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Transport coefficients from first-principles calculations
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We present a method of modeling transport coefficients from first-principles calculations. We introduce the
transport distribution that contains all electronic information and from which transport coefficients can easily
be calculated. We use this method to analyzgT& and calculate its transport coefficients for a comparison
with experiment. The transport distribution gives an improved insight into the relationship between transport
properties and electronic structure and is a valuable tool in the search for improved thermoelectric materials.
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[. INTRODUCTION principles calculations, retaining the empirical modeling of

the scattering mechanisms. However, many of the parameters

The efficiency of a thermoelectric device depends on its1eeded to model the scattering events can be obtained from
geometry and on the product of the thermoelectric figure ofirst-principles calculations. This approach is more general,

merit (of the material in the devigeZ, and cannot compete in precision with thé hocmodels for
a given material. It has the virtue, however, of offering valu-
oS? able insight when little is known about a material. There is a
Z=—, (1) trade-off between predictive power and precision.
and temperatur&. ZT is a function of the electrical conduc- Il. THEORY

tivity o, the thermoelectric power or Seebeck coefficignt
and the thermal conductivit¢. A modeling of these trans-
port coefficients is valuable to the search for improved ther- The perturbation of an electric field or temperature gradi-
moelectric materials. ent induces electrical or thermal currents in a matérige
The usual strategy for modeling transport coefficients igocal relations between the electric fiefidand the tempera-
semiempirical, utilizing a combination of a parametrizedy o gradientV T with their corresponding electrical and
band structure and scattering mechanisms fitted to experh—eatj currents for an isotropic solid are
mental results. Models to account for the effect of alloy scat- Q P
tering and scattering by acoustic and optical phonons and
ionized and neutral impurities on the charge carriers are fit-
ted to the experiment. Once this parametrization and fitting is - -
accomplished, the model can be used to explore the effect of Jo=TRE—koVT. 2

changes in composition, temperature, and doping Igvel. Thiﬁ1 the above equations we immediately recognizas the
approach works reasonably well as long as the regions to .erctrical conductivity. The Seebeck coefficiqtof para-

explored are nfqt tkc])o far frcl)m the ccl)nditionsl of tff\g EXPeI mount importance for thermoelectric applications, is defined
ment used to fit the model. Several examples of it can bgg e \oltage gradient produced in a sample by a given

. . -3 . . .
found in the literature: I_n View .Of these requirements, It Is temperature gradient when the electrical current is zero. In
most applicable to the fine tuning of well established com-,..qance with this definition we can identify

pounds. It is of very limited applicability for the exploration

of thermoelectric materials, where the available experimental R

information is limited. S=—. 3
We introduce a different and complementary approach

t_hat attempts to obtam_ as much mforr_natlon as possible frpm Finally, the electronic contribution to the thermal conduc-

flrst.-prlnmpl(.-:-s calcul_atlons. Thg goal Is to reduc;e t.he emIOIrI'tivity, ke, IS defined as the heat current produced per unit of

cal information requwe_d t_o aminimum. Flrst—prlnuple_s to.tal temperature gradient when the electrical current is zero,

energy calculations within the local density approximation

(LDA) using the linear augmented plane watleAPW) ko= k-T2 @)

method are mature and can give detailed information about el o

the electronic and structural properties of atoms, moleculesthe total thermal conductivity of the material will be the

crystalline solids, surfaces, and interfaée8The first stepin  sum of this contribution and the corresponding lattice contri-

our approach is to obtain the electronic structure from firstbution. For a real material the currents need not be parallel to

A. Definition of the transport coefficients

J=0E—NVT,
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the electric field or thermal gradient, and the transport coefSimilar expressions can be derived for the Seebeck coeffi-
ficients are tensorial quantitisThis complicates the above cient and electronic thermal conductivity. For simplicity,
relations slightly, but the essential definitions remain thehowever, we define the transport distributicfD),'°
same.
. o . E=2 vivirk. (10

