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Self-affine-like magnetoconductance fluctuations: Quasiperiodicity with a Weierstrass-like
spectrum
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Using Landauer-Bttiker formula, conductance fluctuations are approximated semiclassically as a summa-
tion over periodic orbits that are well coupled to the entrance opening. This formula is valid for open quantum
dots with soft-walled boundary everywhere. Conductance fluctuations are therefore in general quasiperiodic
whose frequencies correspond to a few shortest periodic orbits that are well coupled to the entrance opening.
Applying this formula to open billiard with Barbanis type potential, we will show that the recently observed
exact self-affine-like magnetoconductance fluctuations in soft-walled billiards are special cases of quasiperi-
odicity, namely quasiperiodicity with Weierstrass-like spectrum. We will show that they are the fingerprints of
self-similar periodic orbits which cluster in the vicinity of the entrance opening.
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The phenomena of fractal-like magnetoconductance flucgitudinal lengthL. In real experiment QPC’s are soft walled.
tuations in soft-walled quantum dots have attracted manyVe therefore assume that the transversal profile of the lower
scientific efforts both theoretically and experimentally. It waspart of the QPC’s can be approximated as harmonic poten-
first predicted by Ketzmerickin 1996 that using semiclassi- tial: V(y)=V,+ mw?y?, wherem is the effective mass of
cal Landauer-Btiiker formula, the self-similar structure in the electror?. We realize that experiments are done in large
classical phase space should reveal fractal-like conductangmtential curvatures where the ground state is a very narrow
fluctuations as a function of systems parametenagnetic  Gaussian wave packeiy(y) =[1/(\ \/;)1/2]e7y2/2)x2, whose
field, Fermi energy, ejcin soft-walled quantum dots. He \yigth \ = %/mw is typically much smaller than the width
argued that the power law for the dwelling time probability ¢ the QPC’? Noting this experimental fact, we calculate
in the corresponding classical open systems will cause th@e |owest mode reflection coefficieRg, of the open system
fluctuations of the conductance to behave as fractionalemiclassically. Conductance is then related to the reflection
Brownian fluctuations, the dimension of which can be Calc”'coefficient via the Landauer-Biker formula. Assuming that
lated using the information of the exponent of the power lawgny the Jowest mode contributes to the transport, we will
A couple of years later, laboratory experiments and numerighq,y that the leading fluctuating part can be approximated
cal simulations confirmed the predictions in the sense thalgmiclassically as a summation over periodic orbits that are
fractal-like magnetoconductance does really e?><?§wet, well coupled to the entrance opening. Applying this formula
there is no evidence on fractal-like fluctuations against othef, open cavity with Barbanis type potential, we will explain
parameters so far. The difficulty to measure the exponent Gf 4t the recently observed self-affine-like conductance fluc-
dwelling time power law in laboratory experiment makes ity,ations are the fingerprints of self-similar periodic orbits
difficult to check the relation between the dimension of thei,5t are well coupled to the entrance opening. As will be
fractal-like fluctuations and the exponent. In addition, SinC&ear |ater, this approach is essentially different from the one
the theory is based on statistical analysis, it is difficult to,gjng semiclassical Kubo formula, since it emphasizes the
explain the interesting phenomena of exact self-affine-likgmortant role played by the nature of the couplings between
magnetocondusctancg fluctuations observed in-open Singhe cavity and the reservoirs.
quantum dots® and in dots arrafl.To the latter issue, the  The | andauer-Biiker formula relates dimensionless con-

authors of the present paper, using semiclassical Kubo fofy,ctanceg in linear response regime to lowest mode reflec-
mula for conductivity, have suggested a picture that relatesijon coefficientRy, as follows®

the exact self-affine-like fluctuations to self-simil@n con-
figuration spackperiodic orbits in the corresponding classi-
cal systems. 0

Landauer-Bttiker formula has been the common way to g=1—f dERoo(E)( - d_E) 1)
calculate the conductance of quantum dots. This is because
the Landauer-Bttiker formalism provides a clear picture for
the treatment of the openings that connect the quantum cawhere we have employed current conservation ré§¢E)
ity to the large electronic reservoirs. In contrast to the experi= 1{1+exd(E—Eg)/ksT]} is the Fermi distribution at tem-
ments which are done in small number of the lowest modegperaturel and Fermi energ¥r . The lowest mode reflection
the semiclassical Landauer-@iker formula used in Ref.1 is coefficient is equal to the absolute square of the reflection
valid in the limit of large mode number. amplitudeRgo=|r oo?>, Wherery, at energyE is given by the

