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Ab initio molecular dynamics calculations with simple, localized, orthonormal real-space basis se
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Ab initio molecular dynamics, in which finite temperature molecular dynamics is performed with forces
obtained from ‘‘on the fly’’ electronic structure calculations, is one of the most widely used theoretical tools for
studying chemically active systems. Here, a significant step is taken to improve the efficiency, scaling with
system size, and parallel efficiency of these calculations by the use of simple, localized, orthonormal real-space
basis functions in conjunction with a unified reciprocal-space treatment of long-range interactions for various
boundary conditions. This approach, which is capable of treating systems with zero-, one-, two-, or three-
dimensional periodicity within a single framework, is shown to improve the convergence of total energies and
forces by over an order of magnitude in grid size compared to the more commonly used plane-wave basis.
Possibilities for employing the approach in a linear scaling method are briefly discussed.
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I. INTRODUCTION

Since its introduction,ab initio molecular dynamics
~AIMD !,1–6 the marriage of electronic structure calculatio
and finite temperature molecular dynamics, has become
of the most powerful and widely used tools for studying t
dynamics of a wide variety of chemical processes in both
liquid and solid states. Moreover, its recent combination w
empirical force field methods,7–13 the so-called quantum
mechanical/molecular mechanical or QM/MM approac
promises to yield schemes capable of treating large-s
systems with locally chemically active regions, opening n
doors in the study of biological and industrial cataly
processes.

The original formulation of AIMD by Car and Parrinello,1

involving a density functional theory~DFT! representation of
the electronic structure combined with a plane-wave~PW!
basis set expansion of the electronic orbitals, is still
mostly commonly used approach. Although elegant and c
ceptually simple, PW basis sets have the disadvantag
scaling asO(N2M ), where N is the number of occupied
electronic states, andM is the number of basis functions. I
addition, PW’s are not optimal for massively parallel com
putations due to the high communication overhead. In or
to ameliorate these problems, localized real-space
proaches,14–29 employing Gaussian basis sets,15,26 hybrid
Gaussian/plane-wave basis sets,22–24 grid discretization
schemes,17–20,25,27,28and finite element methods,14,16,21have
been introduced. Gaussian bases, while highly popular, su
from basis set superposition error and other complexities
to the nonorthogonality and position dependence of the fu
tions. Grid discretization schemes are sensitive to the a
racy of the finite-difference approximation to the gradie
and Laplacian operators.

In this paper, a simple, rigorous, orthonormal real sp
basis set method, which is free of the above difficulties
combined with a unified reciprocal-space treatment of lo
range interactions for cluster, wire, surface, and solid bou
0163-1829/2003/68~12!/125110~8!/$20.00 68 1251
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ary conditions in order to improve the scaling with syste
size, efficiency, and parallel scalability of AIMD calcula
tions. The approach is based on the use of continuous fu
tions that satisfy the properties of position eigenfunctions
an appropriately defined auxiliary grid. Such functions, ori
nally introduced by Light and co-workers, are referred to
discrete variable representations~DVR’s!.30–41The principal
advantage of a DVR is the highly localized character of
basis functions about the points of the auxiliary grid. Th
only a small number of functions is required to represen
spatially localized electronic orbital. This fact renders DVR
particularly useful for chemical applications and massiv
parallel computations. When combined with an orbital loc
ization scheme, the use of DVR’s leads to anO(N) scaling
method.42–51 Moreover, DVR’s offer a good deal of flexibil-
ity in the particular choice of basis functions,34,37–41which
allows different types of boundary conditions~cluster, wire,
surface, or solid! to be treated exactly and allows basis fun
tions to be tailored to a specific problem using, for examp
schemes proposed by Bacˇić and Light.52 Finally, for a given
choice of DVR, electronic orbitals and density are defin
everywhere in space~not just at grid points!, so that exact
representations of the Laplacian and gradient operators
available. Here, we shall show how one particular type
DVR, the direct-product DVR, yields a highly effective ap
proach to AIMD calculations.

