second one, as for the dash-dotted line in Fig. 5 In the limit of odd-integew, v,—1, the width of the first
(v—2 33), while for 0.5<»,<1 the second plateau of the single step together with the second plateau width of each
.33), Ko,

double step is the wider one, as for the short-dashed lindoUPI€ step shrinks to zero, so that only steps with step
(; 2.67). height 2) and plateau width) occur. (For »=1, i.e.,n

We should mention three limits. Far,—0 the lowV/, =0, no double step exists and the smgle step merges with
linear-screening regime shrinks to zero and the first plateathe breakdown regime.In the eveny limit, »,—2, the
of the double step exhausts its full width, so that the secontvidth of the first plateau of each double step shrinks to zero.
step merges with the first one of the following double step.Thus, the first step of widtl) and height(} is followed by
Thus, we observe at small, a step of heighf), followed N steps of the same plateau width but double step height.
by steps of the double height®, and all plateaus have the €. SummarySummarizing the estimates of this Sec. Il C,
same widths, as we found previously. Fgr=0.5 we get an We note that the Eq$18)—(26) define a set of straight lines
even number of steps which all have the same heights arifl thevo-(2 plane, which separate areas in each of which the
widths. For v,—1 the width of the first plateau of each variance Varv](vo) equals an integer multiple @. This is
double step shrinks to zero, so that the Ioy-linear- schematically shown in Fig. 6. The position and hei_ght of the
screening regime is followed by steps of heigh?2 2and  steps of the Vdw](vy) curve for a given value ob can
width ), as we have seen before. immediately be read off from this figure along the vertical

b. 1<v,<2. In this case we have at the end of the linearjine at Q= 2/v.
screening regime(a/2)=2n+2 andv(0)~2n+2(v,—1)
>2n, with Vaf v]=2(2-v,). From Eq.(15) we obtain

Thus, the linear screening regime is followed mydouble
steps, which sum up to a total widtvy=1, and on the last

D. Sweeping the magnetic field

Vafv]=~0, if 0<vy<(n+1)Q-—1, (23 We now consider the screening of an external cosine po-
_ ) o tential Vg, (X) = Vocosgx of fixed amplitudeV, as function
and see that now the linear screening regime is always folof the magnetic field, keeping the average electron density

lowed by a step of heighf? to a plateau of perfect screening. at the fixed value of the positive background charge density.

Forn=0 (i.e., 1<€1<2) this plateau covers the inten@l Then, with increasingB the average filling factory

—1<vo<1 (see, e.g., thin dashed line of Fig. 5 for =2FE_/hw. decreases. For the unmodulated 2DE@, (
=1.33). To estimate fon>0 height and width of the fol- =0) this leads to the well-known sawtooth behavior of the
lowing steps and plateaus, respectively, we proceed as bghemical potential, which at low temperatures is pinned to
fore, exploiting that at the end of each plateau eithd) or  the LLs, i.e. follows half-integer multiples of the cyclotron
v(al2) reaches an even integer value and thd40) energy,

+wv(al2)=2v. The result is, for 8&<k=<n, a double step of

total width Q, w=ho n+12 if Un+tl)<Q<ln. (27)
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For fixedv8=V0/[EFe(q)] and decreasing, the variance
Var{ V]/Eg increases by if the horizontal Iinev0=v8 in-
tersects one of the straight lineg=k{ —1 and decreases
by Q if it intersects one of the straight lineg=1—k(. For
large Vy (v¢>0.6), the variance jumps with decreasiBg
monotonically to higher multiples of the cyclotron energy,
until B becomes so small thét=1—wv. Then, for smalleB
also jumps back to lower multiples occur. For small modu-
lation amplitude (;850.1) one has perfect screening if the
average filling factor is not too close to an even integer. Near
such values linear screening breaks down and WHE
approaches(), provided 2/y>fw. (otherwise VarVv]
=2V,). For sufficiently smalB, of course, the variance will
equal higher multiples of the cyclotron energy, so that the
correct linear-screening limit is obtained in the limit of zero
magnetic field. Thus, if one adds the smoothing effect of
FIG. 6. The solid lines indicate,=kQ —1 andvo=1—-k for  finite temperature, one can understand all properties of the
vo=Vo/[Ere(q)], Q=tfiw./EF, andk=12,...15. Even<{odd)  apparently irregular Vav]({2) traces in Fig. 7 in terms of
integer values of the average filling factor are indicated by dashthe peculiar but regular,-vs-Q) pattern sketched in Fig. 6.
dotted(dashed vertical lines. Within each area defined by the solid
lines the value of V4V ]/Eg equals an integer multiple ¢b. This
value increases b if a solid line is crossed in the upward direc-
tion. The regiorvy>1 corresponds to the poor-screening regime of A. Boundary conditions and kernels
parallel, disconnected, quasi-1D electron systems.

