PHYSICAL REVIEW B 68, 115432 (2003

Grain growth in thin films by a discrete model based on pair interactions
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A discrete model is presented which predicts the curvature-driven grain growth kinetics and the grain size
distribution in polycrystalline thin films. A probabilistic approach based on elementary exchanges of volume
between grain pairs and a simple topological description of the system have been used to define the basic
structure of the growth rate equations. In addition, the local grain-boundary curvature has been introduced in
each contact between nearest neighbors instead of the average curvature adopted in mean-field models. Even in
absence of inhibition right-skewed quasistationary grain-size distributions are obtained. The topological fea-
tures of the polycrystal predicted by the model are compatible with the currently accepted theories and the
available experimental data. The results of simulations with a constant inhibition term in the growth equation
are also discussed. A comparison with experimental data and models in the literature indicates that the present
formulation has a capability in predicting the shape of the grain-size distributions better than previous analyti-
cal approaches and comparable with that of numerical algorithms.
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I. INTRODUCTION film thickness and where the grain boundaries are perpen-
dicular to the film surface and go across its whole thickness.
Grain growth in two dimensions has been studied sincdo outline the specific merits of the model, a comparison
long ago due to the ease in comparing the model predictiongith the same theoretical approach but where the average
with the directly measurable features of real materials and t§oundary curvature was used instead of the local curvature is
a well established theoretical and topological@lso presented and discussed.
background:™*? Since the time the classic paper by Hilfert ~ The presence of a crystallographic texture is not consid-
appeared, it has been observed that the two-dimensi@bal ~ ered and the properties of all grain boundafiesbility and
self-preserving grain-size distributiaiSD) characterizing ~Specific energy are supposed constant throughout the sys-
the quasistationary regime of coarsening is sharper than thi##m. The work is principally focused on the prediction of the
predicted in 3D systems. Much work has been performed t@SD_sha_\pe rather than on the aspects related to the coarsen-
get a deeper insight to the theoretical aspects. Many of th#g kinetics.
analytical approaches are based on the assumption that the
average curvature of the grains, proportional to the reciprocal
of their linear size, could be used to evaluate the growth rate. Il. THEORY
All models generally agree in predicting that the average
grain size increases proportionally to the square root of time
but they are often not equally accurate in reproducing the The grain growth model presented here can be thought of
experimental GSD. On the other hand, remarkable resultss composed by different submodels, each accounting for a
have been obtained by Monte Carlo modefd3that, using  specific aspect. First, the topological features of the poly-
elementary rules of the microscopic behavior of grain bounderystalline thin film have to be specified to permit the calcu-
aries, do not suffer from the usual shortcomings of the analation of the size-dependent number of nearest neighbors of a
lytical models based on the average curvature. grain and the area of each contact surface. A simple geo-
It has been argued that the inaccuracies in the predictiometrical model has been used for this purpose which, al-
of the GSD shape could arise from the excessive simplificathough approximate, gives exact predictions of the average
tion of the average curvature hypothe¥id® The major re-  polycrystal properties. Then, a growth equation is defined,
sult of the grain growth model presented here is that, alwhere the driving force for the process is expressed. Finally,
though it extends the probabilistic approach by Abbruz%ese the volume conservation constraint is imposed to calculate
and Abbruzzese andtkel’ and it is based on the analytical the evolution of the GSD. Of course, the mathematical form
formulation by Hillert, it is characterized by a markedly of the required continuity equation is determined by the ap-
right-skewed GSD, in agreement with both experiments angiroach adopted in the growth model and, in the present case,
numerical models such as Monte CA&fd and Surface it reflects the structure of pair interactions. This results in
Evolver® This result has been achieved by the explicit con-substantial differences with respect to Hillert's motel.
sideration of pairwise interactions among grains and by us- The grain-size distribution is defined over a discrete set of
ing the local boundary curvature of each grain face ratherequally spaced classes of grain rad®js by the number of
than its average value. grains per unit volume in thigh classn;. Grain boundaries
The theory, which predicts the microstructural evolutionare assumed to be perpendicular to the film surface, thence
in single-phase polycrystalline systems, is specific for thinthe linear dimension characterizing the grain size is defined
films where the average grain size is comparable with thén terms of the radius of the equivalent cylinder as

