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Localization effects and inelastic scattering in disordered heavy electrons
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We study ground-state and finite-temperature properties of disordered heavy fermion metals by using a
generalization of dynamical mean-field theory which incorporates Anderson localization effects. The emer-
gence of a non-Fermi-liquid metallic behavior even at moderate disorder is shown to be a universal phenom-
enon resulting from local density of states fluctuations. This behavior is found to have a character of an
electronic Griffiths phase, and can be thought of as a precursor of Anderson localization in a strongly correlated
host. The temperature dependence of the conducting properties of the system reveal a non-trivial interplay
between disorder and inelastic processes, which are reminiscent of the Mooij correlations observed in many
disordered metals.
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I. INTRODUCTION

The interplay of disorder and strong correlations rema
one of the least understood topics of contemporary c
densed matter physics. These effects are believed to
relevance to many problems that have attracted recent a
tion, such as the metal-insulator transition~MIT ! in two-
dimensional electron systems.1 Disorder effects are also
likely to be important for the understanding of the puzzli
non-Fermi -liquid~NFL! behavior of several heavy fermio
compounds.2 In some of these systems, impurities seem
play only a subsidiary role: the explanation for the anom
lous behavior is more likely to be found in the physics
quantum criticality,3–7 even though a complete description
still lacking.8–11 However, in other heavy fermion system
disorder seems to play a more essential role and seems
at the origin of the NFL behavior.12–15

Several attempts have been made to address theoret
the role of disorder in heavy fermion compounds~see an
overview below!. Many experimental results can be d
scribed within the so-called Kondo disorder model~KDM !13

or, equivalently, the dynamical mean field theory~DMFT! of
disordered Kondo/Anderson lattices,16,17 at least above the
lowest temperatures. Essential to this description is the c
sideration of the full distribution of local Kondo temper
tures TK . For sufficient disorder, it has a large weight
TK→0 describing the presence of dilute low-TK spins that
dominate the thermodynamic and transport properties. H
ever, the KDM/DMFT predictions relied on a fine tuning
the bare disorder that suggested that a more accurate m
scopic foundation was necessary. Conspicuously missin
this scheme were fluctuations in the conduction electron
cal density of states~DOS!, a quantity that is crucial for the
determination ofTK . This was remedied by two of u
through a generalization of the DMFT that incorporates s
Anderson localization effects while keeping its local tre
ment of correlations.18,19As a result, the question of the ex
treme sensitivity to the bare disorder was solved. One imp
tant result of this study is the emergence of a power-
distribution of Kondo temperaturesP(TK)}TK

a21 , wherea
depends continuously on the strength of disorderW and de-
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creases asW is increased. As the distribution becomes mo
singular, several thermodynamic quantities become div
gent, in a manner characteristic of Griffiths phases.20 The
system eventually localizes at a critical disorder stren
WMIT . Since there is no magnetic phase transition this
been dubbed an electronic Griffiths phase.

This initial work18,19 employed the slave boson large-N
theory21,22 to solve the auxiliary single-impurity problem
posed by the method. While versatile, powerful and yet co
putationally cheap, this approach presents some disad
tages, the main one being the difficulty of working at fini
temperatures. It should be reminded that, since we deal
wide distributions ofTK , we need to be able to describe we
the full crossover fromT!TK to T@TK , which is not pos-
sible with the slave boson large-N treatment. In particular,
conspicuously missing are inelastic scattering processes
addition, though giving a good description of the low-ener
Fermi-liquid regime of the single-impurity problem, th
treatment does not incorporate high- and intermediate-en
incoherent processes. Another impurity solver is theref
needed to assess the importance of these intrinsically finiT
and finite-energy features. A particularly useful method, a
to fill this gap at a reasonable computational cost, is sec
order perturbation theory inU. We have used this method t
both complement and crosscheck the slave boson result

In addition to the results of the initial work,18,19 which
have been confirmed by both methods, some of our m
conclusions are:~i! there is a subtle interplay between co
duction andf-electron site disorder that leads to a surprisi
nonmonotonicdependence of the conducting properties
disorder, a feature that is likely unique to Kondo/Anders
as opposed to Hubbard models,~ii ! localization effects are
essential for the determination of the distribution of Kon
temperatures and a KDM/DMFT description is clearly insu
ficient, especially if one starts from an experimentally me
sured discrete distribution, and~iii ! the interplay between
disorder and inelastic processes can lead to a tempera
dependence of the conducting properties that is reminis
of the ones found by Mooij and others in several stron
correlated disordered metals.23 This paper is organized a
follows. We review the disorder-based mechanisms of n
©2003 The American Physical Society04-1
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Fermi- liquid behavior in the following. Section II describe
the model of disordered Anderson lattices we studied and
methods we employed to solve it. Section III focuses on
detailed results obtained within the slave boson largeN
method. This expands considerably on the previously p
lished results.18,19 In Sec. IV, we show the results obtaine
with perturbation theory. Finally, we wrap up with a gene
discussion of the strengths and limitations of this study a
point out possible future directions in Sec. V. Some details
the computational procedures are given in the Appendix.

In the following we give a brief overview of disorder
based mechanisms of non-Fermi-liquid behavior.

~1! Kondo-disorder models and the electronic Griffit
phase.The KDM was proposed early on to account for t
temperature dependence of the Cu nuclear magnetic r
nance~NMR! linewidths in UCu52xPdx (x50.521).13 It as-
sumed that disorder in a heavy fermion system gener
random spatial fluctuations of the exchange coupling c
stantJ between local moments and conduction electrons~the
Kondo coupling!. Each local moment was assumed to u
dergo the Kondo effect in a manner that is completely unc
related with the others and each with a characteristic ene
scale, its Kondo temperatureTK . Even narrow Kondo cou-
pling distributions lead to a wide distribution of Kondo tem
peratures due to the latter’s exponential dependence on
former. As a result, at low temperatures, many spins
quenched while a few percent remain unquenched and d
nate, giving rise to singular, NFL thermodynamic propert
~specific heat and magnetic susceptibility!. The NMR results
in UCu52xPdx(x50.521) are well described within this pic
ture if the distribution functionP(TK) is such thatP(TK
→0)→const.13 The KDM gained a natural theoretical se
ting within the DMFT24 of a disordered Anderson/Kond
lattice.16,17 In this approach, each conduction electron s
exchanges single particle excitations with an average ‘‘c
ity’’ bath, which is in turn self-consistently determined. Th
treatment becomes exact in the limit of infinite dimension
ity and is the natural generalization of the Curie-Weiss me
field theory of magnets to a fermionic system. Its treatm
of disorder is equivalent to the well-known coherent pote
tial approximation~CPA!.25 In an Anderson lattice descrip
tion, the localizedf electron is hybridized with its adjacen
conduction electron orbital and spatial fluctuations are p
served through the random distribution of hybridizati
strengths. The local moments are no longer independ
since their distribution self-consistently determines the c
ity bath. In addition to showing that the KDM corresponds
a rigorous limit of a microscopic Hamiltonian, the DMF
enabled the calculation of other properties such as
resistivity,16,17 dynamic magnetic susceptibility,17 optical
conductivity,26 and magneto-resistance,27 with good agree-
ment with experiments. The non-Fermi-liquid behavior
these quantities hinged on the condition thatP(TK→0)
→const. Subsequent experiments of muon spin rotatio28

and NMR in high fields29 showed some inconsistencies wi
the KDM/DMFT, suggesting that intersite correlation
which are absent from that approach, may play a crucial
at the lowest temperatures. However, annealing studies
12510
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further emphasized that the consideration of disorder effe
is indispensable.30

Despite its success, the KDM/DMFT description suffer
from a basic deficiency, which can be ascribed to its extre
sensitivity to the bare disorder distribution. Indeed, the c
nection between the distribution ofJ and the distribution of
Kondo temperatures is too rigid and a proper descript
always relies on fine tuning. In particular, discrete distrib
tions of bare parameters can never generate aP(TK) such
thatP(TK→0)→const. Likewise, power law distributions o
TK are often necessary and it is not clear how they can
obtained within the KDM/DMFT.

More recently, two of us have pointed out that this can
solved through the inclusion of localization effects. From
basic theoretical point of view, the importance of this mo
fication is unquestionable. Disorder scatters the conduc
electrons giving rise to spatial fluctuations in their wa
function amplitude. These Anderson localization precur
effects in turn give rise to fluctuations of the conducti
electron local DOS. The Kondo temperatures are exponen
functions of the local DOS and will show a wide distributio
for mild disorder strengths,even in the absence of fluctua
tions in J.31 In addition, direct experimental determination
the distribution of J from x-ray absorption fine-structur
~XAFS! experiments in UCu52xPdx have shown that addi
tional conduction electron disorder is necessary for the in
pretation of the results within the KDM/DMFT.32,33 Finally,
the addition of localization effects has proved to be just
necessary ingredient for the elimination of the extreme s
sitivity to the bare disorder and for a much more univer
description.

