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The interplay of electron-electron interaction and confining potential can lead to the reconstruction of
fractional quantum Hall edges. We have performed exact diagonalization studies on microscopic models of
fractional quantum Hall liquids, in finite-size systems with disk geometry, and found numerical evidence of
edge reconstruction under rather general conditions. In the present work we have taken into account effects
such as layer thickness and Landau-level mixing, which are found to be of quantitative importance in edge
physics. Due to edge reconstruction, additional nonchiral edge modes arise for both incompressible and com-
pressible states. These additional modes couple to electromagnetic fields and thus can be detected in micro-
wave conductivity measurements. They are also expected to affect the exponent of electron Green’s function,
which has been measured in tunneling experiments. We have studied in this work the electric dipole spectral
function that is directly related to the microwave conductivity measurement. Our results are consistent with the
enhanced microwave conductivity observed in experiments performed on samples with an array of antidots at
low temperatures, and its suppression at higher temperatures. We also discuss the effects of the edge recon-
struction on the single-electron spectral function at the edge.
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[. INTRODUCTION generated and introduce complications into the edge physics.
These excitations are clearly visible in the low-energy exci-
The edge of a quantum HalQH) system provides a spe- tation spectrum of a fractional QH system with reconstructed
cial environment to study electron correlations in one dimenedge>
sion. Due to the presence of a strong magnetic field and Apart from purely theoretical interest and importance, our
electron-electron interaction, the bulk of a QH liquid is in- study of fractional quantum Hall edge reconstruction has
compressible, while low-lying excitations exist only at the also been motivated by two types of experimental studies of
boundary of the liquid. In an experimental sample, the physedge physics, both with puzzling results. First, the CLL
ics of edge excitations is strongly affected by the interplay oftheory predicts a power-law current-voltage dependemce (
electron-electron interaction and the confining potential due~V®) in the tunneling between a Fermi-liquid metal and a
to positive background charge. For example, the edge of ®H edge. The prediction has been tested by experiffiéhts
v=1 QH liquid confined in a simple geometry by a sharpusing samples made by the cleaved-edge overgrowth
confining potential is described by the chiral Fermi-liquid technique® For a simple filling fraction such ag=1/3,
theory and only a single branch of gapless edge excitatioriiese experimerits® found non-Ohmid -V dependence with
exists due to the presence of magnetic fieWthen the con- the exponenta scattering between 2.5 and 2.8, which is
fining potential is sufficiently smooth, the edge undergoes &lose to but noticeably different from the CLL theory predic-
reconstruction transition in which a portion of the electrontion of auniversalexponenixz= 3. Furthermore, no convinc-
liquid is expelled a few magnetic lengths away from theing plateau behavior away from=1/3 is preserit® as pre-
periphery of the main droplét® Additional low-lying edge  dicted by the theory. In fact, for 183v<1, « seems to vary
excitations that propagate imoth directions arise after the continuously for both compressible and incompressible val-
edge reconstruction transition. ues ofv, and no universality inx can be extracted from data
The edge excitations of fractional QH liquids are pro-available to daté?® Experimental findings have prompted a
posed to be described by the chiral Luttinger liqge@LL)  number of theories!~*® most of which address the continu-
theory* For principal Landau-leve{LL) filling fractions v ous dependence @f~1/v found in one experimehonly.
= 1/m, the theoretical picture involves only one chiral boson The second type of experiments measure the microwave
mode. On the other hand, our exact diagonalization Stafly ~conductivity of a two-dimensional electron g&DEG) with
a microscopic model of fractional QH liquids, in finite-size an array of antidotgmicroscopic artificial regimes which
systems with disk geometry, suggests that a fractional QHlectrons are forbidden to enteé? The microwave conduc-
liquid can undergo edge reconstruction for both smaotti  tivity is enhanced with a broad peak centered around
sharp confining potentials. As a consequence, additional low=1/2, exceeding its dc value by as much as a factor of 5 for
energy edge excitatiomsot described by the CLL theory are microwave frequencies up to 10 GHz. The enhanced conduc-
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tivity is suppressed by increasing temperature and disappears (a) Hard

for temperatureT>0.5 K. Since the conductivity enhance- Wall

ment and the associated peak are absent for samples without

antidots, the effect is believed to be related to the antidot Background || - T —

edge excitations coupled to the microwave field. However, charge (+Ne) [~

from the submicron size of the antidogwith depletion re- |

gime diameter 150—-250 nnone can easily estimate the Electron ﬁjF

usual edge magnetoplasmon modes to have characteristic layer (-Ne) ]\T

frequencies above 100 GHz, much higher than the micro-

wave frequencies used experimentally. Therefadglitional

lower-energy edge excitations are required to interpret the (b) 2a

mysterious data. ¢ ——————_—— - - — >
As we discuss later in the paper, it is likely that both sets

of puzzles are related to edge reconstruction and in particular

the additional edge modes associated with it. We present fur-

ther numerical evidence in support of the generality of edge

reconstruction in the fractional quantum Hall regime by tak-

ing into account effects such as layer thickness and Landau- A = —

level mixing, which are of quantitative importance in edge F \Ar

physics but not considered in our earlier work. We estimate AE(/p)

the finite-size effects of our numerical studies and find that . )

they have very little effect on our quantitative results of the ~FIG- 1. (&) Sketch of the system with rotational symmetry con-

position of reconstruction transition point. We have alsoSidered here, which is made of an electron layer and a uniformly

studied in this work the electric dipole spectral function thatdiStibuted, neutralizing background charge layer separated by a

is directly related to the microwave conductivity measure_distanced from each other. Electrons are confined by a hard-wall
ment and the single-electron spectral function, which is Whagoundary condition, so they cannot move beyond the edge of the
' ackground chargéb) The side view of the system. If electrons are

the. tunnt(;:'lltng eXpe“mem?t mea(ljsure. S.eml(:}[uan.tlllt%tlve anhniformly distributed, the electrostatic potential is a constant in the
parison between our resufts and experiments will be madey, . of the electron layer, but a gradidier fringe electric field with

The .rest of th? paper .is organi;ed in the fo!lowing V,VaY'in-plane componeitdevelops at the edge, which tends to pull the
We review our microscopic model in Sec. Il. Using heuristiC gjactrons toward the edge.

