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Grain growth in thin films by a discrete model based on pair interactions

Paolo Emilio Di Nunzio*
Centro Sviluppo Materiali S.p.A., Via di Castel Romano 100-102, I-00128 Rome, Italy

~Received 6 January 2003; published 29 September 2003!

A discrete model is presented which predicts the curvature-driven grain growth kinetics and the grain size
distribution in polycrystalline thin films. A probabilistic approach based on elementary exchanges of volume
between grain pairs and a simple topological description of the system have been used to define the basic
structure of the growth rate equations. In addition, the local grain-boundary curvature has been introduced in
each contact between nearest neighbors instead of the average curvature adopted in mean-field models. Even in
absence of inhibition right-skewed quasistationary grain-size distributions are obtained. The topological fea-
tures of the polycrystal predicted by the model are compatible with the currently accepted theories and the
available experimental data. The results of simulations with a constant inhibition term in the growth equation
are also discussed. A comparison with experimental data and models in the literature indicates that the present
formulation has a capability in predicting the shape of the grain-size distributions better than previous analyti-
cal approaches and comparable with that of numerical algorithms.
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I. INTRODUCTION

Grain growth in two dimensions has been studied si
long ago due to the ease in comparing the model predict
with the directly measurable features of real materials an
a well established theoretical and topologic
background.1–12 Since the time the classic paper by Hiller1

appeared, it has been observed that the two-dimensional~2D!
self-preserving grain-size distribution~GSD! characterizing
the quasistationary regime of coarsening is sharper than
predicted in 3D systems. Much work has been performe
get a deeper insight to the theoretical aspects. Many of
analytical approaches are based on the assumption tha
average curvature of the grains, proportional to the recipro
of their linear size, could be used to evaluate the growth r
All models generally agree in predicting that the avera
grain size increases proportionally to the square root of t
but they are often not equally accurate in reproducing
experimental GSD. On the other hand, remarkable res
have been obtained by Monte Carlo models2–4,13 that, using
elementary rules of the microscopic behavior of grain bou
aries, do not suffer from the usual shortcomings of the a
lytical models based on the average curvature.

It has been argued that the inaccuracies in the predic
of the GSD shape could arise from the excessive simplifi
tion of the average curvature hypothesis.14,15 The major re-
sult of the grain growth model presented here is that,
though it extends the probabilistic approach by Abbruzzes16

and Abbruzzese and Lu¨cke,17 and it is based on the analytica
formulation by Hillert, it is characterized by a marked
right-skewed GSD, in agreement with both experiments
numerical models such as Monte Carlo2–4 and Surface
Evolver.10 This result has been achieved by the explicit co
sideration of pairwise interactions among grains and by
ing the local boundary curvature of each grain face rath
than its average value.

The theory, which predicts the microstructural evoluti
in single-phase polycrystalline systems, is specific for t
films where the average grain size is comparable with
0163-1829/2003/68~11!/115432~9!/$20.00 68 1154
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film thickness and where the grain boundaries are perp
dicular to the film surface and go across its whole thickne
To outline the specific merits of the model, a comparis
with the same theoretical approach but where the aver
boundary curvature was used instead of the local curvatu
also presented and discussed.

The presence of a crystallographic texture is not cons
ered and the properties of all grain boundaries~mobility and
specific energy! are supposed constant throughout the s
tem. The work is principally focused on the prediction of t
GSD shape rather than on the aspects related to the coa
ing kinetics.

II. THEORY

A. General structure of the model

The grain growth model presented here can be though
as composed by different submodels, each accounting f
specific aspect. First, the topological features of the po
crystalline thin film have to be specified to permit the calc
lation of the size-dependent number of nearest neighbors
grain and the area of each contact surface. A simple g
metrical model has been used for this purpose which,
though approximate, gives exact predictions of the aver
polycrystal properties. Then, a growth equation is defin
where the driving force for the process is expressed. Fina
the volume conservation constraint is imposed to calcu
the evolution of the GSD. Of course, the mathematical fo
of the required continuity equation is determined by the
proach adopted in the growth model and, in the present c
it reflects the structure of pair interactions. This results
substantial differences with respect to Hillert’s model.1

The grain-size distribution is defined over a discrete se
equally spaced classes of grain radiusRi , by the number of
grains per unit volume in thei th classni . Grain boundaries
are assumed to be perpendicular to the film surface, the
the linear dimension characterizing the grain size is defi
in terms of the radius of the equivalent cylinder as
©2003 The American Physical Society32-1
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v i5pRi
2h, ~2.1!

where h is the film thickness. In the following sections
detailed description of all the components is given.