The average cavity bath of the DMFT, however, co
pletely neglects DOS fluctuations and a more general tr
ment is necessary. Progress could be made by means o
statistical dynamical mean field theory~statDMFT!, which
incorporates the full distribution of the conduction electr
local DOS, while keeping the treatment of local correlatio
already present in the DMFT.34,35 The treatment involves
solving a fully self-consistent loop: thef-electron fluid gives
rise to an effective disorder potential for the conduction el
trons, while the latter’s DOS fluctuations determine the d
tribution of Kondo temperatures. We enumerate the m
conclusions of our analysis:18,19

Universality.The distributions of several physical quan
ties ~Kondo temperatures, local DOS off and conduction
electrons, scatteringT matrices! assume a universal log
normal form for weak to moderate disorder, irrespective
the form of the bare distribution. We have verified this f
Gaussian, square and discrete bare distributions of con
tion electron on-site energies and hybridization streng
This is in contrast to the KDM/DMFT results and reflects t
mixing of many different sites connected by the extend
conduction electron wave function.

Electronic Griffiths phase.Increasing the disorder gene
ates wideTK distributions, leading to a Griffiths phase wit
non-Fermi-liquid behavior. This Griffiths phase is not tied
any magnetic phase transition but is electronic in origin: i
generated by the precursors to the Anderson localiza
transition.
4-2
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Metal-insulator transition.There is an Anderson-type lo
calization transition at a critical value of the conduction ele
tron diagonal disorder.

Nonmonotonic conductivity as a function of the disord
The typical conduction electron DOS, which vanishes at
localization transition and serves as a measure of the
ducting properties shows a counterintuitive nonmonoto
behavior as a function of disorder for a wide range of filling
This surprising feature originates in the interplay betwe
the bare and thef-electron disorder potentials and is tied
the proximity to the Kondo insulating~pseudo!gap.

~2! Magnetic Griffiths phase scenario.An alternative the-
oretical scenario for disorder-induced non-Fermi liquid b
havior is the magnetic Griffiths phase.36–38 In the vicinity of
magnetic phase transitions disorder fluctuations induce
regions with an enhanced local critical temperature. Th
large clusters are ordered on the scale of the correla
length and act as effective spins. Though rare in occurre
they carry a considerable amount of magnetic entropy
the overall effect is the appearance of singular, thermo
namic responses. This magnetic Griffiths phase picture
been advocated as a source of NFL behavior in disorde
heavy fermion systems.37 However, very recent results see
to point to several difficulties encountered when this scen
is applied to experimental systems, as follows.

The entropy problem.The amount of magnetic entrop
observed experimentally in most disordered heavy ferm
systems seems much too high to be compatible with
magnetic Griffiths phase picture. Taking the measured s
cific heat of, say, UCu52xPdx , we estimate that about 5% o
the sample would have to participate in the spin-1

2 clusters.
This implies an average cluster separation of 2-3 lattice c
stants, ruling out cluster sizes exceeding this distance. T
small clusters suggest instead that the ‘‘unquenched’’ lo
ized moments of the KDM/DMFT or the electronic Griffith
phase offer a much more natural explanation.

Effects of dissipation.Other important limitations of the
magnetic Griffiths phase scheme have also been empha
in recent work by Millis, Morr, and Schmalian,39 who have
carefully examined the effects of dissipation caused by
metallic bath. This work suggests that the dissipation cau
by itinerant electrons is so pronounced that quantum tun
ing of even moderately sized magnetic clusters will be s
pressed. Although the emergence of a magnetic Griffi
phase is a well established phenomenon in disorderedinsu-
lating magnets, this result seems to bring into question
relevance to itinerant systems.

~3! Spin glass precursors.Finally, another possibility is to
invoke the proximity to a spin glass quantum phase tra
tion. Several theoretical schemes predicting non-Fermi liq
behavior in the vicinity of a spin-glass quantum critical po
have been proposed.40–42 Spin glass phases have been ide
tified in the phase diagram of some heavy fermion allo
(UCu52xPdx , for x.1.5)43 and structurally disordered com
pounds (URh2Ge2).44 More interestingly, evidence of glass
dynamicsin the absence of freezingat very low temperatures
has been seen in UCu52xPdx(x51,1.5)45 and
Ce(Ru0.5Rh0.5)2Si2,15,46 with conflicting results pointing to a
very low freezing temperature in UCu3.5Pd1.5.43 These ex-
12510
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periments seem to suggest that, if there is a true spin g
transition, freezing temperatures arestrongly suppressedin a
wide portion of the phase diagram.

II. THE MODEL AND ITS SOLUTION

A. The statistical dynamical mean-field theory

A simplified Hamiltonian capable of capturing the esse
tial physics of disordered metals with localized moments
provided by a disordered Anderson lattice

H5Hc1H f1Hhyb, ~1!

where

Hc52t (
^ i j &s

~cis
† cj s1H.c.!1 (

j s
~e j2m!cj s

† cj s , ~2!

H f5 (
j s

Ef f j s
† f j s1U (

j
f j↑

† f j↑ f j↓
† f j↓ , ~3!

Hhyb5 (
j s

~Vj f j s
† cj s1H.c.!. ~4!

In Eqs.~2!–~4!, cj s ( f j s) annihilates a conduction (f ) elec-
tron on sitej with spin projections, t is the nearest neighbo
hopping amplitude,m is the chemical potential,U is the
f-site Coulomb repulsion,Ef is the f-energy level, and we
introduce random conduction electron on-site energies (e j )
and hybridization matrix elementsVj . These are chosen
from given distributionsP1(e) andP2(V), taken to be either
square or Gaussian, with width and standard deviationW,
respectively. We have also studied discrete cases ofP2(V).
There is a large degree of uncertainty as to a realistic mo
of disorder for heavy fermion alloys. A rather thorough stu
of the local f-site environment in the alloys UCu52xPdx (x
51 and 0.5) was carried out in Refs. 32,33 through XA
experiments. These authors were able to determine
amount of Pd/Cu site interchange as well as the U-Cu b
length distributions. In order to accommodate both types
fluctuations one must, in principle, allow for a distribution
both hybridization strengthsand on-site conduction electron
energies. On the other hand, when the local moments
randomly replaced by non-magnetic elements~the so-called
‘‘Kondo holes’’!, spatial fluctuations ofEf should also be
included.17 Throughout the paper, we use the half bandwid
D as energy unit. For the Bethe lattice~to be introduced
later!, D52A2t if the coordination number is 3. This shoul
be contrasted to Ref. 18, whereW is measured in units oft.
Note also that thef-level energyEf is always measuredrela-
tive to the chemical potential. This is to ensure that, by mak
ing it negative and large enough in absolute value, we alw
work in the local moment/Kondo regime.

We worked within the framework of the statDMFT.34,35

This treatment is able to incorporate both strong local co
lations and Anderson localization effects in a fully se
consistent fashion. Although the method has been descr
before in the context of the disordered Hubbard model,35 we
will briefly review it with the dual goal of setting the nota
4-3
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tion and extending it to the disordered Anderson lattice
starts by focusing on a generic unit cellj of the lattice, con-
taining anf site and its adjoining conduction electron Wa
nier state, and writing its effective action in imaginary tim
as

Seff~ j !5Sc~ j !1Sf~ j !1Shyb~ j !, ~5!

Sc~ j !5 (
s

E
0

b

dt E
0

b

dt8cj s
† ~t!@d~t2t8!~]t1e j2m!

1Dc j~t2t8!#cj s~t8!, ~6!

Sf~ j !5 E
0

b

dtF(
s

~]t1Ef ! f j s
† ~t! f j s~t!

1Unf j↑~t!nf j↓~t!G , ~7!

