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Ab initio molecular dynamics calculations with simple, localized, orthonormal real-space basis sets
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Ab initio molecular dynamics, in which finite temperature molecular dynamics is performed with forces
obtained from “on the fly” electronic structure calculations, is one of the most widely used theoretical tools for
studying chemically active systems. Here, a significant step is taken to improve the efficiency, scaling with
system size, and parallel efficiency of these calculations by the use of simple, localized, orthonormal real-space
basis functions in conjunction with a unified reciprocal-space treatment of long-range interactions for various
boundary conditions. This approach, which is capable of treating systems with zero-, one-, two-, or three-
dimensional periodicity within a single framework, is shown to improve the convergence of total energies and
forces by over an order of magnitude in grid size compared to the more commonly used plane-wave basis.
Possibilities for employing the approach in a linear scaling method are briefly discussed.
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[. INTRODUCTION ary conditions in order to improve the scaling with system
size, efficiency, and parallel scalability of AIMD calcula-
Since its introduction,ab initio molecular dynamics tions. The approach is based on the use of continuous func-
(AIMD),1~8 the marriage of electronic structure calculationstions that satisfy the properties of position eigenfunctions on
and finite temperature molecular dynamics, has become oran appropriately defined auxiliary grid. Such functions, origi-
of the most powerful and widely used tools for studying thenally introduced by Light and co-workers, are referred to as
dynamics of a wide variety of chemical processes in both theliscrete variable representatiof®VR’s).2°~*'The principal
liquid and solid states. Moreover, its recent combination withadvantage of a DVR is the highly localized character of the
empirical force field methods;" the so-called quantum pasis functions about the points of the auxiliary grid. Thus,
mechanical/molecular mechanical or QM/MM approach,only a small number of functions is required to represent a
promises to yield schemes capable of treating large-scalgpatially localized electronic orbital. This fact renders DVR’s
systems with locally chemically active regions, opening neWsarticularly useful for chemical applications and massively
doors in the study of biological and industrial catalytic harajiel computations. When combined with an orbital local-

proc;)sse_s._ y ation of 5 4 Parrinello ization scheme, the use of DVR's leads to@(N) scaling
The original formulation of AIMD by Car and Parrinelio, . o0,#2-51 Moreover, DVR's offer a good deal of flexibil-

involving a density functional theoDFT) representation of ity in the particular choice of basis functio®s3’~*which

the electronic structure combined with a plane-waeV) allows different types of boundary conditiofduster, wire,

basis set expansion of the electronic orbitals, is still thesurface or soliito be treated exactly and allows basis func-
mostly commonly used approach. Although elegant and con- ' y

ceptually simple, PW basis sets have the disadvantage dpns to be tailored to a s,pecmc p rOE'f”f' using, for egample,
scaling asO(N2M), whereN is the number of occupied SCnemes proposed by Baand Light>* Finally, for a given
electronic states, anil is the number of basis functions. In choice of DVR, electronic orbitals and density are defined
addition, PW’s are not optimal for massively parallel com-€verywhere in spacenot just at grid points so that exact
putations due to the high communication overhead. In ordefePresentations of the Laplacian and gradient operators are
to ameliorate these problems, localized real-space apRvailable. Here, we shall show how one particular type of
proaches*~?° employing Gaussian basis sét$® hybrid ~ DVR, the direct-product DVR, yields a highly effective ap-
Gaussian/plane-wave basis s&&* grid discretization proach to AIMD calculations.
schemed? 2025272851 finite element method&%?have The organization of this paper is as follows: In Sec. Il, the
been introduced. Gaussian bases, while highly popular, suffdrasic principles underlying the DVR approach and its imple-
from basis set superposition error and other complexities dumentation in the DFT-based electronic structure and AIMD
to the nonorthogonality and position dependence of the funcmethods are reviewed. This discussion includes a brief out-
tions. Grid discretization schemes are sensitive to the accuine of the recently introduced screening function approach
racy of the finite-difference approximation to the gradientto cluster, wire, and surface calculatiois>®Following this,
and Laplacian operators. a number of test systems are presented in Sec. lll, which
In this paper, a simple, rigorous, orthonormal real space&lemonstrate the improved convergence of total energies and
basis set method, which is free of the above difficulties, iforces in the DVR approach as well as its parallel scaling and
combined with a unified reciprocal-space treatment of longadiabaticity in Car-Parrinello molecular dynamics. Conclu-
range interactions for cluster, wire, surface, and solid boundsions and future directions are given in Sec. IV.
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Il. METHODOLOGY n(ryn(r’)
|

