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Nanoindentation: Depth dependence of silicon hardness studied within contact theory

M. Hebbache
Laboratoire de Physique The´orique de la Matie`re Condense´e, Universite´ Paris 7 - Denis Diderot, 2 Place Jussieu,

F-75251 Paris Cedex 05, France
~Received 11 April 2003; published 12 September 2003!

The behavior of elastic and mechanical properties of silicon submitted to an indentation test is investigated.
The study is focused on the behavior of its hardness at the nanoscale. For this aim, we apply a Green-function
approach for solving the contact problem of elastic bodies. The anisotropy of the two contacting materials,
silicon and a diamond indenter, is taken into account for obtaining the depth dependence of the hardness up to
about 90 nm at which the semiconductor-metal phase transition occurs. It is shown that the discrepancy with
experimental data can be significantly reduced if one takes into account the anharmonicity of the materials in
contact. The anisotropy is represented by the full tensor of second-order elastic constantsCIJ and the anhar-
monicity by the full tensors of higher-order elastic constantsCIJK•••

. The validity of the theoretical approach
was checked by determining the force-depth indentation curve.
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I. INTRODUCTION

Nanoscale experimental techniques reveal unusual ph
cal properties which are not fully understood. The inden
tion is a technique which allows the measurement of ha
ness by pressing an indenter into a flat surface of the mat
and measuring the size of the impression. It has been
tended to the micrometer and nanometer scale through
use of depth-sensing indentation equipment.1 This instrument
records the applied load and the displacement of the inde
throughout the indentation process. The analysis of the lo
penetration curve allows the determination of a number
useful engineering properties. Nanoindentation has becom
well-established technique for the investigation of mecha
cal properties of materials and the Olivier-Pharr approac2

which expands the ideas developed by Loubetet al.3 and
Doerner and Nix,4 the standard technique of data analys
Understanding the mechanical properties of materials at
nanoscale is crucial for applications. The intrinsic mecha
cal behavior of semiconductors is of particular interest
cause they are widely used for the fabrication of electro
devices which operate in large ranges of stresses and
peratures. The performances of these devices can be sig
cantly degraded due to contact loading during processin
use. Hard semiconductors are intensively investigated
cause of their potential use in extreme conditions.5 Silicon,
which is a relatively hard material, has already found n
applications in micro- and nano-electro-mechanical syste
~MEMS and NEMS!. In previous papers, we have studie
the sequence of phase transitions, diamond⇒b-Sn⇒ Imma
structure, which occurs in silicon during high-pressu
experiments6 and indentation tests.7 The first structural trans
formation makes in evidence two electrically and geome
cally different states. The parent phase has a diamond s
ture ~Si I! and is semiconductor while the new phase
tetragonal and metallic~Si II!. On pressure release, the di
mond structure is not reconstructed. A rhombohedral str
ture takes place (R8) on slow decreasing pressure. The
versible phase transition8 exists between theR8 phase and
the bcc phase (BC8 or Si III!. The nonreversibility of the
0163-1829/2003/68~12!/125310~6!/$20.00 68 1253
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Si I⇒Si II phase transition hinders the appearance of n
applications like detectors of ultralow forces or impacts. T
present work is focused on the elastic and mechanical be
ior of a thin film of silicon. The main aim is to predict th
evolution of its hardness when it is indented to nanome
scale depth. From the theoretical point of view, indentation
a contact problem which has been only partially solved.
date, there is no complete quantitative theory of hardnes
semiconductors. Much of the theoretical works are restric
to isotropic solids. Little attention has been paid to anis
ropy, anharmonicity, and structural transformations wh
occur beneath the indenter. In materials science and e
neering, the elastic modulus are systematically assumed t
stress independent. Their discontinuity at the phase trans
points is also ignored. The same number of elastic modu
are considered on both sides of the phase transition. Fo
stance, the cubic phase of silicon~Si I! has three independen
elastic constants while its tetragonal phase~Si II! possesses
six. The presence and the nonreversibility of phase tra
tions are not taken into account in the data analysis. Som
the above-mentioned issues have been considered in Re
and 7. Others issues are under consideration in the pre
study. The paper is organized as follows. The main formu
for describing the indentation are reviewed in the seco
section. The numerical results are given in the third sect