Shyb~ j !5 (
s

E
0

b

dt@Vj f j s
† ~t!cj s~t!1H.c.#, ~8!

wherenf j s5 f j s
† f j s . In writing Eqs.~5!–~8!, a simplification

has been made of retaining only quadratic contributions
fermionic fields after integrating out the other sites~in addi-
tion to the instantaneous Hubbard term!, very similar to the
usual dynamical mean-field theory.24 The bath~or ‘‘cavity’’ !
function Dc j(t) in Eq. ~6! is given by

Dc j~t!5t2 (
l ,m51

z

Gclm
( j ) ~t!, ~9!

where the sum extends over thez nearest neighbors and

Gclm
( j ) ~t!52^T@cms~t!cls

† ~0!#& ( j )

is the Green’s function for propagation from neare
neighbor sitel to nearest-neighbor sitem, calculated with the
site j removed. Integrating out the remaining conducti
electron cj s , we get the effective action of an auxiliar
single-impurity Anderson model at each sitej

Simp~ j !5 (
s

E
0

b

dt E
0

b

dt8 f j s
† ~t!@d~t2t8!~dt1Ef !

1D f j~t2t8!# f j s~t8!1 E
0

b

dtUnf j↑~t!nf j↓~t!,

~10!

where the hybridization function for thef site is, in Matsub-
ara frequency space,

D f j~ ivn!5
Vj

2

ivn2e j1m2Dc j~ ivn!
. ~11!

The solution of this impurity problem is the major difficult
in this treatment. We implemented two different methods
solution, which will be expanded upon in the next subs
tions. The aim is to calculate the localf-electron Green’s
function
12510
It

n

-

f
-

Gf j
loc~t!52^T@ f j s~t! f j s

† ~0!#&, ~12!

under the dynamics dictated by Eq.~10!. It is conveniently
parametrized by its self-energy

Gf j
loc~ ivn!5

1

ivn2Ef2D f j~ ivn!2S f j~ ivn!
. ~13!

It is also convenient to define a local conduction electr
Green’s function

Gc j
loc~t!52^T@cj s~t!cj s

† ~0!#&, ~14!

such that

Gc j
loc~ ivn!5

1

ivn2e j1m2Dc j~ ivn!2F j~ ivn!
, ~15!

where

F j~ ivn!5
Vj

2

ivn2Ef2S f j~ ivn!
. ~16!

We note that theF j ( ivn) function describes the local sca
tering of the conduction electrons off thef shell at sitej,
incorporating information about both elastic and inelas
processes.

All the information a generic sitej has about the rest o
the lattice is encoded in the bath function~9!, which should
be viewed as a functional of the conduction electron latt
Green’s function. Since a fully analytical treatment is impo
sible, we have to solve the equations numerically. For t
purpose, we formulated the problem on a Bethe latti
where things are considerably simplified as explained in R
35. In this case, nearest neighborsl and m become discon-
nected oncej is removed and only local Green’s function
survive

Gclm
( j ) ~ ivn!5d l ,mGcll

( j )~ ivn!5d l ,mGcl
loc( j )~ ivn!.

Finally, these last objects can be computed from an actio
site l in almost all aspects identical to Eqs.~5!–~8!, the only
difference now being that the bath function sum runs o
the z21 nearest neighbors~here labeled bym) only

Dcl
( j )~ ivn!5t2 (

m51

z21

Gcm
loc(l )~ ivn!. ~17!

Note that, on the right-hand side, we do not need to spe
that sitej has been excluded as the removal ofl completely
disconnects sites labeled bym from site j ~this property
is specific to the Bethe lattice!. The reappearance o
Gcm

loc( l )( ivn), whose distribution is identical to that o
Gcl

loc( j )( ivn) since all sites are equivalent, closes the lo
and establishes a recursive set of stochastic equations. W
the interaction is turned off (U50), this treatment reduce
to the well-known self-consistent theory of localization47

here generalized to a two-band lattice. When we take
coordination to infinityz→` keeping t̃ 5t/Az5const, our
treatment reduces to the DMFT of correlations a
4-4
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disorder.16,17,24 In the latter case, the disorder treatment
equivalent to the CPA,25 which has no localization transition

A full solution of Eqs. ~5!–~17! for given distributions
P1(e) and/orP2(V) involves solving an ensemble of impu
rity problems self-consistently. Physically, the conducti
electrons propagate through a disordered lattice and sc
off conduction site potential fluctuations as well asf-site
resonances. These resonances, in turn, describe the form
of localized moments, whose local Kondo temperatures fl
tuate as well, reflecting a disordered conduction sea envi
ment. Complete statistical information can in principle
obtained from the distributions of the various renormaliz
local quantities. We stress that a random distribution of a
bare parameter causes all renormalized quantities to fluct
as a result of the self-consistent nature of our treatm
Therefore, even if we include only fluctuations in the co
duction sea throughP1(e), a distribution of Kondo tempera
tures ensues.31,48 This is easily seen from the approxima
formula for the Kondo temperature in the Kondo lim
((s nf j s'1)49

TK'D expS 2
1

r j Jj
D , ~18!

wherer j is the local density of states~DOS! seen by thef
site

r j'
Im@D f j~02 ih!#

pVj
2

~19!

and Jj is the Kondo coupling constant, given in the Kond
limit by

Jj'2Vj
2S 1

uEf u
1

1

uEf1Uu D . ~20!

Even if Vj is not random, the local DOS is, because of t
denominator in Eq.~11!. As a result of the strong exponenti
dependence in~18!, even mild localization effects can b
strongly enhanced and should be seriously considered,
cially in disordered heavy fermion systems.

B. The impurity solvers

An important part of the method we employed is the s
lution of the impurity problems posed by the ensemble
effective actions given by Eq.~10! and its counterpart for a
site with one nearest neighbor removed. We concentra
mostly on two methods of solution, which we now briefl
describe: the slave boson, large-N based, mean-field theory
and second-order perturbation theory inU. In order to un-
clutter the notation, we drop in the next subsections the
index j and the superscript loc. Details of the numerical tre
ment are given in the Appendix.

1. Slave boson mean-field theory

This method gives a good description of the low tempe
ture, Fermi liquid regime of the Anderson impurity proble
in the limit U→` and is extensively covered in th
literature.21,22 Its main advantage is the ability to capture t
zero temperature fixed point correctly as well as the ex
12510
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nential nature of the low energy scale. Its treatment of
self-energy, however, does not incorporate inelastic p
cesses to leading order. In addition, it has a spurious ph
transition at a finite temperature, where in reality the
should be only a smooth crossover. For these reasons
confine it to the zero temperature limit, where it is a use
guide. As applied to our problem, the method has been
scribed in Appendix D of Ref. 17 and we will merely sta
the results, generalized to the Matsubara frequency axis
at T50. The localf-electron Green’s function is given by

Gf~ iv!5
q

iv2e f2qD f~ iv!
~21!

[qGf
qp~ iv!, ~22!

where the last equality defines the localf-electronquasi par-
ticle Green’s function and the variational parameterse f
~renormalizedf energy! andq ~quasiparticle residue! are de-
termined from the solution of the set of equations

e f2Ef1 E
2`

` dv

p
D f~ iv!Gf

qp~ iv!50, ~23!

q1 E
2`

` dv

p
eivhGf

qp~ iv!51. ~24!

Using

E
2`

` dv

p
eivhIm@Gf

qp~ iv!#51,

Eqs.~23!–~24! simplify to

2 E
0

` dv

p
Re@D f~ iv!Gf

qp~ iv!#5Ef2e f , ~25!

q12 E
0

` dv

p
Re@Gf

qp~ iv!#50. ~26!

Equation~16! becomes in this approximation

F~ iv!5
qV2

iv2e f
. ~27!

2. Second-order perturbation theory

The perturbative solution of the single-impurity Anders
model with particle-hole symmetry was thoroughly analyz
by Yamada and Yosida.50–53 The series expansion inU for
physical quantities such as the specific heat and the
susceptibility converges very fast and even second-orde
sults can be useful.54 Extension of the perturbative treatme
to the case without particle-hole symmetry poses consid
able difficulties. A particularly useful proposal is the use
an interpolative self-energy which recovers the atomicV
→0) and high frequency limits.55 Further improvements o
the method were later suggested.56,57

The procedure consists in defining an unperturb
f-electron Green’s function
4-5
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Gf
(0)~ ivn!5

1

ivn1m̃2D f~ ivn!
, ~28!

with a new parameterm̃ to be determined later, which van
ishes at particle-hole symmetry. The interacting Gree
function is given in Eq.~13!. The interpolative self-energy
is56,57

S f~ ivn!5Un1
AS (2)~ ivn!

12BS (2)~ ivn!
, ~29!

where

n5T (
vn

eivnhGf~ ivn! ~30!

and

S (2)~ ivn!52U2 E
0

b

dteivnt@Gf
(0)~t!#2Gf

(0)~2t!.

~31!

The last equation~31! is the usual second order diagra
using the unperturbed Green’s function~28! for the internal
lines. The parametersA and B are determined by imposin
the high frequency and atomic limits, respectively, and
given by56

A5
n~12n!

n0~12n0!
, ~32!