1 1
__= 2 - - > 7
A one-dimensional DVR is defined by a setMfL? inte- By {RH= 2 Z (V=) + ZJ drdr r—r'|
grable functions{u;(x)},i=1, ... N, a set ofN grid points,

{x;} and a set of weights{|a;|?=w;} such that the basis +Exd N1+ Eiod N{RH+Enc[{#}.{R}]
functions satisfy the propert
fy property +Uion—ion({R}) (9)
Ui (X ) = ﬁ (1) where{R} is a set of nuclear position$y} is a set ofn
IE-? electronic orbitals, required to satisfy the orthogonality rela-

at each grid point. From Eg1) follow the orthogonality and tion (4| #m) = 6im, N(r) s the electronic density,

completeness relations: Noce
n(r)=2, fily(n]?, (10
> lad2ur (xouy(x) = 8 )
k ' : ! wheref, is the occupation number ¢f,). In Eq.(9), E,{n]
(2 is the exchange and correlation functional, d&hglf n,{R}]
2 %y N S andEy, [{#},{R}] are the local and nonlocal components of
2 Jadug O U(x) = G the external interaction, assumed to be described by a norm-
conserving atomic pseudopotenfi%P’ A DVR basis for ex-

Therefore, any functionf(x), can be expanded in terms of pansion of the Kohn-Sham orbitals is constructed as a direct
the DVR basis functions according to product of one-dimensional DVR’s,

F(x)=> cus(x), 3) @ik (1) =Ui(X)v; (Y)W (2), (11
i such that
wherec;=a;f(x;). Finally, given a set oN L2 orthonormal

functions,{#,(x)}, a DVR can be obtained from these ac- W)= Cl @ (r), (12
cording the construction rule: G e

N whereCl, is a set of expansion coefficients. Since the basis
U (X)=CF >, ¢ (%) dn(X), (4)  functions do not depend on atomic positions, the Hellman-
n=1 Feynman theorem may be employed to obtain interatomic

which can be easily shown to satisfy the aforementioned reforces. Note that the functions, v;, andw, need not be

quirements in Eq(1) and (2). constructed from Fhe same finitg basis representation! a fact

An important property of DVR’s is that a projection op- that can be e>_<pI0|ted to treat d|ffer_ent_ bo_undary conditions.
erator For example, in order to treat a periodic dimension of length

L, a DVR constructed via

N
N
Pn= u;){u; 5 1
v 2 © 0= \[5r S, cogk, -kl (3

applied to any position-dependent operafd(x) via where k,=2m(a—N'—1)/L, a=12,...N=2N'+1

could be employed, while a nonperiodic dimension could be

Q) =Pu )Py ©) treated by a fixed-node DVR of the form
yields a diagonal operator in the DVR basis, i.e., ) N
(clus) _ : f
~ u; X)= —— sink gx sink gX; , 14
(U] Q)| = (X)) &j , (7) ) JIN+1)L /321 A A (14

wherew(X) is the corresponding eigenvalue@{x). Asthe  where kg=mpIL, p=1,2,...N. Thus, solids or liquids
basis set size approaches infinify(x), itself, becomes ex- could be treated by employing®®” in all three dimensions,

actly diagonal, i.e., surfaces treated hy®“) in one dimension, and®®” in two
_ ) dimensions, etc. Indeed, DVRs offer considerable flexibility,
lim (ug[ Q(x)[ui) = lim (X)) &; (8)  permitting the construction of DVR’s for a wide variety of
N N=e purposes*37-41

and u;(x) approaches an exact position eigenfunction. For In the DVR basis, the orbitals are defined everywhere in