electrostatic calculations, we discuss the origin of the recon-
struction of quantum Hall edges and estimate the finite-sizeé Therefore we consider the following Hamiltonian, which

effects on microscopic model calculations. In Sec. Il wegggcribes electrons confined to the lowest LL, using the sym-
present the numerical evidence for edge reconstruction fofeyric gauge:

boundary conditions describing both sharp and smooth
edges. We consider the complications due to LL mixing and 1
finite thickness of the quasi-2D electron layer. Section IV H= 5 2 VImnC;+ICICn+|Cm+2 Umchm, (1)
studies the effects of thermal fluctuations at finite tempera- mn! m
ture on edge reconstruction. The relevance of our model angherec! is the electron creation operator for the lowest LL
the experimentally observed enhanced microwave conductivgi,gie_electron state with angular momentamV' _ is the
ity of samples w_lth antidots is d|s_cussed in Sec. V, V\_/here Wenatrix element of Coulomb interaction,
present calculations of electric dipole spectral functions. We
discuss the effects of the edge reconstruction on the single e?
electron spectral function at the edge of fractional quantum/'mn:f dzrlf d%r ot (1) @F (1)) —— bns1(r2) dm(ra),
Hall liquids in Sec. VI. We summarize our results in Sec. €l12 @)
VIL.
explicitly given by Girvin and Jacdfi for symmetric gaugé*
U, is the matrix element of the rotationally invariant confin-
ing potential due to the positive background charge,

We consider a 2DEG with disk geometry, as depicted in
Fig. 1(@). To model a realistic confining potential, as in a Ne? ) ) | pm(r1)]?
modulation-doped AlGaAs/GaAs heterostructure, we assume Um:mf d rlfr <ad rZW- )
the neutralizing background charge is distributed uniformly . 12
on a parallel disk at a distanceabove the 2DEG. The radius Here ¢,,, is the lowest LL wave function
a of the positive charge background is so determined that the
disk encloses exactl{/v magnetic flux quanta foN elec- d)m(z):(z,n.zmm!)—I/ZZme—\leM, (4)
trons of the 2DEG, for any desired filling facter The bare
Coulomb interaction between the background charge and theherez=x+iy is the complex coordinate in the plane of the
2DEG gives rise to the confining potential. 2DEG.

®=Nd,/ v
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IIl. MODEL AND ELECTROSTATIC CONSIDERATIONS
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FIG. 2. Estimate of electrostatic energy associated with edge reconstruction and finite-size effects. Consider a parallel disk capacitor with
uniformly distributed positive and negative charges. Left panel shows the potential-energﬁx&&aﬁ(Zd/lB)tan’l(lB/d)+|n(l+d2/I§)] in
moving an electron from one magnetic lengtg)(inside the edge to the edge, for a half-infinite capacitor systeminfinite-size limit of
the disk system d is the distance between the two charge layers. Right panel sh@&ia finite-size disk system&l—9 electrong with
d=2lg, atv=1/3. The dashed line is the infinite-size limit fAlE atd=2lg.

Before we diagonalize the Hamiltonian for microscopic also points to a fundamental difference between the integer
systems to look for evidence of edge reconstruction, we firsand fractional bulks, in the limit of infinite Landau-level
present a heuristic argument that reveals the electrostatic ospacing. For the former, all the possible single-electron states
gin of edge reconstruction. Assuming the electrons are corare occupied when an infinitely sharp edge is present; thus
fined by a hard-wall boundary condition ata, we can no reconstruction is possible no matter how laigs. On the
view the system as a parallel disk capacitor in the electroether hand, this is not the case for fractional bulk and recon-
static context, as illustrated in Fig(k). If there is no edge struction is guaranteed to occur for sufficiently ladjede-
reconstruction, to a good approximation the electron densitgpite the presence of a sharp edge boundary.
is uniform from the center of the disk all the way to the edge. In this work we perform finite-size humerical studies on
Together with the uniform positive background charge, thesystems with sizes ranging from four to nine electrons. It is
capacitor is uniformly charged in this case. Within theimportant to ask whether the numerical results presented in
electron-gas layer, the electrostatic potential is a constant ithis paper reveal the physics in the thermodynamic limit or
the bulk, but a gradier(or fringe electric field with in-plane  merely finite-size artifacts. Repeating the above calculation
component develops at the edge. This fringe field tends tofor a finite-size disk capacitor can provide a measure of
pull the electrons toward the edge; the distance from thdinite-size effects. The results for systems corresponding to
edge over which the fringe field effects are significant isfour to nine electrons are shown in Fig(b2 for d=2lg
roughly d. Therefore, the system can gain electrostatic en{which is close to criticad, above which edge reconstruc-
ergy by moving electronsutward near the boundary along tion occurs, say av=1/3). First, we find that the electro-
the radial direction. This is expected to happen when theatatic energy difference between the edge and one magnetic
separation between the two oppositely charged disks is largength inside the edge is very close to the infinite-size value
enough. Wherd is large, the fringe field effects are strong; (all within 2%). This suggests the finite-size effect is weak,
thus the electrostatic energy gain from moving some electroponsistent with our finding that there is essentially no depen-
density outward at the edge overcomes the associated lossdénce ofd, on size> Second, finite-size effecteducethe
exchange-correlation energy. We identify this as the drivingelectrostatic energy gain and thus watainstthe edge re-
force of edge reconstruction. construction. Therefore, we believe that the edge reconstruc-

To obtain an estimate of the energetics of this effect, waion we find is robust and not due to finite-size artifacts.
have calculated the potential-energy change of moving one
electron from one magnetic lengtg= JAc/eB (the typical
length scale associated with edge reconstrugtioside the [ll. EXACT DIAGONALIZATION STUDY

edge to the very edge. The energy gain is In this section, we present the ground-state properties and

AE=(2d/IB)tan‘1(IB/d)+|n(1+d2/I§), (5) onv-energy excitati_on spectra of the model Hamilt(_)nian, ob-
tained by exact diagonalization, and look for evidence of
for a half-infinite system, wherAE is in units of ve?/elg. edge reconstruction in them. We discuss the appropriate