The organization of this paper is as follows: In Sec. II, t
basic principles underlying the DVR approach and its imp
mentation in the DFT-based electronic structure and AIM
methods are reviewed. This discussion includes a brief o
line of the recently introduced screening function approa
to cluster, wire, and surface calculations.53–55Following this,
a number of test systems are presented in Sec. III, wh
demonstrate the improved convergence of total energies
forces in the DVR approach as well as its parallel scaling a
adiabaticity in Car-Parrinello molecular dynamics. Conc
sions and future directions are given in Sec. IV.
©2003 The American Physical Society10-1
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II. METHODOLOGY

A one-dimensional DVR is defined by a set ofN L2 inte-
grable functions,$ui(x)%,i 51, . . . ,N, a set ofN grid points,
$xi% and a set of weights,$uai u25wi% such that the basis
functions satisfy the property

ui~xj !5
d i j

ai
~1!

at each grid point. From Eq.~1! follow the orthogonality and
completeness relations:

(
k

uaku2ui* ~xk!uj~xk!5d i j ,

~2!

(
k

uaku2uk* ~xi !uk~xj !5d i j .

Therefore, any function,f (x), can be expanded in terms o
the DVR basis functions according to

f ~x!5(
i

ciui~x!, ~3!

whereci5ai f (xi). Finally, given a set ofN L2 orthonormal
functions,$fn(x)%, a DVR can be obtained from these a
cording the construction rule:

ui~x!5ci* (
n51

N

fn* ~xi !fn~x!, ~4!

which can be easily shown to satisfy the aforementioned
quirements in Eqs.~1! and ~2!.

An important property of DVR’s is that a projection op
erator

PN5(
i 51

N

uui&^ui u ~5!

applied to any position-dependent operator,V(x) via

Ṽ~x!5PNV~x!PN ~6!

yields a diagonal operator in the DVR basis, i.e.,

^uj uṼ~x!uui&5v~xj !d i j , ~7!

wherev(x) is the corresponding eigenvalue ofV(x). As the
basis set size approaches infinity,V(x), itself, becomes ex-
actly diagonal, i.e.,

lim
N→`

^uj uV~x!uui&5 lim
N→`

v~xj !d i j ~8!

and ui(x) approaches an exact position eigenfunction. F
finite N, V(x) is approximately diagonal in the DVR basi
i.e., ^uj uV(x)uui&'v(xj )d i j .

In order to develop a DVR-based approach to den
functional electronic structure andab initio molecular dy-
namics~MD! calculations, we begin with the expression f
the total energy in the Kohn-Sham formulation:
12511
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E@$c%,$R%#52
1

2 (
l

^c l u¹2uc l&1
1

2E drdr 8
n~r !n~r 8!

ur2r 8u

1Exc@n#1Eloc@n,$R%#1ENL@$c%,$R%#

1U ion-ion~$R%! ~9!

where $R% is a set of nuclear positions,$c% is a set ofnocc
electronic orbitals, required to satisfy the orthogonality re
tion ^c l ucm&5d lm , n(r ) is the electronic density,

n~r !5(
l 51

nocc

f l uc l~r !u2, ~10!

wheref l is the occupation number ofuc l&. In Eq.~9!, Exc@n#
is the exchange and correlation functional, andEloc@n,$R%#
andENL@$c%,$R%# are the local and nonlocal components
the external interaction, assumed to be described by a no
conserving atomic pseudopotential.56,57A DVR basis for ex-
pansion of the Kohn-Sham orbitals is constructed as a di
product of one-dimensional DVR’s,

F i jk~r !5ui~x!v j~y!wk~z!, ~11!

such that

c l~r !5(
i , j ,k

Ci jk
l F i jk~r !, ~12!

whereCi jk
l is a set of expansion coefficients. Since the ba

functions do not depend on atomic positions, the Hellm
Feynman theorem may be employed to obtain interato
forces. Note that the functionsui , v j , andwk need not be
constructed from the same finite basis representation, a
that can be exploited to treat different boundary conditio
For example, in order to treat a periodic dimension of len
L, a DVR constructed via

ui
(per)~x!5A 1

NL (
a51

N

cos@ka~x2xi !#, ~13!

where ka52p(a2N821)/L, a51,2, . . . ,N52N811
could be employed, while a nonperiodic dimension could
treated by a fixed-node DVR of the form

ui
(clus)~x!5

2

A~N11!L
(
b51

N

sinkbx sinkbxi , ~14!

where kb5pb/L, b51,2, . . . ,N. Thus, solids or liquids
could be treated by employingu(per) in all three dimensions,
surfaces treated byu(clus) in one dimension, andu(per) in two
dimensions, etc. Indeed, DVRs offer considerable flexibil
permitting the construction of DVR’s for a wide variety o
purposes.34,37–41