B5
~12n!U1Ef1m̃

n0~12n0!U2
, ~33!

where

n05T (
vn

eivnhGf
(0)~ ivn!. ~34!

Different schemes have been proposed in order to fix the
parameterm̃.55–57 At zero temperature, one can ensure th
the low energy Fermi liquid behavior is obtained by impo
ing the Friedel sum rule.56 This procedure cannot be easi
generalized to finite temperatures, however. One option i
fix m̃ at its zero temperature value even at finite tempe
tures. Alternatively, one can require at any temperature55

n5n0 , ~35!

which makesA51. Finally, a third possibility is imposing
m̃5m.57 These three alternatives have been rather caref
compared in Ref. 57 atT50 and checked against exact d
agonalization. The first two methods were shown to be
most equivalent whereas the third one is inferior. Moreov
comparisons at finite temperatures with Quantum Mo
Carlo results confirmed the adequacy of imposing Eq.~35!.58

Specific applications to a clean Anderson lattice model f
ther corroborated this conclusion.59,60 Thus, our results were
based on imposing condition~35!. It should be remembered
however, that the perturbative solution predicts a charac
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istic energy scale that isquantitativelyincorrect at large val-
ues ofU, since it is unable to capture the correct exponen
dependence. Nevertheless, for moderate interactions, it
gives reasonable results. Within its limitations, this pertur
tive scheme is a relatively flexible low-cost tool to tackle t
impurity problem with the great advantage of being able
naturally account forinelasticprocesses.

We note that a direct comparison between the slave bo
mean field theory results and second order perturba
theory is not possible because the former is limited to
U→` limit, which is obviously outside the region of valid
ity of the latter. The main interest of an analysis of bo
methods, however, resides in the exploration ofthe impor-
tance of inelastic processes, which are absent in the slav
boson mean-field treatment.

III. SLAVE BOSON MEAN-FIELD THEORY RESULTS

We now present the results obtained atT50 using the
slave boson mean-field theory as an impurity solver. Mos
our results were obtained for a uniform distribution of on-s
conduction electron energies

P1~e!5
1

W
; ueu<

W

2
.

In Sec. III C we also show results for a discrete distributi
of hybridization strengthsP2(V).

A. Conduction electron typical density of states

To understand the overall behavior as a function of dis
der, it is instructive to consider the transport properties of
conduction electrons. Since there are no interactions am
them in our model, their behavior is that of a disorder
noninteracting electron system. There are two sources of
order, as can be seen in Eq.~15!: fluctuations of the local
on-site energiese j and of thef-shell resonances described b
F j ( ivn). They are not independent, however, since they
inextricably tied by self-consistency. Their combined effe
acts to decrease the conduction electron mobility.

1. Typical density of states: an order parameter for localization

A useful measure of this mobility is given by thetypical
value of the local escape rate. This is encoded in the im
nary part of the local conduction electron Green’s functi
~the local DOS! at zero frequencyrc j5(1/p)Im@Gc j

loc(0
2 id)#. We will, from now on, drop the superscript denotin
the removal of a nearest neighbor so as to lighten the n
tion. As shown originally by Anderson, the typical value
the local DOS vanishes when the electrons are localized
can be viewed as an order parameter for the localiza
transition.61 A convenient way of accessing the typical valu
is furnished by the geometric average

rc
typ5 exp$ ln rc j%, ~36!

where the overbar denotes a disorder average. By cont
the arithmetic average
4-6
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rc
av5rc j ~37!

is finite at the transition. A thorough analysis of the critic
behavior of the local DOS distribution in the noninteracti
Bethe lattice localization problem was carried out in Ref.
In Fig. 1 we show the typical conduction electron DOS a
function of disorder for several values of the chemical p
tential.

2. Proximity to the Kondo insulator

We can identify three qualitatively distinct behaviors19

For m&20.4 and form*0.5, rc
typ is a monotonically de-

creasing function of disorder. Form'0.1, the clean system
is a Kondo insulator63,64 and rc

av5rc
typ50. As disorder is

introduced in the Kondo insulator,rc
typ initially increases,

reaching a maximum at aboutW'1.5, after which it de-
creases monotonically. Finally, for20.3&m&0.1 and 0.1

FIG. 1. Typical conduction electron density of states as a fu
tion of disorder strength for several values of the chemical poten
m, using slave boson mean field theory as the impurity solver.
usedEf521, V50.5, except for the thick solid line in~a!, which
is for V50.
12510
l

.
a
-

&m&0.4 rc
typ initially decreases, passes through a minimu

aroundW'0.521, then increases up to a maximum at abo
W'1.5 and eventually becomes monotonically decreas
For all values ofm, the typical DOS vanishes at a disorde
induced metal insulator transition~MIT ! at WMIT'4.5.

These distinct behaviors can be traced back to how c
the clean system is to the Kondo insulator point63,64 at m
'0.1.19 If we start from the clean insulator, the introductio
of disorder acts to create states inside the gap, thus incr
ing the DOS at the chemical potential. This increase con
ues until the gap is essentially washed out and the sys
becomes a bad metal. After that, localization intervenes
rc

typ starts to decrease towards the MIT.
For fillings close to but not at the Kondo insulator poin

the clean system is a heavy fermion metal atT50. The f
resonances@F(v)# coherently scatter the conduction ele
trons creating a strongly renormalized Fermi liquid. In t
slave boson treatment,F(v) diverges atv5e f , see Eq.
~27!, corresponding to the limit of unitary scattering, with
maximally allowed phase shiftd5p/2. We can view its
value at the Fermi levelF(0)52qV2/e f ~which is real at
T50) as an effective potential coming from thef electrons.
The closer the system is to the Kondo insulator, the larger
value of F(0), the insulator being signaled by the dive
gence of this quantity~or equivalently bye f50). The effect
of disorder is to immediately start generating spatial fluct
tions of thef resonances, with different phase shift values
the chemical potential. Proximity to the insulator implie
large, random, almost unitary scattering potentials. As a
sult, metallic coherence is efficiently destroyed and the ty
cal conduction electron DOS is strongly suppressed.18,19The
important role played by the unitary scatterers was emp
sized in Refs. 19 and 18, where the distributionP$1/@F(0)#%
was directly computed and its weight at 1/F(0)50 was
shown to correlate with the destruction of coherence.

There is another equivalent way of understanding th
effects. For small dopings away from the Kondo insulat
carriers are introduced at theedgesof the valence or conduc
tion bands defined by the Kondo insulator gap, which hav
small DOS~in the Bethe lattice, band edges have a squ
root shape as in three dimensions!. As has been known for a
long time, a region of small DOS is particularly sensitive
localization effects introduced by disorder.

As in the previous case, further increase of disorder a
to wash out the nearby Kondo pseudogap and the beha
then becomes very similar to the disordered Kondo insula
We thus have a region with a rather nonintuitive increas
rc

typ , which can be ascribed to the proximity to the Kond
insulator fixed point. The behavior at fillings well away fro
the Kondo insulator is much less influenced by t
pseudogap, see Fig. 1 form560.5. Although there is a rapid
initial decrease ofrc

typ , followed by a much slower depen
dence, the typical DOS does not exhibit the unconventio
increase with disorder observed at other fillings.

3. Role of the hybridization strength

It is interesting to note that the critical value of disord
for the MIT WMIT depends on the hybridization strength.

-
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e

4-7



o

th
w

th

f
r
h
io

s
s.
d

a

e
f

it
n
he

nc

ve

field

M. C. O. AGUIAR, E. MIRANDA, AND V. DOBROSAVLJEVIĆ PHYSICAL REVIEW B 68, 125104 ~2003!
Fig. 2, we show the disorder dependence of the typical c
duction electron DOS for different values ofV. There is
hardly any change inWMIT as we go fromV50 to V50.5
~see also Fig. 1!. However, forV50.75, the critical disorder
strength is clearly enhanced. This figure also illustrates
nontrivial nature of the self-consistency. Indeed, the t
types of disorder coming from fluctuations ine j andF j are
clearly not independent, since theaddition of f-site disorder
as we turn onV from 0 to 0.75 acts toincreasethe mobility
for W*2.8. The self-consistently determined solutions of
impurity problems effectively helpscreen the conduction
electron disorder. Note also how an increased value oV
pushes the ‘‘dip-hump’’ structure to higher values of diso
der. Since the Kondo insulating gap increases with the
bridization strength, this is consistent with our explanat
for the nature of this nonmonotonic behavior.