This energy diverges as 21tiilg) at larged, as shown in Fig.  choice of boundary conditions at the edge of the system and
2(a). Once this energy gain exceeds the loss of exchangeshow that edge reconstruction is a robust property of the
correlation energywhich must saturate in the largelimit),  system under different boundary conditions. In particular, we
edge reconstruction occurs. This calculation demonstratezonsider the effects of Landau-level mixing near the edge
that edge reconstruction must occur in infinite systems fodue to the presence of a hard-wall potential. We have found
sufficiently larged as long as there are states available forthat the LL mixing effects, while not of qualitative impor-
electron rearrangements. In addition, it provides an estimat@&nce to the edge reconstruction physics, do affect the critical
of the energy scale associated with edge reconstruction. #pacingd. quantitatively. Our results are also robust in the
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FIG. 3. Dependence dfl,,; ond for 6, 9, and 12 electrons in 18 0 . N 0
orbitals, which correspond to= 1/3, 1/2, and 2/3, respectively. 105 110 115 105 110 115
M M

presence of finite thickness of an electron layer, whose ef- g 4 | ow-energy spectra foi=9 electrons in 27 orbitals for
fects turn out to be negligible as long as we treat the electrofy) g=0.5, (b) d=1.0, (c) d=1.5, and(d) d=2.0, in units ofl s .

layer as a sheet of charge at its maximum density. Excitation energies XE) are measured, in units &/elg, from
the ground state in thil,,,= 108 (that of the corresponding Laugh-
A. Sharp edge lin state subspace. The edge reconstruction transition occurs

In the previous study,we restricted electrons ta/v or- aroundd=1.5, asAE becomes negative fovl;o=115.

bitals of the lowest LL(i.e., no Landau-level mixing from

m=0 to m,,,=N/v—1. Such a constraint was introduced quantity in these calculations is the critiahlwhich has al-
to describe, for filling factory, the presence of a sharp ways been found to be of the orderlgf(even for the more
cleaved edg® beyond which electrons cannot move. In the complicated cases we discuss later in this segtigve be-

exact diagonalization study, we found, for1/3, the fol-  lieve that this is not a coincidence. Within the lowest I,
lowing evidence that supports the edge reconstruction scés a fundamental length scale that characterizes the size of
nario. single-electron wave functions. It is thus also the range of

(1) The total angular momentum of the global groundeffective attraction between electrons due to exchange-
state Mo, becomes greater than that of the correspondingorrelation effects and therefore the length scale associated
Laughlin state when the separatidnbetween the electron with edge reconstruction. On the other hand, the separation
and background charge layers exceeds critidgE=1.5  between the electron and background charge lageis,the
+0.1g; the increase o, is due to the outward motion of range of the electrostatic fringe field near the edge. There-
electrons near the edge triggered by the reconstruction, dere, the electrostatic energy gain generally becomes compa-
discussed in the preceding section. The critical valyes  rable to the loss of electron exchange-correlation energy
essentially the same fdd=4-9 electrons, with very little whend is of the order oflz; we thus expectl.~Ig.

size dependence. Additional insight into the physics of edge reconstruction
(2) The electron density profile for the global ground statemay be gained by studying how the low-energy excitation
shows significant oscillation near the edge dord. . spectrum of the system evolves d@creases. According to

(3) Counterpropagating low-lying excitations can be iden-the CLL theory, for simple bulk fillings such as 1/3, there
tified in the low-energy excitation spectrum fdi>d.. We  exists a single branch of chiral bosonic edge modes with
also found that propert{?2) is present for filling factors 1/3 linear dispersion in the long-wavelength limit in the absence
< p=2/3, suggesting edge reconstruction is generic for fracof edge reconstruction; these modes describe the propagation
tional bulk fillings. Propertie¢1) and(3), on the other hand, of the deformation of the periphery of a QH system. This
are unique to 1/3(1) because of the existence of the Laugh-branch of chiral bosonic edge modes is clearly visible in Fig.
lin state as the reference state af® because the single 4, where we show the low-lying spectrum for bir=9 sys-
chiral boson mode of the unreconstructed edge does not, iem atv=1/3 (or, my,,,=26), for bothd<d, andd>d,.
general, extend to other filling factors. So, the mere existencéhe chirality of the mode is reflected in the fact that low-
of counterpropagating modes cannot be used for general fillying excitations exist only in subspackk>M,, whereM,
ing factors to look for edge reconstruction. Nevertheless, thés the quantum number of the ground stéw¢hich is the
general trend remains thail,,; increases withd for both ~ same as that of the Laughlin stafer d<d.. What is worth
incompressible and compressible filling fractions, indicatingemphasizing here are two features not described by the CLL
that fractional QH edges tend to reconstruct for ladg&ig-  theory. First, the low-lying edge modes, which are clearly
ure 3 shows the dependence Mf,; on d for 6, 9, and 12 separated from the bulk excitations with a gap, exist for rela-
electrons in 18 orbitals, ar=1/3, 1/2, and 2/3, respectively. tively large SM =M — M, (corresponding to large momen-

In all three cased\,,, starts to jump ad~1lg. tum or short wavelength in translationally invariant systems

These numerical findings are consistent with the heuristid-rom the system size we can estimate the momenkum
arguments that we gave in the preceding section. One kes;tAM/Zq-rR%O.ZI,gl for which the mode remains well de-
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fined. Second, the dispersion relation shows significant de- 1
viation from I|near|t.y and even pecomes nonmonotomc for o8l Laughiin State -~  d=0.
larger momenta, with a well-defined local minimum n&ar =, |
wO.lHB’l. This nonlinearity grows with increasing) At d o .
. .. B U.
=d., the mode energy crosses zero at this local minimum.

Thus the edge reconstruction transition can also be under ©°2

Smooth Edge — @ Smooth Edge —  (b)
1 [ Laughlin State - d=1.6

stood as an instability, driven kg, of the (unreconstructed 0

chiral boson mode at finite wave vect@f orderlg?'). This L - B~ o Smvoth Edge — o
clearly indicates that edge reconstruction is driven by short- o.s Laughlin State - @ =2.0 1 Laughiin State - d=50
distance physics at the scalelgf, in agreement with previ- < 44 L i
ous analysis. Based on this insight, a unified field theoreticahl_} 04l | _ i
description for the edges with and without reconstruction, ¢ XN M=55 | [T M =105
and the transition between the two is advanced by one of I |
us?? 2 4 6 0 2 4 & 8 10

As discussed earlier, a cutoff at,,, for single-electron ri/ls r/ls

states s |ntr(_)duced to model a sharp cleaved edge. S.UCh aFIG. 5. The electron density(r) of the global ground state for
sharp edge is not present for all samples. To describe a . . . _

. . . Six electrons in 30 orbitals compared with that of the Laughlin state
smooth edgewhere confinement is provided only by the

" . (dotted line$ for (@) d=0.1, (b) d=1.6, (c) d=2.0, and(d) d
positive background we can move the cutoff to higher an- _5 o "in units ofl5. The radius of the disk with uniform back-

gular momentum. !n faCt_’ even ‘T" sharp cleaved edge is mor&round charge corresponds te=1/3, so electrons are allowed to
complicated than imposing a simple cutoff @t,ax. More  moye ~21, beyond the background charge.

appropriately, electrons are confined in a disk of radius

with a very high step potential at the edge-a. The con- tjon; the effects are important only for systems well in the
finement has two related effects. First, the step potentigleconstructed phase witlts>d,. For simplicity, in the fol-
mixes in high Landau-level components for single-electronowing discussion we do not include these additional orbitals

wave functions near the edge and raises the energies f@eyond the boundary of the background charge distribution
single-particle states, even with angular momentum ynless otherwise specified.