B. Calculation of the transport distribution and coefficients K

To evaluate the transport coefficients defined in Sec. Il AThe TD is the kernel of all transport coefficients. Once it is
we need a microscopic model of the transport process. Wealculated, all transport coefficients necessary to determine

use the semiclassical approach given by the solution of BoltzT can be obtained directly. Using scalar coefficients,
zmann’s equation in the relaxation time approximation. For a

comprehensive description of the method see the book by ) afo\
Nag’ Here we limit our description to a brief summary. o=e"| de| ———|=(s), (11
In general, the electrical current of carridedectrons or
holeg is defined as eky o\ e—u
S= —f de| — —|E(e) v+, (12
N 2 N (?8 kBT
J=e2, fig, 5 L
K KUk ©) and for the thermal conductivity in E¢4),

wheree is the charge of the carriers. The sum runs over all é,f
guantum numbers of the system that, in the case of a crys- KOZKZBTJ de ) (s)
talline solid, are the three components of the crystal momen- de

tumKk. fk is the population of the quantum state labeled withwhere w is the chemical potential ankIB is Boltzmann’'s

k, andvy is the group velocity associated with that state. Theconstant. Equationgl1)—(13) show that the TD contains all
latter is defined as the gradient in reciprocal space of th&haterial dependent information pertinent to transport proper-
dispersion relationband structure of the electrons in the ties.

crystal,

2

(13

IIl. IMPLEMENTATION IN THE  wieN2k PACKAGE

—. (6) To calculate the TOEq. (10)] the group velocity, the

energy, and the relaxation time are needed for é%tqtoint.
As mentioned in Sec. I, in this first implementation we take
the group velocity from the first-principles calculations but
estimate the relaxation times. A direct calculation of the
group velocity, using the definition given in E(p), is nu-
, merically difficult to implement. Electronic structure codes
scatt usually evaluate the band energies in a numerical mesh for
(7)  the Brillouin zone sampling; therefore, the group velocity

which states that the rate of change of the population is genust be eyaluated as a numerical derivative. This differ'en-
dent on diffusion. the effect of electrie i tiation requires the use of a computationally costly, very fine
pendent on dilfusion, the etfect of electn X or magnetic grid. One method currently being implemented to reduce the

(H) fields, or scattering. In the absence of fields, the Statloncomputanonal cost employs a Fourier expansion of energy
ary solution of Boltzmann’s equation for fermions is the pands. The Fourier expansion can then be analytically differ-
Fermi distribution functionfo(e). The population is the entiated to obtain the group velocityHowever, even if the
same fork and — Kk, leading to a cancelation in the summa- computational cost can be reduced, real materials usually
tion in Eq.(5), and zero net current flow. have several bands crossing the Fermi level and each other
Linearizing the above equation, using the relaxation timewhich poses a difficulty for this strategy.
approximation for the scattering term, and in the absence of Our approach is different. The group velocity is related to
magnetic fields and temperature gradients, the population ithe momentum

The population of the statk is the solution of Boltz-
mann’s equation,

ofp  df;

Tk dt

—| E+ =vigxH

fi="folep) +e

afol - - L1. -
~ e | Wk E, (8 Un k= P k= <¢n,|z|p|¢n,g> (14

where is the relaxation time. The full space dependence off the coefficients are evaluated at zero field. The band index
fis through the thermal gradient. Using this expression ta has been omitted up to this point in order to make the
calculate the current, the electrical conductivity tensor beexpressions simpler. To recover the full expressions it is suf-

comes ficient to replace by (n,k) in all the indices. The last part of
of Eqg. (14) is the intraband optical matrix element. These ma-
o= eZZ ( — —0) JRJRTR- (99  trix elements are available in the optical properties package
k de of the full-potential linearized augmented plane wa#-
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\) — with SO
N without SO

LAPW) wienzk codel?*3We have implemented the calcula-
tion of transport coefficients described here as one of the
modules of this package. Although, with this method, a
dense mesh around the Fermi surface is needed to properly
evaluate the transport coefficients, the requirement is not as
high as with numerical differentiation, and the band crossing
problem is naturally avoided. Having the optical matrix ele-
ments and the electronic band structure, all that remains in
order to calculate the TD is the relaxation time.

In this first implementation of the transport code, we re-
strict the scattering mechanisms to those most relevant for
compound semiconductors: scattering by acoustic phonons
(deformation potential and piezoelecjricnonpolar optic
phonons, ionized and neutral impurity atoms, and alloy 0.5
scattering’ The parameters entering the expressions for the
scattering, such as the deformation potential constant, piezo-
electric constant, sound velocity, density, optical phonon fre-

Energy (eV)
(=]
=)

guency, and others, are presently taken from experiment. In /\ o A\§
the future we plan to evaluate some of them from first prin- S R e e E—
ciples, but important open questions remain as to the best A YTZ F
approaches.

