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Nanoindentation: Depth dependence of silicon hardness studied within contact theory
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The behavior of elastic and mechanical properties of silicon submitted to an indentation test is investigated.
The study is focused on the behavior of its hardness at the nanoscale. For this aim, we apply a Green-function
approach for solving the contact problem of elastic bodies. The anisotropy of the two contacting materials,
silicon and a diamond indenter, is taken into account for obtaining the depth dependence of the hardness up to
about 90 nm at which the semiconductor-metal phase transition occurs. It is shown that the discrepancy with
experimental data can be significantly reduced if one takes into account the anharmonicity of the materials in
contact. The anisotropy is represented by the full tensor of second-order elastic coBgtaarnd the anhar-
monicity by the full tensors of higher-order elastic constaiyts... . The validity of the theoretical approach
was checked by determining the force-depth indentation curve.
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. INTRODUCTION Sil1=Sill phase transition hinders the appearance of new
applications like detectors of ultralow forces or impacts. The
Nanoscale experimental techniques reveal unusual physpresent work is focused on the elastic and mechanical behav-
cal properties which are not fully understood. The indentaior of a thin film of silicon. The main aim is to predict the
tion is a technique which allows the measurement of hardevolution of its hardness when it is indented to nanometer-
ness by pressing an indenter into a flat surface of the materiakcale depth. From the theoretical point of view, indentation is
and measuring the size of the impression. It has been ex contact problem which has been only partially solved. To
tended to the micrometer and nanometer scale through th#ate, there is no complete quantitative theory of hardness of
use of depth-sensing indentation equipmehhis instrument  semiconductors. Much of the theoretical works are restricted
records the applied load and the displacement of the indentéo isotropic solids. Little attention has been paid to anisot-
throughout the indentation process. The analysis of the loadopy, anharmonicity, and structural transformations which
penetration curve allows the determination of a number obccur beneath the indenter. In materials science and engi-
useful engineering properties. Nanoindentation has becomeraering, the elastic modulus are systematically assumed to be
well-established technique for the investigation of mechanistress independent. Their discontinuity at the phase transition
cal properties of materials and the Olivier-Pharr apprdach,points is also ignored. The same number of elastic modulus
which expands the ideas developed by Loubetl® and  are considered on both sides of the phase transition. For in-
Doerner and NiX, the standard technique of data analysis.stance, the cubic phase of silicé®i 1) has three independent
Understanding the mechanical properties of materials at thelastic constants while its tetragonal ph&Sell) possesses
nanoscale is crucial for applications. The intrinsic mechanisix. The presence and the nonreversibility of phase transi-
cal behavior of semiconductors is of particular interest betions are not taken into account in the data analysis. Some of
cause they are widely used for the fabrication of electroniche above-mentioned issues have been considered in Refs. 6
devices which operate in large ranges of stresses and terand 7. Others issues are under consideration in the present
peratures. The performances of these devices can be signiftudy. The paper is organized as follows. The main formulas
cantly degraded due to contact loading during processing dor describing the indentation are reviewed in the second
use. Hard semiconductors are intensively investigated besection. The numerical results are given in the third section.
cause of their potential use in extreme conditidr&ilicon,
which is a relatively hard material, has already found new
applications in micro- and nano-electro-mechanical systems
(MEMS and NEMS. In previous papers, we have studied It is commonly accepted that the hardness characterizes
the sequence of phase transitions, diamen@-Sn= Imma  the material resistance to elastic and plastic deformation.
structure, which occurs in silicon during high-pressureNanoindentation tests show that the responses of sfliand
experimentSand indentation testsThe first structural trans- diamond® are largely elastic under low applied loads. These
formation makes in evidence two electrically and geometricovalent crystals can, in principle, deform plastically, al-
cally different states. The parent phase has a diamond struthough usually at higher temperatures and higher stresses
ture (Si 1) and is semiconductor while the new phase isthan metals! In what follows, we will study the elastic re-
tetragonal and metalli¢Si 11). On pressure release, the dia- sponse of silicon when it is pressed by a diamond spherical
mond structure is not reconstructed. A rhombohedral strucindenter. Comparison with experimental data will give an
ture takes placeR8) on slow decreasing pressure. The re-order of magnitude of the plastic response in silicon. The
versible phase transitifrexists between th&8 phase and indentation problem, which is associated with the names of
the bcc phaseBC8 or Si lll). The nonreversibility of the Hertz? and Boussinestf is one of contact problems of elas-
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TABLE |. Measured second- and third-order elastic constants of silicon and diamond, in unit of Mbar, and elastic confgljancest
of Mbar *. The theoretical values of the fourth-order elastic constants obtained by three groups are different.