<Mpax (this is in addition to the effect of the back ground
charge. Second, the change of single-particle wave function,
caused by the in-mixing of LL's, changes essentially all the i _ )
Coulomb interaction matrix elements in E(). These ef- The electrons confined at the interface of the modulation-
fects are to be considered in the following sections. doped ALGa, _,As/GaAs heterostructures, as used in experi-
ments, are not ideally 2D although their motions perpendicu-
lar to the interface are essentially frozen in their ground state
B. Smooth edge due to sharp interface potential. In principle, one needs to
As mentioned above, while a sharp cutdft mp,,.,) use the self-consistently calculated wave function appropri-
where the background charge ends describes samples widfie for the heterostructures to study the softening of electron-
cleaved edges, it is not present for other samples. Not suglectron interaction due to finite electron layer thickness.
prisingly, we find that removing this sharp cutoff can only However, Stern and Das Sarffisshowed that the Fang-
further favor edge reconstruction. For the six-electron systerffoward variational wave functioff,
;:on3|dered Pefor@we'have mpreased the number of orbitals Zo(2)=2(2b)~ 3% e 2, ®)
0 30 (Mya=29), while keeping the background charge un-
changed so that the sharp cutoff is moved abdyt@vay is a very good approximation to the numerical self-consistent
from the boundary of the background chafd€&igures %a)— ground state. The Fang-Howard wave functiéy(z) peaks
5(d) show electron densities of the global ground states foatz,=2b. The parameteb gives the scale of the layer thick-
d=0.1, 1.6, 2.0, and 5.0 in the presence of such a smoothefess, which is typically~50 A. The finite layer thickness
edge. Compared with Figs(d—1(e) in Ref. 5, we find that weakens the electron-electron interaction, as well as the
the change of the sharp cutoff has essentially no effect on thieackground charge confining potential. For instance, the ef-
electron density fod<2.0. In particular, the critical distance fective electron-electron interaction in the quasi-2D system
d.=1.6 remains very close to that of the sharp edge case. lig approximated by
these cases, we expect that the electronic states are almost
entirely determined by the competition of the electron- .. e? 1Zo(21)|?1Zo(2,)|?
electron interaction and the confining potential arising from V(lri=ra)= ?j f dzdz, 24 (5 — 72712’
the background charge. However, with the cutoff moved far- [r*+ (z1=2)7]
ther out, the edge piece can shift further away from the diskvherer is the in-plane distance between two electrons.
center for larged so that the total momentum,,, of the For typical experimental parameters, the electron wave
lowest ground state increases, e.g., fibip;= 65 to 105 for  functions have a finite thicknessb2 100 A, equal to
d=5.0. Therefore, the inclusion of extra single-electron or-roughly one magnetic length. For an AlGaAs/GaAs hetero-
bitals has very little effect on the edge reconstruction transijunction, we choose the direction pointing from the Al-

C. Layer thickness

)
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1‘5$ ' P ' ] overall effect of finite layer thickness favors edge reconstruc-
tion, and reduces the critical dopant layer distarde
~. A .
“ a slightly.
B, o
g\\\ % 05
1F B,
= @ 0 D. Hard-wall confinement and Landau-level mixing
s o, o 2 4 6 near the edge
B z/2b
sl NIS S g\\ N ] So far, we have been working in the limit where the ki-
NZE 2 - netic energy is completely quenched, so electrons are en-
NZS S BN tirely in the lowest LL. In this limit, the Coulomb energy
e?/elg is the only energy scale in the system. However, for
% o2 oa o6 os typical n-type GaAs heterostructures in experiments, the
b (lg) Coulomb energy is comparable to the cyclotron endigy

separating the LL's. For the fractional QH effect, the LL
mixing effects have been considered in numerical as well as
analytical studie$*~%’

The LL mixing effects are important for edge physics,

FIG. 6. Criticald, (in units of Ig) for edge reconstruction, at
which the ground-state momentulh,,, becomes greater than that
for the corresponding Laughlin state, fobk=4-9 electrons av
=1/3 with finite layer thicknessd, is measured as the distance

from the positive background charge layer to fl@gaAs/AlGaAs S'_nﬁe_ the smgle-partlcle_ erl}er?y foL ellkectror(ljs Conf('and In-a
interface where potential is discontinuous. The finite thickness op's Increases monotonically from bulk to edge and eventu-

the 2D electron gas in the perpendicular direction is described bt!ly €rosses higher LﬁL energies due to confinement, as first
the Fang-Howard variational wave function Z(z)  discussed by Halpermin the QH context. Therefore, LL

=2(2b) ¥z ¥? (see inset d, can be roughly fit tod,=1.4  Mixing, in particular, resulting from the cleaved sample edge
—2b, where 1.4-0.1 can be regarded as the critiddbr zero layer ~ May as well alter the edge physics. To include this effect, we

thickness, and & the distance from the peak of the variational wave Solved the Schidinger equation for noninteracting electrons
function to the interfacez=0). confined in a two-dimensional diskwe neglect the finite

thickness of the electron laydny a hard-wall boundary con-

GaAs to the GaAs with the AlGaAs/GaAs interface placeddition:

right at thez=0 plane. Since the AlGaAs introduces a po-

tential barrier, the quasi-2D electron density spreads essen- $(r)=0 for r>a. ©
tially in the GaAs. The background charge layer, introduce
by & doping, is thus located at the=—d plane (on the
AlGaAs sidg. Experimentallyd~800 A or above. One cen-

dThe ground-state wave functioff;(r) in each angular mo-
mentum(m) subspace now becomes a mixture of states in all

