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Localization effects and inelastic scattering in disordered heavy electrons

M. C. O. Aguiar E. Miranda! and V. Dobrosavljevit
nstituto de Fsica Gleb Wataghin, Unicamp, C.P. 6165, Campinas, SP 13083-970, Brazil
2Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, USA
(Received 12 February 2003; revised manuscript received 17 June 2003; published 11 September 2003

We study ground-state and finite-temperature properties of disordered heavy fermion metals by using a
generalization of dynamical mean-field theory which incorporates Anderson localization effects. The emer-
gence of a non-Fermi-liquid metallic behavior even at moderate disorder is shown to be a universal phenom-
enon resulting from local density of states fluctuations. This behavior is found to have a character of an
electronic Griffiths phase, and can be thought of as a precursor of Anderson localization in a strongly correlated
host. The temperature dependence of the conducting properties of the system reveal a non-trivial interplay
between disorder and inelastic processes, which are reminiscent of the Mooij correlations observed in many
disordered metals.
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I. INTRODUCTION creases a¥V is increased. As the distribution becomes more
singular, several thermodynamic quantities become diver-
The interplay of disorder and strong correlations remaingjent, in a manner characteristic of Griffiths phafe$he
one of the least understood topics of contemporary consystem eventually localizes at a critical disorder strength
densed matter physics. These effects are believed to bew,,;. Since there is no magnetic phase transition this has
relevance to many problems that have attracted recent attebeen dubbed an electronic Griffiths phase.
tion, such as the metal-insulator transitiGdIT) in two- This initial work!®!® employed the slave boson lardl-
dimensional electron systerhsDisorder effects are also theory:?? to solve the auxiliary single-impurity problems
likely to be important for the understanding of the puzzling posed by the method. While versatile, powerful and yet com-
non-Fermi -liquid(NFL) behavior of several heavy fermion putationally cheap, this approach presents some disadvan-
compounds. In some of these systems, impurities seem totages, the main one being the difficulty of working at finite
play only a subsidiary role: the explanation for the anomatemperatures. It should be reminded that, since we deal with
lous behavior is more likely to be found in the physics of wide distributions ofT , we need to be able to describe well
quantum criticality’~” even though a complete description is the full crossover froml < Ty to T>Tg, which is not pos-
still lacking®~** However, in other heavy fermion systems, sible with the slave boson lardé-treatment. In particular,
disorder seems to play a more essential role and seems to benspicuously missing are inelastic scattering processes. In
at the origin of the NFL behavidf~*° addition, though giving a good description of the low-energy
Several attempts have been made to address theoreticalermi-liquid regime of the single-impurity problem, this
the role of disorder in heavy fermion compoun@®e an treatment does not incorporate high- and intermediate-energy
overview below. Many experimental results can be de-incoherent processes. Another impurity solver is therefore
scribed within the so-called Kondo disorder mot€DM)™  needed to assess the importance of these intrinsically finite-
or, equivalently, the dynamical mean field thedDMFT) of  and finite-energy features. A particularly useful method, able
disordered Kondo/Anderson latticE’,” at least above the to fill this gap at a reasonable computational cost, is second
lowest temperatures. Essential to this description is the corsrder perturbation theory i. We have used this method to
sideration of the full distribution of local Kondo tempera- both complement and crosscheck the slave boson results.
tures T . For sufficient disorder, it has a large weight as In addition to the results of the initial wor;'® which
Tx—0 describing the presence of dilute IoW-spins that have been confirmed by both methods, some of our main
dominate the thermodynamic and transport properties. Howeonclusions are(i) there is a subtle interplay between con-
ever, the KDM/DMFT predictions relied on a fine tuning of duction andf-electron site disorder that leads to a surprising
the bare disorder that suggested that a more accurate micraqenmonotonicdependence of the conducting properties on
scopic foundation was necessary. Conspicuously missing itisorder, a feature that is likely unique to Kondo/Anderson
this scheme were fluctuations in the conduction electron loas opposed to Hubbard modeis) localization effects are
cal density of state€DOS), a quantity that is crucial for the essential for the determination of the distribution of Kondo
determination of Tx. This was remedied by two of us temperatures and a KDM/DMFT description is clearly insuf-
through a generalization of the DMFT that incorporates suchiicient, especially if one starts from an experimentally mea-
Anderson localization effects while keeping its local treat-sured discrete distribution, an(i) the interplay between
ment of correlation$®*°As a result, the question of the ex- disorder and inelastic processes can lead to a temperature
treme sensitivity to the bare disorder was solved. One impordependence of the conducting properties that is reminiscent
tant result of this study is the emergence of a power-lawof the ones found by Mooij and others in several strongly
distribution of Kondo temperaturd%(TK)ocTﬁ’l, where« correlated disordered met&f$This paper is organized as
depends continuously on the strength of disoMeand de- follows. We review the disorder-based mechanisms of non-
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Fermi- liquid behavior in the following. Section Il describes further emphasized that the consideration of disorder effects
the model of disordered Anderson lattices we studied and this indispensablé’

methods we employed to solve it. Section Il focuses on the Despite its success, the KDM/DMFT description suffered
detailed results obtained within the slave boson laMge- from a basic deficiency, which can be ascribed to its extreme
method. This expands considerably on the previously pubsensitivity to the bare disorder distribution. Indeed, the con-
lished result$89In Sec. IV, we show the results obtained nection between the distribution dfand the distribution of
with perturbation theory. Finally, we wrap up with a generalKondo temperatures is too rigid and a proper description
discussion of the strengths and limitations of this study anchlways relies on fine tuning. In particular, discrete distribu-
point out possible future directions in Sec. V. Some details ofions of bare parameters can never generaR(B) such

the computational procedures are given in the Appendix. thatP(Tx—0)— const. Likewise, power law distributions of

In the following we give a brief overview of disorder- Tk are often necessary and it is not clear how they can be
based mechanisms of non-Fermi-liquid behavior. obtained within the KDM/DMFT.

(1) Kondo-disorder models and the electronic Griffiths ~More recently, two of us have pointed out that this can be
phase.The KDM was proposed early on to account for thesolv_ed through the _|nclu5|(_)n of Ioc_ahzatlon effects._ From a
temperature dependence of the Cu nuclear magnetic resB@Sic theoretical point of view, the importance of this modi-
nance(NMR) linewidths in UCy_ Pd, (x=0.5—1).2 It as- fication is unquestionable. Disorder scatters the conduction

sumed that disorder in a heavy fermion system generat ECIFO”S giVif‘g rise to spatial quctuation.s ".‘ their wave
random spatial fluctuations of the exchange coupling Con_unctlon amplitude. These Anderson localization precursor

stantJ between local moments and conduction electiins effects in turn give rise to fluctuations of the conduction
: electron local DOS. The Kondo temperatures are exponential
Kondo coupling. Each local moment was assumed to un-

. i functions of the local DOS and will show a wide distribution
dergo the Kondo effect in a manner that is completely uncorg, i gisorder strengthseven in the absence of fluctua-
related_ with the others and each with a characteristic energyons in 13! In addition, direct experimental determination of
scale, its Kondo temperatufig . Even narrow Kondo cou- the distribution ofJ from x-ray absorption fine-structure
pling distributions lead to a wide distribution of Kondo tem- (XAFS) experiments in UC4L ,Pd, have shown that addi-
peratures due to the latter’s exponential dependence on thgnal conduction electron disorder is necessary for the inter-
former. As a result, at low temperatures, many spins argretation of the results within the KDM/DMF¥:* Finally,
quenched while a few percent remain unquenched and domihe addition of localization effects has proved to be just the
nate, giving rise to singular, NFL thermodynamic propertiesnecessary ingredient for the elimination of the extreme sen-
(specific heat and magnetic susceptibjlitfhe NMR results  sitivity to the bare disorder and for a much more universal
in UCus_,Pd(x=0.5—1) are well described within this pic- description.