finite N, Q(x) is approximately diagonal in the DVR basis, SPace, not just at grid points. Thus, each term in@jhas

ie., <UJ|Q(X)|Ui>*w(XJ)5ij ) a well-defined expression. For a direct-product DVR, the ki-
In order to develop a DVR-based approach to density'etic energy takes the form

functional electronic structure anab initio molecular dy- 1

namics(MD) calculations, we begin with the expression for T=—2> > > > C:jkT” i ,’kk,c:,j,k, . (15

the total energy in the Kohn-Sham formulation: 2000 i’ kK

125110-2
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where the matrixT;;s jj» v has the general highly sparse

form

Tii’,jj',kk':tixi’éjj’5kk'+t1¥j’5ii’6kk'+tik’5ii'5jj’ .
(16)

For the DVR’s in Egs.(13) and (14), the matrixt) ,, ¥
=Xx,Y,z, can be worked out analytically and is given*by

y 27\ 2N’ ,
L=~ L_y ?(N +1)Snnr

@Al (- 1)" "' co§ w(n—n")/N]

1_6 !

2 sif[ w(n—n’)/N] (1= o)
(17

for the periodic and
, 1 [ 2(N+1)%+1 1 5
T2 2T 3 SNt D]
(—p" " w2 1
L2 2|sif[#(n—n")/2(N+1)]

1
 sir[m(n+n')2(N+1)]

(1_5nn’) (18)

for the fixed-node DVR's, Eq913) and (14), respectively.

HerelL , is the length of the cell in the direction. Unlike in
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The long-range Hartree and local pseudopotential ener-
gies can either be evaluated in real space using fast multipole
methods®® or in reciprocal space, as is employed here.
Thus, long-range energies can be evaluated efficiently and
simply with a single Fast Fourier transfortRFT), while the
electronic gradient requires only one additional FFT. The
long-range component of the local pseudopotential energy
for the Ith nucleus is assumed to be of the form
—Zerf(B|r—R,|)/[r—R,|, whereZ, is the valence charge.

In order to treat different boundary conditions, the
reciprocal-space screening function approach recently pio-
neered by Martyna, Tuckerman, and co-workers is combined
with the DVR basis approaci=>>%¢In the following, we
briefly review this approach. In the screening function
method, interaction potentials in nonperiodic systems are
separated into short- and long-range contributions, and the
latter are evaluated using a first-image approximation along
the nonperiodic spatial directions in place of the usual super-
cell approach. In this way, the error can be controlled by the
dimension of the simulation cell. Thus, given any density,
n(r), and any interaction potentiat)(r—r'), the average
potential energy in this approximation is given by

1 _
(#)P=5y 2 Ing*é(~0). (21)

whereV is the volume of the cell, an@(g) is a Fourier
expansion coefficient of the potential given by

standard finite-difference schemes, the kinetic energy is ex-

boundary conditions.

act for a given DVR and is appropriately matched to the — Lef2 Lp/2 Laf2
e N |

In order to evaluate density-dependent terms, one begins

with the fact that

Noce 2

n(r)=2>, fi| > Cli®@ijk(r) (19
I=1 i,k

from which a set of DVR density coefficientsN;j,

=(=iClj) % (lail?laj)al? may be computed. When
generalized gradient functionals are employed, which require

dxe¢(r)e 9" (clustey,
2

—Lp2 )Ly

— L2 Lp/2 - '
= Ziger .
#9) f—Lc/zdzf—Lblzdyf—xdx¢(r)e (wire),
(22

_g)szcl2 dzfldyfidm(r)e—ig" (surface.