tral question, therefore, is whether the edge reconstructiohl‘s with the samem quant'um number. As a result, the en-
persists in the presence of the finite layer thickness; in par‘?rgy of the ground states increases frhclg (the lowest
ticular, whetherd, for the edge reconstruction remains LL value) for m=0 to appr.oach'BwC./Z (the first LL valug
smaller than the typicatl used in experiments. To answer for mmax=3N_—l,_ as depicted in F'g'.(i?) (here we do not
pclude contributions from the confining potential of the

this, we repeat exact diagonalization calculations for sever ' .
values ofb, searching for the criticall above which the ackground chargeFigure 7a) shows the cumulative over-

global ground state has a larger total angular momentum tha@PS Ein=0|<¢rgns(r)_| d’lm(r)2|2' of the corresponding ground-
that of the corresponding Laughlin state. In this calculationStaté wave functiongys(r)] for each angular momentum
we use a sharp cutoffif,,,=N/v—1) in the angular mo- ™M, with the LL wave function] ¢,(r)] for the lowest five
mentum space and do not consider the complication of LILL'S (i=0-4). The total overlap of the five lowest LL's is
mixing. Figure 6 summarizes the results fd=4-9 elec- more than 99% for eactn.

trons for v=1/3. Again, d, is almost size independent for ~ Following the usual procedure of projecting the Hamil-
N=4-9 electrons, confirming that finite-size effects aretonian of the system onto the ground-state manifold, we ob-
weak in this calculation. Overalti, decreases dsincreases, tain an effective Hamiltonian in the same form as En,

and can be roughly fit by with chn creating an electron in the LL-mixed ground state
with angular momentunm. The single-particle wave func-
tions ¢, in Egs.(2) and(3) are replaced bys2°. We absorb
the m-dependent single-particle energy; into the confining
energy termU,,. We restrict the Hilbert space to<Om
whered?=1.4+0.1. Noted, decreases slightly faster than <3N for »=1/3. Note that we have, in addition &l elg, a

2b for smallb; thusd? is smaller thard,=1.5+0.1, which  second energy scafaw.. The LL mixing effect is thus char-

is found for systems with zero thickness. Sinde 8 the acterized by the dimensionless parametei
distance between the AlGaAs/GaAs interface and the peak of (e?/elg)/hw.. We are, in particular, interested h~1,

the Fang-Howard wave function, an alternative interpretatiorwhich is close to the real experimental conditions. The LL
of the results is thatl. remains roughly as a constant, if we mixing raisese,, by roughly Zw. for edge states, thereby
measured from the background charge layer to the plane ofmaking electrons occupying these states energetically unfa-
maximum electron density, instead of the interface. Thus th&orable. However, the squeezing of the wave functions near

de=d%-2b, (8)
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08}
'z
%06t N
=
Y o4t n=0 i
3 n=1 A
A n=2
n=3
o2} n=4 — .
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0 . . . . . M M
0 5 10 15 20 25
m FIG. 8. The low-energy spectra fbf=9 electrons in 27 orbitals
2 . r . T T with hard-wall boundary conditions f¢gg) d=0.9 5, with no edge
) reconstruction(b) d=1.05, close to but before edge reconstruc-
tion, (c) d=1.95, and(d) d=2.0, both after edge reconstruc-
151 tion. Excitation energiesAE) are measured in units ef/elg, We
choose the dimensionless parametet (€?/elg)/fw.=2.0 here.
After edge reconstruction, the total ground-state momentum be-
s comesM =116, increasing fronM,,= 108 of the corresponding
= 1 Laughlin state.
W
this effect was not present in our earlier study. We also point
0.5 ] out that here we defind. as the distance at whicNl,
exceeds the corresponding value in the:0 limit and the
results presented are based on this working definition. With

0 : : : : : strong LL mixing effects, the ground state f«d. may not
0 5 10 15 20 2 have anM,,, consistent with the value of the corresponding
" Laughlin state. We believe that such a differéf,, in the
FIG. 7. (@ Cumulative overlapE!" ,|( 48%(r)| ¢\ (r))|? of the  limit of d—0 suggests the Laughlin state may not be a good
ground-state wave functiony2*(r)] for each angular momentum approximation to the ground state. In other words, we prob-
m, in the presence of a hard-wall boundary condition, with LL waveably cannot identify the finite systems as having filling frac-
function ¢!,(r) for the lowest five LL's {(=0—4). The sum of the tion 1/3 unambiguously.

overlaps is more than 99% for eaah (b) The single-particle en- We would like to emphasize that all of our numerical
ergy of the ground state,, increases fronfiw./2 in the bulk to  results, as well as the heuristic arguments based on electro-
3hw:/2 at the edge. static considerations, suggest tltht-15. In real samples,

on the other handj= 10z . We thus believe that it is safe to
the edge due to the Landau-level mixing effect lowers theconclude that the edges of all samples studied so far are
confining potential from the background charge and also rereconstructed when the bulk filling is fractional, regardless of
duces the range of effective attraction due to exchangewhether the edges are cleaved or not.
correlation effects. These effects favor edge reconstruction.

Figure 8 shows the low-energy spectraffoe 9 electrons IV. EEFECTS OF FINITE TEMPERATURE ON EDGE
in 27 orbitals with hard-wall boundary conditions for various RECONSTRUCTION
d and A =2.0. After edge reconstruction, the total ground
state momentum becoméé, =116, increasing fronM ., Thus far our studies have been focusing on ground-state

=108 of the corresponding Laughlin state. CounterpropagatOr zero temperatujeproperties of the system, especially
ing low-energy modes can be observed nlg,=116 for those related to edge reconstruction. It is of interest to inves-
d=1.55. Qualitatively, these results agree very well with tigate how finite temperature, and the thermal fluctuations
the scenario using sharp cutoff in angular momentum spacessociated with it, affect these properties. In our previous
(Fig. 4. However, we also observe fluctuations in the critical _ .

d for systems with different sizes. Far=1.0, we listd, in TABLE |. d for edge reconstruction foh=(e"/elg)/fiw,
Table I, which varies from 0.45 to 1.6 1. Although the — =1.0. We defined. as the distance at which,,, of the global
data seem to stabilize dt~1.0, we cannot draw definitive ground state exceeds the corresponding value irdth® limit.
guantitative conclusions without data from larger systems in s 5 . g 9
contrast to the case of no LL mixing. We believe the in-

creased finite-size effect here is due to the fact that LL mix- ¢, 0.4 1.6 0.6 0.9 1.0
ing affects states in a relatively wide region near the edge;
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FIG. 9. Finite-temperaturéin unit of e*/¢lg) electron-density

profiles p(r) for N=7 electrons atv=1/3. The distance between
the two charge layers is fixed al=3lg. At and aboveT
=0.0%%/elg, p(r) become similar to that of the corresponding
Laughlin state, fluctuating slightly around 1/3. This is very different
from p(r) at T=0.00%% €l 5, where strong density oscillation due
to edge reconstruction can be seen.