B. Distribution of the conduction electron local density
of states

One of the great advantages of the present approach i
possibility of monitoring complete distribution function
Many of the features exhibited in Figs. 1 and 2 can be
rectly read off the distribution ofprc5Im@Gc

loc(02 id)#.
We show this by plottingP$ log10Im@Gc

loc(02 id)#% for sev-
eral disorder strengths and different chemical potential v
ues in Fig. 3. It follows from the definition ofprc

typ , Eq.
~36!, that it is obtained by raising 10 to the power of th
average of this distribution~we use powers of 10 for ease o
computation!. For weak disorder in the metallic cases@Figs.
3~a! and ~b!, P$ log10Im@Gc

loc(02 id)#% is approximately
Gaussian,even though the bare disorder is uniform, a feature
shared by several physical quantities.18,19 This is due to the
presence of correlations between many distant lattice s
mediated by the extended conduction electron wave fu
tion, which introduces a sort of averaging effect. In t

FIG. 2. Typical conduction electron density of states as a fu
tion of disorder strength for different values of hybridizationV,
using slave boson mean field theory as the impurity sol
(Ef521 andm50).
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FIG. 3. Distributions of the logarithm of Im@Gc
loc(02 id)# for

several values of disorder strength, using slave boson mean
theory as the impurity solver:~a! m520.5, ~b! m50, and~c! m
50.1 (V50.5, Ef521).
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LOCALIZATION EFFECTS AND INELASTIC . . . PHYSICAL REVIEW B68, 125104 ~2003!
Kondo insulator case@Fig. 3~c!#, however, the distribution is
not Gaussian at weak disorder. Keeping in mind th
rc50$ log10Im@Gc

loc(02 id)#→2`% in the clean Kondo
insulator, it is clear that the introduction of weak disord
has to generate weight at very smallprc . Indeed,
P$ log10Im@Gc

loc(02 id)#% shows a divergence at Im@Gc
loc(0

2 id)#'1023 for W50.35. For large values ofW the distri-
bution becomes extremely broad, spanning many order
magnitude. In the casem520.5 @Fig. 3~a!#, corresponding
to a system well away from the Kondo insulator filling, th
distribution broadens and its maximum steadily shifts
wards lower values as disorder is increased. This is to
expected from the monotonic behavior ofrc

typ . Likewise, at
m50, the nonmonotonic behavior of the typical value is a
clearly reflected inP$ log10Im@Gc

loc(02 id)#% @see Fig. 3~b!
and compare it to Fig. 1~a!#.

As we saw, at the Kondo insulating chemical potent
m50.1 and forW50.35, the distribution shows a divergen
at Im@Gc

loc(02 id)#'1023. A similar divergingtendencyis
observed atm50 @Fig. 3~b!# andW50.5. This is precisely
the disorder value where the minimum ofrc

typ occurs@see
Fig. 1~a!# and which we have been ascribing to the prese
of many unitary scatterers due to the nearby Kondo insula
The similarity between the two distributions strengthens f
ther our case for the importance of the proximity to t
Kondo insulator. Additionally and consistent with this, th
divergence is totally absent atm520.5, where the role
played by the Kondo insulator fixed point is much less i
portant.

It is also interesting to observe in Fig. 3~c!, how the
Kondo gap is washed out by disorder: atW51.4, whererc

typ

peaks@Fig. 1~a!#, most of the weight of the distribution i
already at sizeable values of the DOS and its shape is
similar to the metallic cases.

C. Distribution of Kondo temperatures

We now proceed to the analysis of the physical proper
related to the ensemble of impurity problems. As sho
before18,19 the distribution of Kondo temperatures of th
variousf sites is log normal for weak disorder, but broade
and acquires a power law shape at intermediate value
W'0.3520.7. Once this power law becomes singu
enough, a Griffiths phase is entered with diverging therm
dynamic responses.18,19

1. Universality at weak disorder

We have noticed that for weak disorder, the shape of
distribution of various quantities, including the Kondo tem
perature, is universal, irrespective of the shape of the b
distribution of disorder. A nice illustration of this effect i
given by the case where the bare disorder is adiscretedis-
tribution. As an example, we take the discrete distribution
hybridization strengthsP2(V), determined in Ref. 32 from
XAFS measurements in UCu52xPdx . The resulting distribu-
tion of log10TK is shown in Fig. 4~a!. It is continuous and has
a log-normal shape. In Fig. 4~b! we show the distribution of
TK ~smooth dot-dashed line! and compare it to the discret
distribution obtained in the DMFT~vertical solid lines!,
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which corresponds to the limit of infinite coordination. W
also include in the figure the results of the Kondo disord
model13,32~KDM ! ~vertical dashed lines!, which is very simi-
lar to the DMFT. The only differences between the KDM a
the DMFT are that, in the former, no self-consistency is i
posed and a Kondo instead of an Anderson lattice mode
used. The difference between the results of the KDM/DM
and the statDMFT is striking. The fluctuations of the condu
tion electron wave functions incorporated in the statDM
smooth out the discrete results of the DMFT into a univer
continuous form. A description of the NFL behavior with
the KDM/DMFT theory would be clearly impossible. Thi
comparison also shows that this level of hybridization dis
der alone is not able to generate non-Fermi-liquid behav

FIG. 4. ~a! Distribution of the logarithm of the Kondo tempera
ture for a discrete bare distribution of hybridizations, taken fro
Ref. 32, using slave boson mean field theory as the impurity so
~here, we uset50.5, Ef525.54, andm520.2), ~b! Comparison
between the smooth distribution of Kondo temperatures~dot-dashed
line! obtained in the statDMFT and the discrete results of DM
~vertical solid lines! and the Kondo disorder model~vertical dashed
lines!.
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even in statDMFT, since the distribution of Kondo tempera
tures goes to zero asTK→0, a point that was stressed
Refs. 32,33. However, if disorder in the conduction elect
sites,P1(e) is also included a singular behavior can be o
tained~not shown!. The inclusion of conduction electron dis
order is reasonable in UCu52xPdx , since the Cu-Pd inter
change affects bothVj ande j .

2. Emergence of the electronic Griffiths phase

In order to identify the emergence of the Griffiths pha
we next study the evolution of the distribution of Kond
temperatures as the widthW of P1(e) is varied ~with no
disorder inV). Typical results are shown in Fig. 5, corre
sponding tom50.2. As the disorder increases, we find th
the overall width, but most significantly, the size of the lo
TK tail rapidly grows. These tails assume apower-lawform
P(TK);TK

a21 , with the powera(W) being a monotonically
decreasing function of disorder. Once again, this beha
cannot be obtained in the rigid scheme of the KDM/DMF
without unjustified fine tuning. The thermodynamic respon
of the system assumes a singular, non-Fermi liquid form
soon asa<1, which happens for sufficiently strong disord
W>WNFL'0.3520.45. Since this behavior does not refle
any thermodynamic phase transition, it assumes the char
of an electronic Griffiths phase. Here, singular behav
emerges due to the presence of exponentially rare event~in
our case Kondo spins! which nevertheless provide an exp
nentially large contribution to thermodynamic and transp
properties and thus dominate the macroscopic behavio
the system. TheW dependence of the exponenta can be
easily obtained by fitting the tails of these distributions
representative behavior for several values of the chem
potential is shown in Fig. 6.

3. NFL and the proximity to the Kondo insulator

In the previous section we have seen how the proximity
the Kondo insulator plays a crucial role in determining t

FIG. 5. Distribution of the logarithm of the Kondo temperatu
for different values of disorder, using slave boson mean field the
as the impurity solver (V50.5, Ef521, andm50.2).
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disorder dependence of the localization and transport p
erties, and leads to the surprising ‘‘bad metal’’ behavior fo
wide parameter range. This was argued to reflect the
hanced sensitivity to disorder of those electronic states
are very close to the Kondo insulator, and which are m
easily affected by localization effects. We have also est
lished that NFL behavior also emerges as a result of disor
induced density of states fluctuations. It is then natural to
how sensitive this emergence of NFL behavior is to the pr
imity to the Kondo insulator, which in the clean lim
emerges only in a narrow parameter range, close~in our
case! to m;0.1.

To address this question, we have systematically inve
gated the evolution ofP(TK) as a function of the distance t
the Kondo insulator, i.e., as a function of the chemical p
tential m. The behavior for weak disorder (W50.18) is
shown in Fig. 7. Despite what one would naively expe
these result clearly demonstrate that the distributions are
broadestfar from the Kondo insulator. As we can see on th
figure, the distributions narrow down as the Kondo insula
is approached from either side. As a result, we may exp
that the critical disorder strengthWNFL necessary for the
emergence of NFL behavior shouldincreasecloser to the
Kondo insulator. This surprising result is confirmed by e
amining them dependence of the exponenta as shown in
Fig. 6. As we can see there, for a givenW, the exponenta is
indeedsmaller, and WNFL decreases for largerm ~far from
the Kondo insulator!.