A. General structure of the model
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vi= wRiZh, (2.2 ing. For each contact, the boundary displacement produces a
volume change with a rate proportional to the difference be-
where h is the film thickness. In the following sections a tween the effective boundary curvature of the pair of facing
general form as

B. Topology
do:
The contact ared;; of a common face shared between il M yA;j(kji— kij—2Z) for |Kji —Kij|>Z.
two grainsR; andR; is expressed as dtf, 273
i=—5 - . ) dv:
73 R+R d—t' =0 for |k;—xy|<Z, (2.7b

Equation(2.2), symmetrical with respect to the exchange of j

indices, has been derived by adding the faet(® from Ref.  where M is the grain boundary mobilityy the interfacial

7 according to a simplified geometrical model based on cirenergy, both constant throughout the systei,is the local

cular grains. The accuracy in describing the topology of 2Dboundary curvature, and a positive inhibition term, always

systems can be verified by calculating the number of neighepposed to the boundary motion and related to the presence

bors in a monodispersed systeR, € R;) which is given by  of dispersed second phase partiéé$l® Also surface

the ratio between the boundary surface of a grain and theffects® or stresses induced by a substrate, generally thicker

surface of a single contact: than the film and with different elastic and thermal
properties’ can inhibit the grain-boundary motion. The vol-

(Mpp) = 27R;h —6 2.3 ume balance requires that, for the smaller gjathe bound-
2D Ajj ' ' ary velocity is calculated as
This result coincides with the theoretical value for a polygo- do; do,
nal tessellation of the plane with triple junctions only. On the rriirnE (2.9
i j

other hand, as the ratig; /R; approaches zerdy;; tends to
2mR;h/3 and the number of nearest neighbors of the smallest 1, oyajuate the boundary curvature, the commonly used

grains ismp,,=3. It has to be noticed that this simple geo- 5,54yimation of taking its average value, irrespective of the

metrical model does not permit the existence of two-sideq,gjghpors’ size, could be adopted. In this case, one obtains
grains.

For each size class, the average number of neighbors 1
(grain faces m;, is defined as K= K=R (2.9
_2wRh In the present approach, the alternative use of the local grain-
m; = (A) (2.4 boundary curvature is proposed, which, instead, depends on

_ . the size of the neighbor sharing a common face with the
where(A;) is the average area of a contact in thie class.  reference grain. The local curvature of the graiwith re-

Its evaluation is carried out by averaging the surfaces ofpect to the contact with is calculated according to the
single contactd\;;, weighted by their number given by the general definitioft as

product betweem; andm; as follows:
ds

:d_vij’

Nne i 2.1
(A)=2 Encnj—minj , (2.9 o 249
=1 2 MM whereS; is the overall boundary surface given by

wheren, is the number of size classes in the GSD. By sub-

stituting in Eq.(2.5) the definition ofm; from Eq.(2.4), one S=AM; - (211
obtains According to Eq.(2.10 and from Egs(2.1) and(2.11) one
| obtains
S nRA; /(A
<Ai>:j21 m (2.6 1 IA; om, -

k=1MkRKk/{Ak <i=%27rn| IR _RGR (212

The set of(A;) is found by iteration and then; are then b '
calculated by Eq(2.4). where the derivatives are calculated at the poR{,R;).
After simple algebraic manipulations using Eg.2) one ob-

C. Kinetics tains
Grain growth is treated in terms of superposition of el- R mR; am

ementary exchanges of volume between neighbors, the over- K Z3R(R + R) | (R+R) + Ri&_Ri (213

all growth or shrinkage of a grain depending on its surround- Ri
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The overall volume exchange betweéth and jth size  wherew(v,7) is the continuous equivalent of the discrete
classes is given by wj; . The two terms in the right-hand side represent the posi-
tive contributions from contacts between grains witktv
W% _ —w--% (2.14 and the withdrawal from those with>uv, respectively. De-
U dt M dt ' tails of this derivation can be found in Ref. 14.