—L/2

vn(r), a simple, exact expression for the latter is available

for a given DVR by direct differentiation of Eq19). For
example, thex component of the gradient,=dn/dx, at a
grid pointr;;c = (X ,Yk,Z) is given by

1
)= —— cl* LU (x
Ny(Tijk) §|: fi ai*WjWkC”k; Cirjili (Xi)

1
- | % %
* aiijkciik; Ci’jkui’ (Xi) |, (20

Here,L,, L,, andL. are the dimensions of the simulation
cell (assumed to be orthorhombic for simpligityn the x, v,

and z directions.[Note that theg=(0,0,0 term is not ex-
cluded] In order to have an expression that is easily com-
puted within the plane-wave description, consider two func-
tions ¢(°"9(r) and ¢"°Y(r), which are taken to be the
long- and short-range contributions to the total potential, i.e.,

B(r)=Gom9(r) + o),

with analogous expressions for theand z components.
Equation (20) shows that the gradient of the density in-
volves derivatives of the DVR basis functions at grid points,
which may be computed once at the beginning of a calculawe require that¢"°Y(r) vanish exponentially quickly at
tion and stored. SincE,, is evaluated on a grid, a real-space large distances from the center of the cell and $h&t"9(r)
version of the scheme introduced by White and Blichn be  contain the long-range dependence of the full potenié).
employed. With these two requirements, it is possible to write

$(g)=p°"I(g) + o g). (23)
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_(short)( )= f dr exp(—ig-r) (short)(r) —(screen) v\ — _ 4_’”' Oclc _ OsLc
¢ g o) pA—igr)¢ ¢ lg) = cog —— || ex >
2
_ dr exo( —ig-r) b )+ 1 OsLc a’Le—0s 1
L” spac p(—ig-r)¢*"(r)+e(g) —5exp — —|erf 5| 5 EXp
=¢GN g)+ e(g), (24 gSLC) C<a2LC+ Js % 9° )
X erf +exp ——
2 2 4a2

with exponentially small errore(g), provided the range of
»G"°(r) is small compared to the size of the parallelepiped. Rd erf a’Lotige
In order to ensure that Eq24) is satisfied, a convergence X Reer 2a
parameterg, is introduced, which can be used to adjust the
range of¢s"°Y(r) such thate(g)~0 and the errore(g), will

} ] (surface, (29

be neglected in trle following. plsereen) g) = 4—727 exp(—g%/4a®)E(a,Ly,,g9p)E(a,L¢,0c)
The function, ¢©M"°"(g), is the Fourier transform of
$G°(r). Therefore,
golp| 47
+ cos( —- ) oL,
#(9)= ¢°"9)(g) + $"g) = p(°"I(g) — "9 (g) X exp( — g%/4a?) (e, Ly, Le,00)
+ o) + oI g) = BT g) + (@), gcLo\ 4V
(25) +C°5( 2 ) al,
~ ~ ~ 2
whered(g) = ¢ g) + $(°"9)(g) is the Fourier transform X exp(— gpl4a®)l (a,L¢ Ly ,gb)}
of the full potential,¢(r) = ") + $(°"9(r) and
4 — 02402 .
-— g7%e  (wire), (30
g

("ﬁ(screenz 0)= gﬂong)( g - a(long)( 0. (26)
where

Thus, Eq.(26) becomes leads to alq/2 2X
I(a,Ll,Lz.9)=f ' dxxe‘giLf’lﬁxze‘sz(L—,Lz.g)
0 1

1 o N A (3D
()=5y = NQIPTB(-g+etN-g]. 21 4
[¢]

NL+ig
The new function appearing in the average potential energy, E(A,L,g):erf( 2N
Eq. (27), is the difference between the Fourier series and
Fourier transform form of the long-range part of the potentialwhere g=(g9,,9,.9:.) and gs= \/ga2+gzb. The one-
energy and will be referred to as the screening function bedimensional integrals in E431) are well suited for using by
cause it is constructed to “screen” the interaction of the sys-Gaussian quadrature techniques. It should be noted that a
tem with an infinite array of periodic images. The Coulombsimplified expression for the surface screening function can
potential, ¢(r)=1/r, can be separated into short- and long-be obtained in the limitv—oe:
range components via

(32

_ 4 L
plscreeny gy — g_72T CO{ %) egs/Lc/2} ) (33

r r r

1 erflar) erfcar)
= + ' (28 However, as is discussed Ref. 54, some care is needed for