ture if the distribution functionP(Ty) is such thatP(Tk The average cavity bath of the DMFT, however, com-
—0)—const!® The KDM gained a natural theoretical set- pletely neglects DOS fluctuations and a more general treat-
ting within the DMFT* of a disordered Anderson/Kondo ment is necessary. Progress could be made by means of the
lattice %7 In this approach, each conduction electron sitestatistical dynamical mean field theotgtatDMFT), which
exchanges single particle excitations with an average “cavincorporates the full distribution of the conduction electron
ity” bath, which is in turn self-consistently determined. This local DOS, while keeping the treatment of local correlations
treatment becomes exact in the limit of infinite dimensional-already present in the DMF:*® The treatment involves
ity and is the natural generalization of the Curie-Weiss meansolving a fully self-consistent loop: tHeelectron fluid gives
field theory of magnets to a fermionic system. Its treatmentise to an effective disorder potential for the conduction elec-
of disorder is equivalent to the well-known coherent poten-rons, while the latter's DOS fluctuations determine the dis-
tial approximation(CPA).% In an Anderson lattice descrip- tribution of Kondo temperatures. We enumerate the main
tion, the localized electron is hybridized with its adjacent conclusions of our analysi§:*®

conduction electron orbital and spatial fluctuations are pre- Universality. The distributions of several physical quanti-
served through the random distribution of hybridizationties (Kondo temperatures, local DOS éfand conduction
strengths. The local moments are no longer independemectrons, scattering matrice3 assume a universal log-
since their distribution self-consistently determines the cavhormal form for weak to moderate disorder, irrespective of
ity bath. In addition to showing that the KDM corresponds tothe form of the bare distribution. We have verified this for
a rigorous limit of a microscopic Hamiltonian, the DMFT Gaussian, square and discrete bare distributions of conduc-
enabled the calculation of other properties such as th&on electron on-site energies and hybridization strengths.
resistivity;®’ dynamic magnetic susceptibility, optical ~ This is in contrast to the KDM/DMFT results and reflects the
conductivity?® and magneto-resistanéewith good agree- mixing of many different sites connected by the extended
ment with experiments. The non-Fermi-liquid behavior of conduction electron wave function.

these quantities hinged on the condition tHa{T—0) Electronic Griffiths phaselncreasing the disorder gener-
—const. Subsequent experiments of muon spin rotdtion ates wideT distributions, leading to a Griffiths phase with
and NMR in high field$’ showed some inconsistencies with non-Fermi-liquid behavior. This Griffiths phase is not tied to
the KDM/DMFT, suggesting that intersite correlations, any magnetic phase transition but is electronic in origin: it is
which are absent from that approach, may play a crucial rolgenerated by the precursors to the Anderson localization
at the lowest temperatures. However, annealing studies hawensition.
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Metal-insulator transition.There is an Anderson-type lo- periments seem to suggest that, if there is a true spin glass
calization transition at a critical value of the conduction elec-transition, freezing temperatures ateongly suppresseitt a

tron diagonal disorder. wide portion of the phase diagram.
Nonmonotonic conductivity as a function of the disorder.
The typical conduction electron DOS, which vanishes at the Il. THE MODEL AND ITS SOLUTION

localization transition and serves as a measure of the con-
ducting properties shows a counterintuitive nonmonotonic
behavior as a function of disorder for a wide range of fillings. A simplified Hamiltonian capable of capturing the essen-
This surprising feature originates in the interplay betweertial physics of disordered metals with localized moments is
the bare and thé&electron disorder potentials and is tied to provided by a disordered Anderson lattice

the proximity to the Kondo insulatingpseudggap.

(2) Magnetic Griffiths phase scenari@n alternative the- H=H¢+H¢+Hpyp, (1)
oretical scenario for disorder-induced non-Fermi liquid be
havior is the magnetic Griffiths pha3®.28In the vicinity of
magnetic phase transitions disorder fluctuations induce rare

N . L. _ T A o T
regions with an enhanced local critical temperature. These H¢=—t > (CisCjotH.C)+ > (€= 1)C{,Cjs, (2)
large clusters are ordered on the scale of the correlation e 17
length and act as effective spins. Though rare in occurrence
they carry a considerable amount of magnetic entropy and Hi= >, Efij(Tfjg_f_U > ijTijijlfH, (3)
the overall effect is the appearance of singular, thermody- jo i
namic responses. This magnetic Griffiths phase picture has
been advocated as a source of NFL behavior in disordered
heavy fermion system¥.However, very recent results seem
to point to several difficulties encountered when this scenario
is applied to experimental systems, as follows. In Egs.(2)—(4), ¢j, (f;,) annihilates a conductiorf) elec-

The entropy problemThe amount of magnetic entropy tron on sitg with spin projectiono, t is the nearest neighbor
observed experimentally in most disordered heavy fermiorhopping amplitudew is the chemical potentiall) is the
systems seems much too high to be compatible with thé&site Coulomb repulsionE; is the f-energy level, and we
magnetic Griffiths phase picture. Taking the measured spéntroduce random conduction electron on-site energis (
cific heat of, say, UC4L ,Pd,, we estimate that about 5% of and hybridization matrix element¥;. These are chosen
the sample would have to participate in the spistusters.  from given distributiond®; (e) andP,(V), taken to be either
This implies an average cluster separation of 2-3 lattice consquare or Gaussian, with width and standard deviatdgn
stants, ruling out cluster sizes exceeding this distance. Thegespectively. We have also studied discrete casd3,(¥).
small clusters suggest instead that the “unquenched” localThere is a large degree of uncertainty as to a realistic model
ized moments of the KDM/DMFT or the electronic Griffiths of disorder for heavy fermion alloys. A rather thorough study
phase offer a much more natural explanation. of the localf-site environment in the alloys UGu,Pd, (x

Effects of dissipationOther important limitations of the =1 and 0.5) was carried out in Refs. 32,33 through XAFS
magnetic Griffiths phase scheme have also been emphasizedperiments. These authors were able to determine the
in recent work by Millis, Morr, and Schmaliaif,who have amount of Pd/Cu site interchange as well as the U-Cu bond
carefully examined the effects of dissipation caused by théength distributions. In order to accommodate both types of
metallic bath. This work suggests that the dissipation causeffuctuations one must, in principle, allow for a distribution of
by itinerant electrons is so pronounced that quantum tunneboth hybridization strengthand on-site conduction electron
ing of even moderately sized magnetic clusters will be supenergies. On the other hand, when the local moments are
pressed. Although the emergence of a magnetic Griffithsandomly replaced by non-magnetic elemeftitee so-called
phase is a well established phenomenon in disorderegs  “Kondo holes”), spatial fluctuations of; should also be
lating magnets, this result seems to bring into question itincluded’ Throughout the paper, we use the half bandwidth
relevance to itinerant systems. D as energy unit. For the Bethe latti¢® be introduced

(3) Spin glass precursorginally, another possibility is to  laten, D= 2+/2t if the coordination number is 3. This should
invoke the proximity to a spin glass quantum phase transibe contrasted to Ref. 18, whevéis measured in units df
tion. Several theoretical schemes predicting non-Fermi liquidNote also that thélevel energyE; is always measureala-
behavior in the vicinity of a spin-glass quantum critical pointtive to the chemical potentiaThis is to ensure that, by mak-
have been proposé=*?Spin glass phases have been iden-ing it negative and large enough in absolute value, we always
tified in the phase diagram of some heavy fermion alloyswork in the local moment/Kondo regime.

(UCus_,Pd,, for x>1.5)* and structurally disordered com-  We worked within the framework of the statDMB$3°
pounds (URKGe,).** More interestingly, evidence of glassy This treatment is able to incorporate both strong local corre-
dynamicsin the absence of freezirag very low temperatures lations and Anderson localization effects in a fully self-
has been seen in UGuPd(x=1,15Y" and consistent fashion. Although the method has been described
Ce(Ruy sRhy 2),Si,, *>*®with conflicting results pointing to a  before in the context of the disordered Hubbard mddele

very low freezing temperature in UGEPd, s.*> These ex-  will briefly review it with the dual goal of setting the nota-

A. The statistical dynamical mean-field theory

“‘where

Hpyo= JE (ij]T,,-Cj(r+ H.c). (4)
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tion and exteqding it to the Qisor(jer_ed Andersqn lattice. It Glff}C(T):_<T[ij( T)fJTU(O)D, (12)
starts by focusing on a generic unit cebf the lattice, con- _ _ . _
taining anf site and its adjoining conduction electron Wan- under the dynamics dictated by Eq.0). It is conveniently
nier state, and writing its effective action in imaginary time parametrized by its self-energy

as
1

Ser(1)=S1) + (1) + Sy, © Silion = e~ Ry lan-Sqtian”

] B B ) It is also convenient to define a local conduction electron
Sei)=> L deo dr'ci(D[é(7—7")(d .+ €— ) Green'’s function

T A (7= 7")]ci (7)), (6) GE(1)=—(T[cjo(7)c),(0)]), (14
B such that
S)= [ S 0+ BTty )
Glcojc(iwn): ion— €+ u—Agio) —Pj(iw,)’ (15
+Ungj(7)ngj (1) |, (7) where
Shyb(J)=§U) f:df[vjf,-*,,(r)cjo(rwrH-C-], ) q’i(i“’n):iwn—Ef\—/jzzfj(iwn)' (16)

Wherenf,-g=f;rofjg. In writing Egs.(5)—(8), a simplification  We note that theb;(iw,) function describes the local scat-
has been made of retaining only quadratic contributions intering of the conduction electrons off tHeshell at sitej,

fermionic fields after integrating out the other sitesaddi-  incorporating information about both elastic and inelastic
tion to the instantaneous Hubbard termery similar to the  processes.