) Generally speaking, the hypothesis underlying the strat-
wherew;; andwj; are the number of contacts per unit vol- o4y for evaluating the change in number of grains of size
ume subjected to the obvious symmetry conditiany  classes is that each interacting pair is independent on the
=wj; . The quantityw;; is defined as the product between the gihers. Thus the overall balance is obtained by simply adding
number of faces per unit volumm®, and the contact prob- )| the possible elementary contributions. This implies that,
ability betweeni andj, pj; focusing on a single grain class, all the possible surroundings
(in terms of a distribution of sizes of the nearest neighhors
are taken into account in a statistical sense.
with For practical computation purposes, the main features of

the discrete algorithm can be summarized as follows. The

i

Wi =m, pj (2.19

1 %‘3 overall volume exchange per unit volume between classes
mv_Eizl n;m; . (2.16 andj in the time intervalAt is
The probability p;; is calculated by means of elementary - do; B
principles assuming that any contaef results from inde- AVj; _Wijﬁ _At_ —AVji. (2.22
J

pendent events represented by the occurrence of a face in
each size class as Assuming as before th&;>R;, the graini always grows
and AV;; is always positive. Grains changing their volume
are supposed to move from the origindi size class, to the
kth. In order to allow for the total volume and number of
grains to be conserved, an auxiliary class adjacent to the
so that the following expression fov;; results: destination class is introduced. For growing grains this will
be the k+ 1)th (with k=i), whereas for shrinking grains it
Wi = (2.18 will be Fhe (k—1)th (with 1<!<sj). I_n a tin_1e s_,tep,_the
23, % nmy volume increas@V;; of thew;; interacting grains in théeth
. o class must be partitioned between the classaesdk= 1.
Finally, the average number of faces per grain in the system The index of the destination class is calculated through

is calculated as the final volumevy given by

n;m; nlmj

Pij = , (2.17)

S0 My S nem

nim;n;m;

2m, 1 X
_ v AV
(m)= N, _N_Uizl nimi, (2.19 U;:Uier_--” (growing side, (2.233
ij
whereN, is the number of grains per volume unit given by AV
n vﬁ=vi—w—“” (shrinking side (2.230
N,=> n;. (2.20 b
= from which the corresponding radid®; is
It has to be noted that EqR.9) results from Eq(2.10 when ¥\ 12
the overall boundary surface in E.11) is written asS R;:(_k) ) (2.24)
=(A;) m; using the definition ofn; from Eq. (2.4). mh

Finally, the class index is given by
D. Continuity equation

The continuity equation used in Hillert's modeiannot be k= _"} (growing side, (2.253
applied to the present discrete formulation. For calculating AR
the evolution of the GSD shape, the conditions of volume .
balance and conservation of grain number must be imposed ™ S .
by the following integrodifferential equation for the volume k= AR 1 (shrinking sidg, (2.250

distributionn(v) in the continuous domain:

J v g d
n(v)zf —(W(v,ﬁ)d—lé

ot 0 v
fw R
7 | WO g

where the square brackets indicate that the integer part has to
be taken.
)da
v

The change of the number of elements in the size classes
compatible with the transferred volume is evaluated by solv-
ing the mass balance condition together with the conserva-

) 7, (2.21  tion of the total number of grains. It results in the following
v relationships:
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FIG. 1. Growth kinetics of the average grain diamé€t@) as a FIG. 2. Evolution of the ratio between the standard deviation of
function of the inhibition level. the grain-size distribution and the average size as a function of the
inhibition level.
Wij (Vg1 —0;) —AVj
Ang== , (2.26a [ll. CALCULATION RESULTS

Uk+17 Uk
Simulations have been carried out using the local grain-
Ang.=wi;—Any, (2.26b  boundary curvature from E@2.12 on an ideal system with

where the plus and minus signs refer to the growing anc’\]/lzgxm_11 m'J*s * and y=0.5 Jm °. A constant in-
shrinking side, respectively. The updated GSD is then ob- ibition ranging from 0 to 100 mt has been also assumed

tained as without specifying whether it depends on boundary pinning
by second phases, surface grooving, strain induced by a sub-

(2.273 strate, or other causes. An initial Gaussian GSD withn®
average size, 2.um standard deviation, and a class width

AR=2 um has been used in all cases. A coarsening time of

1000 s has been considered.