0s=0. Similarly, the wire screening function in this limit
becomes

wherea is an arbitrary parameter. In E(28), the first term

is long range. The screening function for the cluster case is plscreen) 1_6{%5( gb'—b) J(9c.0asLc.Lp)

easily computed by introducing an FFT grid and performing g° 2 Ly

the integration numericall? For the wiré® and surface

cases, analytical expressions can be worked out and are +cos( chc) J(gb,ga,Lb,Lc)}_Mr

given by 2 L. 9%’
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TABLE I. Convergence of the total energy for the periodic 8-Si-atom sys$sem texk for the DVR and PW basis sets. Total energies are
in hartrees, and the PW energy cutoff is in Ry. Also given are the number of orlitad density Ng4end PW expansion coefficients. The
energy difference|AE|) measures the difference between the energy at each grid size/PW cutoff and the converged value in kcal/mol.

Grid size E(DVR) |AE] PW Ey N¢ (Ngend E(PW) |AE|
16° —31.8094 2.4 4 74523 —30.8337 608.7
20° —31.8053 0.06 6 126968 —31.2026 376.5
32 —31.8052 0 20 7526027 —31.7936 6.3
48 —31.8052 0 50 302623917 —31.8050 0.13
60° —31.8052 0 80 656752508 —31.8051 0.06
64— - - 100 844067015 —31.8052 0
where overlap matrix Ojn=(¢|ym)=2i, kC,JkCIJk , needed
for orthogonalization of the orbitals, will scale inherently
L2 asO(N).
308 LaLa)= [ dxe9 (0,05, ()
X K1(46(x,92,L2)), Ill. APPLICATIONS

In order to demonstrate the validity of the DVR approach
—, and compare its convergence with basis set size to the stan-
1+4x7/L dard PW scheme, we consider a system consisting of 8 sili-

. . . . . con atoms in a simple-cubic arrangement in a cubic periodic
andK,(z) is a modified Bessel function. Finally, applying 1oy of |ength 5.3 A. The Kohn-Sham orbitals are expanded
Eqg. (27) to the Hartree and local pseudopotential energies

about theI' point, exchange and correlation are treated
the reciprocal-space expressions for these energies becomg.ihin the local density approximation, and an atomic
pseudopotential is employed. Table | shows that conver-
1 E o 4T (screen gence to within 1 kcal/mol of the total energy with DVR grid
En=y & In(g)| @Jr ¢ (-9 size and PW energy cutofthosen to give a real-space grid
of the same size as the DVR grits achieved with a factor
of 27 fewer grid points in the DVR basis. The fact that the
+ v|”(0)| gt 0), convergence is not variational reflects the fact that, when a
(34) finit_e basis set is l_Jsed, the KS Hamiltonian _depends on the
basis set through its dependence on the orbitals and density.
(Iong)_ (long), _ ~\ _ s(screeny _ It should be noted that the number of orbital and density
Fioc E SOOIV (-9~ ¢ -9l coefficients on a 20grid in the DVR case is 8000 in both
cases. Given the number of orbital and density expansion
where the screening function is chosen according to the recoefficients in Table | at an 80 Ry cutafivhich involves an
quired boundary conditions. FFT grid of 262 144 points if the orbitals are not localized,
Other terms that are evaluated in real space via the DVRhe nonlocal pseudopotential calculation will be about 1.2
basis are the short-range component of the local pseudop@mes more expensive than that for plane waves, but factors
tential as well as the nonlocal part of the pseudopotential, asf 33 and 50 are saved in the calculation of the exchange-
discussed in Ref. 61. Finally, we note that for localized or-correlation and Hartree energies, respectively. However, the
bitals, the coefficient matrGC”k, is sparse owing to the DVR calculation will generally be dominated by the kinetic
well-localized nature of the basis functions. It can then beenergy. Table Il shows the convergence of the atomic forces
seen that the DVR approach, including the calculation of theas measured by the quantity

g°L?/16
0(x,g,L)=

TABLE Il. Convergence of atomic forcgsee textin kcal/mol A for the periodic 8-Si-atom systefsee
text). |AF| measures the difference between the force measure and its converged value.

