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Self-affine-like magnetoconductance fluctuations: Quasiperiodicity with a Weierstrass-like
spectrum
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Department of Applied Physics, Osaka City University, Osaka 558-8585, Japan

~Received 27 May 2003; published 12 September 2003!

Using Landauer-Bu¨ttiker formula, conductance fluctuations are approximated semiclassically as a summa-
tion over periodic orbits that are well coupled to the entrance opening. This formula is valid for open quantum
dots with soft-walled boundary everywhere. Conductance fluctuations are therefore in general quasiperiodic
whose frequencies correspond to a few shortest periodic orbits that are well coupled to the entrance opening.
Applying this formula to open billiard with Barbanis type potential, we will show that the recently observed
exact self-affine-like magnetoconductance fluctuations in soft-walled billiards are special cases of quasiperi-
odicity, namely quasiperiodicity with Weierstrass-like spectrum. We will show that they are the fingerprints of
self-similar periodic orbits which cluster in the vicinity of the entrance opening.
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The phenomena of fractal-like magnetoconductance fl
tuations in soft-walled quantum dots have attracted m
scientific efforts both theoretically and experimentally. It w
first predicted by Ketzmerick1 in 1996 that using semiclass
cal Landauer-Bu¨ttiker formula, the self-similar structure in
classical phase space should reveal fractal-like conduct
fluctuations as a function of systems parameters~magnetic
field, Fermi energy, etc! in soft-walled quantum dots. He
argued that the power law for the dwelling time probabil
in the corresponding classical open systems will cause
fluctuations of the conductance to behave as fractio
Brownian fluctuations, the dimension of which can be cal
lated using the information of the exponent of the power la
A couple of years later, laboratory experiments and num
cal simulations confirmed the predictions in the sense
fractal-like magnetoconductance does really exist.2,3 Yet,
there is no evidence on fractal-like fluctuations against ot
parameters so far. The difficulty to measure the exponen
dwelling time power law in laboratory experiment makes
difficult to check the relation between the dimension of t
fractal-like fluctuations and the exponent. In addition, sin
the theory is based on statistical analysis, it is difficult
explain the interesting phenomena of exact self-affine-
magnetoconductance fluctuations observed in open S
quantum dots3–5 and in dots array.6 To the latter issue, the
authors of the present paper, using semiclassical Kubo
mula for conductivity,7 have suggested a picture that rela
the exact self-affine-like fluctuations to self-similar~in con-
figuration space! periodic orbits in the corresponding class
cal systems.8

Landauer-Bu¨ttiker formula has been the common way
calculate the conductance of quantum dots. This is beca
the Landauer-Bu¨ttiker formalism provides a clear picture fo
the treatment of the openings that connect the quantum
ity to the large electronic reservoirs. In contrast to the exp
ments which are done in small number of the lowest mod
the semiclassical Landauer-Bu¨ttiker formula used in Ref.1 is
valid in the limit of large mode number.

In this present Rapid Communication, we consider a c
otic quantum dot connected to large reservoirs of source
drain via quantum point contacts~QPC’s! with effective lon-
0163-1829/2003/68~12!/121304~4!/$20.00 68 1213
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gitudinal lengthL. In real experiment QPC’s are soft walle
We therefore assume that the transversal profile of the lo
part of the QPC’s can be approximated as harmonic po
tial: V(y)5V01 1

2 mv2y2, wherem is the effective mass o
the electron.9 We realize that experiments are done in lar
potential curvaturev where the ground state is a very narro
Gaussian wave packet:f0(y)5@1/(lAp)1/2#e2y2/2l2

, whose
width l5A\/mv is typically much smaller than the width
of the QPC’s.9 Noting this experimental fact, we calculat
the lowest mode reflection coefficientR00 of the open system
semiclassically. Conductance is then related to the reflec
coefficient via the Landauer-Bu¨ttiker formula. Assuming that
only the lowest mode contributes to the transport, we w
show that the leading fluctuating part can be approxima
semiclassically as a summation over periodic orbits that
well coupled to the entrance opening. Applying this formu
to open cavity with Barbanis type potential, we will expla
that the recently observed self-affine-like conductance fl
tuations are the fingerprints of self-similar periodic orb
that are well coupled to the entrance opening. As will
clear later, this approach is essentially different from the o
using semiclassical Kubo formula, since it emphasizes
important role played by the nature of the couplings betwe
the cavity and the reservoirs.