In the DVR basis, the orbitals are defined everywhere
space, not just at grid points. Thus, each term in Eq.~9! has
a well-defined expression. For a direct-product DVR, the
netic energy takes the form

T52
1

2 (
l

(
i ,i 8

(
j , j 8

(
k,k8

Ci jk
l Tii 8, j j 8,kk8Ci 8 j 8k8

l , ~15!
0-2
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where the matrixTii 8, j j 8,kk8 has the general highly spars
form

Tii 8, j j 8,kk85t i i 8
x d j j 8dkk81t j j 8

y d i i 8dkk81tkk8
z d i i 8d j j 8 .

~16!

For the DVR’s in Eqs.~13! and ~14!, the matrix tnn8
g , g

5x,y,z, can be worked out analytically and is given by35

tnn8
g

52S 2p

Lg
D 2 N8

3
~N811!dnn8

2
~2p/Lg!2~21!n2n8cos@p~n2n8!/N#

2 sin2@p~n2n8!/N#
~12dnn8!

~17!

for the periodic and

tnn8
g

52
1

Lg
2

p2

2 F2~N11!211

3
2

1

sin2@pn/~N11!#Gdnn8

2
~21!n2n8

Lg
2

p2

2 F 1

sin2@p~n2n8!/2~N11!#

2
1

sin2@p~n1n8!/2~N11!#
G ~12dnn8! ~18!

for the fixed-node DVR’s, Eqs.~13! and ~14!, respectively.
HereLg is the length of the cell in theg direction. Unlike in
standard finite-difference schemes, the kinetic energy is
act for a given DVR and is appropriately matched to t
boundary conditions.

In order to evaluate density-dependent terms, one be
with the fact that

n~r !5(
l 51

nocc

f lU(
i , j ,k

Ci jk
l F i jk~r !U2

~19!

from which a set of DVR density coefficients,Ni jk

5(( l f lCi jk
l )2/(uai u2uaj u2uaku2) may be computed. When

generalized gradient functionals are employed, which req
¹n(r ), a simple, exact expression for the latter is availa
for a given DVR by direct differentiation of Eq.~19!. For
example, thex component of the gradient,nx5]n/]x, at a
grid point r i jk5(xi ,yk ,zk) is given by

nx~r i jk !5(
l

f lF 1

ai* wjwk
Ci jk

l* (
i 8

Ci 8 jk
l ui 8

8 ~xi !

1
1

aiwjwk
Ci jk

l (
i 8

Ci 8 jk
l* ui 8

8* ~xi !G , ~20!

with analogous expressions for they and z components.
Equation ~20! shows that the gradient of the density i
volves derivatives of the DVR basis functions at grid poin
which may be computed once at the beginning of a calc
tion and stored. SinceExc is evaluated on a grid, a real-spa
version of the scheme introduced by White and Bird58 can be
employed.
12511
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The long-range Hartree and local pseudopotential en
gies can either be evaluated in real space using fast multi
methods59,60 or in reciprocal space, as is employed he
Thus, long-range energies can be evaluated efficiently
simply with a single Fast Fourier transform~FFT!, while the
electronic gradient requires only one additional FFT. T
long-range component of the local pseudopotential ene
for the I th nucleus is assumed to be of the form
2ZIerf(bur2RI u)/ur2RI u, whereZI is the valence charge
In order to treat different boundary conditions, th
reciprocal-space screening function approach recently
neered by Martyna, Tuckerman, and co-workers is combi
with the DVR basis approach.53–55,66 In the following, we
briefly review this approach. In the screening functi
method, interaction potentials in nonperiodic systems
separated into short- and long-range contributions, and
latter are evaluated using a first-image approximation al
the nonperiodic spatial directions in place of the usual sup
cell approach. In this way, the error can be controlled by
dimension of the simulation cell. Thus, given any dens
n(r ), and any interaction potential,f(r2r 8), the average
potential energy in this approximation is given by

^f& (1)5
1

2V (
g

ungu2f̄~2g!, ~21!

where V is the volume of the cell, andf̄(g) is a Fourier
expansion coefficient of the potential given by

f̄~g!5E
2Lc/2

Lc/2

dzE
2Lb/2

Lb/2

dyE
2La/2

La/2

dxf~r !e2 ig•r ~cluster!,

f̄~g!5E
2Lc/2

Lc/2

dzE
2Lb/2

Lb/2

dyE
2`

`

dxf~r !e2 ig•r ~wire!,

~22!

f̄~g!5E
2Lc/2

Lc/2

dzE
2`

`

dyE
2`

`

dxf~r !e2 ig•r ~surface!.