Grid size F(DVR) |AF] PW Ecy F(PW) |AF]
16° 13.32 9.37 4 101.49 97.54
20° 3.92 0.03 6 12.83 8.88
328 3.95 0.0 20 3.89 0.06
48 3.95 0 50 3.97 0.02
64° - - 100 3.95 0
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] ) ) FIG. 2. Parallel scaling of the PW and DVR basis sets for the
FIG. 1. Energy per unit cell as a function of lattice const@nt  g4-si-atom diamond system up to 32 processors.
using the DVR approach for an 8-Si-atom syst@olid line) and a

16-Si-atom systentdashed ling respectively. The circles and tri- ) . .
angles indicate the results from a converged PW calculation on thBarallel scaling of the DVR method was also studied. To this

same system. end, the DVR method was implemented in parallel in the
PINY_MD package developed by the authffslthough the
1 N result is highly dependent on the precise implementation de-
E= /N E F-F, (35) tails, a preliminary assessment can be made. Figure 2 shows
1=1

scaling with the number of processors for the 64-Si-atom
. . system on the terascale system at the Pittsburgh Supercom-
where F, is the force on aton. The ability to generate | ing Center. The corresponding PW scaling is also shown.
accurate forces is of critical importance in AIMD simula- Fully converged calculations, which correspond t3 BY/R
tions. It can be seen that complete convergence of the forc%sOints and a 120 Ry PW cut(;ff, are performed for each basis

occurs with a factor of 8 fewer grid points in the DVR basis ) .
; R, . . set. It can be seen that the parallel scaling of both methods is
than in PW basis. Finally, the size consistency of the DVR - .
omparable. However, the one-processor timing for DVR is

basis was tested by plotting the energy per unit cell as & . ,
function of lattice constant for 8- and 16-atom systems usingUdNly one-third that for PW's per step. Although these ba-

DVR grid sizes of 28 and 40< 2(%, respectively(see Fig. 'S set choices give e>§actly the same converged total energy,

1). A similar PW control calculation was also performed us-& PW cutoff of 100 Ry is very close to the 120 Ry result. The

ing a converged basis set size. It can be seen that the energ)€-Processor timing for the DVR calculation is roughly

curves for each system size are very similar and that th@he-half that of a 100 Ry PW calculation. Finally, a 256-Si-

DVR and PW results match each other nearly perfectly. — atom system was studied for timing purposes on a local par-
In order to test energy convergence for a large system, allel machine with 16 processors. With a cutoff of 120 Ry,

64-Si-atom system in a diamond lattice was generated. Tablde PW calculation just fits, while a converged DVR calcu-

[l shows the convergence of the total energy per unit cell agation with a 49<98x98 grid size easily fits and requires

in Table I. Again, we see that the DVR result converges withone-third the CPU time of PW'’s per step. Similarly the DVR

a factor of 25 fewer grid points than the PW result. Thecalculation requires one-half the CPU time of a 100 Ry PW

TABLE llI. Convergence of the total energy per unit cell for a periodic 64-Si-atom system in a diamond (s¢tceexk for the DVR
and PW basis sets. Total energies are in hartrees, and the PW energy cutoff is in Ry. Also given are the number &f pritdldensity
(Ngend PW expansion coefficients. The energy differenceq|) measures the difference between the energy at each grid size/PW cutoff and
the converged value in kcal/mol.

Grid size E(DVR) |AE| PW Eq N¢ (Ngend E(PW) |AE|

29 —31.6460 1.5 4 4843 671) —31.0803 353.5
33 —31.6438 0.1 5 7526 027 —31.2467 249.0
39 —31.6437 0.06 7 125010 003 —31.4108 146.0
49 —31.6436 0 12 278822513 —31.5793 40.3
80° - - 40 17 070(135 555 —31.6132 19.1
1448 - - 120 88 755710 378 —31.6436 0
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TABLE IV. Convergence of total energy for one,& molecule cluster system & 5 A box for the DVR and PWasis sets. Total energies
are in hartrees, and the PW energy cutoff is in Ry. Also given are the number of oMyijeiid density Ngeng PW coefficients. The energy
difference| AE| measures the difference between the energy at each grid size/PW cutoff and the converged energy in kcal/mol.