FIG. 10. Microwave conductivityr(w) calculated by electric
dipole spectral function foN=6 electrons atv=1/3 for (a) d
=1.0g (with no edge reconstructiprand (b) d=2.05 (after edge
reconstructiop at various temperatures. The corresponding low-
energy excitation spectra are plotted f@ d=1.05 and (d) d
=2.0g. Before edge reconstruction, the absorption is dominated
by long-wavelength chiral edge mogsolid arrows in(a) and (c)]

. _even abovel=0.05%%/ el . After reconstruction, extra modémdi-
StUd_y? we used a finite-temperature Hartree-Fock approXicateq by three arrows ifb) and(d)] due to reconstructed edge can
mation to show that the reconstruction of&1 QH edge is  pe identified as contributing to the peaksdfiw) for w<0.05, in
suppressed above a certain temperaflife This is quite  ynits of e¥/el. At T>0.03%% €l, these modes become less signifi-
reasonable since thermal fluctuations tend to suppress edgént, compared to bulk excitation.
density oscillations associated with reconstruction. In that

study the temperaturd* ~0.0%?/elg (or T*~6 K) for  \yheref(E)=e E/*sT/Z is the thermal weight of a state with
typical experimental parameters. It is expected, however, thginergyE. E; ; and ¢; ; are the energies and wave functions
the Hartree-Fock calculation tends to overestimate the tenyyy initial and final states, respectively, and the summations

perature SC"?"G’ due to effects of finite size, layer thlpknessare over all eigenstatesis the unit vector of an electric field
LL mixing, disorder, etc. Here we study the effects of finite S .
Kk andr is the position vector for electrons.

for fractional bulk filling v=1/3. In this case a Hartree-Foc , . .
calculation is no longer possible; we thus use exact diago- 1he Microwave conductivity, as determined from Ex()

nalization to generate all the excited states with significan{o” @ System of six electrons for=1/3 at different tempera-

thermal weight and perform thermal averaging. Figure 9fures, both befored=1.0g) and after edge reconstruction
shows the evolution of the density profile for seven electron§d=2-0g), is shown in Figs. 1@ and 1@b). The data are

at v=1/3 at several temperatures. We find that, similar to°0arse-grain averaged in frequency space for clarity of view-
what we found earlier for=1, the edge density oscillation INd- Ford=1.0p, the spectral function shows a dominant
associated with edge reconstruction is washed out above Rfak aiw=~0.04, in units ofe“/#ielg . This peak corresponds
certain characteristic temperatuie,~0.0%% el 5, at which ~ © the single chiral edge mode for the principal filling factor
the density profile no longer has strong oscillations and be?=1/3, marked by a solid arrow in the corresponding exci-
comes quite similar to that of the corresponding Laughlinf@tion spectrum, Fig. 10). At higher temperatures, the peak
state. This is about the same temperature stalefor much becomes less prominent, due to the reduced statistical weight
smaller systemsthat we got for the integer edge from of th_e ground state and other onv-ly!ng states; however the
Hartree-Fock approcimation; we expect the temperatur@0Sition of the peak does not shift with changifhgand the

scale will become much lower for a comparable size systenP@ak can still be identified as the dominant one in the whole
spectrum for temperature up To=0.05, in units ofe?/el g .

For d=2.0g, where edge reconstruction has occurred, the
V. MICROWAVE CONDUCTIVITY AND ITS frequency dependence of the conductivity becomes qualita-
TEMPERATURE DEPENDENCE tively different. Two distinct peaks can be resolved for
<0.05 atT=0.01, contributed by three dominant modes,
ith two in the lower peaKmarked by a dotted arrow and a
ashed arroyv The additional modes are due to edge recon-
struction, which creates two counterpropagating edge modes.
What is more interesting is the manner in which the conduc-
tivity evolves asT increases; here we find, at higher tempera-

The microwave conductivity related to microwave ab-
sorption of our microscopic system can be calculate
through the electric dipole spectral function as follows:

oy 2
U(w)“EZE [(grle-r[y)|“0(Es—Ei—haw)[f(E) tures, the peak of the spectral functishiftsto higher fre-
e quencies, and the low-frequency response due to the
—f(Ef)]Jh o, (10 additional modes getuppressedThe low-temperature peaks

125307-8



EDGE RECONSTRUCTION IN THE FRACTIONA. .. PHYSICAL REVIEW B 68, 125307 (2003

150
120
90 | 15 |
60 | 10 b
o 4 @] i
0 R /\ -
4] 005 01 015 02 0
© (e%elg)

25
20 +

ders of magnitude larger than the oth&rM = —1, marked
by a dotted arrow so the low-temperature spectral function
is dominated by a single modghe edge magnetoplasmon
mode. On the other hand, fod=2.0, we find more edge
modes that include twd M = — 1 low-energy excitations as
shown in Fig. 11d). These new modes can roughly be re-
garded as the results of the edge reconstruction of the inner
R v=1/3 hole condensate. There is no evidence that the outer
= v=1 edge can be reconstructed since we model samples
orr - 7 A with sharp cleaved edges. The dipole spectral function, how-
—T/T ever, is now dominated by one of th#M=—1 modes
ot - © [marked by a solid arrow in Fig. 1d)], with a squared spec-
tral weight more than two orders of magnitude greater than
those of theAM =1 modes(the lowest one marked by a
FIG. 11. Microwave conductivityr(w) calculated by electric  dotted arrow. Thus, quite similar to the=1/3 case, we find
dipole spectral function foN=12 electrons at=2/3 for (8 d  additional modes due to edge reconstruction at ladyéte
=0.1p and(b) d=2.0 at various temperatures. The correspond-also find the transition processes that dominate the dipole
ing low-energy excitation spectra are plotted foy d=0.1g and  spectral function and microwave conductivity change due to
(d) d=2.0g. For d=0.1p, o(w) is dominated by the lowest edge reconstruction. Also similar to the=1/3 case, the di-
AM=+1 edge modgsolid arrows ina) and(c)], while the lowest  oje spectral function becomes dominated by bulk excita-
AM=—1 edge mod¢dotted arrows irfa) and(c)] is significantly  tiong at high temperatures and the low-frequency spectral
weaEer. Ford=2.0p, o(w) is dominated by the second lowest \\qight gets suppressed. Thus the calculation of the dipole
im ;:1 ?ggge':O:riscﬂsci"&‘g’;g(rb);:?ég?gﬁecgh;;e dg’g‘isdt anﬁjpectral function av=2/3 also finds additional low-energy
dotte d_arrows irb) and (d) ’ odes generically arise frqm the reconstrqcthn of fractional
' QH edges, and they make important contribution to the low-
can barely be resolved dt=0.05. Such a behavior is in frequency dipole spectral function. Such a contribution, how-
good qualitative agreement with the microwave experimentgver, gets suppressed at high temperatures. Thus this behav-
in samples with an array of antidotseported in Ref. 19  ior is not specific to principal bulk filling, in agreement with
These authors find enhanced low frequerfoyuch lower the enhanced microwave conductivity in antidot samples in
than the edge magnetoplasmon frequénoynductivity at  the entire fractional filling range and its suppression at higher
low T, while such enhancement gets suppressed at higher temperature.
One should note, however, that the system size of our study
(as, say, parametrized by the circumference of the edge  VvI. SINGLE-ELECTRON SPECTRAL FUNCTION AND
much smaller than those of the real samples; thus, not sur- EDGE TUNNELING
prisingly, the energy and temperature scales obtained in our . . .
work are considerably larger than those of the experimental Numerical calculations of single-electron spectral func-
data; this is purely a finite-size effect. On the other hand, th&ion at the edge in finite-size systems have been performed
temperature scale obtained here is consistent with what wy Palacios and MacDonaf They considered a QH droplet