B. Topology

The contact areaAi j of a common face shared betwee
two grainsRi andRj is expressed as

Ai j 5
2ph

3
•

RiRj

Ri1Rj
. ~2.2!

Equation~2.2!, symmetrical with respect to the exchange
indices, has been derived by adding the factorp/3 from Ref.
7 according to a simplified geometrical model based on
cular grains. The accuracy in describing the topology of
systems can be verified by calculating the number of ne
bors in a monodispersed system (Ri5Rj ) which is given by
the ratio between the boundary surface of a grain and
surface of a single contact:

^m2D&5
2pRih

Ai j
56. ~2.3!

This result coincides with the theoretical value for a polyg
nal tessellation of the plane with triple junctions only. On t
other hand, as the ratioRj /Ri approaches zero,Ai j tends to
2pRih/3 and the number of nearest neighbors of the sma
grains ismmin53. It has to be noticed that this simple ge
metrical model does not permit the existence of two-sid
grains.

For each size class, the average number of neigh
~grain faces! mi , is defined as

mi5
2pRih

^Ai&
, ~2.4!

where^Ai& is the average area of a contact in thei th class.
Its evaluation is carried out by averaging the surfaces
single contactsAi j , weighted by their number given by th
product betweenni andmi as follows:

^Ai&5(
j 51

nc njmj

(k51
nc nkmk

Ai j , ~2.5!

wherenc is the number of size classes in the GSD. By su
stituting in Eq.~2.5! the definition ofmi from Eq. ~2.4!, one
obtains

^Ai&5(
j 51

nc njRjAi j /^Aj&

(k51
nc nkRk /^Ak&

. ~2.6!

The set of^Ai& is found by iteration and themi are then
calculated by Eq.~2.4!.

C. Kinetics

Grain growth is treated in terms of superposition of
ementary exchanges of volume between neighbors, the o
all growth or shrinkage of a grain depending on its surrou
11543
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ing. For each contact, the boundary displacement produc
volume change with a rate proportional to the difference
tween the effective boundary curvature of the pair of fac
grains. Assuming thatRi.Rj , this can be expressed in
general form as

dv i

dt U
j

5MgAi j ~k j i 2k i j 2Z! for uk j i 2k i j u>Z,

~2.7a!

dv i

dt U
j

50 for uk j i 2k i j u,Z, ~2.7b!

where M is the grain boundary mobility,g the interfacial
energy, both constant throughout the system,k i j is the local
boundary curvature, andZ a positive inhibition term, always
opposed to the boundary motion and related to the prese
of dispersed second phase particles.4,18,19 Also surface
effects20 or stresses induced by a substrate, generally thic
than the film and with different elastic and therm
properties,9 can inhibit the grain-boundary motion. The vo
ume balance requires that, for the smaller grainj, the bound-
ary velocity is calculated as

dv j

dt U
i

52
dv i

dt U
j

. ~2.8!

To evaluate the boundary curvature, the commonly u
approximation of taking its average value, irrespective of
neighbors’ size, could be adopted. In this case, one obta

k i j [k i5
1

Ri
. ~2.9!

In the present approach, the alternative use of the local gr
boundary curvature is proposed, which, instead, depend
the size of the neighbor sharing a common face with
reference grain. The local curvature of the graini with re-
spect to the contact withj is calculated according to th
general definition21 as

k i j 5
dSi

dv i
U

j

, ~2.10!

whereSi is the overall boundary surface given by

Si5Ai j mi . ~2.11!