II. THEORY

It is commonly accepted that the hardness character
the material resistance to elastic and plastic deformat
Nanoindentation tests show that the responses of silicon9 and
diamond10 are largely elastic under low applied loads. The
covalent crystals can, in principle, deform plastically, a
though usually at higher temperatures and higher stre
than metals.11 In what follows, we will study the elastic re
sponse of silicon when it is pressed by a diamond spher
indenter. Comparison with experimental data will give
order of magnitude of the plastic response in silicon. T
indentation problem, which is associated with the names
Hertz12 and Boussinesq,13 is one of contact problems of elas
©2003 The American Physical Society10-1
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TABLE I. Measured second- and third-order elastic constants of silicon and diamond, in unit of Mbar, and elastic compliancesSIJ in unit
of Mbar21. The theoretical values of the fourth-order elastic constants obtained by three groups are different.

Material C11 C12 C44 C111 C112 C123 C144 C166 C456 Ref.

Silicon 16.57 6.39 7.96 282.5 245.1 26.4 1.2 231 26.4 21
16.56 6.39 7.95 279.5 244.5 27.5 1.5 231 28.6 22

Diamond 107.6 12.5 57.7 2626.0 2226.0 11.2 267.40 2286.0 282.3 23
107.9 12.4 57.8 21

S11 S12 S44

Silicon 0.7680 20.2138 1.2559 34
Diamond 0.0949 20.0098 0.1742 21

C1111 C1112 C1122 C1123 C1144 C1155 C1244 C1266 C1456 C4444 C4455

Silicon 51 158 2156 53 2149 2229 186 292 5.8 2347 14a

'0 32b

122c

Diamond 436 302 53 d

aReference 29.
bReference 31.
cReference 32.
dReference 35.
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tic bodies. An elegant solution of this problem has be
given by Sneddon.14 The author used the Hankel transfor
and the theory of dual integral equations for solving the eq
librium equations of a strained material. Unfortunate
Sneddon’s solution is only valid for isotropic materials. T
anisotropy of a cubic material is usually represented by
ratio of its shear modulus, i.e.,z5(C112C12)/2C44. CIJ is
the contracted notation of Voigt for the fourth-order tensor
second-order elastic constantsCi jkl . z is equal to 0.64 for
silicon, 0.82 for diamond, and 1.0 for an isotropic mater
~see Table I!. In what follows, we apply the Hertzian conta
theory of anisotropic materials.15 In place of the two Lame
coefficients or their equivalents, the full tensorCi jkl is con-
sidered. We consider a Cartesian coordinate system w
coincides with the cubic system. The origin of the coor
nates and thex1 andx2 axes are on the free surface; and t
x3 axis is along the fourfold symmetry axis@001#. The half
spacex3.0, occupied by silicon, is loaded by a diamon
spherical indenter. The stress-induced displacement fieldu in
silicon can be written in the form16

uk~r !5E
A
Gks~r2r 8!ps~r 8!dr 8, ~1!

whereps(r ) is the pressure distribution beneath the inden
andGks(r ) the elastostatic Green function for a semi-infin
anisotropic material, i.e., the displacement at pointr in the
directionk due to a unit force at pointr 8 in the directions.
The integration is over the projected contact areaA. Due to
the fourfold symmetry axis perpendicular to the free surfa
12531
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of silicon, A is a circular area. In linear elasticity,Gks(r ) is
solution of the equilibrium equation,15,17

Ci jkl

]2Gks~r !

]xl]xj
50. ~2!