At first sight, these findings seem in contradiction to wh
one may expect, since we have found that the typical den
of states decreases close to the Kondo insulator. Naively,
could then expect the Kondo temperatures to be depresse
well, leading to broader distributions and enhanced NFL
havior. On the other hand, we know that the Kondo tempe
ture remainsfinite within the Kondo insulator, despite th

ry
FIG. 6. Exponent of the power-law distribution of Kondo tem

peratures as a function of disorder for different values of the che
cal potential (V50.5, Ef521). The horizontal dashed line indi
cates the critical value for the emergence of NFL behavior, wh
P(TK)}const andx(T)}C(T)/T} ln(T0 /T).
4-10
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LOCALIZATION EFFECTS AND INELASTIC . . . PHYSICAL REVIEW B68, 125104 ~2003!
fact that the density of states at the Fermi energy vanis
there. Although surprising at first sight, this curious featu
of Kondo insulators is at present well understood. It is cal
the ‘‘strong coupling Kondo effect.’’65–67 It reflects the fact
that the Kondo screening is not determined only by el
tronic states preciselyat the Fermi energy, but also by all th
states in an energy interval of orderTK around the Fermi
energy. Indeed, the average value of the Kondo tempera
~see Fig. 7! is thehighestprecisely near the Kondo insulato
In the presence of disorder, the value of the Kondo temp
ture is determined by a certain weighted average of the d
sity of states over this extended energy interval. When lo
ization is present, only the states closest to the Kondo
band edge will be appreciably affected, but since not o
those states determineTK , the net effect is washed away. W
thus conclude that the proximity to the Kondo insulator,
contrast to transport, does not have appreciable effect on
emergence of the NFL behavior. Indeed, the critical value
disorderWNFL required for the emergence of NFL behavi
is found to have a remarkably weakm dependence.

4. Universality at strong disorder

At strong disorder we expect the density of states fluct
tions to completely wash out any trace of the Kondo gap a
in addition, to broaden the conduction band, making it v
flat and featureless. As a result, all quantities are expecte
have an extremely weakm dependence, leading to a mo
universal behavior of all quantities. Such behavior is inde
seen at sufficiently strong disorder, where the typical D
curves~Fig. 1! are seen to merge aroundW;1.4. A similar
behavior is seen in Fig. 8, which showsP(log10TK) for dif-
ferentm ’s at W51.4. This universal behavior is even mo
striking if this distribution is plotted on a log-log scale~Fig.
9!, where an almost perfect power-law tail (a;0.2) is seen

FIG. 7. Distribution of the logarithm of the Kondo temperatu
for different values of the chemical potential and fixed disorderW
50.18, using slave boson mean field theory as the impurity so
(V50.5, Ef521).
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to span several decades for all the values ofm. This is a
remarkable example of universality generated by DOS fl
tuations, completely absent in the KDM/DMFT treatment

D. Distribution of the hybridization function

A key input to the determination of the Kondo temper
ture is the hybridization functionD f( ivn) of Eq. ~11!. We
show in Fig. 10~a! the distribution of its imaginary part cal
culated at the chemical potential (ivn→02 id). Note that,
for a featureless bath, it appears in the exponential of
Kondo temperature formula, Eq.~18!, which is thus very
sensitive to it. It can be seen in Fig. 10~a! that its distribution

er

FIG. 8. Distribution of the logarithm of the Kondo temperatu
for different values of the chemical potential and fixed disorderW
51.4, using slave boson mean field theory as the impurity so
(V50.5, Ef521).

FIG. 9. Distribution of Kondo temperatures on a log-log sca
for different values of the chemical potential and fixed disorderW
51.4, using slave boson mean field theory as the impurity so
(V50.5, Ef521).
4-11
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is very regular and retains a bell-shaped structure for anyW.
It also inherits the nonmonotonic behavior observed in
conduction electron local DOS@see Fig. 1~b!#.

It is tempting to try to calculate the distribution of Kond
temperatures from the distribution of Im@D f(02 id)#, by na-
ively applying the Kondo temperature formula, Eq.~18!.
This procedure fails, however: the actual distribution ofTK
has a much lower weight at smallTK values than is predicted
by the Kondo temperature formula. The explanation for t
failure lies in the fact, already alluded to before, thatTK is
determined by a weighted average of Im@D f(v2 id)# over a
region around the Fermi level. This can be glimpsed from
strong frequency dependence of thetypical ~geometric aver-
age! hybridization function close to the chemical potenti
as shown, for frequencies on the real axis, in Fig. 10~b!. It
shows a robust and well-defined pseudogap, inherited f
the nearby Kondo insulator, and a tiny narrow peak at

FIG. 10. ~a! Distribution of the logarithm of Im@D f(0)# for
different values of disorder and~b! typical value of Im@D f(v
2 id)# as a function of frequency atW53.5, both using slave bo
son mean field theory as the impurity solver. The inset in~b! details
the behavior close to the chemical potential (V50.5, Ef521, and
m50.2).
12510
e

s

e

,

m
e

chemical potential. This narrow peak is easy to understa
spatial fluctuations due to disorder give rise to narrow pe
within the pseudogap, most typically at the chemical pot
tial. However, as we have remarked before, the Kondo te
perature can be finite even if the density of states is zero
almost zero at the chemical potential.65–67 In this case, the
spectral weight right at the chemical potential is unimport
for the determination of the Kondo temperature. It is dom
nated by a whole range of spectral density away from
Fermi level. Since far from the pseudogap region the den
of states is much larger and hence much less affected by
spatial fluctuations, the distribution of Kondo temperature
narrower than one might guess based on the distribution
Im@D f(02 id)# and the Kondo temperature formula.

When considered together, the results of Sec. III show
importance of a self-consistent solution of the problem, w
a nontrivial interplay between spatial fluctuations due to
calization and strong correlation effects. However, an imp
tant feature that is missed in the slave boson treatment o
impurity problems is the presence of inelastic scatteri
This will be considered in the next section, where we sh
the results obtained with perturbation theory in the inter
tion.

IV. PERTURBATION THEORY RESULTS

We now consider the results obtained atfinite T using
second-order perturbation theory as the impurity solver.

A. Results for a fixed temperature

Figure 11 shows the results for the conduction elect
typical DOS near the Fermi level as a function of the dis
der parameterW for different values of the interaction energ
U and the hybridizationV at T50.003. In order to under-
stand them, we looked at scatter plots of realizations of
local effectivef-shell potential@real and imaginary parts o

FIG. 11. Typical density of states near the Fermi surface a
function of disorder for different values of the hybridizationV and
the interactionU, using perturbation theory as the impurity solve
Other parameters used wereT50.003,Ef521, andm50.
4-12
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F j (v'0)] and the corresponding bare potentiale j at the
same site, both seen by the conduction electrons. Thes
sults are presented for two different values of the hybridi
tion V50.3 and 0.5 and two different values of the disord
parameterW50.7 and 7 in Figs. 12–15. The other param
eters used in the calculation wereU54, T50.003,Ef
521, andm50. The figures present the results obtained
the statDMFT calculation~represented by dots! as well as the
results of DMFT~full line!, in which the disorder treatmen
reduces to CPA.17,16 It is important to notice that we hav
Im@F(v'0)#Þ0 $as Im@S f(v'0)#Þ0 at finiteT%, im-
plying the presence ofinelastic scattering, a feature absent in
the slave boson treatment of the last section. In addition,
imaginary part of the self-energy gets folded into thereal
part ofF(v) as well. This is a peculiar feature of a two-ban
model, where theeffectiveconduction electron self-energ
represented byF(v) has a real part for which inelastic pro

FIG. 12. Scatter plot of the effectivef-shell potentialF j (v
'0) and the bare potentiale j at the same site~dots! for V50.3 and
W50.7, using perturbation theory as the impurity solver:~a! real
and ~b! imaginary parts. The solid line is the DMFT result forW
50.7. Other parameters used wereU54, Ef521, T50.003, and
m50.
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cesses contribute. Thus, we should keep in mind that, e
though in an effective description of conduction electron p
cesses Re@F j (v'0)# ande j are associated with elastic sca
tering while Im@F j (v'0)# is related to inelastic processe
both Re@F j (v'0)# and Im@F j (v'0)# contain information
on f-electron collisions.