Here,La , Lb , andLc are the dimensions of the simulatio
cell ~assumed to be orthorhombic for simplicity! in the x, y,
and z directions.@Note that theg5~0,0,0! term is not ex-
cluded.# In order to have an expression that is easily co
puted within the plane-wave description, consider two fun
tions f (long)(r ) and f (short)(r ), which are taken to be the
long- and short-range contributions to the total potential, i

f~r !5f (long)~r !1f (short)~r !,

f̄~g!5f̄ (long)~g!1f̄ (short)~g!. ~23!

We require thatf (short)(r ) vanish exponentially quickly a
large distances from the center of the cell and thatf (long)(r )
contain the long-range dependence of the full potential,f~r !.
With these two requirements, it is possible to write
0-3
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f̄ (short)~g!5E
D(V)

dr exp~2 ig•r !f (short)~r !

5E
all space

dr exp~2 ig•r !f (short)~r !1e~g!

5f̃ (short)~g!1e~g!, ~24!

with exponentially small error,e~g!, provided the range o
f (short)(r ) is small compared to the size of the parallelepip
In order to ensure that Eq.~24! is satisfied, a convergenc
parameter,a, is introduced, which can be used to adjust t
range off (short)(r ) such thate~g!;0 and the error,e~g!, will
be neglected in the following.

The function, f̃ (short)(g), is the Fourier transform o
f (short)(r ). Therefore,

f̄~g!5f̄ (long)~g!1f̃ (short)~g!5f̄ (long)~g!2f̃ (long)~g!

1f̃ (short)~g!1f̃ (long)~g!5f̂ (screen)~g!1f̃~g!,

~25!

wheref̃(g)5f̃ (short)(g)1f̃ (long)(g) is the Fourier transform
of the full potential,f(r )5f (short)(r )1f (long)(r ) and

f̂ (screen)~g!5f̄ (long)~g!2f̃ (long)~g!. ~26!

Thus, Eq.~26! becomes leads to

^f&5
1

2V (
ĝ

un̄~g!u2@f̃~2g!1f̂ (screen)~2g!#. ~27!

The new function appearing in the average potential ene
Eq. ~27!, is the difference between the Fourier series a
Fourier transform form of the long-range part of the poten
energy and will be referred to as the screening function
cause it is constructed to ‘‘screen’’ the interaction of the s
tem with an infinite array of periodic images. The Coulom
potential,f(r )51/r , can be separated into short- and lon
range components via

1

r
5

erf~ar !

r
1

erfc~ar !

r
, ~28!

wherea is an arbitrary parameter. In Eq.~28!, the first term
is long range. The screening function for the cluster cas
easily computed by introducing an FFT grid and perform
the integration numerically.53 For the wire55 and surface54

cases, analytical expressions can be worked out and
given by
12511
.
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f̄ (screen)~g!52
4p

g2 H cosS gcLc

2 D FexpS 2
gsLc

2 D
2

1

2
expS 2

gsLc

2 DerfcS a2Lc2gs

2a D2
1

2
exp

3S gsLc

2 DerfcS a2Lc1gs

2a D G1expS 2
g2

4a2D
3ReFerfcS a2Lc1 igc

2a D G J ~surface!, ~29!

f̄ (screen)~g!5
4p

g2 Fexp~2g2/4a2!E~a,Lb ,gb!E~a,Lc ,gc!

1cosS gbLb

2 D 4Ap

aLb

3exp~2gc
2/4a2!I ~a,Lb ,Lc ,gc!

