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Transport coefficients from first-principles calculations
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We present a method of modeling transport coefficients from first-principles calculations. We introduce the
transport distribution that contains all electronic information and from which transport coefficients can easily
be calculated. We use this method to analyze Bi2Te3 and calculate its transport coefficients for a comparison
with experiment. The transport distribution gives an improved insight into the relationship between transport
properties and electronic structure and is a valuable tool in the search for improved thermoelectric materials.
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I. INTRODUCTION

The efficiency of a thermoelectric device depends on
geometry and on the product of the thermoelectric figure
merit ~of the material in the device!, Z,

Z5
sS2

k
, ~1!

and temperatureT. ZT is a function of the electrical conduc
tivity s, the thermoelectric power or Seebeck coefficientS,
and the thermal conductivityk. A modeling of these trans
port coefficients is valuable to the search for improved th
moelectric materials.

The usual strategy for modeling transport coefficients
semiempirical, utilizing a combination of a parametriz
band structure and scattering mechanisms fitted to exp
mental results. Models to account for the effect of alloy sc
tering and scattering by acoustic and optical phonons
ionized and neutral impurities on the charge carriers are
ted to the experiment. Once this parametrization and fittin
accomplished, the model can be used to explore the effe
changes in composition, temperature, and doping level. T
approach works reasonably well as long as the regions t
explored are not too far from the conditions of the expe
ment used to fit the model. Several examples of it can
found in the literature.1–3 In view of these requirements, it i
most applicable to the fine tuning of well established co
pounds. It is of very limited applicability for the exploratio
of thermoelectric materials, where the available experime
information is limited.

We introduce a different and complementary approa
that attempts to obtain as much information as possible f
first-principles calculations. The goal is to reduce the emp
cal information required to a minimum. First-principles tot
energy calculations within the local density approximati
~LDA ! using the linear augmented plane wave~LAPW!
method are mature and can give detailed information ab
the electronic and structural properties of atoms, molecu
crystalline solids, surfaces, and interfaces.4–6 The first step in
our approach is to obtain the electronic structure from fi
0163-1829/2003/68~12!/125210~6!/$20.00 68 1252
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principles calculations, retaining the empirical modeling
the scattering mechanisms. However, many of the parame
needed to model the scattering events can be obtained
first-principles calculations. This approach is more gene
and cannot compete in precision with thead hocmodels for
a given material. It has the virtue, however, of offering va
able insight when little is known about a material. There i
trade-off between predictive power and precision.

II. THEORY

A. Definition of the transport coefficients

The perturbation of an electric field or temperature gra
ent induces electrical or thermal currents in a material.7 The
local relations between the electric fieldEW and the tempera-
ture gradient¹T with their corresponding electricalJW and
heatJWQ currents for an isotropic solid are

JW5sEW 2:¹T,

JWQ5T:EW 2k0¹T. ~2!

In the above equations we immediately recognizes as the
electrical conductivity. The Seebeck coefficientS, of para-
mount importance for thermoelectric applications, is defin
as the voltage gradient produced in a sample by a gi
temperature gradient when the electrical current is zero
accordance with this definition we can identify

S5
:

s
. ~3!

Finally, the electronic contribution to the thermal condu
tivity, kel , is defined as the heat current produced per uni
temperature gradient when the electrical current is zero,

kel5k02TsS2. ~4!

The total thermal conductivity of the material will be th
sum of this contribution and the corresponding lattice con
bution. For a real material the currents need not be paralle
©2003 The American Physical Society10-1
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the electric field or thermal gradient, and the transport co
ficients are tensorial quantities.8 This complicates the abov
relations slightly, but the essential definitions remain
same.

B. Calculation of the transport distribution and coefficients

To evaluate the transport coefficients defined in Sec. II
we need a microscopic model of the transport process.
use the semiclassical approach given by the solution of B
zmann’s equation in the relaxation time approximation. Fo
comprehensive description of the method see the book
Nag.9 Here we limit our description to a brief summary.