Material Cu Cp Cas Cig Ci12 Ci23 Cias Cie6 Cuse Ref.
Silicon 16.57 6.39 7.96 —82.5 —-45.1 -6.4 1.2 —-31 -6.4 21
16.56 6.39 7.95 —-79.5 —44.5 -75 1.5 -31 —-8.6 22
Diamond 107.6 125 577 —-626.0 —226.0 11.2 —67.40 —286.0 —82.3 23
107.9 12.4 57.8 21
Sit Si» Sy
Silicon 0.7680 —0.2138 1.2559 34
Diamond 0.0949 —-0.0098 0.1742 21
Cin1 Ci112 Ci122 Ci123 Ci144 Cuiss Ci244 Ca266 Casse Caa44 Casss
Silicon 51 158 — 156 53 —149 —229 186 —-92 5.8 — 347 142
~0 32P
122°¢
Diamond 436 302 53¢

8Reference 29.
bReference 31.
‘Reference 32.
dreference 35.

tic bodies. An elegant solution of this problem has beerof silicon, A is a circular area. In linear elasticitg,(r) is
given by Sneddofi! The author used the Hankel transform solution of the equilibrium equatiot?;’

and the theory of dual integral equations for solving the equi-

. . . . 2

librium equations of a strained material. Unfortunately, 9°Gy4(r) —0 5
Sneddon’s solution is only valid for isotropic materials. The K axax; 2
anisotropy of a cubic material is usually represented by th
ratio of its shear modulus, i.e{=(C1;—C12)/2C,4. C,; is
the contracted notation of Voigt for the fourth-order tensor of
second-order elastic constar@, . { is equal to 0.64 for
silicon, 0.82 for diamond, and 1.0 for an isotropic material
(see Table)l In what follows, we apply the Hertzian contact ~ A
theory of anisotropic materiafS.In place of the two Lame GkS(K,x3)=Z Era(K) X as(K) e MaKxs 3
coefficients or their equivalents, the full tengoy,, is con- @

sidered. We consider a Cartesian coordinate system whiokith i2= — 1. K is the magnitude of the 2D vect&r. m,, are
coincides with the cubic system. The origin of the coordi-complex conjugate pairs roots of the sixth-order determinan-
nates and the&; andx, axes are on the free surface; and thetal equation of Stroh®

X3z axis is along the fourfold symmetry axif01]. The half

spacexs>0, occupied by silicon, is loaded by a diamond [Tkl =1Cija (q+nm,)(q;+nym,)[=0, (4)
spherical indenter. The stress-induced displacementdigid
silicon can be written in the forth

eI'he usual convention regarding summation on repeated sub-
scripts is used. First, we consider tl&f,, are stress inde-
pendent, as commonly used. In the two-dimensiai2a))
Fourier space, a possible solution of Eg) is'>*’

with g=K/K. n is the inward normal to the free surface. In
Eqg. (3), &, are the components of the corresponding nor-
malized eigenvectors,

0= [ Gulr=rpurar, & =0, ©
There is no sum ovet. The coefficienty s are determined

wherepq(r) is the pressure distribution beneath the indenteform the boundary condition at the free surfage=0:
andGy4(r) the elastostatic Green function for a semi-infinite ~. e

anisotropic material, i.e., the displacement at poitin the N Cija (9Cks/ X)) = = 8is8(X1) 8(Xa). ©)
directionk due to a unit force at point’ in the directions. dis is the Kronecker’s symbol ané(x;) the Dirac’s function.
The integration is over the projected contact adedue to  Only the rootsm,, in the lower half of the complex plane
the fourfold symmetry axis perpendicular to the free surfacemust be considered in E@3) in order to fulfill the decay
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condition, i.e.,u,—0 asxz—. The propagation of surface
waves in anisotropic elastic materials can be studied in
similar way® One should consider the wave equation, i.e.
include the time-dependent terp{ 9°G;s(r)/dt2], on the
right-hand side of Eq(2). p is the mass density. In the lan-
guage of lattice dynamic¥ is the in-plane wave vectos,
the polarization vector, ang,s the weighting factor. In real
space, the elastostatic Green function is given by