obtained in the preceding section through the temperatur@ith Coulomb interaction, but without a physically realistic
dependence of edge density oscillation. confining potential. In particular, they calculated the squared

The microwave experiment on samples with antitfots matrix elements betwegn the ground state oiNaeIectron.
suggests that the observed enhanced conductivity is a genef¢Stem to the low-lying states of the corresponding
feature for all fractional filling factors and peaks around (N 1)-électron system at=1/3. These numerical results
—1/2. Unfortunately, finite-size effects do not make it pos-¢&n be compared to those obtained by the CLL theory, which
sible for us to obtain conclusive results for arbitraryex-  Predicts that the low-lying energy spectrum of a QH system
cept for simple cases such as=1/3. This is because the at principal f|II|ng fraction, such as=1/3, can be described
hierarchy fractional QH states have more complicated edgBY & Pranch of single-boson edge states with angular momen-
structure, which necessarily leads to stronger finite-size efUm ! (1=1,2,3...) andenergye,. In the CLL language,
fects; the situation is even worse for compressible bulk suci/€ can label each low-energy state by a set of occupation
asv=1/2, because the gapless bulk and edge excitations af#'mbers{n;}, whose total angular momentum and energy
inevitably mixed together. Here we discuss another relativel@® M=Mo+AM=My+Znl and E=E,+AE=E,
simpler casep=2/3, where the QH liquids can be under- T =1Ni€, respectively, whereM, andE, are total angular
stood as a=1/3 hole condensate embedded inal elec- Momentum and energy of the corresponding ground state.
tron condensat® 3% Therefore, two counterpropagating Palacios and MacDonalti f_ound excellent agreement be-
edge modes exist even without the edge reconstruction. Wi/een the squared matrix elementg({n}) = |(yn (N
find, not surprisingly, these two moded =M, ,—M,  +1)|chy.aml¥o(N))|? calculated numerically in the mi-
=+1) in our numerical calculation fa=0.1, as shown in croscopic model and those calculated based on the CLL
Figs. 11a) and 11c). One mode M =1, marked by a solid theory. Note thatMy(N+1)—My(N)=3N is the differ-
arrow) has a squared dipole matrix element almost two or€ence in total angular momenta between the and

oo —

003 — 1
005 -
01

o(w) (a. u.)
o(w) (a. u.)

AE(M) (e%elg)
AE(M) (e2elg)
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affected by the presence of the edge confining potential,
which mixes the eigenstates in the system without the con-
finement. In particular, we are interested in knowing whether
and how the electron spectral function is affected by edge
reconstruction.

We calculated the tunneling spectral weights for 1/3
: by adding one more electron into a system of six electrons.

e The realistic edge confining potential is generated by the

‘ appropriate background charge, which neutralizes the result-
[ I' e i ing system. Fod= 1.0 (before reconstructionwe plot the
0 005 01 spectrum and electron spectral weights in Figsialand

AE (e%elg) 12(b), respectively. As in the absence of the confining poten-

FIG. 12. (8 Spectrum andb) normalized spectral weights, tial, we can identify thg lowest edge excitati_on; for edth
T({m})/To, for tunneling one additional electron into a six-electron =Mo+AM subspace in the low-energy excitation spectrum
system atv=1/3 for d=1.0. (c) Spectrum andd) normalized s the single-boson edge state witf= &) \y (With excita-

spectral weightsT({n})/To, for tunneling one additional electron tion energye|). Thus, the family of edge states can be un-
into a six-electron system at=1/3 for d=1.6. In all figures, ambiguously identified, since thekM and AE must be si-

solid lines represent states that have significant contribution to thenultaneously written as linear combinations loaind ¢,

electron spectral function, whose corresponding matrix elements amespectively. We list the tunneling spectral weights Adv!

listed in Table II. =<4 in Table II, which are highlighted by solid lines in Fig.
12. These matrix elements are rather close to those obtained

(N+1)-electron ground states. Such a comparison is madia the absence of the confining potentlaland consistent

possible by the unambiguous identification of the low-energwwith the predictions of the CLL theorffor infinite systen.

(b)d=10

|
0 005

(d')d=1.6

spectrum in terms dfn|} (based oM\M andAE), as well as For reconstructed edges, on the other hand, the situation
in the agreement of the corresponding valueg @m,}), at  becomes more complicated since there are additional non-
least forM <4. chiral boson excitations, all of which are coupled in general.