The Landauer-Bu¨ttiker formula relates dimensionless co
ductanceg in linear response regime to lowest mode refle
tion coefficientR00 as follows:10

g512E dER00~E!S 2
d f0

dE D , ~1!

where we have employed current conservation rule.f 0(E)
51/$11exp@(E2EF)/kBT#% is the Fermi distribution at tem
peratureT and Fermi energyEF . The lowest mode reflection
coefficient is equal to the absolute square of the reflec
amplitudeR005ur 00u2, wherer 00 at energyE is given by the
projection of the retarded Green functionG(y8;y;E) onto
the transverse wave function in the entrance QPC, the
coming and outgoing lowest modesf0:
©2003 The American Physical Society04-1
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r 005211 i\v0E
C
dy8E

C
dyf0* ~y8!f0~y!G~y8,x8;y,x;E!.

~2!

Here v05\k0 /m, where k05(1/\)A2m(E2\v/2) is the
longitudinal wave number of the ground state in the QP
The integrations in Eq.~2! take place at the transverse cro
sectionsC on the entrance QPC. Next, we have to consi
the fact that for a soft-walled open billiard, the transp
properties are insensitive to the positions of boundary
between the reservoirs and the cavity, namelyC. To this end,
we should perform proper averaging of the location of
initial and final points over the characteristic longitudin
width L of entrance QPC. Futhermore, note that for su
ciently small value ofl, the following relation holds:

f0~j!f0* ~j8!'A2d~j2j8!e2jj8/l2
. ~3!

Keeping these facts in mind, for sufficiently small\, the
leading part of reflection coefficient can thus be written
follows:

R0052\2v0
2E

C
dyE

C
dy8e2(y21y82)/l2

3^G~y8,x8;y,x;E!G* ~y8,x8;y,x;E!&, ~4!

where the ensemble average is defined as

^•••&5
1

L2E2L/2

L/2

dxE
2L/2

L/2

dx8•••. ~5!

The semiclassical approximation to the transmission p
ceeds by replacing the Green functionG by its semiclassica
path-integral expression,11

Gsc~r 8;r ;E!5
2p

~2p i\!3/2 (
s(r8;r )

ADse
( i /\)Ss(r8;r ;E)2 i (p/2)ms,

~6!

given as a sum over classical trajectoriess between pointsr
andr 8 of the entrance cross section.Ss is the action integral
along the trajectorys.

Ds5
1

uq̇q̇8u

]2Ss

dq'dq'8
uq'5q

'8 50 ,

whereq̇ and q̇8 are the initial and final velocities along th
classical trajectory at entrance opening. The phase indems
is given by the number of constant-energy conjugate poi

Substituting the semiclassical Green function~6! into Eq.
~4! and evaluating the integration using stationary phase
tegration, the stationary point conditions are satisfied
pairs of trajectoriess andt that have the same initial and fina
momentum at entrance QPC:

]Ss

]r U r5rp
2

]St

]r U
r5rp

52ps1pt50, ~7!
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]Ss

]r 8
U

r85r
p8

2
]St

]r 8
U

r85r
p8

5ps82pt850. ~8!

There are two kinds of pairs of trajectories that satisfy
above conditions. One is pairs of identical trajectoriess
5t. Contribution from these trajectories leads to the class
part of the reflection coefficientR00

cl and after convolution
with the derivative of the Fermi distribution gives the cla
sical conductance. Second is pairs of trajectories that
both part of a periodic orbit~see Fig. 1, upper!. Thens andt
can differ by an integer numbern of period of the periodic
orbit. These trajectories will give the quantum correcti
dR00 to R00

cl . The quantum correction to the transpo
through the open quantum dots is therefore mediated by
riodic orbits that are well coupled to the entrance openi
Performing the stationary integration and substituting the
sult into Eq.~1! we obtain

dg~EF ,B!;24(
p(C)

Fp
2(

n51

`
Rn~Tp /tb!

i~M p
n21!i1/2

3cosFnS Sp~EF ,B!/\2
p

2
spD G . ~9!

Fp5
1

t0
E dte2yp

2(t)/l2
. ~10!