In general, the electrical current of carriers~electrons or
holes! is defined as

JW5e(
kW

f kWvW kW , ~5!

wheree is the charge of the carriers. The sum runs over
quantum numbers of the system that, in the case of a c
talline solid, are the three components of the crystal mom
tum kW . f kW is the population of the quantum state labeled w
kW , andvW kW is the group velocity associated with that state. T
latter is defined as the gradient in reciprocal space of
dispersion relation~band structure! of the electrons in the
crystal,

vW kW5
1

\

]«kW

]kW
. ~6!

The population of the statekW is the solution of Boltz-
mann’s equation,

] f kW

]t
52vW kW•

] f kW

]rW
2

e

\ S EW 1
1

c
vW kW3HW D • ] f kW

]kW
1

d fkW

dt U
scatt.

,

~7!

which states that the rate of change of the population is
pendent on diffusion, the effect of electric (EW ) or magnetic
(HW ) fields, or scattering. In the absence of fields, the stati
ary solution of Boltzmann’s equation for fermions is th
Fermi distribution functionf 0(«kW). The population is the
same forkW and2kW , leading to a cancelation in the summ
tion in Eq. ~5!, and zero net current flow.

Linearizing the above equation, using the relaxation ti
approximation for the scattering term, and in the absenc
magnetic fields and temperature gradients, the populatio

f kW5 f 0~«kW !1eS 2
] f 0

]« D tkWvW kW•EW , ~8!

wheret is the relaxation time. The full space dependence
f is through the thermal gradient. Using this expression
calculate the current, the electrical conductivity tensor
comes

s5e2(
kW

S 2
] f 0

]« D vW kWvW kWtkW . ~9!
12521
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Similar expressions can be derived for the Seebeck co
cient and electronic thermal conductivity. For simplicit
however, we define the transport distribution~TD!,10

J5(
kW

vW kWvW kWtkW . ~10!

The TD is the kernel of all transport coefficients. Once it
calculated, all transport coefficients necessary to determ
ZT can be obtained directly. Using scalar coefficients,

s5e2E d«S 2
] f 0

]« DJ~«!, ~11!

S5
ekB

s E d«S 2
] f 0

]« DJ~«!
«2m

kBT
, ~12!

and for the thermal conductivity in Eq.~4!,

k05kB
2TE d«S 2

] f 0

]« DJ~«!F«2m

kBT G2

, ~13!

where m is the chemical potential andkB is Boltzmann’s
constant. Equations~11!–~13! show that the TD contains al
material dependent information pertinent to transport prop
ties.

III. IMPLEMENTATION IN THE WIEN2k PACKAGE

To calculate the TD@Eq. ~10!# the group velocity, the
energy, and the relaxation time are needed for eachkW –point.
As mentioned in Sec. I, in this first implementation we ta
the group velocity from the first-principles calculations b
estimate the relaxation times. A direct calculation of t
group velocity, using the definition given in Eq.~6!, is nu-
merically difficult to implement. Electronic structure code
usually evaluate the band energies in a numerical mesh
the Brillouin zone sampling; therefore, the group veloc
must be evaluated as a numerical derivative. This differ
tiation requires the use of a computationally costly, very fi
grid. One method currently being implemented to reduce
computational cost employs a Fourier expansion of ene
bands. The Fourier expansion can then be analytically dif
entiated to obtain the group velocity.11 However, even if the
computational cost can be reduced, real materials usu
have several bands crossing the Fermi level and each o
which poses a difficulty for this strategy.