1cosS gcLc

2 D 4Ap

aLc

3exp~2gb
2/4a2!I ~a,Lc ,Lb ,gb!G

2
4p

g2
e2g2/4a2

~wire!, ~30!

where

I ~a,L1 ,L2 ,g!5E
0

aL1/2

dxxe2ga
2L1

2/16x2
e2x2

ES 2x

L1
,L2 ,gD

~31!

and

E~l,L,g!5erfS l2L1 ig

2l D , ~32!

where g5(ga ,gb ,gc) and gs5Aga
21gb

2. The one-
dimensional integrals in Eq.~31! are well suited for using by
Gaussian quadrature techniques. It should be noted th
simplified expression for the surface screening function
be obtained in the limita→`:

f̄ (screen)~g!52
4p

g2 FcosS gcLc

2 De2gs /Lc/2G . ~33!

However, as is discussed Ref. 54, some care is needed
gs50. Similarly, the wire screening function in this lim
becomes

f̄ (screen)→ 16

g2FcosS gbLb

2 D J~gc ,ga ,Lc ,Lb!

Lb

1cosS gcLc

2 D J~gb ,ga ,Lb ,Lc!

Lc
G2

4p

g2 ,
0-4
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TABLE I. Convergence of the total energy for the periodic 8-Si-atom system~see text! for the DVR and PW basis sets. Total energies a
in hartrees, and the PW energy cutoff is in Ry. Also given are the number of orbital (Nc) and density (Ndens) PW expansion coefficients. Th
energy difference (uDEu) measures the difference between the energy at each grid size/PW cutoff and the converged value in kca

Grid size E(DVR) uDEu PW Ecut Nc (Ndens) E(PW) uDEu

163 231.8094 2.4 4 74~523! 230.8337 608.7
203 231.8053 0.06 6 126~968! 231.2026 376.5
323 231.8052 0 20 752~6027! 231.7936 6.3
483 231.8052 0 50 3026~23917! 231.8050 0.13
603 231.8052 0 80 6567~52508! 231.8051 0.06
643– – – 100 8440~67015! 231.8052 0
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where

J~g1 ,g2 ,L1 ,L2!5E
0

L1/2

dxeig1xAu~x,g2 ,L2!

3K1„A4u~x,g2 ,L2!…,

u~x,g,L !5
g2L2/16

114x2/L2 ,

and K1(z) is a modified Bessel function. Finally, applyin
Eq. ~27! to the Hartree and local pseudopotential energ
the reciprocal-space expressions for these energies bec

EH5
1

V (
gÞ0

un~g!u2F 4p

ugu2
1f (screen)~2g!G

1
1

V
un~0!u2f (screen)~0!,

~34!

Eloc
(long)5

1

V (
g

S~g!n~g!@Ṽloc
(long)~2g!2f (screen)~2g!#,

where the screening function is chosen according to the
quired boundary conditions.

Other terms that are evaluated in real space via the D
basis are the short-range component of the local pseud
tential as well as the nonlocal part of the pseudopotentia
discussed in Ref. 61. Finally, we note that for localized
bitals, the coefficient matrix,Ci jk

l , is sparse owing to the
well-localized nature of the basis functions. It can then
seen that the DVR approach, including the calculation of
12511
s,
e

e-

R
o-

as
-

e
e

overlap matrix Olm5^c l ucm&5( i , j ,kCi jk
l Ci jk

m , needed
for orthogonalization of the orbitals, will scale inherent
asO(N).

III. APPLICATIONS

In order to demonstrate the validity of the DVR approa
and compare its convergence with basis set size to the s
dard PW scheme, we consider a system consisting of 8
con atoms in a simple-cubic arrangement in a cubic perio
box of length 5.3 Å. The Kohn-Sham orbitals are expand
about the G point, exchange and correlation are treat
within the local density approximation, and an atom
pseudopotential56 is employed. Table I shows that conve
gence to within 1 kcal/mol of the total energy with DVR gr
size and PW energy cutoff~chosen to give a real-space gr
of the same size as the DVR grid! is achieved with a factor
of 27 fewer grid points in the DVR basis. The fact that t
convergence is not variational reflects the fact that, whe
finite basis set is used, the KS Hamiltonian depends on
basis set through its dependence on the orbitals and den
It should be noted that the number of orbital and dens
coefficients on a 203 grid in the DVR case is 8000 in both
cases. Given the number of orbital and density expans
coefficients in Table I at an 80 Ry cutoff~which involves an
FFT grid of 262 144 points!, if the orbitals are not localized
the nonlocal pseudopotential calculation will be about 1
times more expensive than that for plane waves, but fac
of 33 and 50 are saved in the calculation of the exchan
correlation and Hartree energies, respectively. However,
DVR calculation will generally be dominated by the kinet
energy. Table II shows the convergence of the atomic for
as measured by the quantity
TABLE II. Convergence of atomic forces~see text! in kcal/mol Å for the periodic 8-Si-atom system~see

text!. uDF̄u measures the difference between the force measure and its converged value.