In this present Rapid Communication, we consider a chaprojection of the retarded Green functi@(y’;y;E) onto
otic quantum dot connected to large reservoirs of source anithe transverse wave function in the entrance QPC, the in-
drain via quantum point contactQPC’9 with effective lon-  coming and outgoing lowest modés:
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roo=— 1+ihvofcdy’ chy¢3(y')¢o(y)G(y' XY, % E).
2

Here vo=%ko/m, whereky=(1/4)y2m(E—#%w/2) is the

longitudinal wave number of the ground state in the QPC.
The integrations in Eq.2) take place at the transverse cross
sectionsC on the entrance QPC. Next, we have to consider

the fact that for a soft-walled open billiard, the transport "\ » !\ \\NSSEs L _CSL 0
properties are insensitive to the positions of boundary line Y N N 5\:2 ‘i\f?’
between the reservoirs and the cavity, nan@lyo this end, . e Faa PR 2 Ny
. . i \\ 1 \ / \ / \
we should perform proper averaging of the location of the /‘ AN = ' B e ;
initial and final points over the characteristic longitudinal \éﬁs@—"f‘%“ SR | IV | IR
width L of entrance QPC. Futhermore, note that for suffi- \\ \“/////; St S i Yo
ciently small value of\, the following relation holds: Nt s e x1 XY X2

’ I\ s EETINZ
bol &) Py (£)~28(¢—¢")e €N, () FIG. 1. A pair of nonidentical trajectoriess#t which satisty the

. . . - stationary phase conditior{sippep; the Barbanis potentiallower
KeeP'”g these facts ',n mind, _fqr sufficiently smal| _the left) with two shortest periodic orbits couple well to the entrance
leading part of reflection coefficient can thus be written aSeaq: 5 straight-line librating periodic orbX which oscillates be-

follows: tween the wall and the saddle right at the center of entrance QPC,
and a rotating periodic orbiDs; The first three rotating children of
_ 9322 A (Y2+y 22 A: O5,07,0q (lower righy). The transversal coordinates ©f, and
Roo=27 Uofcdyfcdy € O, are rescaled by and y?, respectively. See text for details.
X{G(Yy' X"y, x;E)G*(y' ,X";y,X;E)), 4
(G(y" X"y, x5 E)G* (y' x5y, xE)), (4 75, s o
where the ensemble average is defined as ar’ ar' Ps™Pe =0
r'=r’ r'=r’
p
()= 1 (e dx L2 dx .. 5) There are two kinds of pairs of trajectories that satisfy the
L2 ) oe ' above conditions. One is pairs of identical trajectorigs:

=t. Contribution from these trajectories leads to the classical
The semiclassical approximation to the transmission propart of the reflection coefficienRS, and after convolution
ceeds by replacing the Green functiGrby its semiclassical with the derivative of the Fermi distribution gives the clas-
path-integral expression, sical conductance. Second is pairs of trajectories that are
both part of a periodic orbitsee Fig. 1, uppér Thens andt
2 S DS 8 (s can differ by an integer number of period of the periodic
(27'ri—ﬁ)3’25(r'-r) € ' orbit. Thes? trajectories will give thg guantum correction
‘ 6) SRy to R§y. The quantum correction to the transport
through the open quantum dots is therefore mediated by pe-
given as a sum over classical trajectorsdsetween points riodic orbits that are well coupled to the entrance opening.
andr’ of the entrance cross sectiddy is the action integral Performing the stationary integration and substituting the re-

Gedr';r;E)=

along the trajectong. sult into Eq.(1) we obtain
1 s 5 Ru(Tpl7p)
D= ——o —q' -o. 89(Ep B)~—4> 2y ——P L
lag’| da, dq; B A=t [[(MB—1)
whereq andq’ are the initial and final velocities along the xCog{n(S Ee,B)/h—— ) 9
classical trajectory at entrance opening. The phase ipdex o(Er.B) 29p ©
is given by the number of constant-energy conjugate points.
Substituting the semiclassical Green functiéhinto Eq. @ :i dte-vamn? (10)
(4) and evaluating the integration using stationary phase in- P 7 :

tegration, the stationary point conditions are satisfied by

pairs of trajectories andt that have the same initial and final Here the first summation is over the prime periodic orbits
momentum at entrance QPC: and n denotes its repetitionM, and o, are the stability

matrix and the Maslov index of the periodic orlpt All

9Ss S, periodic orbits are assumed to be isolated, otherwise the am-
arlrenT o =—Ppstp:=0, (7) plitude will diverge. T, is the period of the prime periodic
r=rp orbit, andR(T/75) =nT,/75/sinh(nT,/74) is the damping
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factor, whererz=#/7kgT. The presence of the damping
factor guarantees that the dominant contribution to the trans-
port comes from the shortest periodic orbits, and therefore
ensures the convergence of the sum. It also suppresses the
amplitude of the conductance fluctuations as the temperature
of the quantum dot is increased. In E4QO), 7o=L/v, and