Let us compare the results forW50.7 for bothV50.3
andV50.5, which are in Figs. 12 and 13. The first observ
tion we make is that forV50.3 the values of Re@F(v
'0)# are mainly concentrated around zero, while forV
50.5 they are distributed in a wider range of values. On
other hand, the results for Im@F(v'0)# show that the in-
elastic scattering is stronger forV50.3 than for V50.5.
Concerning the results forV50.5, the great concentration o
sites with large Re@F(v'0)# explains the great decrease
the typical DOS for low disorder shown in Fig. 11. The
sites act as almost unitary scatterers, which give rise t
maximally allowed scattering phase shift (d5p/2) for the

FIG. 13. Scatter plot of the effectivef-shell potentialF j (v
'0) and the bare potentiale j at the same site~dots! for V50.5 and
W50.7, using perturbation theory as the impurity solver:~a! real
and ~b! imaginary parts. The solid line is the DMFT result forW
50.7. Other parameters as in Fig. 12.
4-13
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conduction electrons, and represent droplets of Kondo in
lator within the metal, in close parallel to the slave bos
results discussed of Sec. III.18,19 For V50.3, although the
inelastic scattering is stronger, it cannot compensate for
much narrower distribution of Re@F(v'0)#. Thus, the
DOS does not decrease as fast as forV50.5.

As the disorder increases to intermediate valuesW
'1.8), the distribution ofe becomes larger, causing a stea
decrease in the typical DOS forV50.3. However, forV
50.5, the typical DOS presents a nonmonotonic beha
similar to the slave boson results for20.3&m&0.1 and
0.1&m&0.4. As we explained in Sec. III, this is a result
the fact that, as the disorder increases, the concentratio
unitary scatterers first increases, then saturates and the
disorder dominates over thef-related one@F j (v)#.18,19 In-
deed, even forV50.3 we notice the presence of a slig

FIG. 14. Scatter plot of the effectivef-shell potentialF j (v
'0) and the bare potentiale j at the same site~dots! for V50.3 and
W57, using perturbation theory as the impurity solver:~a! real and
~b! imaginary parts. The solid line is the DMFT result forW57.
Other parameters as in Fig. 12.
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‘‘shoulder’’ in the typical DOS aroundW51.1, whose origin
is the same as that of the non-monotonic behavior aV
50.5. We call attention to the slave boson results of Fig
which similarly show that a decrease of the hybridizati
strength moves the ‘‘dip-hump’’ feature to smaller disord
values. Moreover, as the current calculation was done a
nite temperature, inelastic scattering also plays some rol
smoothing out this feature.

As the disorder continues to increase and the distribu
of e becomes broader, the typical DOS for bothV50.3 and
V50.5 decreases. These results tend to the noninterac
one, as is expected if only the bare disorder plays a r
Indeed, comparing the results forW57 ~Figs. 14 and 15! we
notice that the realizations for which the bare disordere is
large have Re@F(v'0)# around zero, meaning that the re
part of thef-shell disorder is not important. In addition, th

FIG. 15. Scatter plot of the effectivef-shell potentialF j (v
'0) and the bare potentiale j at the same site~dots! for V50.5 and
W57, using perturbation theory as the impurity solver:~a! real and
~b! imaginary parts. The solid line is the DMFT result forW57.
Other parameters as in Fig. 12.
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values of Im@F(v'0)# are small for these realizations. I
the case of the realizations for whiche is small, Re@F(v
'0)# attains values that are larger than the results forW
50.7 ~cf. Figs. 12 and 13!.

The above discussion has focused on the conduction e
tron viewpoint. Let us now consider how the presence
disorder ine is seen by thef electrons. For the auxiliary
one-impurity problem, the important scale is the Kondo te
peratureTK , which measures the coupling between the i
purity and the conduction electron bath. The presence of
order in e generates a distribution ofTK , as we have seen
before. Thus at finite temperature some of the sites h
TK.T, forming a singlet state with the bath, while the sit
for which TK,T represent an almost free spin, scatteri
conduction electrons incoherently. This incoherence is c
acterized by a large amount of inelastic scattering, signa
by a significant imaginary part of the self-energy. Going ba
to the results forW50.7, the fact that the inelastic scatterin
is stronger forV50.3 than forV50.5 reflects the large
number of incoherent sites~with TK,T) in the former, since
the smaller the hybridization, the smaller the Kondo te
perature@see Eqs.~18! and~20!#. On the other hand, the site
with large Re@F(v'0)# for V50.5, which are responsibl
for the great decrease in the typical DOS, represent sites
TK.T.

Figure 11 also shows the results for the typical DOS
U52 andV50.5. In this case, the system has particle-h
symmetry in the clean limit, presenting a gap in its DOS~the
Kondo insulator!. This explains the fact that for small diso
der the typical DOS decreases asW decreases. The overa
behavior here bears strong similarity with the slave bo
results of Fig. 1~a! ~circles! and the explanation for it ha
been given in Sec. III.

B. Temperature dependence

Figure 16 presents the results for the typical DOS a
function of W for different temperatures. The other param
eters used wereU54, V50.3, Ef521, andm50. Here is
where the interplay between inelastic and elastic proce
proves to be fairly nontrivial and the use of a technique t
incorporates both, such as perturbation theory, is cruc
First we note that for the lowest disorder value (W50.25),
the typical DOS decreases with increasing temperature.
is made more clear in the inset. On the other hand, forW
51.4, this tendency is reversed. Finally, in between th
two extremes, the temperature dependence can be nonm
tonic. A better sense of the overall behavior can be gras
by plotting the inverse of the typical DOS as a function ofT
for different values ofW, as shown in Fig. 17. It is clear tha
for 0.7<W<1.2, the inverse typical DOS shows a peak a
function ofT, which gradually moves to zero temperature
disorder is increased.

The temperature dependence of the typical DOS can
rationalized by looking at the corresponding changes in
distribution ofF(v'0). For this purpose, we focus on th
disorder value ofW50.7, for which 1/prc

typ has a clear
maximum atT'0.0005. We show in Figs. 18 and 19 th
scatter plots ofF(v'0) at T50.0001 andT50.0005, re-
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spectively, which should be compared to the higher tempe
ture results (T50.003) of Fig. 12. From Fig. 17 we see th
the inverse typical DOS increases as we go fromT
50.0001 toT50.0005 and then decreases as the tempera
is varied up toT50.003. As can be seen from the figure
this nonmonotonic behavior is governed by the effect
f-disorder encoded in the distribution of Re@F(v'0)#. In-
deed, its variance increases fromT50.0001 toT50.0005
but decreases fromT50.0005 toT50.003. Note that the
imaginary part ofF(v'0) always increases with increasin
temperature, reflecting the enhancement of inelastic p
cesses. In terms ofTK , this is the same as saying that as t
temperature increases the number of sites withTK,T, which
have a stronger inelastic scattering, becomes larger. H

FIG. 16. Typical density of states near the Fermi surface a
function of disorder for different values of temperature, using p
turbation theory as the impurity solver. Other parameters used w
U54, V50.3, Ef521, andm50.

FIG. 17. Inverse typical density of states near the Fermi surf
as a function of temperature for different values of disorder, us
perturbation theory as the impurity solver. Other parameters a
Fig. 16.
4-15
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ever, in the interval from aboutT50.0005 up toT50.003,
the increase of Im@F(v'0)# is outweighedby the narrow-
ing of the distribution of Re@F(v'0)#, which is the domi-
nant contribution. The above analysis can be similarly
tended to the other values of disorder shown in Fig. 17.