The usual convention regarding summation on repeated
scripts is used. First, we consider thatCi jkl are stress inde-
pendent, as commonly used. In the two-dimensional~2D!
Fourier space, a possible solution of Eq.~2! is15,17

G̃ks~K ,x3!5(
a

«ka~K !xas~K !e2 imaKx3 ~3!

with i 2521. K is the magnitude of the 2D vectorK . ma are
complex conjugate pairs roots of the sixth-order determin
tal equation of Stroh,18

uG ik
a u5uCi jkl ~ql1nlma!~qj1njma!u50, ~4!

with q5K /K. n is the inward normal to the free surface.
Eq. ~3!, «ka are the components of the corresponding n
malized eigenvectors,

G ik
a «ka50. ~5!

There is no sum overa. The coefficientsxas are determined
form the boundary condition at the free surfacex350:

njCi jkl ~]Gks /]xl !52d isd~x1!d~x2!. ~6!

d is is the Kronecker’s symbol andd(xj ) the Dirac’s function.
Only the rootsma in the lower half of the complex plane
must be considered in Eq.~3! in order to fulfill the decay
0-2
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condition, i.e.,uk→0 asx3→`. The propagation of surfac
waves in anisotropic elastic materials can be studied i
similar way.19 One should consider the wave equation, i.
include the time-dependent termr@]2Gis(r )/]t2#, on the
right-hand side of Eq.~2!. r is the mass density. In the lan
guage of lattice dynamics,K is the in-plane wave vector,«ka
the polarization vector, andxas the weighting factor. In rea
space, the elastostatic Green function is given by

Gks~r !5
K3

4p2E0

2p

(
a

«ka~f!xas~f!

3@q•x1ma~f!x3#21df ~7!

with r5(x, x3). r gives the position of a material point.x is
the 2D vector with componentsx1 and x2 . f is the angle
between the directions ofq andx. It has been proved that th
Hertz’s pressure distribution is also valid for anisotrop
materials,15,16 i.e., ps(x)5po(12x2/j2)1/2 with x5uxu and
po53F/2pj2. F is the applied force andj the radius of the
projected contact area. Substituting such expression ops
and that of the surface Green functionGks(x,x350) into Eq.
~1! and performing the integration overA, one obtains the
displacement of the free surface of siliconu3

Si(x,x350).15

The procedure must be repeated for obtaining the displ
ment of the surface of the spherical indenter in contact w
silicon. The contact area is in general elliptical unless
surface possesses a fourfold symmetry axis, at least. An
erage over various planes of diamond would give more
curate results. However, for the sake of simplicity, we ha
considered that it is the~001! plane of diamond which is in
contact with silicon. The relative displacement of the tw
materials, at the origin, is given by15 ~see also Ref. 16!

d5 (
l51

2

u3
l~x!1x2/2R ~8!

5~F/j! (
l51

2

I l ~9!

5j2/R ~10!

with

I l5
3

16pE0

2p

(
a51

3

Kxa3~f!«3a~f!df. ~11!

In Eqs. ~8! and ~9!, the summation is over the contactin
materials andR is the radius of the spherical indenter.

III. NUMERICAL RESULTS

For comparison with the experimental results of William
et al.,20 we have considered a diamond spherical inden
with a radiusR equal to 4.2mm. The constantsCi jkl 5CIJ
5rv2 involved in the above equations have been dedu
from the measurement of the ultrasonic velocitiesv of the
bulk elastic waves21–23 ~see Table I!. The construction of the
333 matrix G ik

a @Eq. ~4!# for silicon and diamond is labori
12531
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ous but straightforward. The vanishing of the determinan
G ik

a leads to a cubic equation inma
2 . The three acceptable

complex rootsma for the ~001! plane of Si I can be readily
obtained. Their variations are shown in Fig. 1. The cor
sponding normalized eigenvectors«ka and the weighting
factors xas have been computed using the packa
Mathematica.24 Figure 2 shows the variations ofMa3
5Kxa3 in silicon. Similar results have been found for di
mond. The contour integral~11! can be then calculated. It i
equal to 4521.5 for silicon and 667.5 mN21 nm2 for dia-
mond. Figure 3 gives the force vs penetration depth cu
@see Eq.~9!#. The agreement with the experimental data
Williams et al.20 is satisfactory. This confers a certain valid