Ill. HALL-BAR GEOMETRY

We now consider a 2DEG with lateral confinement in the
x direction and translation invariance in tiadirection, i.e.,
electrochemical potential causes the total variance of th@n idealized Hall-bar _geometry._”To stludy bO(ldeI’l.d.ary tlaffec_ts d‘?”
screened potential to be an integer multiple of the cyclotrorjf € screening prqpertles, We Will apply an a |t'|ona periodic
energy. Thus, for the variance Vaf] as function ofB we extern_al modulation potential md|rect|o_r!. We W|Il_con5|der
expect a similar sawtooth behavior as for fhtvsB curve. two different sets of boundary conditions, which lead to

Numerical results for several values\d§ are shown in Fig. slightly different confinement potentials.
7. The uppermost curve for the largest modulation amplitude
looks indeed similar to a«*-vs-B curve. However, whereas
the latter with decreasing always jumps to the next higher ~ Following Refs. 10-13 we first assume that all charges
LL, the VafV]-vs-B curves can also jump back to the next reside in the plang=0 and that the half-planes=0, x<
lower LL, as is more clearly seen for the curves with smaller—d andz=0, x>d are kept at constant electrostatic poten-
modulation amplitudes. This seemingly irregular behavior oftial, V(x,y,z=0)=0 for |x|>d (in-plane gates'** Then

the VafV](Q) curves in Fig. 7 can easily be understoodthe electrostatics can be solved using the theory of complex
from Fig. 6, where we now have to follow horizontal lines. functions, and the kernel in Eql), with —x;=x,=d, is

obtained a&

In the modulated 2DEG\{(;,>0), pinning of LL’s to the

1. In-plane gates

2.0
(d?—x?)(d?—t?) + d*—tx|

K‘|(X,t)=|n x—1d | (28

-
[4,]
T

Positive background charges of the 2D charge deresity
between the in-plane gates will produce the confinement po-
tential (written as potential energy of an electjon

Vpg(X) = —EqV1—(x/d)?, Eo=2me’nyd/x, (29)

which can be calculated from E@l) using the kerne(28)
and replacingig(x’) by —n,.

[V(0)-V(a/2)/E,
>

o
3

1.0 1.5 2. Perpendicular gates

Q Another simple set of boundary conditions is obtained
FIG. 7. Variance of the screened potential¥s=7w./Er for ~ @ssuming the 2DEG to be laterally confined by two equipo-
Vo /Eg=1,5,10,15,25,3%from bottom to top. The straight dashed tential planes located at=+d parallel to they-z plane,

lines indicate integer multiples of the cyclotron enefdgT/Ex  V(X=*=d,y,z)=0. This is a reasonable model for a free-
=0.01, e(q) =41]. standing mesa-etched Hall bar with free or metallized sur-
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FIG. 8. Confinement potential,(x,y,z=0)/E, due to a ho- FIG. 9. Some consistent density profilegper pangland po-