K3 2@
GilN= 7> fo ; kal D) Xas( D)

X[q-x+my(h)xs] *d¢b ()

with r=(x, x3). r gives the position of a material point.is
the 2D vector with components; and x,. ¢ is the angle
between the directions gfandx. It has been proved that the
Hertz's pressure distribution is also valid for anisotropic
materialst®>® i.e., ps(X) =po(1—x3/£?)Y? with x=|x| and
po=3F/2mw¢&2. F is the applied force and the radius of the
projected contact area. Substituting such expressiopgof
and that of the surface Green functiGp¢(x,x3=0) into Eq.

(1) and performing the integration ovéy, one obtains the
displacement of the free surface of silicog'(x,x;=0).1°

The procedure must be repeated for obtaining the displac%—
ment of the surface of the spherical indenter in contact witl}
e ik

silicon. The contact area is in general elliptical unless th

surface possesses a fourfold symmetry axis, at least. An aV
erage over various planes of diamond would give more ac-

curate results. However, for the sake of simplicity,
considered that it is théD01) plane of diamond which is in
contact with silicon. The relative displacement of the two
materials, at the origin, is given B(see also Ref. 16

2

5= 21 ud(x)+x%2R (8)
A=
2
=(FI&) X 1) (9)
A=1
=&IR (10)
with
3 2w 3
h=Ter), 2 KXax(®)oad($)de. (1D

In Egs. (8) and (9), the summation is over the contacting
materials andR is the radius of the spherical indenter.

IIl. NUMERICAL RESULTS

For comparison with the experimental results of Williams
et al,’® we have considered a diamond spherical indente
with a radiusR equal to 4.2um. The constant€;;,;=C;

=pv? involved in the above equations have been deducea

from the measurement of the ultrasonic velocitiesf the
bulk elastic wavels—23(see Table )l The construction of the
3% 3 matrixI'{ [Eq. (4)] for silicon and diamond is labori-

we have
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FIG. 1. Variations in theX;,x,) plane of the contributing roots
m,(¢) to the elastic Green function of silicon using the zero-stress
elastic constant€,;. ms is purely imaginary, Ret,) = —Re(m,)
and Im(m,)=Im(m,). The angle¢ is measured fronx, axis co-
inciding with the[100] fourfold symmetry axis. Similar results have
been found for diamond.

us but straightforward. The vanishing of the determinant of
& leads to a cubic equation imi. The three acceptable
-omplex rootsm,, for the (001) plane of Si | can be readily
btained. Their variations are shown in Fig. 1. The corre-
ponding normalized eigenvectoeg, and the weighting
factors x,s have been computed using the package
Mathematice® Figure 2 shows the variations o g
=K,z in silicon. Similar results have been found for dia-
mond. The contour integrdlll) can be then calculated. It is
equal to 4521.5 for silicon and 667.5 mNnn? for dia-
mond. Figure 3 gives the force vs penetration depth curve
[see Eqg.(9)]. The agreement with the experimental data of
Williams et al?® is satisfactory. This confers a certain valid-

(0]
S

x10*

Re(M,;)

-1.02

-5500

—6000

Im(M, ;)

-6500
0

4000

)
3

2

E

r

—4000 .
0 0.5 i

angle from [100] axis (rad)

FIG. 2. Variations of the weighting factoms! ;=K ().