_ Figure 1 shows the plot of the average grain size versus

M2 (TFAD = Ny (O T ANy (2270 time in double logarithmic scale. The evolution of the varia-

When the first size class is involve#£ 1), the number of tion coefficientkgsp=0p/(R), the ratio between the stan-
grains is not conserved to permit their complete shrinkagedard deviation of the GSD and the average size, is reported

The only relevant quantitin, is therefore directly obtained in Fig. 2. Indicative values okggp, normalized skewness
as coefficient @s), growth rate exponerid In((R))/dIn(t)] and

(m) are reported in Table I.
AV, For normal grain growth without inhibition, the quasistation-
(2289 ary GSD is shown in Fig. 3 as a function of the reduced size
p (p=R/{R)) together with the asymptotic analytical 2D

being the volume of the Oth clagg=0. solution by Hillert (kgsp=0.33) and that from Marthinsen

Equations(2.27) are also used to control the integration et al° obtained in the numerical simulations by the Surface
time stepAt. The latter is chosen as the largest value whichEvolver program.
produces a non-negative number of elements in the size The distribution of the total number of faces; (m;) ver-
classes. sus the average number of sideg; associated with the

ni(t+At) =n;(t) —w;;,

nk(t+At):nk(t)+Ank, (227b

An{=nj;—
1 il vy

TABLE |. Summary of the relevant kinetic and topological parameters calculated as a function of the
inhibition level after 1000 s of simulation time.

z dIn((R))
(mm™) Kesp as din(t) (m)

0? 0.440 0.201 0.47 6.00
107 0.398 1.137 0.31 6.00
257 0.451 2.164 0.23 6.00
502 0.498 2.963 0.18 6.00
100° 0.558 4.241 0.11 6.00
o° 0.382 0.038 0.47 6.00

4 ocal grain-boundary curvature.
bAverage grain-boundary curvature.
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FIG. 3. Comparison among the calculated quasistationary GSD . .
(solid line), the asymptotic solution of the 2D model by Hillert  FIG. 5. Relationship between the average number of faces per
(dashed ling and the distribution obtained by averaging the resultsSizé class and the reduced grain size.
of numerical calculations by the Surface Evolver program

(squares In the present conditions, the average number of faces per

o . o o _class has shown a dependence on the reduced radius very
uninhibited system in the quasistationary regime is shown ijmjjar to that in Eq(3.2.

Fig. 4. It has been also found to be independerZ @fithin
the numerical roundoff errors. Maximum and mean value are
both about 6.27. It has to be observed that the latter is given

IV. DISCUSSION
by

A. General remarks

Ne Ne
_ 2 It has to be noted that the film thickness, inserted explic-
<m“>_i§1 niMm / 21 MiM - @D itly in the theory for the sake of clarity, algebraically cancels
out in the growth Eq.2.7) according to the definition of
The quantity(m,) may be defined as the number of faces ofgrain volume[Eq. (2.1)] and contact arefEq. (2.2)]. There-

the “average grain” and clearlym,) # (m). fore, as expected, it does not influence the system kinetics.
The average number of faces per class versus the reducétktead, the film thickness directly enters the inhibition term,
size is shown in Fig. 5. Data are very well approximated byfor example, when grain-boundary grooves are formed at the

the following linear fit: film surface?®
The proposed model predicts a growth exponent for unin-
m(p)=3.13+2.8%. (3.2 hibited coarsening of 0.47, very close to the theoretical value

- o . of 3 for surface-driven growth processes. Similar to the 3D
No deviations are found when inhibition is varied. 556, the growth exponent is reduced as the inhibition is
_ Finally, the reduced shape of the GSD at different inhibi-j,creased and, after an initial transient, the system evolves
tion levels after 1000 s of simulation is reported in Fig. 6. Intgwards a quasistationary state with a constant value of the
order to quantify the effect of the boundary curvature ap-ariation coefficienkssp corresponding to a self-preserving
proach, similar simulation conditions have been used to Ca'shape of the GSD. In the meantime, with increasing the in-
culate the grain growth kinetics without inhibition adopting ppjtion, the distribution becomes sharper and subsequently

the average boundary curvature from E2)9) instead of the  pr53dens while the skewness increases continuously.
local one. The results are reported in the last row of Table I.