usual dynamical mean-field theozfﬁlThe bath(or “cavity” ) All the information a generic sitg has about the rest of
function A¢;(7) in Eq. (6) is given by the lattice is encoded in the bath functi®), which should

be viewed as a functional of the conduction electron lattice

Agy(r) =t EZ GO (7). 9 gtr;le:n\’zéua;\t/i(e)r][bssigtlz\;aezatkf‘illianalytical treatment is impos-
=t : quations numerically. For this
purpose, we formulated the problem on a Bethe lattice,
where the sum extends over the@earest neighbors and  where things are considerably simplified as explained in Ref.
i) o + () 35. In this case, nearest neighbdrand m become discqn—
Geim(7)=—(TlCmo(7)C/,(0)]) nected oncg is removed and only local Green’s functions

is the Green’s function for propagation from nearest-Survive

neighbor sitd to nearest-neighbor sitg, calculated with the i) s B oy _ loc(j)
site ] removed. Integrating out the remaining conduction Geim(1@n) = 8, mGeii (1 wn) = 8 mGe ™ (1wn).
electronc;,, we get the effective action of an auxiliary

. . . ; Finally, these last objects can be computed from an action at
single-impurity Anderson model at each sjte

sitel in almost all aspects identical to Eq5)—(8), the only
difference now being that the bath function sum runs over

B B
Simp(i)= 2 J drj dr'fl ([ &8(r—7')(5,+Ey) the z— 1 nearest neighboréere labeled byn) only
o 0 0
z—1
B i :
+Afj(T—T')]fja(7")+J drUn¢j(7)ng (1), A(cjl)(""n)ZthZ1 Gen (i wp). (17)
o =

(100  Note that, on the right-hand side, we do not need to specify
that sitej has been excluded as the removal cbmpletely
disconnects sites labeled by from site j (this property
is specific to the Bethe lattite The reappearance of

V2 G'grga)(iwn), whose distribution is identical to that of

! . ) (11) G'C°|°(j)(iwn) since all sites are equivalent, closes the loop

wn~ €+ u— Agjliwp) and establishes a recursive set of stochastic equations. When
The solution of this impurity problem is the major difficulty the interaction is turned off{=0), this treatment reduces
in this treatment. We implemented two different methods ofto the well-known self-consistent theory of localizatith,
solution, which will be expanded upon in the next subsechere generalized to a two-band lattice. When we take the
tions. The aim is to calculate the locklectron Green’s coordination to infinityz—o keepingt=t/z=const, our
function treatment reduces to the DMFT of correlations and

where the hybridization function for thesite is, in Matsub-
ara frequency space,

Afj(iwn):i
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disordert®”-?4|n the latter case, the disorder treatment isnential nature of the low energy scale. Its treatment of the
equivalent to the CPA® which has no localization transition. self-energy, however, does not incorporate inelastic pro-
A full solution of Egs.(5)—(17) for given distributions cesses to leading order. In addition, it has a spurious phase
P,(e) and/orP,(V) involves solving an ensemble of impu- transition at a finite temperature, where in reality there
rity problems self-consistently. Physically, the conductionshould be only a smooth crossover. For these reasons, we
electrons propagate through a disordered lattice and scatteonfine it to the zero temperature limit, where it is a useful
off conduction site potential fluctuations as well fsite  guide. As applied to our problem, the method has been de-
resonances. These resonances, in turn, describe the formatiseribed in Appendix D of Ref. 17 and we will merely state
of localized moments, whose local Kondo temperatures flucthe results, generalized to the Matsubara frequency axis and
tuate as well, reflecting a disordered conduction sea envirorat T=0. The localf-electron Green’s function is given by
ment. Complete statistical information can in principle be
obtained from the distributions of the various renormalized Golio) = q
local quantities. We stress that a random distribution of any llw)= iw—e—gA¢(iw)
bare parameter causes all renormalized quantities to fluctuate
as a result of the self-consistent nature of our treatment. =qGiw), (22

Therefore, even if we include only fluctuations in the con- . ) )
duction sea througR(e), a distribution of Kondo tempera- where the last equality defines the lo&alectronquasi par-

tures ensue®™*® This is easily seen from the approximate ticle Green’s function and the variational parametets
formula for the Kondo temperature in the Kondo limit (renormalized energy andq (quasiparticle residyeare de-

(21)

(=, ng %1)49 termined from the solution of the set of equations
o o
1 * dw i ap:
oD exp( . _J), 18 §—Et | —A(i0)GRiw)=0, (23
Pivi o
wherep; is the local density of state®OS) seen by the > do
site g+ fﬁm7e"‘”’G?p(iw)=1. (24
IM[ A (0—i ;
pi=~ M (19  Using
7TVJ-
* w .
andJ; is the Kondo coupling constant, given in the Kondo f ?e"‘”’lm[G?p(iw)]=1,
limit by _°°
1 1 Egs.(23)—(24) simplify to
o~V T
JJ zvl(lEf|+|Ef+U|). (20 ZJAOO%R{A (iw)qu(iw)]ZE —€ (25
Even if V; is not random, the local DOS is, because of the o f f rr

denominator in Eg(11). As a result of the strong exponential
dependence in18), even mild localization effects can be > dw s B
strongly enhanced and should be seriously considered, spe- q+2 0 7Re[Gf (iw)]=0. (26)
cially in disordered heavy fermion systems.
Equation(16) becomes in this approximation

B. The impurity solvers >

qV

iw—ef'

An important part of the method we employed is the so- P(iw)=
lution of the impurity problems posed by the ensemble of
effective actions given by Eq10) and its counterpart for a
site with one nearest neighbor removed. We concentrated
mostly on two methods of solution, which we now briefly  The perturbative solution of the single-impurity Anderson
describe: the slave boson, larjebased, mean-field theory, model with particle-hole symmetry was thoroughly analyzed
and second-order perturbation theoryUn In order to un- by Yamada and Yosid® > The series expansion id for
clutter the notation, we drop in the next subsections the sitphysical quantities such as the specific heat and the spin
indexj and the superscript loc. Details of the numerical treat-susceptibility converges very fast and even second-order re-
ment are given in the Appendix. sults can be usefdf Extension of the perturbative treatment
to the case without particle-hole symmetry poses consider-
able difficulties. A particularly useful proposal is the use of

This method gives a good description of the low temperaan interpolative self-energy which recovers the atomic (
ture, Fermi liquid regime of the Anderson impurity problem —0) and high frequency limit® Further improvements of
in the limit U—c and is extensively covered in the the method were later suggesféd’
literature®>?2 Its main advantage is the ability to capture the The procedure consists in defining an unperturbed
zero temperature fixed point correctly as well as the expof-electron Green’s function

(27)

2. Second-order perturbation theory

1. Slave boson mean-field theory
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istic energy scale that iguantitativelyincorrect at large val-
G (iwy) = (28)  ues ofU, since it is unable to capture the correct exponential
fown+u— Af(lwn) dependence. Nevertheless, for moderate interactions, it still
gives reasonable results. Within its limitations, this perturba-
tive scheme is a relatively flexible low-cost tool to tackle the
|mpur|ty problem with the great advantage of being able to

with a new parameter. to be determined later, which van-
ishes at particle-hole symmetry. The interacting Green’s
function is given in Eq.{13). The interpolative self-energy

56,57 naturally account fomnelastic processes.
We note that a direct comparison between the slave boson
AS @i w,) mean field theory results and second order perturbation
Si(iwy)=Un+ — " (29)  theory is not possible because the former is limited to the
1-BX®(iw,) U—oe limit, which is obviously outside the region of valid-

ity of the latter. The main interest of an analysis of both

where . . : .
methods, however, resides in the explorationthe impor-
_ _ tance of inelastic processewhich are absent in the slave
n=T2 €“nG(iwp,) (300 boson mean-field treatment.
n
and Ill. SLAVE BOSON MEAN-FIELD THEORY RESULTS

We now present the results obtainedTat 0 using the
slave boson mean-field theory as an impurity solver. Most of
(31) our results were obtained for a uniform distribution of on-site
conduction electron energies

B .
3@ (w,)=—U? f dre'n G{O(7)°G{V(— 7).
0

The last equation(31) is the usual second order diagram
using the unperturbed Green’s functi@B) for the internal

. . . . 1 W
lines. The parametera and B are determined by imposing Pile)=: |el==.
the high frequency and atomic limits, respectively, and are W 2
; 6
given by In Sec. Il C we also show results for a discrete distribution
A n(1—n) @ of hybridization strength®,(V).
No(1—ng)’ . . .
A. Conduction electron typical density of states
(1-mU+Ef+pu 33 To understand the overall behavior as a function of disor-
- _ 2 er, it is instructive to consider the transport properties of the
ne(1—no)U (33 der, itis instructive t der the transport properties of th
0 0 conduction electrons. Since there are no interactions among
where them in our model, their behavior is that of a disordered
noninteracting electron system. There are two sources of dis-
no:TE eiwnnegm(iwn)_ (34) order, as can be seen in Ed.5): fluctuations of the local

on-site energies; and of thef-shell resonances described by

®;(iwp). They are not independent, however, since they are

Different sch;}n;ss have been proposed in order to fix the fre‘fﬁextrlcably tied by self-consistency. Their combined effect
parameteru. At zero temperature, one can ensure thatacts to decrease the conduction electron mobility.
the low energy Fermi liquid behavior is obtained by impos-

ing the Friedel sum rul€® This procedure cannot be easily 1. Typical density of states: an order parameter for localization
generallzed to finite temperatures, however. One option is to

fix u at its zero temperature value even at finite tempera:
tures. Alternatively, one can require at any temperature