According to Eq.~2.10! and from Eqs.~2.1! and ~2.11! one
obtains

k i j 5
1

2pRih S mi

]Ai j

]Ri
U

Ri ,Rj

1Ai j

]mi

]Ri
U

Ri

D , ~2.12!

where the derivatives are calculated at the point (Ri ,Rj ).
After simple algebraic manipulations using Eq.~2.2! one ob-
tains

k i j 5
Rj

3Ri~Ri1Rj ! S miRj

~Ri1Rj !
1Ri

]mi

]Ri
U

Ri

D . ~2.13!
2-2
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The overall volume exchange betweeni th and j th size
classes is given by

wi j

dv i

dt U
j

52wji

dv j

dt U
i

, ~2.14!

wherewi j and wji are the number of contacts per unit vo
ume subjected to the obvious symmetry conditionwi j
5wji . The quantitywi j is defined as the product between t
number of faces per unit volumemv and the contact prob
ability betweeni and j, pi j :

wi j 5mvpi j ~2.15!

with

mv5
1

2 (
i 51

nc

nimi . ~2.16!

The probability pi j is calculated by means of elementa
principles assuming that any contacti - j results from inde-
pendent events represented by the occurrence of a fac
each size class as

pi j 5
nimi

(k51
nc nkmk

•

njmj

(k51
nc nkmk

, ~2.17!

so that the following expression forwi j results:

wi j 5
niminjmj

2(k51
nc nkmk

. ~2.18!

Finally, the average number of faces per grain in the sys
is calculated as

^m&5
2mv

Nv
5

1

Nv
(
i 51

nc

nimi , ~2.19!

whereNv is the number of grains per volume unit given b

Nv5(
i 51

nc

ni . ~2.20!

It has to be noted that Eq.~2.9! results from Eq.~2.10! when
the overall boundary surface in Eq.~2.11! is written asSi
5^Ai& mi using the definition ofmi from Eq. ~2.4!.

D. Continuity equation

The continuity equation used in Hillert’s model1 cannot be
applied to the present discrete formulation. For calculat
the evolution of the GSD shape, the conditions of volu
balance and conservation of grain number must be impo
by the following integrodifferential equation for the volum
distributionn(v) in the continuous domain:

]n~v !

]t
5E

0

v ]

]v S w~v,ṽ !
dv
dtU

ṽ
D dṽ

2E
v

` ]

] ṽ S w~ ṽ,v !
dṽ
dtU

v
D dṽ, ~2.21!
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where w(v,ṽ) is the continuous equivalent of the discre
wi j . The two terms in the right-hand side represent the po
tive contributions from contacts between grains withṽ,v
and the withdrawal from those withṽ.v, respectively. De-
tails of this derivation can be found in Ref. 14.

Generally speaking, the hypothesis underlying the st
egy for evaluating the change in number of grains of s
classes is that each interacting pair is independent on
others. Thus the overall balance is obtained by simply add
all the possible elementary contributions. This implies th
focusing on a single grain class, all the possible surroundi
~in terms of a distribution of sizes of the nearest neighbo!,
are taken into account in a statistical sense.

For practical computation purposes, the main features
the discrete algorithm can be summarized as follows. T
overall volume exchange per unit volume between classi
and j in the time intervalDt is

DVi j 5wi j

dv i

dt U
j

Dt52DVji . ~2.22!

Assuming as before thatRi.Rj , the graini always grows
and DVi j is always positive. Grains changing their volum
are supposed to move from the originali th size class, to the
kth. In order to allow for the total volume and number
grains to be conserved, an auxiliary class adjacent to
destination class is introduced. For growing grains this w
be the (k11)th ~with k> i ), whereas for shrinking grains i
will be the (k21)th ~with 1,k< j ). In a time step, the
volume increaseDVi j of the wi j interacting grains in thei th
class must be partitioned between the classesk andk61.

The index of the destination class is calculated throu
the final volumevk

! given by

vk
!5v i1

DVi j

wi j
~growing side!, ~2.23a!

vk
!5v i2

DVi j

wi j
~shrinking side! ~2.23b!

from which the corresponding radiusRk
! is

Rk
!5S vk

!

phD 1/2

. ~2.24!

Finally, the class index is given by

k5F Rk
!

DRG ~growing side!, ~2.25a!

k5F Rk
!