All semiconductors used as thermoelectric materials are F'G: 1. The electronic structure of Hie; is shown with and
doped to optimize the figure of merit. First-principles calcu-W'thc.’Ut SO. The figure shows the importance of SO igTe} by

h L ; moving band edges away froh
lations, however, are performed for stoichiometric com-
pounds. To treat doping we have to resort to approximations. .
We have chosen to use the simplest approach, the rigid barf@im overk points in Eq.(10) was evaluated with the Bédl
approximation. We will assume that the band structure reintegration method® A constant, anisotropic relaxation time
mains unchanged as we move the Fermi level up and dowffliscussed in Sec. IV B)2 and experimentally determined
to simulaten andp doping, respectively. This approximation lattice thermal conductivities of 1.5 W/mK along the basal
is good as long as the doping levels used are not high enougiane and 0.7 W/mK along the trigonal axis were used at all
to change the bonding properties of the material. To test thigoping levels?® 9f,/de was evaluated at 300 K for all inte-
approach, we have calculated the TD and transport coeffgrals.
cients for BpTe;. Sufficient experimental data has been ob-
tained for BpTe; to allow for a rigorous evaluation of the B. Results

method.
1. Band structure

To calculate transport properties an accurate electronic
structure is required. Our calculated band structure along
A. Computational details commonly explored high symmetry lines is shown in Fig. 1.
We have also included a point label&d chosen such that
the line Y-I' passes through the lowest conduction band
Te(2)-Bi-Te(1). For all calculations we used the experimental 8:51(;3) ea:jngdeg I?nh?ﬁ; Vrili?rr:)?ep?;rgi\;/i)ld?gge;kV|\_/?;|;|ngntgiix

d4
rhom.bohedrall cell parameters af-10.48 A apd 24.16°. . HVB pockets as a result of threefold rotational symmetry
Density functional theory was employed as implemented iNnd inversion symmetry. This has been confirmed by

the wieN2k code, utilizing the full potential APWlo ; 0,21 _ e
method*® The generalized gradient approximation as de_experlmenlz. The calculated band gapy=0.11 eV, is in

scribed by Perdew, Burke, and Ernzerhof was used for thgg%d e%géze; g: ; mg_;xﬂﬁgﬂi?;gﬁ;rﬁﬁggf r;ouufgg :ik:]e

exchange and correlation potentialA muffjn—tin rgdius, __orbital  (LMTO)-LDA and FP-LAPW (WIEN9?)
R, Of 1.48 A separated the core from the interstitial region . athod<®24 This yields only two carrier pockets due to in-
on both the Bi and Te atoms. AR- k.4 Value of 10, and a _version symmetry.

Gax Value of 20, were used corresponding to 950 basis SO effects are very important in Hie; because its con-

func_t|ons n the wave f“”C“Of? expansion and 13259 stars iy ent elements are heavy. The second variational method
the interstitial r(ig|on respectively. The calculation was CON{,sed in our calculation depends on the number of states in-
verged with 23k points, while the optical matrix elements cluded in the SO perturbation term. This is controlled by the

were calculated for a dense mesh of 11 @5foints in the  energy window of states included. When states up to 10.0 Ry
irreducible wedge of the Brillouin zone. Because of the largeare included, the LCB shows six pockets. In contrast, when
spin-orhit(SO) effects in By Te;, eigenstates were calculated the default window is used; 7.0-1.5 Ry, only two pockets

up to 10.0 Ry and included in the SO calculati! The  are obtained. We studied the dependence of the energy dif-

IV. APPLICATION TO Bi ,Tes

The crystal structure of Bie; belongs to the spacegroup
R3m with atoms stacked along the trigonal axis(TjeBi-
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FIG. 2. The energy difference between the two statgs, and from Ref. 26.

erz, is shown vs the upper limit of the energy window used. An
upper limit above 8.0 Ry is sufficient to produce reliable results. they axis, ando,, on thex axis for samples with different
doping concentrations. Figure 3 shows experimental data of

ference between the LCB states aldig andT-Y on the %doped By Te; documented in Ref. 26 along with our calcu-

o : ) . ated values of the Seebeck coefficient. In calculating the
upper energy limit of states included in the perturbation, an eebeck coefficient, the constant relaxation time cancels
found that the two states’ energies move with respect to ea - ' AT

e . . . om both integral§ Egs. (11) and (12)], eliminating it as a
other as the upper limit of the energy window is varied. graldEqs. (1) (12)] g

X : fitting parameter. We can, however, usé¢o fit the Seebeck
Figure 2 shows the energy difference between the LCB edg - o ' . ' . o
that we obtain and the state on theZ line, eq=cry Coefficient with its corresponding electrical conductivity. A