FIG. 1. Variations in the (x1 ,x2) plane of the contributing roots
ma(f) to the elastic Green function of silicon using the zero-str
elastic constantsCIJ . m3 is purely imaginary, Re(m2)52Re(m1)
and Im(m2)5Im(m1). The anglef is measured fromx1 axis co-
inciding with the@100# fourfold symmetry axis. Similar results hav
been found for diamond.

FIG. 2. Variations of the weighting factorsMa35Kxa3(f).
M33 is purely imaginary, Re(M23)52Re(M13) and Im(M23)
5Im(M13).
0-3
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ity to the approach. The hardness is defined asH5F/A. It
can be rewritten in the form

H5
Ad/R

pI
~12!

with I 5(l51
2 I l . The sommation is over the contacting m

terials. The broken line in Fig. 4 is the hardness vs de
curve. The experimental results of Williamset al.20 are re-
ported on the same figure~crosses!. The broken line is ob-
tained with stress independentCIJ . The discrepancy be
tween experimental and calculated values ofH increases on
loading. It reaches its maximum at the penetration depth
about 90–100 nm at which the metallization of silicon o

FIG. 3. Force versus penetration depth. Crosses are experi
tal data~Ref. 20! obtained with a 4.2-mm diamond spherical in-
denter on~001! Si I.

FIG. 4. Hardness of the~001! plane of Si I vs penetration depth
Crosses are experimental data~Ref. 20!. The broken line and the
continuous line represent Eq.~6! with the contour integralI equal to
5189 and (5189232.27po), respectively.I is in unit of mN21 nm2

andpo in GPa.
12531
h

of
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curs. Such discrepancy can be reduced significantly if
takes into account the harmonicity of materials. This can
achieved through the stress dependence of the harmonic
tic constantsCIJ . The effect of uniaxial stress on bulk ultra
sonic waves have been studied by Thurston and Brugg25

~see also Ref. 26!. The authors established a general expr
sion for the stress dependence of elastic constants of a
trary crystal symmetry:

CIJ~s!5CIJ~0!1l IJ s1P IJs21•••. ~13!

s is the magnitude of the applied stress, assumed to be
form by the authors,25,26 i.e., s5po . At low load, the anhar-
monicity is mainly represented by the second term on
left-hand side of Eq.~13!. The coefficientl IJ involves third-
order elastic constants,Ci jklmn5CIJK . The third term on the
left-hand side of Eq.~13!, involves fourth-order elastic con
stantsCi jklmnpq5CIJKL . In the case of silicon, its magnitud
should become significant on approaching t
diamond⇒b-Sn phase transition because it is indispensa
for describing the stability of the metallicb-Sn phase, as
shown in Ref. 7. The reason is the following. According
Musgrave and Pople,27 the Si I⇒Si II structural transforma-
tion is due the tetragonal shear strainh;(2e332e112e22).
eii 5]ui /]xi are the diagonal components of the strain ten
and express the relative variations of the lattice paramet
h is a shear strain which reduces the dimension of one of
cubic axes and expands the other two, leading to the tet
onal structure ofb-Sn ~Si II!. An expansion of the deforma
tion energy up to fourth order, at least, is required for stu
ing such displacive phase transition of first order:U(h)
2U(0)5(n52