mogeneous plane of charge dengity, at distancez. The dash- tentials (lower panel calculated for the in-plane-gate mod&8)
dotted line is obtained from modé28) with z=0; the other lines and the perpendicular-gate mod8D), respectively. The depletion
are for model(30). length is chosen ad/5 for the short-dashed curves and @40
otherwise. Thin horizontal lines indicate the corresponding electro-
faces atk=*d, which accommodate a large number(pér-  chemical potentialsa=wag/2d, T=0, B=0.
tially occupied surface states. The electrostatics with these
boundary conditions is well knowlt. In our notation it is Figure 9 shows some density and potential profiles ob-
expressed by the kernel tained for the two sets of boundary conditions in the limit of
zero temperature and magnetic field, wheng(x)/ng
& 2 = (] arcon) m(X) O (X)) Eq, with u(x)=pu*—V(x). Ap-
COS"E(XH) Ty parently the density profiles are very similar if we assume the
K, (x,t)=—1In (30 same depletion length, the same sample width, and vanishing
sinzl(x—t)+ 2 spacer between 2DEG and background chafigesz=0) in
4d both cases.

for y—0. Inserting this withy=sinh(zz/4d) into Eq. (1),
where —x,=x,=d, vyields the electrostatic potential
Vu(X,y,z) due to the 2DEG at a position separated by the In the ideal homogeneous 2DEG at low temperatures, the
distance|z| from the plane of the 2DEG. Correspondingly, chemical potential as a function of magnetic field exhibits
we can use this to calculate the confinement potential prothe well-known sawtooth behavior, EQ7). With decreasing
duced in the plane of the 2DEG by a plane, positive backB it follows a Landau energyn+ 1/2)% w. until the filling
ground charge at a distanedrom the 2DEG. Typical con- factor v=2Eg /% w. reaches the value 8¢ 1), and then it
finement potentials are shown in Fig. 8. Fer=0 the jumps to the next higher LL. In the confined system, the
potential minimum is  Vp(0y,0)/Eq=—8G/7?  self-consistently calculated “chemical potentigk(0)= su*
= —0.742 46, with Catalan’s constahtG=0.915965594.  —V(0) in the centerx=0, shows the same behavior, as is
The positive background charge density and sample widtiseen in Fig. 1@&), where u(x=0;B,T) in units of ug
define the characteristic enery, Eq.(29). Measuring en- =u(x=0;0,0) is plotted as function d =% w¢/ wo.
ergies in units ofEy, lengths in units ofd, and density of However, in contrast to the chemical potential oscillations
states in units oD,, we obtain from Eq(2) the dimension- in @ homogeneous 2DEG, the corresponding oscillations in
less electron densitfi(x/d)=ng(x)/EoDq, SO that Eq.(1) the confined system are realized by strong spatial variations

assumes a dimensionless form with the prefactar,gly, of .thg electrostatic po?entilal in the interior of the sample.
where This is demonstrated in Fig. Uf), which shows the self-

consistent total potential in the interior of the sample for the
Qeon= TaLI2d (31) fqur values of() indicated by open circles. in Fig: (®.

Figure 1@a) shows the corresponding density profiles, nor-
measures the relative strength of the Coulomb interactionnalized as the local filling factory(x)=212ng(x). For
similar to @ of Eq. (9). We will usually assumeacys  v(X)<v(0)=2/Q2<2 the LLn=0 is pinned to the electro-
=0.01, i.e., for GaAs, a sample widtld2 3 um, since this chemical potentiau* nearly everywhere in the 2DEG. For
allows us to calculate density profiles with clearly visible »(0)=2 the LL n=1 must be partially populated in the
incompressible strips on a mesh of relatively few500)  center of the sample. This forces the potential to develop a
points across the sample. For much largewe would need local minimum near the center, with a decreas&/¢®) by
a much finer mesh, i.e., more ambitious numerics, and than amount-# w., so that a compressible strip starts to de-
incompressible strips would be hardly visible on that scaleyelop in the center. With further increasimg0), this central
although the physics would not change qualitatively. compressible strip becomes broader and the adjacent incom-