Grid size F̄(DVR) uDF̄u PW Ecut F̄(PW) uDF̄u

163 13.32 9.37 4 101.49 97.54
203 3.92 0.03 6 12.83 8.88
323 3.95 0.0 20 3.89 0.06
483 3.95 0 50 3.97 0.02
643 – – 100 3.95 0
0-5
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F̄5A1

N (
I 51

N

FI•FI , ~35!

where FI is the force on atomI. The ability to generate
accurate forces is of critical importance in AIMD simul
tions. It can be seen that complete convergence of the fo
occurs with a factor of 8 fewer grid points in the DVR bas
than in PW basis. Finally, the size consistency of the D
basis was tested by plotting the energy per unit cell a
function of lattice constant for 8- and 16-atom systems us
DVR grid sizes of 203 and 403202, respectively~see Fig.
1!. A similar PW control calculation was also performed u
ing a converged basis set size. It can be seen that the en
curves for each system size are very similar and that
DVR and PW results match each other nearly perfectly.

In order to test energy convergence for a large system
64-Si-atom system in a diamond lattice was generated. T
III shows the convergence of the total energy per unit cel
in Table I. Again, we see that the DVR result converges w
a factor of 25 fewer grid points than the PW result. T

FIG. 1. Energy per unit cell as a function of lattice constant~L!
using the DVR approach for an 8-Si-atom system~solid line! and a
16-Si-atom system~dashed line!, respectively. The circles and tri
angles indicate the results from a converged PW calculation on
same system.
12511
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parallel scaling of the DVR method was also studied. To t
end, the DVR method was implemented in parallel in t
PINY_MD package developed by the authors.62 Although the
result is highly dependent on the precise implementation
tails, a preliminary assessment can be made. Figure 2 sh
scaling with the number of processors for the 64-Si-at
system on the terascale system at the Pittsburgh Super
puting Center. The corresponding PW scaling is also sho
Fully converged calculations, which correspond to 493 DVR
points and a 120 Ry PW cutoff, are performed for each ba
set. It can be seen that the parallel scaling of both method
comparable. However, the one-processor timing for DVR
roughly one-third that for PW’s per step. Although these b
sis set choices give exactly the same converged total ene
a PW cutoff of 100 Ry is very close to the 120 Ry result. T
one-processor timing for the DVR calculation is rough
one-half that of a 100 Ry PW calculation. Finally, a 256-S
atom system was studied for timing purposes on a local p
allel machine with 16 processors. With a cutoff of 120 R
the PW calculation just fits, while a converged DVR calc
lation with a 49398398 grid size easily fits and require
one-third the CPU time of PW’s per step. Similarly the DV
calculation requires one-half the CPU time of a 100 Ry P

he

FIG. 2. Parallel scaling of the PW and DVR basis sets for
64-Si-atom diamond system up to 32 processors.
ff and
TABLE III. Convergence of the total energy per unit cell for a periodic 64-Si-atom system in a diamond lattice~see text! for the DVR
and PW basis sets. Total energies are in hartrees, and the PW energy cutoff is in Ry. Also given are the number of orbital (Nc) and density
(Ndens) PW expansion coefficients. The energy difference (uDEu) measures the difference between the energy at each grid size/PW cuto
the converged value in kcal/mol.

Grid size E(DVR) uDEu PW Ecut Nc (Ndens) E(PW) uDEu

293 231.6460 1.5 4 484~3 671! 231.0803 353.5
333 231.6438 0.1 5 752~6 027! 231.2467 249.0
393 231.6437 0.06 7 1 259~10 003! 231.4108 146.0
493 231.6436 0 12 2 788~22 513! 231.5793 40.3
803 – – 40 17 070~135 555! 231.6132 19.1
1443 – – 120 88 755~710 378! 231.6436 0
0-6
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TABLE IV. Convergence of total energy for one H2O molecule cluster system in a 5 Å box for the DVR and PWbasis sets. Total energie
are in hartrees, and the PW energy cutoff is in Ry. Also given are the number of orbital (Nc) and density (Ndens) PW coefficients. The energy
differenceuDEu measures the difference between the energy at each grid size/PW cutoff and the converged energy in kcal/mol.