In this section, we study the single-electron spectral funcHowever, it has been proposethat in the strong-coupling
tion in the presence of a physically realistic edge confinindimit (for the unscreened long-range Coulomb interaction
potential, generated by a layer of background charge, distribahich has logarithmic singularity in the long-wavelength
uted uniformly on a disk at distanakabove the 2DEG. As limit) one mode, which represents the total charge-density
discussed earlier, the single-electron spectral function is dimode, may dominate and behaves just like the single branch
rectly measured in edge tunneling experiments. We are intebelow the edge reconstruction transition. Fbr 1.6 (after
ested in finding out how the electron spectral function isreconstructiojy we plot the tunneling spectrum and spectral

TABLE II. Tunneling spectral weightS({n}) =[{#,,(N+ 1)|clns aml ¥o(N))|? for microscopic model
at v=1/3, before 1=1.0) and after i=1.63) edge reconstruction transitignormalized to the ground-
state-to-ground state matrix elemdny), and for CLL theory. The microscopic system contaiis 6 elec-
trons with corresponding background charge before an additional electron tunnels into the electron layer.
AM=M—M, andAE=E—E, (in units ofe?/ elg) are total angular momentum and energy measured from
the corresponding ground-state valuédy(and Ey) for the resulting system{n,} is a set of occupation
numbers of the bosonic edge wave with angular momertamd energye, .

d=1.0 d=1.6
(no reconstruction (with reconstruction
AM {n} AE T¢n}) AE T¢n}) CLL theory
0 {0000 0.0000 1.000 0.0000 1.000 1
1 {1000 0.0317 2.791 0.0241 2.845 3
2 {2000 0.0631 3.772 0.0477 4.074 4.5
{0100 0.0434 1.383 0.0314 1.681 1.5
3 {3000 0.0943 3.288 0.0714 4.480 4.5
{1100 0.0738 3.863 0.0559 3.644 45
{0010 0.0461 0.734 0.0306 1.320 1
4 {4000 0.1252 2.083 0.0972 3.413 3.375
{2100 0.1038 5.182 0.0797 5.113 6.75
{1010 0.0756 2.529 0.0535 4.312 3
{0200 0.0853 0.587 0.0621 0.955 1.125
{0001 0.0465 0.402 0.0266 0.839 0.75
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weights in Figs. 1&) and 12d), respectively. For the lowest rithmically as the separation increases, and eventually
two states witlAM = + 1, we find that the squared tunneling exceeds the loss of electron exchange-correlation energy.
matrix element for the lower state is 0.213 and for the secon&uch a behavior is found to have very weak finite-size effects
lowest state is 2.845; this is close to 3 which is predicted folin most cases, even for small systems with 6—9 electrons that
the {1000 mode in the CLL theory. For this reason, we may we used in our studies. Our results suggest that edge recon-
identify the two states as members of the neutral mode anstruction occurs rather generically in high-quality AlIGaAs/
the charge mode, respectivelglso the charge mode is in- GaAs samples used in experimental studies, as the corre-
deed expected to have higher energyn addition, we find  sponding distances in these samples are typically of the order
that the corresponding squared matrix elements for thef ten magnetic lengths or larger.
ground states il M =2-4 subspaces are 1.681, 1.320, and In our studies we have used different types of boundary
0.839, respectively. These numbers are close to 1.5, 1, armbnditions for electronic wave functions near the edge, cor-
0.75 predicted for the edge modes in the corresponding sublesponding to different types of samplésg., whether the
spaces. So these three states may be identifidH30, edge is cleaved or nptWe have demonstrated that the edge
{001@, and{000% of the charge mode. If the distinction of reconstruction phenomenon is not sensitive to the choices of
charge and neutral modes can be made in this way and ttepecific boundary conditions qualitatively, be it hard-wall
charge mode indeed controls the tunneling behavior, weonfinement or one that leads to a smooth confining poten-
should be able to generate a family of excitations with angutial. While different boundary conditions lead to quantita-
lar momenta and energies that can be calculated according tiwvely different critical spacing between dopant and electron
the four charge excitations identified so far. We should alsdayers, our conclusion that real samples are all in the recon-
be able to find, near the calculated energies in the correstructed regime is robust.
sponding angular momentum subspace, excitations with With reconstructed edges, fractional QH liquids can have
squared matrix elements close to the predictions in the CLladditional edge modes that propagate along both directions.
theory. This indeed seems to be the case, as shown in Tablle general, we find these modes tend to have much lower
Il. The listed states are, again, highlighted in Fig. 12. Weenergy scales than the edge modes in the absence of edge
emphasize that the squared matrix elements for the rest of ttreconstruction. Therefore, they can have very important ef-
low-lying states AE<0.05%%/elg) with AM#0 are typi- fects on the low-energy behavior of edge transport and tun-
cally very small, with the largest one being roughly urty =~ neling experiments. We have performed calculations on the
the ground-state-to-ground state valu&/e point out that in  electric dipole spectral function as well as single-electron
order to calculate the matrix elements for upAM = +4, spectral function, for systems with and without edge recon-
we use a smooth edge with,,,,=23. We found that reduc- struction. We find that edge reconstruction affects the dipole
ing My ayx (giving a sharper edgénas no significant effects on spectral function rather strongly, and its frequency as well as
the squared matrix elements in the reduced subspaces. O@mperature dependences compare favorably with micro-
results thus suggest that the effect of edge reconstruction omave conductivity measurements performed in samples with
the structure of the single-electron spectral function is fairlyan array of antidotéand their associated edge®n the other
weak; this is consistent with the experimental finding that théhand we find the electron spectral functioniat 1/3 is not
tunneling exponent is close to the prediction of the CLLmodified strongly by edge reconstruction; this is consistent
theory aty=1/3, despite the fact that the edges are expectewith tunneling experiments which find the tunneling expo-
to be reconstructed. nent aty=1/3 quantitatively close to the prediction of the
chiral Luttinger liquid theory, despite the presence of edge

VIl. CONCLUSIONS reconstruction.

In this paper, we have performed exact diagonalization
studies on microscopic models of'fractu.)nal QH Ilqwds in ACKNOWLEDGMENTS
systems with disk geometry, and investigated the interplay
between electron-electron interaction and confining potential We have benefited from a very informative discussion
due to background charge near the edge. We have shown thaith Matt Grayson on Landau-level mixing near a sharp
the edges of fractional QH liquids reconstruct when thecleaved edge. We also thank Juan Jose Palacios for helpful
background chargédopanj layer is separated far enough correspondences on the calculation of single-electron spec-
from the electron layer, and the critical distance for this totral function. This work was supported by NSF Grants Nos.
happen is of order one magnetic length. The edge reconstru®MR-9971541 and DMR-0225698&(.W. and K.Y), DMR-
tion happens because the electrostatic energy gained by mo®986191(E.H.R), the State of Florid#X.W.), and the A. P.
ing electrons outward near the sample edge increases log&loan FoundationK.Y.).
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