Grid size E(DVR) |AE] PW Eq Ne(Ngend E(PW) |AE]

243 ~17.1222 45.6200 10 2311 849 —15.1056 1311.0566
32 ~17.1769 11.2952 20 656 066 —16.0058 746.1721
40° ~17.1939 0.6275 40 184@4333 —16.8569 212.0984
48 —17.1948 0.0627 50 252010 270 —17.0183 110.8183
60° —17.1949 0 80 506640 657 ~17.1776 10.8559
80° - - 180 17 166136 192 —17.1938 0.6903
1088 - - 300 37 063295 945 —17.1949 0

calculation. Note, however, that such timings will changeelectrons are treated using an atomic pseudopotéftiag-
when the DVR is used in conjunction with localized orbitals. ures 3a) and 3b) show that the fictitious electronic kinetic

As an illustration of the use of the DVR basis in conjunc- energy is stable and small compared to the ionic kinetic en-
tion with a generalized gradient exchange and correlatiorrgy, indicating that adiabaticity is well maintained in the
functional and cluster boundary conditions, we consider &DVR basis.
single water moleculeni a 5 A cubic box. Exchange and
correlation are treated using the Becke—Lee-Yang-Parr IV. CONCLUSIONS
(BLYP) functional®®®* and atomic pseudopotentiaisare
employed. In this case, long-range terms are treated using the A simple, rigorous, and efficient real-space approach to
cluster form of the reciprocaj-space screening function. Here¢|eCtr0niC structure calculations for use in AIMD calcula-
it is found that the energy is Converged to within 1 kca|/mo|ti0n5 has been introduced. The method is based on the use of
of the fully converged value- 17.1949 hartre@svith a grid @ discrete variable representation basis set and a unified
size of 40 points whereas a PW grid size of 8points is reciprocal-space treatment of long-range interactions and can
required(see Table IV. In the latter case, this corresponds to therefore treat systems with zero-, one-, two-, and three-
a PW energy cutoff of 180 Ry. Note that #@ould corre- dimensional periodicity within a single framework. This ap-
spond to a PW cutoff of 40 Ry. AIMD simulations of water proach has been shown to converge faster with grid size than
are usually performed in the PW basis using a cutoff ofthe widely used PW approach and to yield a stable Car-
70-80 Ry, where the total energy is still more than 10 kcalfarrinello-type AIMD scheme. We are currently developing
mol different from the fully converged value. Nearly full an approach that exploits the Car-Parrinello dynamics to
convergence is achieved on a4fid for the DVR basis and
a 108 grid for the PW basis. In the latter case, this corre- 1500.0 y ' '
sponds to a PW energy cutoff of 300 Ry. (@

Finally, in order to illustrate the utility of the DVR ap- . 1000.0
proach in AIMD calculations, we consider, once again, theX.
periodic 8-silicon-atom system described above. The genera § 5000
AIMD scheme is based on a Car-Parrinéligpe of adiabatic = '
equations of motion:

. JE
&= E S Ancn,
MLk 07C!jk = ImYijk

JE

Mlhlz_a_Rla

(36)

in which a fictitious electronic dynamics is used to generate
the approximate instantaneous ground-state electronic cor
figuration at each nuclear configuration in a molecular dy- 0940 05 10 5 2.0
namics run. HereE is given by Eq.(9), andA,, is a set of ' ' t (pS) ' '
Lagrange multipliers for enforcing the orthogonality condi-

tion, and u is chosen to ensure an adiabatic separation be- FiG. 3. (a) Instantaneous value of the fictitious electronic kinetic
tween the nuclear and fictitious electronic degrees of freeenergy(in hartrees over a 2 ps Car-Parrinello AIMD run for the
dom. A short Car-Parrinello molecular dynamics run is8-Si-atom system(b) Instantaneous value of the ionic kinetic en-
performed using a time step of 0.125 fs on & B@id. Core  ergy (in kelvin) over a 2 ps CaParrinello AIMD run.
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give an “on the fly” orbital localization scheme that will be
combined with the DVR approach to give a linear scaling
method. Through such developments, we hope to signifi
cantly extend the capabilities of AIMD calculations in the
near future.
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