N>4Cnhn. Cn are effective elastic constants a
sociated with the tetragonal strain. They are combination
the nth-order elastic constants and are related to
nth-order bond-bending force constants which tend to sta
lize the equilibrium angle between covalent bonds.28,29 The
analytic expressions of the coefficientsl IJ andP IJ appear-
ing in Eq. ~13! can be found in Refs. 25 and 26. Their ca
culation requires also elastic compliancesSIJ ~see Table I!.
Third-order elastic constantsCIJK are obtained from the
measurements of ultrasonic velocity changes due to unia
stresses. Their values are listed in Table I. McSkimin a
Andreatch21 have found that these velocities vary linear
with applied stresses. Deviations from the linear change h
been detected by Suzukiet al.30 This supports the fact tha
the quadratic term,P IJs2, which appears in Eq.~13! is not
negligible. Its computation requires the knowledge of t
fourth-order elastic constantsCIJKL . The latter can be mea
sured by means of shock wave techniques. In the literat
we just find the calculated values ofCIJKL ~see Table I!. In
the case of silicon, the values obtained by Nielsen a
Martin31 usingab initio calculations differ largely from tha
obtained by Gerlich29 who applied a generalized Keatin
model. A third approach has been used by Prasad
Suryanarayana32 to calculateC1111 of silicon. For lack of
reliable values ofCIJKL , we limit the expansion~13! to first
order. The anharmonicity of the materials will be then on
represented by the third-order elastic constants in this w
The variations ofCIJ in the cubic phase of silicon~Si I! are

n-
0-4
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shown in Fig. 5. Diamond is the hardest material and
second-order elastic constants are almost stress indepen
We find that the contour integralsI l involved in Eq.~9! vary
approximately as follows:I 15I Si'4521.5232.54po and I 2
5I C'667.510.27po . po is in unit of GPa. For diamond, th
integral ~11! is almost constant in the pressure range 0–
GPa, i.e., the stability range of the cubic phase of silicon33

IV. CONCLUSION

We applied the Hertzian contact theory for studying t
hardness of a thin film of silicon. We have taken into acco
the anisotropy of the two contacting materials, i.e., silic
and diamond. All the parameters~roots of the determinanta
equation of Stroh, polarization vectors, weighting facto!
which allow us to calculate the elastic Green function of

FIG. 5. Variations of harmonic elastic constants of Si I unde
uniaxial stress.
ri
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~001! plane of silicon have been given. The procedure h
been repeated to include the characteristics of the inde
Using the Hertz’s pressure distribution, we computed the
tegral~1! for obtaining the displacements of the free surfac
in contact. The anharmonicity of the materials has been ta
into account approximately by using a renormalization
second-order elastic constants@Eq. ~13!#. Only the measured
third-order elastic constants have been considered in s
renormalization. The omission of higher-order anharmo
terms reduces slightly the accuracy of the numerical resu
However, they are essential for stabilizing the metallic pha
An acceptable agreement has been found between the c
lated and the experimental force-penetration depth cur
The discrepancy between the calculated and the meas
hardness of silicon has been reduced by including the an
monicity of silicon. The agreement between the measu
and the calculated hardness could be improved by includ
the plastic deformation. Unfortunately, plastic deformati
produces in silicon a complex structure of lattice defe
which is presented in many excellent reviews~see, for ex-
ample, Ref. 36!. We already showed that impurities affe
weakly the elastic constant C44 of group-IV
semiconductors.37 Attempts to involve dislocations in the be
havior of physical properties of materials, in presence or
sence of phase transitions, were made by various authors38 It
is expected that dislocations induce ultrasonic attenua
and velocity change,39 or equivalently, a renormalization o
CIJ , specially in silicon which undergoes a phase transit
driven by a soft elastic wave. Unfortunately, these theor
based on simplifying assumptions cannot be applied to
con which exhibits various forms of dislocations. In th
semiconductor, the dislocations can be straight, hea
kinked or jogged, clean or decorated with impurities, and
generally dissociated into partials separated by a stac
fault. However, the understanding of plasticity in semico
ductors is in constant progress.
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