Our approach is different. The group velocity is related
the momentum

vW n,kW5
1

m
pW n,kW5

1

m
^cn,kWu p̂W ucn,kW& ~14!

if the coefficients are evaluated at zero field. The band in
n has been omitted up to this point in order to make
expressions simpler. To recover the full expressions it is s
ficient to replacekW by (n,kW ) in all the indices. The last part o
Eq. ~14! is the intraband optical matrix element. These m
trix elements are available in the optical properties pack
of the full-potential linearized augmented plane wave~FP-
0-2
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TRANSPORT COEFFICIENTS FROM FIRST- . . . PHYSICAL REVIEW B 68, 125210 ~2003!
LAPW! WIEN2k code.12,13We have implemented the calcula
tion of transport coefficients described here as one of
modules of this package. Although, with this method,
dense mesh around the Fermi surface is needed to pro
evaluate the transport coefficients, the requirement is no
high as with numerical differentiation, and the band cross
problem is naturally avoided. Having the optical matrix e
ments and the electronic band structure, all that remain
order to calculate the TD is the relaxation time.

In this first implementation of the transport code, we
strict the scattering mechanisms to those most relevant
compound semiconductors: scattering by acoustic phon
~deformation potential and piezoelectric!, nonpolar optic
phonons, ionized and neutral impurity atoms, and al
scattering.9 The parameters entering the expressions for
scattering, such as the deformation potential constant, pi
electric constant, sound velocity, density, optical phonon
quency, and others, are presently taken from experimen
the future we plan to evaluate some of them from first pr
ciples, but important open questions remain as to the
approaches.

All semiconductors used as thermoelectric materials
doped to optimize the figure of merit. First-principles calc
lations, however, are performed for stoichiometric co
pounds. To treat doping we have to resort to approximatio
We have chosen to use the simplest approach, the rigid b
approximation. We will assume that the band structure
mains unchanged as we move the Fermi level up and d
to simulaten andp doping, respectively. This approximatio
is good as long as the doping levels used are not high eno
to change the bonding properties of the material. To test
approach, we have calculated the TD and transport co
cients for Bi2Te3 . Sufficient experimental data has been o
tained for Bi2Te3 to allow for a rigorous evaluation of th
method.

IV. APPLICATION TO Bi 2Te3

A. Computational details

The crystal structure of Bi2Te3 belongs to the spacegrou
R3̄m with atoms stacked along the trigonal axis, Te~1!-Bi-
Te~2!-Bi-Te~1!. For all calculations we used the experimen
rhombohedral cell parameters ofa510.48 Å and 24.16°.14

Density functional theory was employed as implemented
the WIEN2k code, utilizing the full potential APW1lo
method.13 The generalized gradient approximation as d
scribed by Perdew, Burke, and Ernzerhof was used for
exchange and correlation potential.15 A muffin-tin radius,
Rmt , of 1.48 Å separated the core from the interstitial reg
on both the Bi and Te atoms. AnR•kmax value of 10, and a
Gmax value of 20, were used corresponding to 950 ba
functions in the wave function expansion and 13 259 star
the interstitial region respectively. The calculation was co
verged with 231kW points, while the optical matrix element
were calculated for a dense mesh of 11 050kW points in the
irreducible wedge of the Brillouin zone. Because of the la
spin-orbit~SO! effects in Bi2Te3 , eigenstates were calculate
up to 10.0 Ry and included in the SO calculation.16,17 The
12521
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sum overkW points in Eq.~10! was evaluated with the Blo¨chl
integration method.18 A constant, anisotropic relaxation tim
~discussed in Sec. IV B 2!, and experimentally determine
lattice thermal conductivities of 1.5 W/mK along the bas
plane and 0.7 W/mK along the trigonal axis were used at
doping levels.19 ] f 0 /]« was evaluated at 300 K for all inte
grals.

B. Results

1. Band structure

To calculate transport properties an accurate electro
structure is required. Our calculated band structure al
commonly explored high symmetry lines is shown in Fig.
We have also included a point labeledY, chosen such tha
the line Y-G passes through the lowest conduction ba
~LCB! and highest valence band~HVB! edges. We find the
band edges in the mirror plane, yielding six LCB and s
HVB pockets as a result of threefold rotational symme
and inversion symmetry. This has been confirmed
experiment.20,21The calculated band gap,Eg50.11 eV, is in
good agreement with experiment.22 Past reports found the
LCB edge along theG-Z line using the linear muffin tin
orbital ~LMTO!-LDA and FP-LAPW ~WIEN97!
methods.23,24 This yields only two carrier pockets due to in
version symmetry.