DRG11 ~shrinking side!, ~2.25b!

where the square brackets indicate that the integer part h
be taken.

The change of the number of elements in the size clas
compatible with the transferred volume is evaluated by so
ing the mass balance condition together with the conse
tion of the total number of grains. It results in the followin
relationships:
2-3
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Dnk56
wi j ~vk612v i !2DVi j

vk612vk
, ~2.26a!

Dnk615wi j 2Dnk , ~2.26b!

where the plus and minus signs refer to the growing a
shrinking side, respectively. The updated GSD is then
tained as

ni~ t1Dt !5ni~ t !2wi j , ~2.27a!

nk~ t1Dt !5nk~ t !1Dnk , ~2.27b!

nk61~ t1Dt !5nk61~ t !1Dnk61 . ~2.27c!

When the first size class is involved (k51), the number of
grains is not conserved to permit their complete shrinka
The only relevant quantityDn1 is therefore directly obtained
as

Dn15ni12
DVi1

v1
~2.28!

being the volume of the 0th classv050.
Equations~2.27! are also used to control the integratio

time stepDt. The latter is chosen as the largest value wh
produces a non-negative number of elements in the
classes.

FIG. 1. Growth kinetics of the average grain diameter^D& as a
function of the inhibition level.
11543
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III. CALCULATION RESULTS

Simulations have been carried out using the local gra
boundary curvature from Eq.~2.12! on an ideal system with
M59310211 m4 J21 s21 and g50.5 J m22. A constant in-
hibition ranging from 0 to 100 mm21 has been also assume
without specifying whether it depends on boundary pinn
by second phases, surface grooving, strain induced by a
strate, or other causes. An initial Gaussian GSD with 5mm
average size, 2.5mm standard deviation, and a class wid
DR52 mm has been used in all cases. A coarsening time
1000 s has been considered.

Figure 1 shows the plot of the average grain size ver
time in double logarithmic scale. The evolution of the var
tion coefficientkGSD5sD /^R&, the ratio between the stan
dard deviation of the GSD and the average size, is repo
in Fig. 2. Indicative values ofkGSD, normalized skewness
coefficient (a3), growth rate exponent@d ln(^R&)/d ln(t)# and
^m& are reported in Table I.
For normal grain growth without inhibition, the quasistatio
ary GSD is shown in Fig. 3 as a function of the reduced s
r (r5R/^R&) together with the asymptotic analytical 2
solution by Hillert1 (kGSD50.33) and that from Marthinsen
et al.10 obtained in the numerical simulations by the Surfa
Evolver program.

The distribution of the total number of faces (ni•mi) ver-
sus the average number of sides (mi) associated with the

FIG. 2. Evolution of the ratio between the standard deviation
the grain-size distribution and the average size as a function of
inhibition level.
of the
TABLE I. Summary of the relevant kinetic and topological parameters calculated as a function
inhibition level after 1000 s of simulation time.

Z
~mm21! kGSD a3

d ln(^R&!

d ln~t! ^m&

0a 0.440 0.201 0.47 6.00
10a 0.398 1.137 0.31 6.00
25a 0.451 2.164 0.23 6.00
50a 0.498 2.963 0.18 6.00

100a 0.558 4.241 0.11 6.00
0b 0.382 0.038 0.47 6.00

aLocal grain-boundary curvature.
bAverage grain-boundary curvature.
2-4
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uninhibited system in the quasistationary regime is shown
Fig. 4. It has been also found to be independent ofZ within
the numerical roundoff errors. Maximum and mean value
both about 6.27. It has to be observed that the latter is g
by

^mn&5(
i 51

nc

nimi
2Y (

i 51

nc

nimi . ~3.1!

The quantitŷ mn& may be defined as the number of faces
the ‘‘average grain’’ and clearlŷmn&Þ^m&.

The average number of faces per class versus the red
size is shown in Fig. 5. Data are very well approximated
the following linear fit:

m~r!53.1312.85r. ~3.2!