Grid size E(DVR) uDEu PW Ecut Nc(Ndens) E(PW) uDEu

243 217.1222 45.6200 10 231~1 848! 215.1056 1311.0566
323 217.1769 11.2952 20 656~5 066! 216.0058 746.1721
403 217.1939 0.6275 40 1 848~14 333! 216.8569 212.0984
483 217.1948 0.0627 50 2 521~10 270! 217.0183 110.8183
603 217.1949 0 80 5 066~40 657! 217.1776 10.8559
803 – – 180 17 166~136 191! 217.1938 0.6903
1083 – – 300 37 063~295 945! 217.1949 0
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calculation. Note, however, that such timings will chan
when the DVR is used in conjunction with localized orbita

As an illustration of the use of the DVR basis in conjun
tion with a generalized gradient exchange and correla
functional and cluster boundary conditions, we conside
single water molecule in a 5 Å cubic box. Exchange and
correlation are treated using the Becke–Lee-Yang-P
~BLYP! functional,63,64 and atomic pseudopotentials57 are
employed. In this case, long-range terms are treated using
cluster form of the reciprocal-space screening function. H
it is found that the energy is converged to within 1 kcal/m
of the fully converged value (217.1949 hartrees! with a grid
size of 403 points whereas a PW grid size of 803 points is
required~see Table IV!. In the latter case, this corresponds
a PW energy cutoff of 180 Ry. Note that 403 would corre-
spond to a PW cutoff of 40 Ry. AIMD simulations of wate
are usually performed in the PW basis using a cutoff
70–80 Ry, where the total energy is still more than 10 kc
mol different from the fully converged value. Nearly fu
convergence is achieved on a 483 grid for the DVR basis and
a 1083 grid for the PW basis. In the latter case, this cor
sponds to a PW energy cutoff of 300 Ry.

Finally, in order to illustrate the utility of the DVR ap
proach in AIMD calculations, we consider, once again,
periodic 8-silicon-atom system described above. The gen
AIMD scheme is based on a Car-Parrinello1 type of adiabatic
equations of motion:

mC̈i jk
l 52

]E

]Ci jk
l

1(
m

L lmCi jk
m ,

MIR̈I52
]E

]RI
, ~36!

in which a fictitious electronic dynamics is used to gener
the approximate instantaneous ground-state electronic
figuration at each nuclear configuration in a molecular
namics run. Here,E is given by Eq.~9!, andL lm is a set of
Lagrange multipliers for enforcing the orthogonality cond
tion, andm is chosen to ensure an adiabatic separation
tween the nuclear and fictitious electronic degrees of fr
dom. A short Car-Parrinello molecular dynamics run
performed using a time step of 0.125 fs on a 203 grid. Core
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electrons are treated using an atomic pseudopotential.56 Fig-
ures 3~a! and 3~b! show that the fictitious electronic kineti
energy is stable and small compared to the ionic kinetic
ergy, indicating that adiabaticity is well maintained in th
DVR basis.

IV. CONCLUSIONS

A simple, rigorous, and efficient real-space approach
electronic structure calculations for use in AIMD calcul
tions has been introduced. The method is based on the u
a discrete variable representation basis set and a un
reciprocal-space treatment of long-range interactions and
therefore treat systems with zero-, one-, two-, and thr
dimensional periodicity within a single framework. This a
proach has been shown to converge faster with grid size
the widely used PW approach and to yield a stable C
Parrinello-type AIMD scheme. We are currently developi
an approach65 that exploits the Car-Parrinello dynamics

FIG. 3. ~a! Instantaneous value of the fictitious electronic kine
energy~in hartrees! over a 2 ps Car-Parrinello AIMD run for the
8-Si-atom system.~b! Instantaneous value of the ionic kinetic e
ergy ~in kelvin! over a 2 ps Car-Parrinello AIMD run.
0-7
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give an ‘‘on the fly’’ orbital localization scheme that will b
combined with the DVR approach to give a linear scali
method. Through such developments, we hope to sig
cantly extend the capabilities of AIMD calculations in th
near future.
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