SO effects are very important in Bi2Te3 because its con-
stituent elements are heavy. The second variational me
used in our calculation depends on the number of states
cluded in the SO perturbation term. This is controlled by t
energy window of states included. When states up to 10.0
are included, the LCB shows six pockets. In contrast, wh
the default window is used,27.0–1.5 Ry, only two pockets
are obtained. We studied the dependence of the energy

FIG. 1. The electronic structure of Bi2Te3 is shown with and
without SO. The figure shows the importance of SO in Bi2Te3 by
moving band edges away fromG.
0-3
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T. J. SCHEIDEMANTELet al. PHYSICAL REVIEW B 68, 125210 ~2003!
ference between the LCB states alongG-Z andG-Y on the
upper energy limit of states included in the perturbation, a
found that the two states’ energies move with respect to e
other as the upper limit of the energy window is varie
Figure 2 shows the energy difference between the LCB e
that we obtain and the state on theG-Z line, «d5«GZ
2«GY , as a function of the upper energy limit. The calcu
tions converge with theG-Y pocket lower in energy,«d
.0, leading to six pockets in the LCB. An upper limit of 8
Ry seems to be sufficient. Reference 24 does not mention
energy window used. Other parameters such asRmt , and the
number ofkW points used, are also different, however the
differences do not affect the results. We also compared
sults between LDA and generalized gradient approxima
calculations and found no differences in the location of
band edges.

More recently, Youn, et al. found six pockets in both t
HVB and LCB using another implementation of the F
LAPW method and the local density approximation for t
exchange and correlation potential.25 Our LCB edge is the
same as, but our HVB edge is slightly different than th
found by Youn et al. We find the HVB edge at
(0.652,0.579,0.579) and a nearby secondary edge 40
below, at (0.539,0.368,0.368), referred to asc andb, respec-
tively in Fig. 3~a! of Ref. 25. Younet al. find the HVB edge
at b, and a secondary edge, 3.8 meV lower in energy, ac.
These differences are small and within the expected pr
sion of our method.

With a well converged band structure, and electron
locities calculated as described in Sec. III, we were able
calculate the TD. The integrations were then carried out
different values of the chemical potential to simulate dop
as discussed in Sec. III. We first compare our results for
Seebeck coefficient, the electrical conductivity, andZT with
experiment. We then present a general analysis of the TD
power factor~PF!, andZT.

2. Comparison of calculated transport coefficients
with experimental results

As is customarily done in thermoelectric literature, w
plot Sxx ~the Seebeck coefficient along the basal plane!, on

FIG. 2. The energy difference between the two states,«GY and
«GZ , is shown vs the upper limit of the energy window used.
upper limit above 8.0 Ry is sufficient to produce reliable results
12521
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the y axis, andsxx on thex axis for samples with differen
doping concentrations. Figure 3 shows experimental dat
doped Bi2Te3 documented in Ref. 26 along with our calcu
lated values of the Seebeck coefficient. In calculating
Seebeck coefficient, the constant relaxation time can
from both integrals@Eqs. ~11! and ~12!#, eliminating it as a
fitting parameter. We can, however, uset to fit the Seebeck
coefficient with its corresponding electrical conductivity.
constant relaxation time oftxx52.2310214 s, which gives
the best agreement in the intrinsic region, was used at
doping levels. We obtain a better correspondence on
n-doped side of the graph, but overall, the calculated d
agree well with experiment considering that only the rela
ation time was adjusted to fit the data.

The anisotropy of Bi2Te3’s electrical conductivity is well
documented.27 The conductivity along the basal plane can
more than four times greater than that along the trigonal a
~zz direction!. This is enough to compensate for a latti
thermal conductivity along the trigonal axis that is half
that along the basal plane. Since the lattice thermal cond
tivity is comparable to the electronic contribution in th
range of reasonable doping, Bi2Te3 is used as a thermoelec
tric device with conduction along the basal plane.26 Figure 4
shows the anisotropy of our calculated electrical conductiv
along with experimental data.28 The data represented by th
dotted line were calculated using the relaxation time de
mined above for conductivity in all directions. The agre
ment between experimental data and theory is very go
However, if we use an anisotropic relaxation time,txx52.2

FIG. 3. Calculated Seebeck coefficients with experimental d
from Ref. 26.