A useful measure of this mobility is given by tlgpical
value of the local escape rate. This is encoded in the imagi-
nary part of the local conduction electron Green'’s function

n=no, (35) (the local DQ$ at zero frequencypcj=(1/77)Ir_n[G'°°(O

—i6)]. We will, from now on, drop the superscript denoting

which makesA=1. Finally, a third possibility is imposing the removal of a nearest neighbor so as to lighten the nota-
= u.%" These three alternatives have been rather carefullion. As shown originally by Anderson, the typical value of
compared in Ref. 57 af=0 and checked against exact di- the local DOS vanishes when the electrons are localized and
agonalization. The first two methods were shown to be alcan be V|ewed as an order parameter for the localization
most equivalent whereas the third one is inferior. Moreoverfransition®* A convenient way of accessing the typical value
comparisons at finite temperatures with Quantum Montds furnished by the geometric average
Carlo results confirmed the adequacy of imposing (B6).>®
Specific applications to a clean Anderson lattice model fur- pYP= exp{ﬁ}, (36)
ther corroborated this conclusioh® Thus, our results were
based on imposing conditigi35). It should be remembered, where the overbar denotes a disorder average. By contrast,
however, that the perturbative solution predicts a charactethe arithmetic average
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2.0

=u=0.4 p¥ initially decreases, passes through a minimum
aroundW=0.5—-1, then increases up to a maximum at about
u=-0.5 W=1.5 and eventually becomes monotonically decreasing.
15 N == p=-0.2 ] For all values ofu, the typical DOS vanishes at a disorder-
' L S N =0.1 induced metal insulator transitigMIT) at Wy, r~4.5.
\ ———-p=0 These distinct behaviors can be traced back to how close
\ o pn=0.1 the clean system is to the Kondo insulator pdifit at u
pu=0,v=0 - ~0.1.1% If we start from the clean insulator, the introduction
of disorder acts to create states inside the gap, thus increas-
ing the DOS at the chemical potential. This increase contin-
ues until the gap is essentially washed out and the system
! \ (a) 1 becomes a bad metal. After that, localization intervenes and
N > peP starts to decrease towards the MIT.
\ -2 For fillings close to but not at the Kondo insulator point,
0.0 = L L the clean system is a heavy fermion metalTat0. Thef
0 1 2 3 4 resonance$®(w)] coherently scatter the conduction elec-
W trons creating a strongly renormalized Fermi liquid. In the
slave boson treatmentb(w) diverges atw=¢;, see Eq.
2.0 ' ' ' (27), corresponding to the limit of unitary scattering, with a
N\ o p=0.1 maximally allowed phase shifé6==/2. We can view its
Y u=0.2 value at the Fermi leveP (0)=—qV?¢; (which is real at
‘\ ———- 1=0.5 - T=0) as an effective potential coming from thelectrons.
\ ) The closer the system is to the Kondo insulator, the larger the
\ value of ®(0), theinsulator being signaled by the diver-
gence of this quantityor equivalently bye;=0). The effect
] of disorder is to immediately start generating spatial fluctua-
(b) tions of thef resonances, with different phase shift values at
the chemical potential. Proximity to the insulator implies
large, random, almost unitary scattering potentials. As a re-
sult, metallic coherence is efficiently destroyed and the typi-
cal conduction electron DOS is strongly suppres$édThe
important role played by the unitary scatterers was empha-
sized in Refs. 19 and 18, where the distribut®fil] P (0)]}
W was directly computed and its weight atd0)=0 was

shown to correlate with the destruction of coherence.
FIG. 1. Typical conduction electron density of states as a func- There is another equivalent way of understanding these

tion of disorder strength for several values of the chemical potentiagffects. For small dopings away from the Kondo insulator,

1w, using slave boson mean field theory as the impurity solver. Wecarriers are introduced at tleelgesof the valence or conduc-
usedE;=—1, V=0.5, except for the thick solid line i(g), which  tion bands defined by the Kondo insulator gap, which have a
is for V=0.

small DOS(in the Bethe lattice, band edges have a square
root shape as in three dimensiongs has been known for a
pav:;T (37) long time, a region of small DOS is particularly sensitive to
¢ rd localization effects introduced by disorder.
is finite at the transition. A thorough analysis of the critical

As in the previous case, further increase of disorder acts
behavior of the local DOS distribution in the noninteractingto Wash out the nearby Kondo pseudogap and the behavior

Bethe lattice localization problem was carried out in Ref. 62then becomes very similar to the disordered Kondo insulator.
In Fig. 1 we show the typical conduction electron DOS as aVe thus have a region with a rather nonintuitive increasing
function of disorder for several values of the chemical po-p¢®. Which can be ascribed to the proximity to the Kondo
tential.

insulator fixed point. The behavior at fillings well away from

the Kondo insulator is much less influenced by the
2. Proximity to the Kondo insulator pseudogap, see Fig. 1 far= = 0.5. Although there is a rapid
initi yp .
We can identify three qualitatively distinct behavidfs. initial decrease op”, followed by a much slower depen

For w=—0.4 and foru=0.5, p® is a monotonically de- dence, the typical DOS does not exhibit the unconventional

. . . incr with disorder rv t other fillings.
creasing function of disorder. Far=~0.1, the clean system crease disorder observed at othe gs
is a Kondo insulatdf®* and p2'=p¥P=0. As disorder is

introduced in the Kondo insulatop?® initially increases,
reaching a maximum at aboW=1.5, after which it de-
creases monotonically. Finally, for 0.3=u=<0.1 and 0.1

typ
P,

|

\

\

05 |
\
\

1.5

3. Role of the hybridization strength

It is interesting to note that the critical value of disorder
for the MIT Wyt depends on the hybridization strength. In
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20 ~ T T T T 30 T T T
— W=0.35
————— W=0.7
i ———- W=1.1
20 . —~—°° W=18 p
— W=238
| 3
o
1.0 | .
0.0

-5.0 -3.0 -1.0 1.0 3.0

FIG. 2. Typical conduction electron density of states as a func-
tion of disorder strength for different values of hybridizativh 1.5
using slave boson mean field theory as the impurity solver
(Ef=—1 andu=0).

Fig. 2, we show the disorder dependence of the typical con- 10k
duction electron DOS for different values &. There is '
hardly any change iWy,r as we go fromv=0 to V=0.5 =
(see also Fig. 1 However, forV=0.75, the critical disorder =~
strength is clearly enhanced. This figure also illustrates the
nontrivial nature of the self-consistency. Indeed, the two 5
types of disorder coming from fluctuations & and ®; are

clearly not independent, since thaddition of f-site disorder

as we turn orV from 0 to 0.75 acts tincreasethe mobility

for W=2.8. The self-consistently determined solutions of the

impurity problems effectively helscreenthe conduction 0.0 . .
electron disorder. Note also how an increased value/ of -5.0 -3.0 1.0 10 3.0
pushes the “dip-hump” structure to higher values of disor- y=|og(|m[Gc°°(O)])
der. Since the Kondo insulating gap increases with the hy-
bridization strength, this is consistent with our explanation 1.0 T T T r
for the nature of this nonmonotonic behavior.
— W=0.35
----- W=1.4
B. Distribution of the conduction electron local density ———- W=2.28
of states ——-- W=35

One of the great advantages of the present approach is th
possibility of monitoring complete distribution functions. 5 05 |
Many of the features exhibited in Figs. 1 and 2 can be di-0-
rectly read off the distribution ofvrpc:Im[G'coc(O—ié)].