Mgaz is purely imaginary, Re{l,5)=—ReM;3) and ImM,g)
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“ ' ! ' . I ! ; curs. Such discrepancy can be reduced significantly if one
takes into account the harmonicity of materials. This can be

12f achieved through the stress dependence of the harmonic elas-
tic constant<C,;. The effect of uniaxial stress on bulk ultra-

1o} ] sonic waves have been studied by Thurston and Brdgger
(see also Ref. 26 The authors established a general expres-

ol & | sion for the stress dependence of elastic constants of arbi-

trary crystal symmetry:

Force (mN)

4 C|J(O’)=C|J(0)+)\|J(T+H|J0'2+'". (13)
4r 1 o is the magnitude of the applied stress, assumed to be uni-
i form by the author$>?%i.e., o=p, . At low load, the anhar-
2t : monicity is mainly represented by the second term on the

left-hand side of Eq(13). The coefficient\,; involves third-
T T Y order elast?c constanté;ijk_|mn=C|JK. The third term on the
penetration depth (nm) left-hand side of Eq(13), involves fourth-order elastic con-
FIG. 3 F _ _stantsCijximnpg= CiskL - In the case of silicon, its magnitude
- 3. Force versus pengtratlon depth: Crosses are experimegygid ~ become significant on  approaching  the
gnct';‘rtao(r?ggl)zgi?btamed with a 4.2:m diamond spherical in- s monds 3-Sn phase transition because it is indispensable
' for describing the stability of the metalli8-Sn phase, as
shown in Ref. 7. The reason is the following. According to
Musgrave and Pople, the Si k= Si Il structural transforma-
tion is due the tetragonal shear straji-(2ez3— 11— €5)).

ity to the approach. The hardness is definedHasF/A. It
can be rewritten in the form

SR €= du; /9x; are the diagonal components of the strain tensor
H= —— (12 and express the relative variations of the lattice parameters.
ml 7 is a shear strain which reduces the dimension of one of the

with 1=32_1, . The sommation is over the contacting ma- cubic axes and expand_s the other twoz leading to the tetrag-
terials. The broken line in Fig. 4 is the hardness vs dept onal structure of3-Sn (Si I1). An expansion of the deforma-
curve .The expermental resulfs of Willianes a2 are re- I?|on energy up to fourth order, at least, is required for study-
: P i o ing such displacive phase transition of first ordék(»)
ported on the same figurerosses The broken line is ob- ~U(0)=3NZ4C, »". C, are effective elastic constants as-
ne .

tained with stress independef;. The discrepancy be- . ! . o
tween experimental and calculated valuegHohcreases on sociated with the tet_ragonal strain. They are combinations of
loading. It reaches its maximum at the penetration depth oﬁhe nth-order elastlg: constants and are related to th_e
about 90—100 nm at which the metallization of silicon oc-"'t1-0rder bond-bending force constants which tend to stabi-
lize the equilibrium angle between covalent boAt& The
1 , , , , , , , , . , analytic expressions of the coefficientg, andIl,; appear-
i ing in Eq. (13) can be found in Refs. 25 and 26. Their cal-
+ § | culation requires also elastic compliancgs (see Table)l
+ Raal Third-order elastic constant€,;x are obtained from the
: measurements of ultrasonic velocity changes due to uniaxial
L p—— stresses. Their values are listed in Table I. McSkimin and
4 Andreatch have found that these velocities vary linearly
1 with applied stresses. Deviations from the linear change have
been detected by Suzukt al® This supports the fact that
: § the quadratic termllI,;02, which appears in E¢13) is not
L clasiy negligible. Its computation requires the knowledge of the
fourth-order elastic constan@,;x, . The latter can be mea-
sured by means of shock wave techniques. In the literature,
we just find the calculated values 6f;«, (see Table)l In
the case of silicon, the values obtained by Nielsen and
: Martin®! usingab initio calculations differ largely from that
o 10 20 3 40 50 60 70 s s 100 obtained by Gerlick® who applied a generalized Keating
dopth (nm) model. A third approach has been used by Prasad and
FIG. 4. Hardness of th@01) plane of Si | vs penetration depth. Suryanarayari to calculateCyyy; of silicon. For lack of
Crosses are experimental ddRef. 20. The broken line and the reliable values oCy;x, , we limit the expansiort13) to first
continuous line represent E@) with the contour integral equal to ~ order. The anharmonicity of the materials will be then only
5189 and (5189 32.27,), respectivelyl is in unit of mN" tnn?  represented by the third-order elastic constants in this work.
andp, in GPa. The variations ofC,; in the cubic phase of silico(Si I) are

hardness (GPa)
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(001 plane of silicon have been given. The procedure has
been repeated to include the characteristics of the indenter.
Using the Hertz's pressure distribution, we computed the in-
tegral(1) for obtaining the displacements of the free surfaces
in contact. The anharmonicity of the materials has been taken