FIG. 4. Calculated electrical conductivity with experiment
data from Ref. 28.
0-4
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TRANSPORT COEFFICIENTS FROM FIRST- . . . PHYSICAL REVIEW B 68, 125210 ~2003!
310214 and tzz52.1310214 s, the solid line in Fig. 4
shows even better agreement with experiment. Since this
laxation time is only slightly anisotropic, less than a 5
difference between directions, Bi2Te3’s strong anisotropy is a
result of its electronic structure, i.e., if any arbitrary, isotr
pic, constant relaxation time were used, the strong anisotr
of the conductivities would still be apparent. This suppo
the validity of our calculated band structure. The strong d
agreement starting nears5431023 V21 cm21 (n
;1020 cm23) could be attributed to the failure of the rigi
band model at high doping concentrations.

Using the experimentally determined lattice thermal co
ductivity of intrinsic Bi2Te3 , we were able to make an est
mate ofZT. Figure 5 shows experimentally determinedZT’s
along with our calculated values.26 Both sets of data are fo
ZT calculated along the preferred direction. Again, agr
ment between calculated values and experiment is q
good. Confident that the band structure and velocities use
the calculations produced reliable results, we now anal
those results to determine which features of Bi2Te3’s band
structure give rise to a large PF andZT.

3. Analysis of transport coefficients

Figure 6 shows several calculated properties plotted a
function of chemical potential~i.e., versus doping in the rigid
band model!: The TD, density of states~DOS!, Seebeck co-
efficient, PF, andZT. The doping levels represented over t
entire range of the plots may be unattainable, but it allow
complete analysis of what gives rise to good electronic pr
erties andZT. For reference, carrier concentrations up
1020 cm23 correspond to chemical potentials betwee
20.17 eV ~p-doped! and 0.17 eV~n-doped!. First we will
focus on the PF and Seebeck coefficient because of the v
of ZT is complicated by contributions from the lattice the
mal conductivity.

In Fig. 6, there is no evident correlation between t
structure of the TD or DOS and peaks in the PF. Looking
Eqs. ~11!–~13!, ] f 0 /]« dictates the range of the integra
Because 5 kT, the width of] f 0 /]«, is small compared to the
bandwidth, we can approximate the TD as a line,

J~«!'a~«2m!1b, ~15!

wherea andb are, respectively, the slope and the height
the TD. Evaluating Eqs.~11! and~12! using this approxima-
tion, it is easy to show that the PF behaves as

FIG. 5. Estimated values ofZT with data from Ref. 26.
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The PF grows with increasing slope, or decreasing heigh
the TD. This is evident near20.6 eV in Fig. 6~a!, where the
two TDs intersect. Here, thexx andzzdirections have equa
values of TD, but along thezz direction the slope is larger
Equation~16! predicts a larger PF for the TD with the large
slope. Figure 6~d! shows that the PF along thezzdirection is
indeed greater than that along thexx direction. This behavior
also manifests itself near 0.75 eV on then-doped side of Fig.
6~a!.

The Seebeck coefficient, plotted in Fig. 6~c! shows more
structure in the range of attainable doping levels near
Fermi energy. The approximation of Eq.~15! gives a See-
beck coefficient that behaves asa/b. This makes it more
sensitive to a larger height of the TD~or larger electrical
conductivity!. Comparing this to Eq.~16!, and by looking at
Fig. 6, we see that the optimum Seebeck coefficient does
correspond to the optimum PF.