: S constant relaxation time of,,=2.2x10"*s, which gives
—ery, as a function of the upper energy limit. The calcula- xx g

. th tha-Y ket | . the best agreement in the intrinsic region, was used at all
lons converge wi -1 POCKet lower In energygq doping levels. We obtain a better correspondence on the

>0, leading to six pquets in the LCB. An upper limit Of.S'O n-doped side of the graph, but overall, the calculated data
Ry seems to be sufficient. Reference 24 does not mention t%ree well with experiment considering that only the relax-
energy wmgow used. Other parameters sucRas and the 0 time was adjusted to fit the data.
number ofk points used, are also different, however these The anisotropy of BiTey’s electrical conductivity is well
differences do not affect the results. We also compared rejocumented’ The conductivity along the basal plane can be
sults between LDA and generalized gradient approximatiofinore than four times greater than that along the trigonal axis
calculations and found no differences in the location of the(zz direction. This is enough to compensate for a lattice
band edges. thermal conductivity along the trigonal axis that is half of
More recently, Youn, et al. found six pockets in both thethat along the basal plane. Since the lattice thermal conduc-
HVB and LCB using another implementation of the FP-tjyity is comparable to the electronic contribution in the
LAPW method and the local density approximation for therange of reasonable doping,,Be; is used as a thermoelec-
exchange and correlation potenfi2lOur LCB edge is the  tric device with conduction aiong the basal pl&Aigure 4
same as, but our HVB edge is slightly different than thatshows the anisotropy of our calculated electrical conductivity
found by Youn etal. We find the HVB edge at galong with experimental dafd.The data represented by the
(0.652,0.579,0.579) and a nearby secondary edge 40 me¥ptted line were calculated using the relaxation time deter-
below, at (0.539,0.368,0.368), referred tocamdb, respec-  mined above for conductivity in all directions. The agree-
tively in Fig. 3(a@) of Ref. 25. Younet al. find the HVB edge  ment between experimental data and theory is very good.

atb, and a secondary edge, 3.8 meV lower in energg. at  However, if we use an anisotropic relaxation timg,=2.2
These differences are small and within the expected preci-

sion of our method.

With a well converged band structure, and electron ve- 6| | e o .
locities calculated as described in Sec. Ill, we were able to - lsotropic 7
calculate the TD. The integrations were then carried out for
different values of the chemical potential to simulate doping
as discussed in Sec. lll. We first compare our results for the
Seebeck coefficient, the electrical conductivity, adwith
experiment. We then present a general analysis of the TD, the
power factor(PF), andZT.

Gx>/ O

2. Comparison of calculated transport coefficients
with experimental results Oy

As is customarily done in thermoelectric literature, we FIG. 4. Calculated electrical conductivity with experimental
plot S,, (the Seebeck coefficient along the basal plane  data from Ref. 28.
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FIG. 5. Estimated values &T with data from Ref. 26.

[
X101 and 7,,=2.1x10 *s, the solid line in Fig. 4
shows even better agreement with experiment. Since this re
laxation time is only slightly anisotropic, less than a 5%
difference between directions, Bie;'s strong anisotropy is a
result of its electronic structure, i.e., if any arbitrary, isotro- d § 1007
pic, constant relaxation time were used, the strong anisotrop) i 50
of the conductivities would still be apparent. This supports | <
the validity of our calculated band structure. The strong dis-

| Feasible 2z
) doping range
1

agreement starting nearc=4x103Q 'cm ! (n 100
~10?° cm™3) could be attributed to the failure of the rigid _ g;g:
band model at high doping concentrations. ™ 025 ' \/
Using the experimentally determined lattice thermal con- 0.00 ,"" |
ductivity of intrinsic B, Te;, we were able to make an esti- -1.00 0 025 050 075 1.00

nieV)

mate ofZT. Figure 5 shows experimentally determing@ls
along with our calculated valué8 Both sets of data are for
ZT calculated along the preferred direction. Again, agree-d) PF, and(e) ZT are all plotted vs the chemical potential. Lines

ment between calculated values and experiment is quitg_ . .. : ) L
good. Confident that the band structure and velocities used igﬁﬁglggéggosr:zilgfd%zﬁs g:g% 3?82? E?T:lg?zg()sth;wﬁ ;:?hdl
the calculations produced reliable results, we now analyzg,, PF(d).

those results to determine which features ofTBi's band

structure give rise to a large PF a#d. 2

5 a
oS OCF (16)