the integration over timéruns along the part of the periodic
orbit which is covered by the entrance QPC, wheggés the

y component of the periodic orbi,, which measures the
strength of the coupling between each periodic orbit and the
entrance opening, is given by the ratio between the Gaussian
weighted time consumed by a periodic orbit in the QPC re-
gion and the time needed by an electron to pass through the
QPC in longitudinal direction. It is then obvious that the
nature of coupling between the cavity and reservoir does
play an important role in transport. In contrast to this, the
semiclassical Kubo formula does not give any explanation
on this issue.

For a weak magnetic fielB, we can assume that only the
phase of the electron is changed, the periodic orbits remain
unchanged. Then we can expa@gup to the first order irB /\\ /‘\
as follows:S,(E,B)=S,(E,B=0)+(e/c)O,B. Here®, is | o o |
the area enclosed by each periodic orbit. Considering the 0 01 \\/'{ B(Tes0a
contribution from+®,, i.e., from a pair of time-reversal :
symmetric orbits, we can rewrite the cosine term in [j. FIG. 2. Succesive magnifications of fractal fluctuations around
as B=0 T, for a sufficiently low temperature. The vertical coordinate

is scaled in arbitrary unit. The scale factor of each magnification in
) Co% n( Sp(:,o) _%ﬂ_) cos(%n@)pB). the horizontal direction is equal to.

-
—am

similar children. ForEg which is smaller and close enough
Next, let us suppose that through some kind of bifurcato the saddle energis, the librating orbitA oscillates be-
tions, we have a sequence of periodic orbits well coupled taween stability and instability a&¢ is increased, undergoing
the entrance opening, which are self-similar in configuratioran infinite number of isochronous bifurcations that cummu-
space and satisfy the following approximate scaling relationjate at the saddle energy, where the peffgdbecomes in-
" 1 finity. During the bifurcations two types of self-similar peri-
O,=70, . (1D odic orbits are generated. Both types are well coupled to the

Hereg1 denotes the area enclosed by periodic orbit gener(_antrance opening; a sequence of pairs of librating othjs

ated at themth bifurcation. Then we can expect that the L2k W;th Van'Sh"E)? area, Vt\)’lh'Ch e:jre born when tfhe Opfb't
fluctuations of the magnetoconductance should be characte§@€S rom unstable to stable, and a sequence of rotating or-

ized by many scales. Below, we will show a mechanism howPitS Ozk-1 ith nonvanishing area, which are born when the
the above relation is generated in open cavities with softo'Pit A changes from stable to unstable. Here, the lower in-

walled boundary. Any introduction of opening in a cavity dex denotes the Maslov index of the periodic orbits. We are

will naturally create a harmonic saddle right on the QPC, i.e.CnlY interested in the orbits with nonvanishing ar€sy,
it gives a maximum to a longitudinal cut and a minimum (S€€ Fig. 1 The closer they are born s, the smaller is

(which is harmonit to a transversal c§tTo make the pic- their amplitude in transversal direction. For large enough

ture clear, let us look at the well-known Barbanis potentialEr - the ratio of the amplitude of a child to that of its next

shown in Fig. L(lower left), which is given by the following Prother is the same for all children and is equal to exp
equation: (—7w), wherew is the transversal curvature at the harmonic

saddle mentioned at the beginning of this paper. There is
1 another scaling relation in the longitudinal direction which
V(Xy)= §(X2+y2)—€X2y- (12 relates the tip of the periodic orbit to the whole periodic
orbit. They make one more oscillation in the transverse di-
Barbanis potential can be taken as a simple ideal model for gection in each generation. However, its contribution to the
soft-walled billiard with two leads attached to its two cor- area is very small. Neglecting this contribution we have the
ners. The harmonic saddles are obviods) ( Fortunately, in  scaling relation that relates the area of two immediate broth-
this potential as rigorously evaluated in Refs. 12,13, theers as in Eq.(11) with y=exp(—#/w), which is smaller
shortest periodic orbits that are well coupled to the entrancéhan 1.
opening are the straight-line librating periodic orBitvhich In Fig. 2, using the first 10 self-similar children of peri-
oscillates between the wall and the saddle, and its selfedic orbitA, i.e.,O,_41, k=3, ...,12, and their first repeti-
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tions, conductance fluctuations are plotted agahfor E¢ ture, we believe that our one-mode approximation is valid to
slightly larger thanEs. The exact self-affinity is obvious. explain the interesting phenomena.
Since for Ex>Eg, the phase space of the corresponding The main ingredient of our paper is the occurrence of the

classical system is more than 95% filled with chaotic sea, wésochronous pitchfork bifurcations of a straight-line librating

conclude that the self-affine-like magnetoconductance fluc2rPit oscillating towards a harmonic saddintrance QPL

tuations are not the finger-prints of the mixed phase spac This is not s:Pecmc to the model in Fig. 1. In fact, as shown