No deviations are found when inhibition is varied.
Finally, the reduced shape of the GSD at different inhi

tion levels after 1000 s of simulation is reported in Fig. 6.
order to quantify the effect of the boundary curvature a
proach, similar simulation conditions have been used to
culate the grain growth kinetics without inhibition adoptin
the average boundary curvature from Eq.~2.9! instead of the
local one. The results are reported in the last row of Tabl

FIG. 3. Comparison among the calculated quasistationary G
~solid line!, the asymptotic solution of the 2D model by Hille
~dashed line!, and the distribution obtained by averaging the resu
of numerical calculations by the Surface Evolver progra
~squares!.

FIG. 4. Distribution of the occurrence of grain faces (ni•mi) as
a function of the average number of facesmi .
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In the present conditions, the average number of faces
class has shown a dependence on the reduced radius
similar to that in Eq.~3.2!.

IV. DISCUSSION

A. General remarks

It has to be noted that the film thickness, inserted exp
itly in the theory for the sake of clarity, algebraically cance
out in the growth Eq.~2.7! according to the definition of
grain volume@Eq. ~2.1!# and contact area@Eq. ~2.2!#. There-
fore, as expected, it does not influence the system kine
Instead, the film thickness directly enters the inhibition ter
for example, when grain-boundary grooves are formed at
film surface.20

The proposed model predicts a growth exponent for un
hibited coarsening of 0.47, very close to the theoretical va
of 1

2 for surface-driven growth processes. Similar to the
case, the growth exponent is reduced as the inhibition
increased and, after an initial transient, the system evo
towards a quasistationary state with a constant value of
variation coefficientkGSD corresponding to a self-preservin
shape of the GSD. In the meantime, with increasing the
hibition, the distribution becomes sharper and subseque
broadens while the skewness increases continuously.

D

s

FIG. 5. Relationship between the average number of faces
size class and the reduced grain size.

FIG. 6. Quasistationary grain-size distributions after 100
simulation with different inhibition levels.
2-5
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The topological features related to Eq.~3.2! are in agree-
ment with the behavior predicted by some 2D theories fr
the literature. As a matter of fact, the relationship

m~r!5313r ~4.1!

is reported by different authors.8,22,23

Although in Eq.~3.2! the intercept is not exactly equal t
3, the average number of faces predicted for grains with
average sizer51 is very close to the expected value of
representing an actual topological constraint for the syst
Concerning the size distribution in absence of inhibition, i
clear from Fig. 3 that the model predicts a right-skew
GSD, substantially different from that of the 2D Hillert
model, with a tail extending beyond the cutoff valuer52
predicted by Ref. 1. In addition, it closely resembles th
proposed in Ref. 10, obtained by numerical simulation w
the Surface Evolver program on a 2D region limited by c
clic boundary conditions.

Due to the discrete nature of the present model, it is
possible to deduce an analytical expression for
asymptotic GSD. For comparison, the same model where
average grain-boundary curvature is used instead of the l
curvature produces a similar kinetic behavior but a shar
and more symmetrical GSD similar to that by Hillert even
slightly broader~Table I!.

B. Topological aspects: The von Neumann–Mullins
relationship

Various studies on the topological correlations have b
carried out for 2D grain structures.5,7,8,10,24–28In the present
section, the effect of the grain-boundary curvature on the
Neumann–Mullins~vNM! relationship7,10,29–31is examined
by comparing the average curvature model, wherek i
51/Ri , Eq. ~2.9!, with that for the local curvaturek i j given
by Eq. ~2.12!. The vNM equation relates the growth rate
the area of am-sided grain (Sm5pRm

2 ) to the number of
faces according to

dSm

dt
5

p

3
Mg~m26!. ~4.2!

The fundamental assumptions for this relationship to h
are:

~i! all grain boundaries possess equal mobility and s
face tension irrespective of their misorientation a
crystallographic orientation of the boundaries;

~ii ! the mobility of a grain boundary is independent of
velocity;

~iii ! triple junctions do not affect grain-boundary motio
and therefore angles at triple junctions are in equil
rium.