Here the first summation is over the prime periodic orb
and n denotes its repetition.M p and sp are the stability
matrix and the Maslov index of the periodic orbitp. All
periodic orbits are assumed to be isolated, otherwise the
plitude will diverge.Tp is the period of the prime periodic
orbit, andRn(Tp /tb)5nTp /tb /sinh(nTp /tb) is the damping

FIG. 1. A pair of nonidentical trajectoriessÞt which satisty the
stationary phase conditions~upper!; the Barbanis potential~lower
left! with two shortest periodic orbits couple well to the entran
lead: a straight-line librating periodic orbitA which oscillates be-
tween the wall and the saddle right at the center of entrance Q
and a rotating periodic orbitO5; The first three rotating children o
A: O5 ,O7 ,O9 ~lower right!. The transversal coordinates ofO7 and
O9 are rescaled byg andg2, respectively. See text for details.
4-2
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factor, wheretb[\/pkBT. The presence of the dampin
factor guarantees that the dominant contribution to the tra
port comes from the shortest periodic orbits, and theref
ensures the convergence of the sum. It also suppresse
amplitude of the conductance fluctuations as the tempera
of the quantum dot is increased. In Eq.~10!, t05L/v0 and
the integration over timet runs along the part of the periodi
orbit which is covered by the entrance QPC, whereyp is the
y component of the periodic orbit.Fp , which measures the
strength of the coupling between each periodic orbit and
entrance opening, is given by the ratio between the Gaus
weighted time consumed by a periodic orbit in the QPC
gion and the time needed by an electron to pass through
QPC in longitudinal direction. It is then obvious that th
nature of coupling between the cavity and reservoir d
play an important role in transport. In contrast to this, t
semiclassical Kubo formula does not give any explanat
on this issue.

For a weak magnetic fieldB, we can assume that only th
phase of the electron is changed, the periodic orbits rem
unchanged. Then we can expandSp up to the first order inB
as follows:Sp(E,B)5Sp(E,B50)1(e/c)QpB. HereQp is
the area enclosed by each periodic orbit. Considering
contribution from6Qp , i.e., from a pair of time-reversa
symmetric orbits, we can rewrite the cosine term in Eq.~9!
as

2 cosFnS Sp~E,0!

\
2

sp

2
p D GcosS e

\c
nQpBD .

Next, let us suppose that through some kind of bifur
tions, we have a sequence of periodic orbits well coupled
the entrance opening, which are self-similar in configurat
space and satisfy the following approximate scaling relati

Qp
m5gQp

m21 . ~11!

HereQp
m denotes the area enclosed by periodic orbit gen

ated at themth bifurcation. Then we can expect that th
fluctuations of the magnetoconductance should be chara
ized by many scales. Below, we will show a mechanism h
the above relation is generated in open cavities with s
walled boundary. Any introduction of opening in a cavi
will naturally create a harmonic saddle right on the QPC, i
it gives a maximum to a longitudinal cut and a minimu
~which is harmonic! to a transversal cut.9 To make the pic-
ture clear, let us look at the well-known Barbanis poten
shown in Fig. 1~lower left!, which is given by the following
equation:

V~x,y!5
1

2
~x21y2!2ex2y. ~12!

Barbanis potential can be taken as a simple ideal model f
soft-walled billiard with two leads attached to its two co
ners. The harmonic saddles are obvious (3). Fortunately, in
this potential as rigorously evaluated in Refs. 12,13,
shortest periodic orbits that are well coupled to the entra
opening are the straight-line librating periodic orbitA which
oscillates between the wall and the saddle, and its s
12130
s-
re
the
re

e
an
-
he

s

n

in

e

-
to
n
:

r-

er-

t-

.,

l

a

e
e

lf-

similar children. ForEF which is smaller and close enoug
to the saddle energyES , the librating orbitA oscillates be-
tween stability and instability asEF is increased, undergoing
an infinite number of isochronous bifurcations that cumm
late at the saddle energy, where the periodTA becomes in-
finity. During the bifurcations two types of self-similar per
odic orbits are generated. Both types are well coupled to
entrance opening; a sequence of pairs of librating orbitsL2k ,
L2k8 with vanishing area, which are born when the orbitA
goes from unstable to stable, and a sequence of rotating
bits O2k21 with nonvanishing area, which are born when t
orbit A changes from stable to unstable. Here, the lower
dex denotes the Maslov index of the periodic orbits. We
only interested in the orbits with nonvanishing area,O2k21
~see Fig. 1!. The closer they are born toES , the smaller is
their amplitude in transversal direction. For large enou
EF , the ratio of the amplitude of a child to that of its ne
brother is the same for all children and is equal to e
(2p/v), wherev is the transversal curvature at the harmon
saddle mentioned at the beginning of this paper. There
another scaling relation in the longitudinal direction whi
relates the tip of the periodic orbit to the whole period
orbit. They make one more oscillation in the transverse
rection in each generation. However, its contribution to
area is very small. Neglecting this contribution we have
scaling relation that relates the area of two immediate bro
ers as in Eq.~11! with g5exp(2p/v), which is smaller
than 1.

In Fig. 2, using the first 10 self-similar children of per
odic orbitA, i.e.,O2k21 , k53, . . .,12, and their first repeti-

FIG. 2. Succesive magnifications of fractal fluctuations arou
B50 T, for a sufficiently low temperature. The vertical coordina
is scaled in arbitrary unit. The scale factor of each magnification
the horizontal direction is equal to 1/g2.
4-3
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tions, conductance fluctuations are plotted againstB for EF

slightly larger thanES . The exact self-affinity is obvious
Since for EF.ES , the phase space of the correspond
classical system is more than 95% filled with chaotic sea,
conclude that the self-affine-like magnetoconductance fl
tuations are not the finger-prints of the mixed phase sp
This supports recent numerical evidence reported in Ref.
In mathematical point of view, Eq.~11! guarantees the exis
tence of Weierstrass-like spectrum, and together with the
creasing progression of the amplitude in Eq.~10!, they com-
prise a Weierstrass-like function, a well-known self-affi
function. The increasing progression of the amplitude
guaranteed since the later children enjoy longer time be
trapped in the entrance QPC. However unlike the Weierst
function, the function we obtained using Eqs.~9!–~11! has
smallest bound scale corresponding toO5 or its repetitions
which have the largest area among other self-similar perio
orbits. By decreasing the temperature, more repetitions ofO5

will contribute to the fluctuations to generate much fin
scale than shown in Fig. 2. Experimentalists usually say
the lowest scale obtained in experiments is due to the li
tation of the measuring devices. We therefore believe
our results should give a new insight to perform a realis
measurement.

Some notes should be mentioned here before finish
with the conclusion. Our semiclassical picture is a one-m
calculation, whereas fractal-like conductance fluctuations
also be observed in experiments with more than 1, yet sm
number of modes. However for a sufficiently low tempe
A

ge
nd

.
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ture, we believe that our one-mode approximation is valid
explain the interesting phenomena.

The main ingredient of our paper is the occurrence of
isochronous pitchfork bifurcations of a straight-line libratin
orbit oscillating towards a harmonic saddle~entrance QPC!.
This is not specific to the model in Fig. 1. In fact, as show
by Brack,12,13 besides in the above Barbanis potential, pitc
fork bifurcations also occur in other kind of potentials of th
same type. The periodic orbits born from the straight-li
librating orbit oscillate towards a harmonic saddle or b
tween two harmonic saddles~as in 4-quartic Henon-Heiles
potential!, they are also self-similar with different value o
scaling constant,g. The latter corresponds to quantum d
with its entrance and exit opening placed aligned opposit
each other. Since our derivation is based on local informa
on the geometrical feature of the QPC, we find that the
mension of the fractal-like magnetoconductance fluctuati
is independent of the detailed geometrical shapes of the
ity. From Eq.~9!, it is obvious, however, that there is a sy
tematic dependence of the fractal structure on tempera
and inelastic scattering ratetb . Nevertheless, the importan
finding reported in Ref. 15, that the fractal dimension d
pends only on the resolution of the energy level spacings
the system is yet to be confirmed. We leave it for futu
work.

We acknowledge useful discussions with Professor
Ochiai and Professor J. P. Bird. A.B. wishes to acknowled
the Matsuda Yoshahichi Foundation and the Ministry of Ed
cation, Culture, Sports, Science and Technology~Japan! for
financial support.
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