FIG. 6. The(a) TD, (b) density of stateqc) Seebeck coefficient,

3. Analysis of transport coefficients

Figure 6 shows several calculated properties plotted as fhe PF grows with increasing slope, or decreasing height of
function of chemical potentidl.e., versus doping in the rigid  the TD. This is evident near 0.6 eV in Fig. &a), where the
band modet The TD, density of state€OS), Seebeck co-  two TDs intersect. Here, thex andzzdirections have equal
efficient, PF, andT. The doping levels represented over theyajyes of TD, but along thez direction the slope is larger.
entire range of the plots may be unattainable, but it allows g&quation(16) predicts a larger PF for the TD with the larger
complete analysis of what gives rise to good electronic propsjope. Figure &) shows that the PF along tzedirection is
erties andZT. For reference, carrier concentrations up tojndeed greater than that along theedirection. This behavior
10°°cm™® correspond to chemical potentials between also manifests itself near 0.75 eV on theloped side of Fig.
—0.17 eV (p-doped and 0.17 eV(n-doped. First we will  g(g).
focus on the PF and Seebeck coefficient because of the value The Seebeck coefficient, plotted in Figchshows more
of ZT is complicated by contributions from the lattice ther- structure in the range of attainable doping levels near the
mal conductivity. Fermi energy. The approximation of E€L5) gives a See-

In Fig. 6, there is no evident correlation between thepeck coefficient that behaves agb. This makes it more
structure of the TD or DOS and peaks in the PF. Looking akensitive to a larger height of the Tlr larger electrical
Egs. (11)—(13), 9f/de dictates the range of the integral. conductivity. Comparing this to Eq(16), and by looking at
Because 5 KT, the width aff,/de, is small compared to the Fig. 6, we see that the optimum Seebeck coefficient does not
bandwidth, we can approximate the TD as a line, correspond to the optimum PF.

— All but two of the peaks in the PF lie outside the range of

B(e)~a(e—pu)+b, (19 reasonable doping. The benefit of these peaks away from the
wherea andb are, respectively, the slope and the height ofgap is moot, due to a large,, that would accompany heavy
the TD. Evaluating Eqg11) and(12) using this approxima- doping. Figure €) showsZTs calculated from our data and
tion, it is easy to show that the PF behaves as the experimentally determined lattice thermal conductivity
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discussed in Sec. IV B 2. Onp-type maximum and one search for improved thermoelectric materials. Despite the
n-type maximum, corresponding to X510° and 4  known limitations of first principles calculations in the treat-
x 10'® cm™3 carrier concentrations, respectively, remain atment of alloys and the limitations of the relaxation time ap-
reasonable doping levels. Both agree with experimentallyproximation, the method gives a rapid and reliable way to
optimizedZTs. The inset of Fig. @) shows a closer view of efficiently screen potential candidates for thermoelectric ma-
the TD that gives rise to these peaks. This shows the impoterials. Furthermore, from this analysis, insight can be ob-
tance of the band gap in Bie;. Near the gaph can be very tained into which features of a material make it exhibit high
small while a can be large. This does not imply, however, ZT, such as which bands contribute to the transport process
that the gap needs to be small or that this condition onlyand what crystal structural features are associated with the

occurs near the gap. high ZT. This knowledge opens the way to tailoring the elec-
tronic bands to produce more efficient materials. We are
V. CONCLUSION presently incorporating a better description of the scattering

) ) ) ~mechanisms beyond the constant relaxation time approxima-
Starting from basic transport equations we have definegion into the code, including the effect of scattering by acous-
the TD, which is obtainable from first-principles calcula- tic and optical phonons, ionized impurities, disorder due to
tions. The TD contains all the electronic information neces-|loying, and intraband and interband transitions. This is the

sary to describe a material. The optical matrix elementsjrst step towards the ultimate goal of a parameter free evalu-
needed are already available in the LAPW basis. The methogtion of thermoelectric transport coefficients.

was tested on a material that has been thoroughly investi-
gated, BjTe;, and the calculated transport coefficients are in

agreement with those reported by experiment. The TD was
also used to analyze the relationship between the electronic
structure of BjTe; and its thermoelectric properties. The  The authors would like to thank Prof. G. D. Mahan for

transport coefficients can be easily extracted from the slopealuable discussions which made this work possible. This
and value of the transport distribution alone. The power facresearch was funded by NFS Grant No. DMR-02-05125.
tor is proportional to the square of the slope and inverselyrurthermore, it was supported in part by the Materials Simu-
proportional its value. lation Center, a Pennsylvania State University

The method presented here should prove valuable in th®IRSEC and MRI facility.
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