B. Unmodulated system in a magnetic field
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FIG. 10. (a) Filling factor v(x) and (b) potentialV(x) for the
values ofl=fw./uo given in the legend and indicated by open  FiG, 11. (@) Filling factor »(x) and (b) screened potential
circles in (c), which shows the “chemical potentialu=p"  Av(x;V,) for the confinement model28) (solid lines and (30)
—V(0), calculated with mode(28) for parameter valuesrag/2d  (dash-dotted lingsand for the unconfined 2DE@dashed lines
=0.01, 4 /E=0.002 84 kg T/Eg=2X10"°. Thin lines showw(x) without modulation, withy(0)=2.8574 for

all models. The screened potential for the unbounded 2DEG is

pressible strips, together with the related potential stepsshifted by a constant and actually oscillates symmetrically around
move towards the sample edges. Similar drastic changes @éro (agn=0.01, wo/Eq=0.002842, hws/mo=0.7, Voluo

the potential distribution are found near all jumps of the=24.63,kgT/ue=0.007).
chemical potential. Thus, pinning and screening lead already

to drastic effects in the confined 2DEG even in the absencge same and agree well with that of the unconfined 2DEG

of any additional potential modulation. with the same modulation potential. Also the screened poten-
tials are equivalent and differ only by a constant offset,
C. Confined system with modulation which results from the asymmetry of the density modulation

We now add a symmetric external modulation potential toWith respect to the unmodulated electron density profile.

the confinement potential and investigate how this affects the . _
self-consistent potential. We také,,(x) =Vycos(2.57x/d) 2. Strong confinement effect on screening

which is in accordance with our general boundary conditions  Things become more complicated if already without ad-
and exhibits just one full oscillation period in the interior of gitional external modulation the potential near the center of
the sample, so that we can expect similar screening effectghe Hall bar varies strongly, as happens ¢0)=2n+ v,
as in a homogeneous unbounded system, and possibly SORi&th 0<1,<1. Then, for small modulation amplitude/{
effects of the nearby sample edges. The period of this mod%ﬁwc), the self-consistent potentiaV(x;V,) follows
lation is a=2d/2.5, so that the choicey,=0.01 implies_ V(x;0), with a minimum atx=0, and only the difference
a=1/40[see Eq.(9)] and the results can be compared im- Av/(x;V/,) reminds us of an oscillatory potential with the
mediately with the previous one for the unbounded 2DEGphase of the external modulation; see solid lines in Fig. 12.
For this comparison it will be important whether the poten-gq, stronger modulation\My=<#w.), V(x;V,) develops a
tial of the unmodulated system has a strong variation in thgyca| maximum ak=0 and the total variation oF (x: Vo) in
center region or not, i.e., whether the filling factef0) in  he center regionx| <d/2 is of the order oNy<fiw,; see
the center is slightly larger than an even integer or not. Fig. 12a). The variation ofAV(x;V,) is now, however, by
an amount ofi w. larger. In this smal, regime screening
is rather poor and very nonlinear. A increases further, the
To describe the screening of an external modulation povariance VarV](Vy)=V(0;Vy) —V(a/2;Vy) (note thata/2
tential, it seems natural to calculate the difference=0.4d) approaches the plateau valie. and then behaves
AV(x;Vo) =V(x;Vo) —V(x;0) of the self-consistent poten- as a function ofV, just as for the unconfined 2DEG. The
tials with and without the modulation. ¥(x;0) is flat in the  variance of the “screened potentiak’'V(x;Vy), on the other
interior of the sample, we expect that screening is very simihand, will be by aboufi w. larger in the plateau region.
lar to that in an unconfined system and thaf(x;V,) con- To summarize, if we neglect the relatively narrty in-
tains essentially the same information Wéx;V,), apart terval between the plateaus, we find that the variance of the
from an unimportant constant offset. This is indeed true ifself-consistent potential(x;V,) as a function oy shows
v(0) is not closely above an even integer. As an example, wéhe same behavior as for the unconfined 2DEG. For most
compare in Fig. 11 numerical results for the two confinementnagnetic field values, the variance of the “screened poten-
models and for the unconfined 2DEG. The results for thdial” AV(x;V,) also shows the same characteristics. Only if
density of the confined 2DEG differ only slightly in the edge the filling factor »(0) in the center of the unmodulated con-
regions. In the interior, the filling factons(x) are practically fined 2DEG is slightly larger than an even integer does the