From the assumptions~i! and~iii !, all the angles at the junc
tions are expected to be equal to 120°. Conversely, lac
equilibrium at triple points implies a deviation from the th
oretical value.32,33

From Eq.~2.1!, the surface area of a grain in the size cla
i S i , is related to the grain volume throughv i5S i•h. The
11543
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average area growth rateper grain is deduced from Eq.
~2.22! by summing up the contributions from all the possib
contacts:

K dS i

dt L 5
1

hni
(
j 51

nc

wi j

dv i

dt U
j

. ~4.3!

By substituting in Eq.~4.3! Eqs.~2.7! and~2.18!, the follow-
ing expression is obtained:

K dS i

dt L 5
p

3
Mg

miRi

(k51
nc nkmk

(
j 51

nc njmjRj

Ri1Rj
~k j i 2k i j !,

~4.4!

which has a similar structure as Eq.~4.2!.
In order to facilitate the comparison, it is convenient

deal with a normalized form of Eq.~4.4!. Therefore from the
ratio between the size-dependent growth rate

d^S&
dt

52p^R&
d^R&

dt
, ~4.5!

and the growth rate of the average graind^S&/dt, derived
from the kinetic calculation according to Ref. 10, the dime
sionless area growth ratenA is calculated as

nA~ i !5 K dS i

dt L Y d^S&
dt

. ~4.6!

The plot of nA(r) versus the average number of fac
m(r)26 is shown in Fig. 7 for both the mean curvature a
the local curvature models. It can be immediately obser
that the average curvature model gives an exact linear r
tionship whereas the local curvature model exhibits a cer
deviation only approximating the expected behavior. On o
hand, the first result indicates that the structure of the mo
is formally correct, otherwise the vNM relationship wou
have not been recovered. On the other hand, it is necessa
analyze the reason for the approximate behavior of the lo
curvature model. From the conditions for the validity of th
vNM relationship shown above, the result here obtained
be interpreted in terms of a deviation from the equilibriu

FIG. 7. Von Neumann–Mullins plot showing the comparis
between the present model with local boundary curvature~solid
curve! and the same model with the average boundary curva
~dashed line!.
2-6
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angles at the triple junctions induced by the local curvat
only, and not from the average curvature.

Starting from the observation that in both cases the a
age number of faces per grain in the system is exactly^m&
56 ~see Table I!, which implies that theaverageangle at
triple junctions is 120°, it is possible to calculate the var
tion of the average junction angle as a function of the gr
size when the local curvature is used. Thus it is necessa
rewrite Eqs.~4.4! and ~4.6! in a form similar to Eq.~4.2!
introducing a factorp/3 to convert the result in angula
quantities. Due to the normalization~4.6!, the slope of the
straight line obtained by the average curvature model in F
7 is equal to unity.

With reference to the derivation of Eq.~4.2! by Mullins,30

for a circuit around a grain having an average number
sides equal tom(r), one can write the vNM relationship a

nA
!~r!5

p

3
nA~r!5m~r!@p2u~r!#22p, ~4.7!

where u~r! is the included angle in a triple junction,p
2u(r) the external rotation angle associated to each s
and the last term 2p compensates the balance for a compl
revolution around the grain boundary. It is clear that, in eq
librium conditions,u does not depend onr and it is identi-
cally equal to 2p/3. Therefore Eq.~4.7! is identical to Eq.
~4.2!:

nA
!~r!5

p

3
@m~r!26#. ~4.8!

On the contrary, if bothnA
!(r) andm(r) are known, it can be

used to evaluate the angleu~r! as a function of the reduce
grain size:

u~r!5p2
2p2~p/3!nA

!~r!

m~r!
. ~4.9!

The deviation from equilibrium for the local curvatur
model, expressed asu(r)2120°, is shown in Fig. 8. It is
clearly seen that for more than 80% of grains the depar
from the equilibrium value is limited within62.5° and that

FIG. 8. Displacement of the average internal angle of tri
junctions from the equilibrium value 120°, as a function of t
topological grain class in the present model with local bound
curvature.
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the standard deviation of such departure on the whole ra
of topological classesm(r) is about 3.6°. As further test, th
weighted average of the internal joint angle has been re
culated by the equation

^u&5(
i 51

nc

nimiu iY (
i 51

nc

nimi ~4.10!

which confirmed the valuêu&5120° expected on the bas
of ^m&56. This result, which will be further discussed in th
following experimental section, is not acceptable if referr
to systems where the mechanical equilibrium at triple ju
tions is surely attained~e.g., soap froths!, but it can be plau-
sible for polycrystalline systems.