0.35 ‘ . ‘ ‘ 25 e . . T :
0.30 : 20t ]
2 025¢ J z
7] S 15} _
B o020t . 3
= Z
£ 015t - 5 10r .
[s4] Q
2 0.10 . ]
o S 05¢ 1
0.05
0.00 . . . . 0.0
2 4 6 8 10 12 0.0 3.5
number of faces p
FIG. 4. Distribution of the occurrence of grain faces-(n;) as FIG. 6. Quasistationary grain-size distributions after 1000-s
a function of the average number of fages. simulation with different inhibition levels.
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The topological features related to E.2) are in agree- 4 - - I ————
ment with the behavior predicted by some 2D theories from gl f---- average curvature model
the literature. As a matter of fact, the relationship local curvature model

m(p)=3+3p (4.2 L

is reported by different authof$223

Although in Eq.(3.2) the intercept is not exactly equal to
3, the average number of faces predicted for grains with the
average size=1 is very close to the expected value of 6 .
representing an actual topological constraint for the system. :

Concerning the size distribution in absence of inhibition, it is S 3 0 1 >

clear from Fig. 3 that the model predicts a right-skewed mp) - 6

GSD, substantially different from that of the 2D Hillert's

model, with a tail extending beyond the cutoff valpe 2 FIG. 7. Von Neumann—Mullins plot showing the comparison

predicted by Ref. 1. In addition, it closely resembles thatbetween the present model with local boundary curvatscid
proposed in Ref. 10, obtained by numerical simulation withcurve and the same model with the average boundary curvature
the Surface Evolver program on a 2D region limited by cy-(dashed ling

clic boundary conditions. o
Due to the discrete nature of the present model, it is noflverage area growth raeer grain is deduced from Eq.

possible to deduce an analytical expression for thd2.22 by summing up the contributions from all the possible
asymptotic GSD. For comparison, the same model where thgontacts:

average grain-boundary curvature is used instead of the local ne
curvature produces a similar kinetic behavior but a sharper <d_2,> _ i E W%
and more symmetrical GSD similar to that by Hillert even if dt/ hnj=y U dt
slightly broader(Table ).

4.3

j
By substituting in Eq(4.3) Egs.(2.7) and(2.18), the follow-

. . ing expression is obtained:
B. Topological aspects: The von NeumanaMullins g exp

relationship ds, - miR, ne njm; Rj
Various studies on the topological correlations have been dt /- §M Y% om “ R+R, (kji = Kij)
carried out for 2D grain structures:21924=2§ the present k=1"kTk . (4.4

section, the effect of the grain-boundary curvature on the von
Neumann—Mullins(vNM) relationshig®?°-3lis examined ~which has a similar structure as Ed.2).
by comparing the average curvature model, whese In order to facilitate the comparison, it is convenient to
=1/R;, Eq.(2.9), with that for the local curvature;; given deal with a normalized form of Ed4.4). Therefore from the
by Eq.(2.12. The vNM equation relates the growth rate of ratio between the size-dependent growth rate

the area of amsided grain E,,= WRﬁ]) to the number of

i d(X) d({R)
faces according to T 7
at 27(R) TR (4.5
da~, = i .
el EMy(m—G). (4.2 and the growth rate of the average grai®)/dt, derived
from the kinetic calculation according to Ref. 10, the dimen-
The fundamental assumptions for this relationship to holdsionless area growth rate, is calculated as
are:
. . . . _ dz; d(x)
(i)  all grain boundaries possess equal mobility and sur- va)=\4¢ TR (4.6)
face tension irrespective of their misorientation and
_ crystallographic orientation of the boundaries; ~ The plot of vo(p) versus the average number of faces
(i)~ the mobility of a grain boundary is independent of its m(p) — 6 is shown in Fig. 7 for both the mean curvature and
velocity; the local curvature models. It can be immediately observed

(iii)  triple junctions do not affect grain-boundary motion that the average curvature model gives an exact linear rela-
and therefore angles at triple junctions are in equilib-tionship whereas the local curvature model exhibits a certain
rium. deviation only approximating the expected behavior. On one

hand, the first result indicates that the structure of the model

From the assumption($) and (iii ), all the angles at the junc- is formally correct, otherwise the vNM relationship would

tions are expected to be equal to 120°. Conversely, lack dfiave not been recovered. On the other hand, it is necessary to

equilibrium at triple points implies a deviation from the the- analyze the reason for the approximate behavior of the local
oretical value®*33 curvature model. From the conditions for the validity of the