All but two of the peaks in the PF lie outside the range
reasonable doping. The benefit of these peaks away from
gap is moot, due to a largekel that would accompany heav
doping. Figure 6~e! showsZT’s calculated from our data an
the experimentally determined lattice thermal conductiv

FIG. 6. The~a! TD, ~b! density of states,~c! Seebeck coefficient,
~d! PF, and~e! ZT are all plotted vs the chemical potential. Line
depicting the size of Bi2Te3’s energy gap span the plot. Lines ind
cating a reasonable doping range (n,p,1020 cm23) are shown with
the PF~d!.
0-5
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T. J. SCHEIDEMANTELet al. PHYSICAL REVIEW B 68, 125210 ~2003!
discussed in Sec. IV B 2. Onep-type maximum and one
n-type maximum, corresponding to 531019 and 4
31019 cm23 carrier concentrations, respectively, remain
reasonable doping levels. Both agree with experiment
optimizedZT’s. The inset of Fig. 6~a! shows a closer view o
the TD that gives rise to these peaks. This shows the im
tance of the band gap in Bi2Te3 . Near the gap,b can be very
small while a can be large. This does not imply, howeve
that the gap needs to be small or that this condition o
occurs near the gap.

V. CONCLUSION

Starting from basic transport equations we have defi
the TD, which is obtainable from first-principles calcul
tions. The TD contains all the electronic information nec
sary to describe a material. The optical matrix eleme
needed are already available in the LAPW basis. The met
was tested on a material that has been thoroughly inve
gated, Bi2Te3 , and the calculated transport coefficients are
agreement with those reported by experiment. The TD w
also used to analyze the relationship between the electr
structure of Bi2Te3 and its thermoelectric properties. Th
transport coefficients can be easily extracted from the sl
and value of the transport distribution alone. The power f
tor is proportional to the square of the slope and invers
proportional its value.

The method presented here should prove valuable in
i-
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search for improved thermoelectric materials. Despite
known limitations of first principles calculations in the trea
ment of alloys and the limitations of the relaxation time a
proximation, the method gives a rapid and reliable way
efficiently screen potential candidates for thermoelectric m
terials. Furthermore, from this analysis, insight can be
tained into which features of a material make it exhibit hi
ZT, such as which bands contribute to the transport proc
and what crystal structural features are associated with
high ZT. This knowledge opens the way to tailoring the ele
tronic bands to produce more efficient materials. We
presently incorporating a better description of the scatter
mechanisms beyond the constant relaxation time approxi
tion into the code, including the effect of scattering by aco
tic and optical phonons, ionized impurities, disorder due
alloying, and intraband and interband transitions. This is
first step towards the ultimate goal of a parameter free ev
ation of thermoelectric transport coefficients.
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18P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B49,
16 223~1994!.

19H. J. Goldsmid, Proc. Phys. Soc. London, Sect. B69, 203~1956!.
20R. B. Mallinson, J. A. Rayne, and R. W. Ure, Jr., Phys. Rev.175,

1049 ~1968!.
21V. V. Sologub, A. D. Goletskaya, and R. V. Parfen’ev, Fiz. Tver

Tela ~Leningrad! 14, 914 ~1972! @Sov. Phys. Solid State14, 783
~1972!#.

22R. Sehr and L. R. Testardi, J. Phys. Chem. Solids23, 1219
~1962!.

23S. K. Mishra, S. Satpathy, and O. Jepsen, J. Phys.: Cond
Matter 9, 461 ~1997!.

24P. Larson, S. D. Mahanti, and M. G. Kanatzidis, Phys. Rev. B61,
8162 ~2000!.

25S. J. Youn and A. J. Freeman, Phys. Rev. B63, 085112~2001!.
26H. J. Goldsmid,Thermoelectric Refrigeration~Plenum, New

York, 1964!.
27J. Nagao, M. Ferhat, E. Hatta, and K. Mukasa, Phys. Status S

B 219, 347 ~2000!.
28R. T. Delves, A. E. Bowley, D. W. Hazelden, and H. J. Goldsm

Proc. Phys. Soc. London78, 838 ~1961!.
0-6