In soap froths, each cell~grain! contains a fixed volume o
gas and molecules permeate through the cell membrane
equalize pressures in adjacent bubbles. The soap froth t
to remain in quasiequilibrium at all times because the c
walls and enclosed gas can adjust almost instantaneous
minimize surface area~i.e., the gas has zero shear modul
and the characteristic time scale for bubble coarsening
greater than that for equilibration of triple joints!. As a matter
of fact, most of the liquid of the foam is contained at th
junctions where the walls are slightly thickened to form t
so-called plateau borders. It has been shown that, eve
froths, high volume fractions of plateau borders can indu
deviations in the angles at triple joints.34 Therefore it is rea-
sonable to expect that triple junctions in polycrystalline a
gregates could be not exactly in equilibrium conditions a
given time because diffusion processes to attain the r
rangement of the boundary network in solids are slow
comparison with those in a gas/liquid soap froth system.35

C. Comparison with experiments

The comparison with experiments has been limited to
ability of the model to predict the GSD shape, its kine
features being in substantial agreement with similar theor
Unfortunately, very few data are available in the literature
normal grain growth in thin films where attention is paid al
to the determination of GSD’s. Two examples are repor
here.

In the first one, GSD’s were measured on a 0.5-mm t
sheet of nonoriented 3% Si electrical steel of the followi
chemical composition~mass %!: 0.0050 C, 3.15 Si, 0.21 Mn
0.0035 N, 0.77 Al, 0.0035 Ti.36 After cold deformation the
sheets were recrystallized and decarburized in hydrogen
mosphere for 180 s at 850 °C~dew point535 °C) reducing
the carbon content to 0.0020 mass %. Then, four sam
were annealed for 60 s at 850, 950, 1050, and 1150 °C,
spectively, to activate grain growth. The area of about 10
grains in each sample was measured by automatic im
analysis from optical micrographs of the polished and che
cally etched surfaces of the sheets and the data were
cessed to obtain the distributions of the equivalent rad
The average grain radius and the variation coefficient of
GSD are reported in Table II. Although the average size
creases with increasing temperature, the shape of the red
distribution remains substantially constant, indicating th

y
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PAOLO EMILIO DI NUNZIO PHYSICAL REVIEW B 68, 115432 ~2003!
normal grain growth occurred. In addition, especially in t
sample annealed at 1150 °C, the final grain diameter is
most equal to the sheet thickness.

The reduced GSD’s are compared with the theoretical
tribution without inhibition in Fig. 9. Again it is worth noting
that all the experimental distributions overlap each other
the model fits very well to the data.

In the second example, GSD’s measured from a polyc
talline texture-free 80-nm thin film of pure aluminum
~99.999%! produced by vacuum evaporation at low tempe
ture on a~100! NaCl substrate37 have been considered. Gra
growth was induced by annealing in a vacuum furnace
200 °C up to 480 s obtaining average grain sizes rang
from about 30 nm to about 40 nm. Grain-size distributio
were determined by measuring the grain area by trans
sion electron microscopy on more than 500 grains.

The occurrence of normal grain growth was confirmed
a linear relationship between the mean grain area and
annealing time, and by the monomodal GSD’s. The size
tributions, when plotted as a function of the reduced radiur,
overlap perfectly, indicating a stationary growth regime w
a self-similar GSD shape.

In Fig. 10 the comparison between the experimental d
tribution determined after the longest annealing time~480 s!
and that calculated by the present model with a cons
inhibition of 25 mm21 is shown. It can be observed tha
although it is necessary to consider a limited inhibition co
tribution, probably due to the presence of a substrate o
grain-boundary grooving, there is a very good match
tween the distributions.

TABLE II. Average grain size and variation coefficient of th
experimental GSD’s measured on 0.5-mm thin sheets of a non
ented 3% Si electrical steel annealed for 60 s at different temp
tures.

Annealing temperature
~°C!