1ol i into account approximately by using a renormalization of
5 second-order elastic constahEy. (13)]. Only the measured
2 1o} 1 third-order elastic constants have been considered in such
g renormalization. The omission of higher-order anharmonic
§,. <] terms reduces slightly the accuracy of the numerical results.
However, they are essential for stabilizing the metallic phase.
or ] An acceptable agreement has been found between the calcu-
Cpp lated and the experimental force-penetration depth curves.

The discrepancy between the calculated and the measured
hardness of silicon has been reduced by including the anhar-
0 2 4 6 8 10 12 14 monicity of silicon. The agreement between the measured
[001] bnialstress (GP) and the calculated hardness could be improved by including
FIG. 5. Variations of harmonic elastic constants of Si | under athe plastic deformation. Unfortunately, plastic deformation
uniaxial stress. produces in silicon a complex structure of lattice defects
which is presented in many excellent revieggge, for ex-
shown in Fig. 5. Diamond is the hardest material and itsample, Ref. 38 We already showed that impurities affect
second-order elastic constants are almost stress independemeakly the elastic constant C,4 of  group-IV
We find that the contour integralg involved in Eq.(9) vary ~ semiconductord! Attempts to involve dislocations in the be-
approximately as followst,=15~4521.5-32.54), andl,  havior of physical properties of materials, in presence or ab-
=1.~667.5+0.27, . p, is in unit of GPa. For diamond, the sence of phase transitions, were made by various authtrs.
integral (11) is almost constant in the pressure range 0—14s expected that dislocations induce ultrasonic attenuation
GPa, i.e., the stability range of the cubic phase of silfon. and velocity chang or equivalently, a renormalization of
C,;, specially in silicon which undergoes a phase transition
IV. CONCLUSION driven by a sof'F ejastic wave. Unfortunately, thesg theori.e's
based on simplifying assumptions cannot be applied to sili-
We applied the Hertzian contact theory for studying thecon which exhibits various forms of dislocations. In this
hardness of a thin film of silicon. We have taken into accounsemiconductor, the dislocations can be straight, heavily
the anisotropy of the two contacting materials, i.e., siliconkinked or jogged, clean or decorated with impurities, and are
and diamond. All the parametefots of the determinantal generally dissociated into partials separated by a stacking
equation of Stroh, polarization vectors, weighting factors fault. However, the understanding of plasticity in semicon-
which allow us to calculate the elastic Green function of theductors is in constant progress.

1J.N. Pethica, R. Hutchings, and W.C. Olivier, Philos. Magt&  11J. Castaing, P. Veyssiere, L.P. Kubin, and J. Rabier, Philos. Mag.

598 (1983. A 44, 1407(1981).
2W.C. Olivier and G.M. Pharr, J. Mater. Re&. 1564 (1992. 12H. Hertz, J. Reine Angew. Matl92, 156 (1882.
3J.L. Loubet, J.M. Georges, O. Marchesini, and G. Meille, J. Tri-*3J. Boussinesgipplication Des Potentiels BE tude de I’,Equilibre
bol. 106, 43(1984. et du Mouvement des Solidéslaﬁtiques (Gauthiers-Villars,
4M.F. Doerner and W.D. Nix, J. Mater. Rek, 601 (1986). Paris, 1885

5J. Isberg, J. Hammaersberg, E. Johansson, T. Wikstrom, D.3*I.N. Sneddon, irFourier Transforms(McGraw-Hill, New York,
Twitchen, A.J. Whitehead, S.E. Coe, and G.A. Scarsbrook, Sci- 195J); I.N. Sneddon, Int. J. Eng. Sc3, 47 (1965.

ence297, 1657(2002. 153.R. Willis, J. Mech. Phys. Solid&4, 163 (1966.
5M. Hebbache, M. Mattesini, and J. Szeftel, Phys. Rev6®  '®L. Landau and E. LifchitzTheory of ElasticityPergamon Press,
205201(2001). London, 1970.