We show this by plotting®{log;oIm[G°°(0—i 6)]} for sev-
eral disorder strengths and different chemical potential val-
ues in Fig. 3. It follows from the definition ofrp??, Eq.
(36), that it is obtained by raising 10 to the power of the

average of this distributiofwe use powers of 10 for ease of ) S
computation. For weak disorder in the metallic cagésgs. -5.0 1.0 3.0
3(@) and (b), P{log;oIm[G°(0—i4)]} is approximately y=|og(|m[Gcloc(0)])

Gaussiangven though the bare disorder is unifgrenfeature

shared by several physical quantittés® This is due to the FIG. 3. Distributions of the logarithm of IpG!°(0—i4)] for
presence of correlations between many distant lattice siteseveral values of disorder strength, using slave boson mean field
mediated by the extended conduction electron wave functheory as the impurity solvef@ u=—0.5, (b) ©=0, and(c) u

tion, which introduces a sort of averaging effect. In the=0.1 (V=0.5,E;=—-1).
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Kondo insulator casgFig. 3(c)], however, the distribution is 2.0 . T . T
not Gaussian at weak disorder. Keeping in mind that

pe=0{log;oIM[G(0—i8)]——} in the clean Kondo

insulator, it is clear that the introduction of weak disorder 15 (a)

has to generate weight at very smattp.. Indeed,
P{log;oIm[G(0—i )]} shows a divergence at [16°(0
—i8)]~10"2 for W=0.35. For large values & the distri-
bution becomes extremely broad, spanning many orders 08 10 |
magnitude. In the casg=—0.5[Fig. 3@)], corresponding Q-
to a system well away from the Kondo insulator filling, the
distribution broadens and its maximum steadily shifts to-
wards lower values as disorder is increased. This is to be 0.5 | .
expected from the monotonic behavior @f®. Likewise, at
=0, the nonmonotonic behavior of the typical value is also
clearly reflected irP{IoglOIm[G'COC(O—ié)]} [see Fig. 8) 0.0 / . )
and compare it to Fig.(®]. 3.0 1.0
As we saw, at the Kondo insulating chemical potential y=log(T,)
©=0.1 and forW=0.35, the distribution shows a divergence
at In{G'COC(O—iﬁ)]mlo‘? A similar divergingtendencyis 0.2 . . .
observed aj=0 [Fig. 3(b)] andW=0.5. This is precisely T
the disorder value where the minimum p® occurs[see ," \
Fig. 1(a)] and which we have been ascribing to the presence H ' (b)
of many unitary scatterers due to the nearby Kondo insulator |
The similarity between the two distributions strengthens fur- |
ther our case for the importance of the proximity to the __ |
]
i

Kondo insulator. Additionally and consistent with this, the =° g.1 |
divergence is totally absent at=—0.5, where the role @
played by the Kondo insulator fixed point is much less im-

]

i

[

portant. [
[

o

) ]

]

]

:

.

It is also interesting to observe in Fig(c3 how the
Kondo gap is washed out by disorder\iit= 1.4, wherep?
peaks[Fig. 1(a)], most of the weight of the distribution is

)
[l [} . .
already at sizeable values of the DOS and its shape is verr g L ll. i T ) R
0 100 200 300 400 500

similar to the metallic cases.
T (K)

—

——====================== .~
b
-

o

C. Distribution of Kondo temperatures
) . . FIG. 4. (a) Distribution of the logarithm of the Kondo tempera-
We now proceed to the analysis of the physical propertieg e for a discrete bare distribution of hybridizations, taken from
related to the ensemble of impurity problems. As shownget 32 using slave boson mean field theory as the impurity solver
before®*° the distribution of Kondo temperatures of the (here, we use=0.5, E,= —5.54, andu=—0.2), (b) Comparison
variousf sites is log normal for weak disorder, but broadenspetween the smooth distribution of Kondo temperatides-dashed
and acquires a power law shape at intermediate values @fe) obtained in the statDMFT and the discrete results of DMFT
W=0.35-0.7. Once this power law becomes singular (vertical solid line and the Kondo disorder modelertical dashed

enough, a Griffiths phase is entered with diverging thermotines).

dynamic responsé$§:°
which corresponds to the limit of infinite coordination. We

1. Universality at weak disorder also include in the figure the results of the Kondo disorder
We have noticed that for weak disorder, the shape of thenodel*3?(KDM) (vertical dashed lingswhich is very simi-

distribution of various quantities, including the Kondo tem- lar to the DMFT. The only differences between the KDM and
perature, is universal, irrespective of the shape of the barthe DMFT are that, in the former, no self-consistency is im-
distribution of disorder. A nice illustration of this effect is posed and a Kondo instead of an Anderson lattice model is
given by the case where the bare disorder @iszretedis-  used. The difference between the results of the KDM/DMFT
tribution. As an example, we take the discrete distribution ofand the statDMFT is striking. The fluctuations of the conduc-
hybridization strength®,(V), determined in Ref. 32 from tion electron wave functions incorporated in the statDMFT
XAFS measurements in UGu,Pd,. The resulting distribu- smooth out the discrete results of the DMFT into a universal
tion of log,o Tk is shown in Fig. 4a). It is continuous and has continuous form. A description of the NFL behavior within
a log-normal shape. In Fig.(d) we show the distribution of the KDM/DMFT theory would be clearly impossible. This
Tk (smooth dot-dashed lineand compare it to the discrete comparison also shows that this level of hybridization disor-
distribution obtained in the DMFT{vertical solid line$, der alone is not able to generate non-Fermi-liquid behavior
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1.0 v L} v L) v L} v T v T v T 2-0
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- W=35
>05 | 310
05
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FIG. 5. Distribution of the logarithm of the Kondo temperature ~ FIG. 6. Exponent of the power-law distribution of Kondo tem-
for different values of disorder, using slave boson mean field theoryperatures as a function of disorder for different values of the chemi-
as the impurity solver{=0.5,E;=—1, andu=0.2). cal potential ¥=0.5,E;=—1). The horizontal dashed line indi-

) ) o cates the critical value for the emergence of NFL behavior, where
even in statDMFTsince the distribution of Kondo tempera- p(T,)econst andy(T)=C(T)/TeIn(T,y/T).

tures goes to zero abxk—0, a point that was stressed in

Refs. 32,33. However, if disorder in the conduction electroryisorder dependence of the localization and transport prop-
sites,Py(¢) is also included a singular behavior can be ob-gties, and leads to the surprising “bad metal” behavior for a
tained(not shown. The inclusion of conduction electron dis- \yide parameter range. This was argued to reflect the en-
order is reasonable in UGu,Pd,, since the Cu-Pd inter- panced sensitivity to disorder of those electronic states that
change affects botk; ande; . are very close to the Kondo insulator, and which are most
easily affected by localization effects. We have also estab-
lished that NFL behavior also emerges as a result of disorder-
In order to identify the emergence of the Griffiths phase,induced density of states fluctuations. It is then natural to ask
we next study the evolution of the distribution of Kondo how sensitive this emergence of NFL behavior is to the prox-
temperatures as the widW of P,(e€) is varied (with no  imity to the Kondo insulator, which in the clean limit
disorder inV). Typical results are shown in Fig. 5, corre- emerges only in a narrow parameter range, cléseour
sponding tox=0.2. As the disorder increases, we find thatcase to u~0.1.
the overall width, but most significantly, the size of the low-  To address this question, we have systematically investi-
T tail rapidly grows. These tails assumgoawer-lawform  gated the evolution dP(T) as a function of the distance to
P(Tx)~Tg !, with the powera(W) being a monotonically the Kondo insulator, i.e., as a function of the chemical po-
decreasing function of disorder. Once again, this behaviotential . The behavior for weak disordeM(=0.18) is
cannot be obtained in the rigid scheme of the KDM/DMFT shown in Fig. 7. Despite what one would naively expect,
without unjustified fine tuning. The thermodynamic responsehese result clearly demonstrate that the distributions are the
of the system assumes a singular, non-Fermi liquid form aproadesfar from the Kondo insulator. As we can see on this
soon asx=<1, which happens for sufficiently strong disorder figure, the distributions narrow down as the Kondo insulator
W=W,y ~0.35-0.45. Since this behavior does not reflectis approached from either side. As a result, we may expect
any thermodynamic phase transition, it assumes the charactérat the critical disorder strengtWyr necessary for the
of an electronic Griffiths phase. Here, singular behavioremergence of NFL behavior shouidcreasecloser to the
emerges due to the presence of exponentially rare evients Kondo insulator. This surprising result is confirmed by ex-
our case Kondo spinavhich nevertheless provide an expo- amining theu dependence of the exponemtas shown in
nentially large contribution to thermodynamic and transportFig. 6. As we can see there, for a givéh the exponent is
properties and thus dominate the macroscopic behavior ahdeedsmaller, and Wy, decreases for larges (far from
the system. ThaV dependence of the exponeatcan be the Kondo insulator
easily obtained by fitting the tails of these distributions; a At first sight, these findings seem in contradiction to what
representative behavior for several values of the chemicaine may expect, since we have found that the typical density
potential is shown in Fig. 6. of states decreases close to the Kondo insulator. Naively, one
could then expect the Kondo temperatures to be depressed as
well, leading to broader distributions and enhanced NFL be-
In the previous section we have seen how the proximity ohavior. On the other hand, we know that the Kondo tempera-
the Kondo insulator plays a crucial role in determining theture remainsfinite within the Kondo insulator, despite the

2. Emergence of the electronic Griffiths phase

3. NFL and the proximity to the Kondo insulator
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FIG. 8. Distribution of the logarithm of the Kondo temperature
FIG. 7. Distribution of the logarithm of the Kondo temperature for different values of the chemical potential and fixed disoier

for different values of the chemical potential and fixed disonder

=1.4, using slave boson mean field theory as the impurity solver

=0.18, using slave boson mean field theory as the impurity solve{v=0.5,E;=—1).