1. Weak boundary effects on screening
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i calculated potential energy increases with increasing modu-

. 04551 y S 1 lation amplitudeV in a steplike fashion, exhibiting plateaus,

woo ooy o T where the value of V@] is close to an integer multiple of
if' “ot60 | ] the cyclotron energy and shows a weak linear increase with
S S S — Vg, with a slope proportional to the temperature. The corre-
~ sponding modulation of the electron density is, in contrast to

| Toes ' L wg:gggge the potential, not strongly affected by the magndicThe

£ ootol b) T \ === VJE,=0.02 occurrence of incompressible strips leads to local modifica-
< ;ST v ST \ tions, but the overall density profile is roughly the same as
> 0005 f o _ - \ for B=0, as has already been emphasized by Chklovskii

E‘_’ 0000 N\ AT N AV et all° Exploiting this observation together with the pinning
s phenomenon and the relations between density modulation
-0.005 o5 00 o5 0 and external and screened potential valid in the linear-
x/d screening regime, we were able to derive simple analytical

expressions for step heights and plateau widths of the

FIG_. 12. (a) Self-consistent potentidf(x;V) apd(b) screened Var[ V]-vs-V/, curves for arbitraryd and T=0. This simple
potential AV(x;Vo), for several Vo. For clarity, (b) shows — anaytical description of nonlinear screening in an uncon-
10AV(x;Vo) for the weakest modulatiodo =63 10" "Eq. ForVo  fineq 2DEG is summarized in Fig. 6 and allows also an easy
;8 0[(;2';4252"‘1 /“ne: (')ng(g"g]k”T(?)_:zbog’l)(“conf_o'()l' #o/Bo  ynderstanding of the complicated traces obtained while plot-

: MOl o= 1989, K 1 o= B4 ting VaV] as a function oB at fixedV, (see Fig. 7.

Finally we have investigated the corresponding screening
properties of a confined 2DEG in a simplified Hall geometry
. for two different types of boundary conditions, which lead to
aboutﬁ_wc larger than the variance (X Vo). If we plot different confinement potentials, but nearly identical density
the variance ofAV(x;Vo) at .f'Xed Vo as a fur_mct|on of(2 profiles, apart from slight deviations in the edge regions.
=ha./po, we get sawtoothlike traces as in Fig. 7, howeverc,ngidering the effect of an external modulation potential
with additional spikes of heigh? at =<1/ for integerk. Vo i(X) = \V,C08(2.57x/a) in the interior of the samplémore

than about/2 from the edgds we find essentially the same
IV. SUMMARY properties as for the unbounded 2DEG. Care must be taken,
owever, if in the center of the unmodulated system a new

andau level starts to be occupied, since then the self-

\;/)vc;t”egtslakl) bzo?w?inuer:jcgggéi m’gg;meﬁf?é%nggﬁlegg%net?asinaéonsistent potential varies strongly in the center region. This

stron Zr endicular maanetic fielc?s and at ?ow temy’erai-s an interesting confinement effect, but it can be easily
9 perp : 9 I~ PeTa5 iminated from the discussion of screening if the modula-

tures. Our numerical results within the self—consstentt. : .

S o ion amplitudeV, is large enough.

Thomas-Fermi-Poisson approach show that screening is very

nonlinear and dominated by the phenomenon of pinning of

Landau Ievel§ to the_electrqchemw;a_l potential, which leads ACKNOWLEDGMENTS
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spatial variation of the self-consistent potentigk;0) of the
unmodulated system cause the varianc&¥f(x;V,) to be

We have investigated the screening of a harmonic externeﬂ
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