Thi " ¢ cal evid ted in Ref. 1 y Brack*?!°besides in the above Barbanis potential, pitch-
IS Supports recent numerical evidence reported In Rel. 1454 hifrcations also occur in other kind of potentials of the

In mathematical point of view, Eq11) guarantees the exis- game type. The periodic orbits born from the straight-line
tence of Weierstrass-like spectrum, and together with the iNiibrating orbit oscillate towards a harmonic saddle or be-
creasing progression of the amplitude in Et0), they com-  tween two harmonic saddldss in 4-quartic Henon-Heiles
prise a Weierstrass-like function, a well-known self-affine potentia), they are also self-similar with different value of
function. The increasing progression of the amplitude isscaling constanty. The latter corresponds to quantum dot
guaranteed since the later children enjoy longer time beingith its entrance and exit opening placed aligned opposite to
trapped in the entrance QPC. However unlike the Weierstraggach other. Sinqe our derivation is based on chal informatiqn
function, the function we obtained using Eq8)—(11) has  ©n the geometrical feature of the QPC, we find that the di-
smallest bound scale correspondingQg or its repetitions mension of the fractal-like magnetoconductance fluctuations

which have the largest area among other self-similar periodiIS independent of the detailed geometrical shapes of the cav-

) . . ﬁy. From Eqg.(9), it is obvious, however, that there is a sys-
orbits. By decreasing the temperature, more repetitio3:0f o atic dependence of the fractal structure on temperature
will contribute to the fluctuations to generate much finer

i > X and inelastic scattering rate;. Nevertheless, the important
scale than shown in Fig. 2. Experimentalists usually say th‘f’ﬁnding reported in Ref. 15, that the fractal dimension de-

the lowest scale obtained in experiments is due to the ”m"pends only on the resolution of the energy level spacings of

tation of the measuring devices. We therefore believe thaf,q system is yet to be confirmed. We leave it for future
our results should give a new insight to perform a realistic

measurement.

Some notes should be mentioned here before finishing We acknowledge useful discussions with Professor Y.
with the conclusion. Our semiclassical picture is a one-mod®chiai and Professor J. P. Bird. A.B. wishes to acknowledge
calculation, whereas fractal-like conductance fluctuations cathe Matsuda Yoshahichi Foundation and the Ministry of Edu-
also be observed in experiments with more than 1, yet smadiation, Culture, Sports, Science and Technolaigpan for
number of modes. However for a sufficiently low tempera-financial support.

IR. Ketzmerick, Phys. Rev. B4, 10 841(1996. (2002; A. Budiyono and K. Nakamura, Chaos, Solitons Fractals
2A.S. Sachrajda, R. Ketzmerick, C. Gould, Y. Feng, P.J. Kelly, A. 171, 89 (2003.

Delage, and Z. Wasilewski, Phys. Rev. L&, 1948(1998. °D.K. Ferry and S.M. Goodnickransport in Nanostructures
3C.R. Tenchet al, Physica E(Amsterdam 7, 726 (2000. (Cambridge University Press, Cambridge, 1997

‘R.P. Taylor, R. Newburg, A.S. Sachrajda, Y. Feng, P.T. Coleridge,lOD.S. Fisher and P.A. Lee, Phys. Rev2B, 6851(1981).
C. Dettmann, Ningjia Zhu, Hang Gua, A. Delage, P.J. Kelly, and**M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics

Z. Wasilewski, Phys. Rev. Let.8, 1952(1997. (Springer Verlag, New York, 1991
SA.P. Micolich et al,, Europhys. Lett49, 417 (2000. 12M. Brack, nlin.CD/0006034unpublishedl
8Y. Ochiai et al, Physica E(Amsterdam 18, 147 (2003. 13M. Brack, M. Mehta, and K. Tanaka, nlin.CD/010504éhpub-
K. Richter, Europhys. Let29, 7 (1995; G. Hackenbroich and F. lished.

von Oppenjbid. 29, 151 (1995. 14y, Takagaki and K.H. Ploog, Phys. Rev.@, 4457 (2000.

8A. Budiyono and K. Nakamura, J. Phys. Soc. Jgi, 2090  ®A.P. Micolich et al, Phys. Rev. Lett87, 036802(2001).

121304-4