(V=05,E=—1).

to span several decades for all the valuesuofThis is a
fact that the density of states at the Fermi energy vanisheg€markable example of universality generated by DOS fluc-
there. Although surprising at first sight, this curious featuretuations, completely absent in the KDM/DMFT treatment.

of Kondo insulators is at present well understood. It is called
the “strong coupling Kondo effect®=°'It reflects the fact
that the Kondo screening is not determined only by elec-
tronic states preciselgt the Fermi energy, but also by all the
states in an energy interval of ord&i around the Fermi

(see Fig. 7 is thehighestprecisely near the Kondo insulator.

In the presence of disorder, the value of the Kondo temper
ture is determined by a certain weighted average of the de
sity of states over this extended energy interval. When local
ization is present, only the states closest to the Kondo gap

band edge will be appreciably affected, but since not only 10

those states determifig , the net effect is washed away. We 10
thus conclude that the proximity to the Kondo insulator, in

contrast to transport, does not have appreciable effect on th 10°

emergence of the NFL behavior. Indeed, the critical value of 6
disorderWyg,_ required for the emergence of NFL behavior

is found to have a remarkably weak dependence. ~ 10*

£ .

4. Universality at strong disorder a 10

10°

At strong disorder we expect the density of states fluctua-
tions to completely wash out any trace of the Kondo gap and, 102
in addition, to broaden the conduction band, making it very

flat and featureless. As a result, all quantities are expected ti 10*
have an extremely weak dependence, leading to a more 10°
universal behavior of all quantities. Such behavior is indeed 10

seen at sufficiently strong disorder, where the typical DOS
curves(Fig. 1) are seen to merge arouid~1.4. A similar
behavior is seen in Fig. 8, which showglog,oTyk) for dif-

D. Distribution of the hybridization function

A key input to the determination of the Kondo tempera-
ture is the hybridization function((iw,) of Eq. (11). We
Isebow in Fig. 10a) the distribution of its imaginary part cal-
culated at the chemical potentidle{,—0—i6). Note that,

'or a featureless bath, it appears in the exponential of the
<ondo temperature formula, Eq18), which is thus very
iSensitive to it. It can be seen in Fig.(@&Dthat its distribution

—_— =01
emmem 1=0.2
=== 11=0.5

p)

10° 10° 10

FIG. 9. Distribution of Kondo temperatures on a log-log scale,

ferentu’s at W=1.4. This universal behavior is even more for different values of the chemical potential and fixed disonder

striking if this distribution is plotted on a log-log scalEig.
9), where an almost perfect power-law tait{-0.2) is seen
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1.5
1.0
S |
o
05
0.0
-6 7
y=log(Im[A(0)])
0.04 . . . : FIG. 11. Typical density of states near the Fermi surface as a
0.008 function of disorder for different values of the hybridizatigrand
(b) the interactionU, using perturbation theory as the impurity solver.
Other parameters used wéeFe=0.003,E;=—1, andu=0.
0.03 0.004 _
o chemical potential. This narrow peak is easy to understand:
o . . spatial fluctuations due to disorder give rise to narrow peaks
i 0.02 | 0.0 0.1 | within the pseudogap, most typically at the chemical poten-
2 ® tial. However, as we have remarked before, the Kondo tem-
= perature can be finite even if the density of states is zero or
j= almost zero at the chemical potenfiat®” In this case, the
0.01 | 1 spectral weight right at the chemical potential is unimportant
for the determination of the Kondo temperature. It is domi-
nated by a whole range of spectral density away from the
0.00 L Fermi level. Since far from the pseudogap region the density

-5 10 05 00 05 1.0 15 20 of states is much larger and hence much less affected by the
o spatial fluctuations, the distribution of Kondo temperatures is
o . narrower than one might guess based on the distribution of
_FIG. 10. (@ Distribution of the logarithm of IfA((0)] for -\ (9 5)1 and the Kondo temperature formula.
different values of disorder anth) typical value of IniA(« When considered together, the results of Sec. Il show the
—i0)] as a function of frequency &/=3.5, both using slave bo- . 9 C ! : ' .
son mean field theory as the impurity solver. The insebjrdetails importance of a self-consistent solution of the problem, with

the behavior close to the chemical potentid{0.5, E;= — 1, and & nontrivial interplay between spatial fluctuations due to lo-
1£=02), ' ' calization and strong correlation effects. However, an impor-

tant feature that is missed in the slave boson treatment of the

; ; impurity problems is the presence of inelastic scattering.
is very regular and retains a bell-shaped structure for\ény Th?s Wi)|/| lg)e considered in E}e Hext section. where we sho%/]v

It also inherits the nonmonotonic behavior observed in the ; : : ! .
conduction electron local DOBee Fig. 1b)]. the results obtained with perturbation theory in the interac-
It is tempting to try to calculate the distribution of Kondo oM
temperatures from the distribution of [ta;(0—i6)], by na-
ively applying the Kondo temperature formula, Ed.8). IV. PERTURBATION THEORY RESULTS
This procedure fails, however: the actual distributionTQf
has a much lower weight at smdlk values than is predicted
by the Kondo temperature formula. The explanation for thi
failure lies in the fact, already alluded to before, thatis
determined by a weighted average of (@ —id)] over a
region around the Fermi level. This can be glimpsed from the Figure 11 shows the results for the conduction electron
strong frequency dependence of tiypical (geometric aver- typical DOS near the Fermi level as a function of the disor-
age hybridization function close to the chemical potential, der parameteW for different values of the interaction energy
as shown, for frequencies on the real axis, in FigbLOIt U and the hybridizatiorv at T=0.003. In order to under-
shows a robust and well-defined pseudogap, inherited froratand them, we looked at scatter plots of realizations of the
the nearby Kondo insulator, and a tiny narrow peak at thdocal effectivef-shell potential[real and imaginary parts of

We now consider the results obtained fatite T using
Ssecond—order perturbation theory as the impurity solver.

A. Results for a fixed temperature
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FIG. 12. Scatter plot of the effectiveshell potential®;(w
~0) and the bare potentia| at the same sitédots for V=0.3 and
W=0.7, using perturbation theory as the impurity solu@y: real
and (b) imaginary parts. The solid line is the DMFT result fof
=0.7. Other parameters used w&je=4, E;=—1, T=0.003, and

FIG. 13. Scatter plot of the effectiveshell potential®;(w
~0) and the bare potentia| at the same sitéots for V=0.5 and
W=0.7, using perturbation theory as the impurity solvey: real
and (b) imaginary parts. The solid line is the DMFT result féf
=0.7. Other parameters as in Fig. 12.

=0.
" cesses contribute. Thus, we should keep in mind that, even

®;(w~0)] and the corresponding bare potentiglat the  though in an effective description of conduction electron pro-
same site, both seen by the conduction electrons. These reesses Re&b;(w~0)] ande; are associated with elastic scat-
sults are presented for two different values of the hybridizatering while Inf ®;(w~0)] is related to inelastic processes,
tion V=0.3 and 0.5 and two different values of the disorderboth R¢®;(w~0)] and Inf ®;(w~0)] contain information
parameteW=0.7 and 7 in Figs. 12—15. The other param-on f-electron collisions.

eters used in the calculation werd =4, T=0.003,E; Let us compare the results fiW=0.7 for bothV=0.3
=—1, andu=0. The figures present the results obtained inandV=0.5, which are in Figs. 12 and 13. The first observa-
the statDMFT calculatiofrepresented by dotas well as the tion we make is that fov=0.3 the values of Re&b(w
results of DMFT(full line), in which the disorder treatment ~0)] are mainly concentrated around zero, while fér
reduces to CPA”® It is important to notice that we have =0.5 they are distributed in a wider range of values. On the
IM[®(w~0)]#0 {as INf2;(w~0)]#0 atfinite T}, im-  other hand, the results for [ (w~0)] show that the in-
plying the presence dfielastic scatteringa feature absent in elastic scattering is stronger for=0.3 than forV=0.5.

the slave boson treatment of the last section. In addition, th€oncerning the results faf=0.5, the great concentration of
imaginary part of the self-energy gets folded into teal  sites with large ReP(w~0)] explains the great decrease in
part of®(w) as well. This is a peculiar feature of a two-band the typical DOS for low disorder shown in Fig. 11. These
model, where theeffectiveconduction electron self-energy sites act as almost unitary scatterers, which give rise to a
represented byp(w) has a real part for which inelastic pro- maximally allowed scattering phase shiig= 7/2) for the