All along we have been using the typical DOS as a m
sure of the conducting properties of the system. This is
tified by its interpretation as a escape rate from a lattice
and the fact that it vanishes at the localization transition61

Ideally, one would like to calculate the conductivity instea
This is a difficult task in the present scheme, however,
though an approximate calculation can be performed, wh
becomes accurate close to the localization transition.68,69 It
requires the calculation of the propagator between two
ferent sites, which goes beyond our current method, wh
focus is on local Green’s functions only. Even in view of a
these caveats, however, it is tempting to use the inverse
cal DOS as an approximate measure of the resistivity, e

FIG. 18. Scatter plot of the effectivef-shell potentialF j (v
'0) and the bare potentiale j at the same site~dots! for T
50.0005 andW50.7, using perturbation theory as the impuri
solver:~a! real and~b! imaginary parts. The solid line is the DMF
result forW50.7. Other parameters as in Fig. 16.
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cially far from the weakly disordered region (W.0.35). If
this is done, then the fanning out of the ‘‘resistivity’’ curve
of Fig. 17 asT→0 is reminiscent of the Mooij correlations,23

originally observed in disordered transition metal alloys, b
which are also seen in heavy fermion alloys,70 doped Kondo
insulators,71–73 and even in two-dimensional systems as
the metal-oxide-semiconductor field-effect transistors.1 Our
results and the discussion above show that the interplay
tween localization effects and electron-electron interacti
can give rise to the Mooij correlations, without the need
invoke other sources, such as electron-phon
interactions.68,74 In addition, we have pointed out how th
rapid drop in the typical DOS is a consequence of the pr
imity to the Kondo insulator, a region where localizatio
effects are particularly large. Taken together, these obse
tions point to a close connection between Mooij correlatio
and localization effects in the vicinity of a Kondo or a Mo
insulator. It would be interesting to test these ideas by

FIG. 19. Scatter plot of the effectivef-shell potentialF j (v
'0) and the bare potentiale j at the same site~dots! for T
50.0001 andW50.7, using perturbation theory as the impuri
solver:~a! real and~b! imaginary parts. The solid line is the DMFT
result forW50.7. Other parameters as in Fig. 16.
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direct calculation of the resistivity within a scheme capa
of incorporating both localization and strong correlations

Finally, regarding the DMFT calculation presented in
the figures discussed in this section, we note that the res
obtained for Re@F(v'0)# fall approximately in the region
where the concentration of realizations in the statDMFT c
culation is largest. There is no reason to expect DMFT a
the statDMFT to give similar results, except at weak dis
der. Nevertheless, our results show that, surprisingly, DM
can serve as a rough guide for the most probable value
Re@F(v'0)#. There is a sizeable discrepancy, however,
tween the DMFT and the statDMFT results for Im@F(v
'0)# at the highest temperature (T50.003) and low disor-
der. The DMFT line in this case is an underestimate of
realizations obtained within the statDMFT. As the tempe
ture is lowered a better agreement is obtained. Thus, in
dition to its inherent neglect of localization effects, DMF
should be used only as a lower bound when gauging
importance of inelastic processes in disordered Anderson
tices.

V. DISCUSSION AND CONCLUSIONS

We have in this paper extensively characterized the ph
ics of disordered Anderson lattices within the statDMF
scheme, which is able to incorporate both localization effe
and the local correlations coming from electron-electron
teractions. This was done using both large-N methods and
perturbation theory for the auxiliary single impurity pro
lems. These are in a sense complementary approaches
the one hand, large-N theory is ideal for ground state prop
erties, where inelastic effects are absent. In particular, it
fords a quick and reliable way of calculating Kondo tempe
tures ~with the correct exponential dependence! and
scattering phase shifts atT50. Without 1/N corrections,
however, it is unsuitable for a finite temperature calculati
On the other hand, second order perturbation theory has
advantage of being equally flexible with the added bonus
incorporating inelastic processes and the temperature de
dence of the scattering phase shifts. Nevertheless, it fai
capture the exponential nature of the low-temperature s
of the single impurity problem. Taken together, the tw
methods have enabled us to put on firm grounds the con
sions laid out in previous work,18,19 namely, the emergenc
of an electronic Griffiths phase in Anderson lattices govern
by the proximity to the disorder-induced localization tran
tion. In particular, several inadequacies of the early Kon
disorder model~and its formulation as a dynamical mea
field theory! have been given a better theoretical basis o
localization effects were included. The self-averaging eff
introduced by the spatial fluctuations of the conduction el
tron wave functions induce a much higher degree of univ
sality than is possible in the rigid KDM description. Furthe
more, the perturbation theory treatment has also sugges
mechanism behind the ubiquitous observation of Mooij c
relations in the resistivity of disordered materials.

Even within the confines of the approximations of t
statDMFT scheme, there are still outstanding issues tha
would like to resolve. Even though a fully analytical trea
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ment is probably impossible, it might be feasible to devise
approximate parameterization of the statDMFT on the Be
lattice, specially at weak disorder. In this respect, the univ
sality of the distributions of ‘‘dressed’’ quantities, such as t
various local Green’s functions and the Kondo temperatu
which are either Gaussian or log normal is a useful guide
‘‘toy’’ model that assumes a simple form for the distributio
of Dc j( ivn) can be written down, which recovers the Gri
fiths singularities obtained in the numerical treatment.75 This
‘‘toy’’ model may prove useful for a calculation of the resis
tivity and for generalizations of the statDMFT treatment.

On the other hand, a specially important effect neglec
in the statDMFT is two-particle inter-site correlations, pa
ticularly in the spin channel. Indeed, the proliferation
poorly quenched low-TK spins in our treatment generates
large amount of entropy that must be relieved at low te
peratures through intersite correlations. Indeed, experime
evidence in favor of spin-glass dynamics at low temperatu
in UCu52xPdx

45and URh2Ge2
44 makes the inclusion of inter

site correlations more pressing. A promising avenue of att
would be to remain true to the spirit of the DMFT and use
extended version. Several treatments along these lines
been attempted.41,42,76The challenge in our case is to inco
porate both the dynamical intersite correlations of the la
treatments and the spatial fluctuations of Kondo temperat
of the electronic Griffiths phase we find in our approach. W
defer the discussion of this problem to a future publicatio
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APPENDIX: BRIEF DESCRIPTION
OF THE NUMERICAL METHOD

The set of stochastic equations defined in Eqs.~5!–~17!
must be solved in two steps. First, action~5!–~8! is solved
with the bath function withz21 nearest neighbors defined
Eq. ~17!. This determines self-consistently the distribution
local conduction electron Green’s functions with one near
neighbor removedGcl

loc( j )( ivn). Next, the same action~5!–
~8! is solved, this time with the bath function in~9!, con-
structed from the previously determinedGcl

loc( j )( ivn). This
step involves no self-consistency and yields the distribut
of Gc j

loc( ivn) as output. Since the latter bath function is a su
over z nearest neighbors its statistical fluctuations are
duced compared to the former one. Thus,Gc j

loc( ivn) is more
narrowly distributed thanGcl

loc( j )( ivn). Yet, we expect the
qualitative behavior to be the same. We have therefore
cused on the first step of the procedure only.

For a given impurity solver, this disordered Bethe latti
problem was solved forz53, by sampling the distribution o
Gc j

loc(l )( ivn) from an ensemble ofN sites, as proposed origi
4-17
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nally in Ref. 47. We have generally usedN5702100 since
we have checked that the results do not change by ta
N5200. We have thus determined the distribution of vario
local properties.

The equations were solved on a discrete mesh along
Matsubara axis. The mesh is set by the Matsubara freq
cies in the perturbative treatment at finite temperatures
by an arbitrary finite discrete mesh in the slave boson m
field theory atT50 ~up to 32 000 points!. The choice of the
imaginary frequency axis is due to a greater numerical
bility. When the disorder is strong, the various Green’s fu
tions show large fluctuations. However, these are much m
pronounced on the real frequency axis, where they give
to several peaks and gaps.

The slave boson treatment consists in finding the t
mean field parametersq and e f by solving the set of two
nonlinear Eqs.~25!–~26!. For that, we used the Powell hy
brid method. The integrals were calculated with stand
adaptive quadrature routines. Since we used a finite
quency mesh, it was important to extrapolate the value
Gf

qp( iv) with the asymptotic form 1/iv for values of v
greater than the largest mesh value. In this fashion, a w
range of Kondo temperatures is covered, going down to
most machine precision in the clean metallic case. W
od
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disorder is present a given impurity problem may not hav
solution even atT50, because the strong spatial fluctuatio
may cause the local DOS to vanish at the Fermi level. In t
case, there are two possible regimes for the impurity, wh
have been carefully analyzed.65–67 The analysis shows tha
there is a critical coupling constantVc such that the ground
state is a singlet forV.Vc ~the so-called ‘‘strong coupling
Kondo effect’’!, whereas the local moment remains u
quenched ifV,Vc . When a solution could not be found, th
corresponded to either a free spin (V,Vc) or a Kondo tem-
perature which is smaller than the smallest value we
reach with our numerical code. In either case, we setq50,
effectively decoupling the free moment from the rest of t
lattice. Yet, we were still able to span several decades
energy scales.

In the perturbative treatment, the solution of each imp
rity problem is found by solving a set of two nonlinear equ
tions forn andm̃, which is defined by Eqs.~30! and~35!. As
in the slave boson treatment we used the Powell hyb
method. The calculation of the second order correction
the self-energy involves Fourier transforms as, according
Eq. ~31!, it has a simpler form in imaginary time rather tha
in frequency space. For this, we used the fast Fourier tra
form algorithm.77
ev.
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