^R&
~mm! kGSD

850 46.6 0.594
950 79.8 0.590

1050 133.1 0.567
1150 227.3 0.506

FIG. 9. Comparison among the 2D GSD’s measured in a n
oriented 3% Si electrical steel annealed for 60 s at different t
peratures~points! and the present model~solid curve!.
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Finally, in Fig. 11, the model predictions for the vo
Neumann–Mullins relationship have been compared with
data obtained in experiments on normal 2D grain growth o
30-mm high, 80-mm long, and 15-mm thin film of succin
nitrile ~SCN! in controlled conditions,38 and further reviewed
to eliminate the contributions of grains with anomalo
behavior.39 SCN is a low melting point~58.08 °C!, easily
purified transparent organic material with isotropic prop
ties, often used in solidification studies as a model analog
metals. It permitsin situ topological measurements as well
the determination of the process kinetics by analyzing
time evolution of the system.

In the experiments, the area growth rate constant for
average grain was determined at a temperature 0.35 °C b
the melting temperature of SCN confirming that the proc
was governed by a parabolic laŵS&}t, or ^R&2}t. From
the analysis of the growth rate of individual grains as a fu
tion of their topological class~number of faces!, the experi-
mental von Neumann–Mullins diagram was determined w
the associated scatter~61 standard deviation!.

It can be deduced that, although the presence of sur
grooving and of the glass surfaces containing the polycr
talline SCN could have affected the system behavior ind
ing some deviations from ideality, nevertheless the o
equilibrium vNM curve from the local curvature approac

ri-
a-

-
-

FIG. 10. Comparison between the experimental GSD from R
37 ~points! and the quasistationary GSD calculated with 25 mm21

constant inhibition~solid curve!.

FIG. 11. Von Neumann–Mullins plot of experimental data fro
2D grain growth of succinonitrile~points! and comparison with the
present model with different descriptions of boundary curvat
~curves!.
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GRAIN GROWTH IN THIN FILMS BY A DISCRETE . . . PHYSICAL REVIEW B 68, 115432 ~2003!
here proposed is not incompatible with the experimen
data. On the other hand, the measurement of angles a
triple joints is a very difficult experimental task and devi
tions of 62.5° from the equilibrium value can be hard
revealed.

No quantitative data are reported to support the hypo
esis that this result is also associated with a better descrip
of the GSD shape by the discrete model but the GSD
found to have a right-skewed shape similar to the gam
distribution.40

V. CONCLUSIONS

The model, which extends previous analytical theori
predicts the grain growth kinetics and the evolution of t
grain-size distribution of a polycrystalline thin film through
probabilistic approach based on elementary interactions
tween grain pairs together with a simple topological mod
The introduction of the local grain-boundary curvature,
contrast with all the analytical 2D models of grain growth
the literature, permits us to obtain a right-skewed asympt
GSD also in absence of inhibition. Its realistic shape rep
sents a better approximation of the experimental eviden
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1M. Hillert, Acta Metall. 13, 227 ~1965!.
2M. P. Anderson, D. J. Srolovitz, G. S. Grest, and P. S. Sahni, A

Metall. 32, 783 ~1984!.
3D. J. Srolovitz, M. P. Anderson, P. S. Sahni, and G. S. Grest, A

Metall. 32, 793 ~1984!.
4D. J. Srolovitz, M. P. Anderson, G. S. Grest, and P. S. Sahni, A

Metall. 32, 1429~1984!.
5T. O. Saetre, O. Hunderi, and N. Ryum, Acta Metall.37, 1381

~1989!.
6H. J. Frost, C. V. Thompson, and D. T. Walton, Acta Meta

Mater.38, 1455~1990!.
7G. Abbruzzese, I. Heckelmann, and K. Lu¨cke, Acta Metall. Mater.

40, 519 ~1992!.
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normal distribution.
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local grain-boundary curvature causes a slight deviation fr
linearity in the von Neumann–Mullins plot which is sti
compatible with the available experimental data. This beh
ior has been justified admitting a small departure of the
erage angles at triple junctions from the equilibrium val
120° induced by the local curvature. Therefore the model
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