125104-13



M. C. O. AGUIAR, E. MIRANDA, AND V. DOBROSAVLIEVIC PHYSICAL REVIEW B 68, 125104 (2003

4 T T T 4 T T T

(a) (a)

w 0r 1 w 0r
2 . 2 |
_4 1 1 1 _4
-4 2 0 2 4 -4
Re[®(w~0)]
4 T T T T 4 T
(b) (b)
2 r o |
w 0r w 0 F
2| ol
_4 n 1 " 1 o 1 it 1 . _4 1 1 1 1
-0.5 -0.4 -0.3 -0.2 -0.1 0.0 -0.5 -04 -0.3 -0.2 -0.1 0.0
IM[®(w~0)] IM[®(w~0)]
FIG. 14. Scatter plot of the effectiveshell potential®;(w FIG. 15. Scatter plot of the effectivéshell potential®;(w
~0) and the bare potentia| at the same sitedots for V=0.3and  ~0) and the bare potentia| at the same sité&dots for V=0.5 and

W=7, using perturbation theory as the impurity solver:real and W=7, using perturbation theory as the impurity solv@p:real and
(b) imaginary parts. The solid line is the DMFT result ff=7. () imaginary parts. The solid line is the DMFT result féf=7.
Other parameters as in Fig. 12. Other parameters as in Fig. 12.

conduction electrons, and represent droplets of Kondo insusshoulder” in the typical DOS aroundiV=1.1, whose origin
lator within the metal, in close parallel to the slave bosonis the same as that of the non-monotonic behaviol at
results discussed of Sec. ! For v=0.3, although the =0.5. We call attention to the slave boson results of Fig. 2,
inelastic scattering is stronger, it cannot compensate for thehich similarly show that a decrease of the hybridization
much narrower distribution of R&(w~0)]. Thus, the strength moves the “dip-hump” feature to smaller disorder
DOS does not decrease as fast as\fer0.5. values. Moreover, as the current calculation was done at fi-
As the disorder increases to intermediate valu®¥¢ ( nite temperature, inelastic scattering also plays some role in
~1.8), the distribution ok becomes larger, causing a steadysmoothing out this feature.
decrease in the typical DOS fdar=0.3. However, forV As the disorder continues to increase and the distribution
=0.5, the typical DOS presents a nonmonotonic behavioof e becomes broader, the typical DOS for batk 0.3 and
similar to the slave boson results fer0.3=u=<0.1 and V=0.5 decreases. These results tend to the noninteracting
0.1=u=0.4. As we explained in Sec. Ill, this is a result of one, as is expected if only the bare disorder plays a role.
the fact that, as the disorder increases, the concentration @rideed, comparing the results fdf=7 (Figs. 14 and 1pwe
unitary scatterers first increases, then saturates and the baretice that the realizations for which the bare disorédes
disorder dominates over tHerelated One[CDj(w)].lS‘lg In- large have RebP (w~0)] around zero, meaning that the real
deed, even folV=0.3 we notice the presence of a slight part of thef-shell disorder is not important. In addition, the
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values of IMi®(w~0)] are small for these realizations. In 2.0
the case of the realizations for whichis small, R¢d (w
~0)] attains values that are larger than the results\Vibr
=0.7 (cf. Figs. 12 and 18

The above discussion has focused on the conduction elec
tron viewpoint. Let us now consider how the presence of
disorder ine is seen by thd electrons. For the auxiliary
one-impurity problem, the important scale is the Kondo tem-zog 1.0 +
peratureT,, which measures the coupling between the im-
purity and the conduction electron bath. The presence of dis

15 r

order in e generates a distribution df,, as we have seen 6—o T = 0.0001 \\\\\

before. Thus at finite temperature some of the sites have 99  —.—. T-0.0005 \‘\\§‘\

Tx>T, forming a singlet state with the bath, while the sites ——— T=0.001 \\-\\:“; ~~~~~~

for which T¢<T represent an almost free spin, scattering | T=0.003 SRS I
conduction electrons incoherently. This incoherence is char ¢ . . . . . L]
acterized by a large amount of inelastic scattering, signalec 00 05 10 15 20 25 30 35
by a significant imaginary part of the self-energy. Going back w

to the results fofW=0.7, the fact that the inelastic scattering

IS stLongEfzr_ for?]/ZO.S t_han_ Lorrvzg.S_ re;‘]lec];cts the Ie_lrger function of disorder for different values of temperature, using per-
number or Inco erent, S_'te(a,”t k<T) in the former, since turbation theory as the impurity solver. Other parameters used were
the smaller the hybridization, the smaller the Kondo tem-y_y, V=03,E;=—1, andu=0.

peraturd see Eqs(18) and(20)]. On the other hand, the sites
with large R¢d (w~0)] for V=0.5, which are responsible

for the great decrease in the typical DOS, represent sites wit lre results T=0.003) of Fig. 12. From Fig. 17 we see that

Tk=T. the inverse typical DOS increases as we go frdm

Figure 11 also shows the results for the typical DOS for -
U=2 andV=0.5. In this case, the system has particle-hole._ 0.0001 toT=0.0005 and then decreases as the temperature

symmetry in the clean limit, presenting a gap in its D@S: is varied up toT=0.003. As can be seen from the figures,
y iy . P gagap . this nonmonotonic behavior is governed by the effective
Kondo insulatoy. This explains the fact that for small disor- f-disorder encoded in the distribution of Re(w~0)]. In-

der the typical DOS decreases \Asdecreases. The overall @ .

behavior here bears strong similarity with the slave bosorgeed’ its variance increases from-0.0001 toT=0.0005

results of Fig. 1a) (circles and the explanation for it has Pul decreases frorii =0.0005 toT=0.003. Note that the
been given in Sec. Ill. imaginary part ofb (w=~0) always increases with increasing

temperature, reflecting the enhancement of inelastic pro-
cesses. In terms dfy , this is the same as saying that as the
B. Temperature dependence temperature increases the number of sites Witk T, which

Figure 16 presents the results for the typ|Ca| DOS as 5|ave a stronger inelastic Scattering, becomes Iarger. How-
function of W for different temperatures. The other param-
eters used werdd=4,V=0.3,E;=—1, andu=0. Here is 1.4 - -
where the interplay between inelastic and elastic processe
proves to be fairly nontrivial and the use of a technique that
incorporates both, such as perturbation theory, is crucial. 12
First we note that for the lowest disorder valu&/'<€ 0.25),
the typical DOS decreases with increasing temperature. Thit
is made more clear in the inset. On the other handWor
=1.4, this tendency is reversed. Finally, in between these
two extremes, the temperature dependence can be nonmonl:’,
tonic. A better sense of the overall behavior can be graspe(—
by plotting the inverse of the typical DOS as a functionTof
for different values ofV, as shown in Fig. 17. It is clear that 06 +
for 0.7=<=W=1.2, the inverse typical DOS shows a peak as a
function of T, which gradually moves to zero temperature as
disorder is increased. 0.4 s .
The temperature dependence of the typical DOS can b 0.000 0.001 0.002 0.003
rationalized by looking at the corresponding changes in the T
distribution of ®(w~0). For this purpose, we focus on the i, 17. Inverse typical density of states near the Fermi surface
disorder value ofw=0.7, for which 1frp¢® has a clear as a function of temperature for different values of disorder, using
maximum atT~0.0005. We show in Figs. 18 and 19 the perturbation theory as the impurity solver. Other parameters as in
scatter plots of®(w~0) at T=0.0001 andT=0.0005, re- Fig. 16.

FIG. 16. Typical density of states near the Fermi surface as a

ectively, which should be compared to the higher tempera-

— 1.0

typ
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FIG. 18. Scatter plot of the effectiveshell potential®;(w FIG. 19. Scatter plot of the effectiveshell potential®;(w
~0) and the bare potentia¢; at the same sitgdoty for T ~0) and the bare potentia¢; at the same sitgdoty for T

=0.0005 andW=0.7, using perturbation theory as the impurity =0.0001 andW=0.7, using perturbation theory as the impurity
solver:(a) real and(b) imaginary parts. The solid line is the DMFT solver:(a) real and(b) imaginary parts. The solid line is the DMFT
result forw=0.7. Other parameters as in Fig. 16. result forW=0.7. Other parameters as in Fig. 16.