M. Hebbache and M. Zemzemi, Phys. Rev6B 233302(2003.  '’D.M. Barnett and J. Lothe, Phys. No®, 13 (1975.
83. Crain, G.J. Ackland, J.R. Maclean, R.O. Piltz, P.D. Hatton, and®A.N. Stroh, Philos. Mag3, 625 (1958; J. Math. Phys41, 77

G.S. Pawley, Phys. Rev. B0, 13 043(1994). (1962.

%J. Woirgard, C. Thomas, J.C. Girard, and V. Audurier, J. Eur.*®G.W. Farnell, inPhysical AcousticéAcademic Press, New York,
Ceram. Socl8, 2297(1998. 1970, Vol. 6, p. 109.

105, Richter, R. Ries, R. Smith, M. Henkel, and B. Wolf, Diamond 2°J.S. Williams, Y. Chen, J. Wong-Leung, A. Kerr, and M.V. Swain,
Relat. Mater9, 170 (2000. J. Mater. Res14, 2338(1999.

125310-5



M. HEBBACHE PHYSICAL REVIEW B 68, 125310 (2003

2'H.J. McSkimin and P. Andreatch, Jr., J. Appl. Phg§, 3312 627 (1982.
(1964); 43, 2944(1972. 333, Hainsworth, A.J. Whitehead, and T.F. PagePlastic Defor-
223.3. Hall, Phys. Re\l61, 756 (1967). mation in Ceramicsedited by R.C. Bradt, C.A. Brookes, and J.

#M.H. Grimsditch, E. Anastassakis, and M. Cardona, Phys. Rev. B |, Routbart(Plenum Press, London, 1994. 173.
18, 901 (1978; M.H. Grimsditch and A.K. Ramdasbid. 11,  34C.S.G. Cousins, L. Gerward, J. Staun Olsen, B. Selsmark, and

3139(1979. B.J. Sheldon, J. Phys. 20, 29 (1987.

?4s. Wolfram, Mathematica: A System for Doing Mathematics by 350 1 Nielsen, Phys. Rev. B4, 5808 (1986).

’s Computer(Addison-Wesley, Palo Alto, 1991 361 Alexander, inDislocations in Solidsedited by F.R.N. Nabarro
R.N. Thurston and K. Brugger, Phys. R&83 A1604 (1964. (Elsevier, New York, 1986 Chap. 35, p. 115.

26 ; ; ; ; ;
D.C. Wallace, inSolid State Physicsedited by F. Seitz and D. 37\. Hebbache, Phys. Rev. &9, 6522(1994).

27MT‘J"gb‘|\J/'I' (Academ'ca'jexv :’mkl’ 137DP\|<°" 2(5:,hp. 30§ém apy 'SP Obukhov, Sov. Phys. JEBB, 1144(1982; Yu.M. Kishinets,
" Musgrave and J.A. Fople, S Fhys. Lhem. A.P. Levanyuk, A.l. Morozov, and A.S. Sigov, Sov. Phys. Solid

(1962. .
28D, Vanderbilt, S.H. Taole, and S. Narasimhan, Phys. Red0B State29, 347(1987; E.V. Balashova, V.V. Lemanov, and A.B.
5657 (1989. Sherman, Ferroelectric&, 157 (1988.

39A. Granato and K. (oke, J. Appl. Phys27, 583(1956; 27, 789

29D, Gerlich, J. Appl. Phys77, 4373(1995. : bt
(1956; T. Suzuki and C. Elbaumipid. 35, 1539 (1964, I.E.

30T, Suzuki, B.B. Chick, and C. Elbaum, Appl. Phys. Lett. 2

(1965. Dikshten, V.V. Tarasenko, and V.D. Kharitonov, Sov. Phys.
310.H. Nielsen and R.M. Martin, Phys. Rev. 3, 3792(1985. Solid State21, 1374 (1979; Yu.M. Kishingts, A.P. Levanyuk,
320 H. Prasad and M. Suryanarayana, Phys. Status SolitlZ A.l. Morozov, and A.S. Sigov, Ferroelectri@®, 27 (1988.

125310-6