ever, in the interval from about=0.0005 up toT=0.003, cially far from the weakly disordered regioM{>0.35). If
the increase of IiMb (w~0)] is outweighedby the narrow- this is done, then the fanning out of the “resistivity” curves
ing of the distribution of Re®(w~0)], which is the domi-  of Fig. 17 asT— 0 is reminiscent of the Mooij correlatios,
nant contribution. The above analysis can be similarly ex-originally observed in disordered transition metal alloys, but
tended to the other values of disorder shown in Fig. 17.  which are also seen in heavy fermion alld§sjoped Kondo
All along we have been using the typical DOS as a meainsulators’*~"® and even in two-dimensional systems as in
sure of the conducting properties of the system. This is justhe metal-oxide-semiconductor field-effect transisto@ur
tified by its interpretation as a escape rate from a lattice siteesults and the discussion above show that the interplay be-
and the fact that it vanishes at the localization transitfon. tween localization effects and electron-electron interactions
Ideally, one would like to calculate the conductivity instead.can give rise to the Mooij correlations, without the need to
This is a difficult task in the present scheme, however, alinvoke other sources, such as electron-phonon
though an approximate calculation can be performed, whiclnteraction®# In addition, we have pointed out how the
becomes accurate close to the localization transf6flt rapid drop in the typical DOS is a consequence of the prox-
requires the calculation of the propagator between two difimity to the Kondo insulator, a region where localization
ferent sites, which goes beyond our current method, whoseffects are particularly large. Taken together, these observa-
focus is on local Green’s functions only. Even in view of all tions point to a close connection between Mooij correlations
these caveats, however, it is tempting to use the inverse typand localization effects in the vicinity of a Kondo or a Mott
cal DOS as an approximate measure of the resistivity, espéasulator. It would be interesting to test these ideas by a
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direct calculation of the resistivity within a scheme capablement is probably impossible, it might be feasible to devise an
of incorporating both localization and strong correlations. approximate parameterization of the statDMFT on the Bethe
Finally, regarding the DMFT calculation presented in all lattice, specially at weak disorder. In this respect, the univer-
the figures discussed in this section, we note that the resultality of the distributions of “dressed” quantities, such as the
obtained for Re®(w~0)] fall approximately in the region various local Green’s functions and the Kondo temperatures,
where the concentration of realizations in the statDMFT calwhich are either Gaussian or log normal is a useful guide. A
culation is largest. There is no reason to expect DMFT andtoy” model that assumes a simple form for the distribution
the statDMFT to give similar results, except at weak disor-of A¢j(iw,) can be written down, which recovers the Grif-
der. Nevertheless, our results show that, surprisingly, DMFTiths singularities obtained in the numerical treatmf@rfthis
can serve as a rough guide for the most probable values &foy” model may prove useful for a calculation of the resis-
Rq ®(w~0)]. There is a sizeable discrepancy, however, betivity and for generalizations of the statDMFT treatment.
tween the DMFT and the statDMFT results for [y w On the other hand, a specially important effect neglected
~0)] at the highest temperaturd@ £ 0.003) and low disor- in the statDMFT is two-particle inter-site correlations, par-
der. The DMFT line in this case is an underestimate of thdicularly in the spin channel. Indeed, the proliferation of
realizations obtained within the statDMFT. As the temperapoorly quenched loviF¢ spins in our treatment generates a
ture is lowered a better agreement is obtained. Thus, in adarge amount of entropy that must be relieved at low tem-
dition to its inherent neglect of localization effects, DMFT peratures through intersite correlations. Indeed, experimental
should be used only as a lower bound when gauging thevidence in favor of spin-glass dynamics at low temperatures
importance of inelastic processes in disordered Anderson lath UCus_,Pd,*®and URBGe,** makes the inclusion of inter-
tices. site correlations more pressing. A promising avenue of attack
would be to remain true to the spirit of the DMFT and use its
extended version. Several treatments along these lines have
V. DISCUSSION AND CONCLUSIONS been attemptett*?®The challenge in our case is to incor-

We have in this paper extensively characterized the phygeorate both the dynamical intersite correlations of the latter
ics of disordered Anderson lattices within the statDMET treatments and the spatial fluctuations of Kondo temperatures
scheme, which is able to incorporate both localization effect®f the electronic Griffiths phase we find in our approach. We
and the local correlations coming from electron-electron in-defer the discussion of this problem to a future publication.
teractions. This was done using both lafgenethods and
perturbation theory for the auxiliary single impurity prob- ACKNOWLEDGMENTS

lems. These are in a sense complementary approaches. On . .
P y app We thank M. J. Rozenberg for useful discussions. We also

the one hand, larght theory is ideal for ground state prop- fthank C. H. Booth for providing us with his XAFS data. This

erties, where inelastic effects are absent. In particular, it a
fords a quick and reliable way of calculating Kondo tempera—Work was supported by FAPESP through Grants No. 99/

tures (with the correct exponential dependencand 00895-9(M.C.O.A), 98/12741-3E.M.), 01/00719-8E.M.),

scattering phase shifts a&=0. Without 1N corrections, RIySIC::'\tIrF]) q thrhmégh C;raRIt Ng@gl:g%%?l(fMé ilrnggztgzle
however, it is unsuitable for a finite temperature calculation. rough frants No. . an )

On the other hand, second order perturbation theory has th(é{'D')'

advantage of being equally flexible with the added bonus of

incorporating inelastic processes and the temperature depen- APPENDIX: BRIEF DESCRIPTION
dence of the scattering phase shifts. Nevertheless, it fails to OF THE NUMERICAL METHOD

capture the exponential nature of the low-temperature scale The set of stochastic equations defined in E&s—(17)
of the single impurity problem. Taken together, the tWO st be solved in two steps. First, actitB)—(8) is solved

methods have enabled us to put on firm grounds the conCligiyy the path function witie— 1 nearest neighbors defined in

: - - : 19
SIfOﬂS I?'d out mGp_rf(?_vrl]oushwor’r& Anz(ijmely, tlhe_emergence g. (17). This determines self-consistently the distribution of
of an electronic Griffiths phase in Anderson lattices governeg, .o conduction electron Green’s functions with one nearest

by the proximity to the disorder-induced localization transi-neighbor remove®'°V(iw,). Next, the same actioff)—
tion. In particular, several inadequacies of the early Kondo(g) is solved. this ticrlne witrﬁ .the ba;th function i9), con-
disorder model(and its formulation as a dynamical mean ructed f ' th iously determi @Jcoc(j) o Thi
field theory have been given a better theoretical basis onc&'ructea trom the previously: determinesy, ('w“)'. S
localization effects were included. The self-averaging ef'fectSteplo'([“_’oIVes no self-consistency and yields the distribution
introduced by the spatial fluctuations of the conduction elec®f Gcj (i@n) as output. Since the latter bath function is a sum
tron wave functions induce a much higher degree of univerOVer Z nearest neighbors its statistical fluctuations are re-
sality than is possible in the rigid KDM description. Further- duced compared to the forlmer one. ThGE(i ) is more
more, the perturbation theory treatment has also suggestednarrowly distributed tharG* V(i w,). Yet, we expect the
mechanism behind the ubiquitous observation of Mooij cor-qualitative behavior to be the same. We have therefore fo-
relations in the resistivity of disordered materials. cused on the first step of the procedure only. _
Even within the confines of the approximations of the For a given impurity solver, this disordered Bethe lattice
statDMFT scheme, there are still outstanding issues that weroblem was solved far=3, by sampling the distribution of
would like to resolve. Even though a fully analytical treat- G5*"(iw,) from an ensemble df sites, as proposed origi-
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nally in Ref. 47. We have generally usdl=70—100 since disorder is present a given impurity problem may not have a
we have checked that the results do not change by takingolution even alT =0, because the strong spatial fluctuations
N=200. We have thus determined the distribution of variougnay cause the local DOS to vanish at the Fermi level. In this
local properties. case, there are two possible regimes for the impurity, which
The equations were solved on a discrete mesh along theave been carefully analyz&d.®’ The analysis shows that
Matsubara axis. The mesh is set by the Matsubara frequefhere is a critical coupling constakt, such that the ground
cies in the perturbative treatment at finite temperatures angtate is a singlet fo/>V, (the so-called “strong coupling
by an arbitrary finite discrete mesh in the slave boson meakondo effect”), whereas the local moment remains un-
field theory atT=0 (up to 32 000 points The choice of the quenched iV<V.. When a solution could not be found, this
imaginary frequency axis is due to a greater numerical stacorresponded to either a free spM<(V,) or a Kondo tem-
bility. When the disorder is strong, the various Green’s func-perature which is smaller than the smallest value we can
tions show large fluctuations. However, these are much morteach with our numerical code. In either case, wecseD,
pronounced on the real frequency axis, where they give riseffectively decoupling the free moment from the rest of the

to several peaks and gaps. lattice. Yet, we were still able to span several decades of
The slave boson treatment consists in finding the tweenergy scales.
mean field parameters and €; by solving the set of two In the perturbative treatment, the solution of each impu-

nonlinear Eqs(25)—(26). For that, we used the Powell hy- rity problem is found by solving a set of two nonlinear equa-
brid method. The integrals were calculated with standardions forn andﬁ, which is defined by Eq$30) and(35). As
adaptive quadrature routines. Since we used a finite frein the slave boson treatment we used the Powell hybrid
quency mesh, it was important to extrapolate the value ofnethod. The calculation of the second order correction for
G{P(iw) with the asymptotic form 1k for values of the self-energy involves Fourier transforms as, according to
greater than the largest mesh value. In this fashion, a wid&g. (31), it has a simpler form in imaginary time rather than
range of Kondo temperatures is covered, going down to alin frequency space. For this, we used the fast Fourier trans-
most machine precision in the clean metallic case. Wherorm algorithm?’
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