From Eq.(2.1), the surface area of a grain in the size classyNM relationship shown above, the result here obtained can
i 2;, is related to the grain volume through=2,;-h. The  be interpreted in terms of a deviation from the equilibrium
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5.0 —— T the standard deviation of such departure on the whole range
of topological classem(p) is about 3.6°. As further test, the
weighted average of the internal joint angle has been recal-
culated by the equation

25 G M

o 00
RS
@ “2 B b I nC nC
:'D 5ol i <9>:E n;m; 6; 2 nym (4.10
(_o\l : i=1 i=1
Ter ] which confirmed the valuéd)=120° expected on the basis
100 L of (m)= 6. This result, which will be further discussed in the

6 7 8 9 10 11 12 13 following experimental section, is not acceptable if referred
m{p) to systems where the mechanical equilibrium at triple junc-

FIG. 8. Displacement of the average internal angle of tripletIons is surely attainee.g., soap froths but it can be plau-

junctions from the equilibrium value 120°, as a function of the Slb:ﬁ ;(())rapc;lr%?rrésfgg]hecsdyl;sirrgséontains a fixed volume of
topological grain class in the present model with local boundary P !

curvature gas and molecules permeate through the cell membranes to
' equalize pressures in adjacent bubbles. The soap froth tends
do remain in quasiequilibrium at all times because the cell
walls and enclosed gas can adjust almost instantaneously to
minimize surface areé.e., the gas has zero shear modulus
age number of faces per grain in the system is exactly and the characteristic time s_cale fo_r bqb.ble coarsening is
greater than that for equilibration of triple joint&\s a matter

=6 (see Table), which implies that theaverageangle at A . ,
triple junctions is 120°, it is possible to calculate the varia—.Of fact, most of the liquid of the foam is contained at the

tion of the average junction angle as a function of the graiHunCtionS where the walls are slightly thickened to form the

size when the local curvature is used. Thus it is necessary o-calleq plateau border_s. It has been shown that, even in
rewrite Eqs.(4.4) and (4.6) in a form similar to Eq.(4.2) roths, high volume fractions of plateau borders can induce

introducing a factorm/3 to convert the result in angular dewatt)llons in the angles gtltrlple ngﬁ%]_’herelfore I |si|.rea—
quantities. Due to the normalizatigd.6), the slope of the sonable to expect that triple junctions in polycrystalline ag-

straight line obtained by the average curvature model in Figgregatgs could be not .exa(':tly in equilibrium conditions ata
7 is equal to unity given time because diffusion processes to attain the rear-

With reference to the derivation of EG#.2) by Mullins rangement of the boundary network in solids are slow in
for a circuit around a grain having an average number ofOmparison with those in a gas/liquid soap froth system.

sides equal tan(p), one can write the vNM relationship as

angles at the triple junctions induced by the local curvatur
only, and not from the average curvature.
Starting from the observation that in both cases the ave

C. Comparison with experiments

va(p) = g va(p)=m(p)[m—0(p)]—-2m,  (4.7) The comparison with experiments has been limited to the
ability of the model to predict the GSD shape, its kinetic
where 6(p) is the included angle in a triple junctiony features being in substantial agreement with similar theories.

— 6(p) the external rotation angle associated to each sigd/nfortunately, very few data are available in the literature on

and the last term 2 compensates the balance for a completenormal grain growth in thin films where attention is paid also

revolution around the grain boundary. It is clear that, in equi® the determination of GSD's. Two examples are reported

librium conditions, @ does not depend op and it is identi-  "€re he 1 , h
cally equal to 2r/3. Therefore Eq(4.7) is identical to Eq. In the first one, GSD's were mgasured on a 0.5-mm t n
4.2): sheet of nonoriented 3% Si electrical steel of the following

chemical compositiofimass %: 0.0050 C, 3.15 Si, 0.21 Mn,

- 0.0035 N, 0.77 Al, 0.0035 T After cold deformation the
va(p)= 3[m(p)—6]. (4.8 sheets were recrystallized and decarburized in hydrogen at-

mosphere for 180 s at 850 °@ew point=35 °C) reducing
On the contrary, if bothx(p) andm(p) are known, it can be the carbon content to 0.0020 mass %. Then, four samples
used to evaluate the anghép) as a function of the reduced were annealed for 60 s at 850, 950, 1050, and 1150 °C, re-

grain size: spectively, to activate grain growth. The area of about 1000
grains in each sample was measured by automatic image

2a—(wl3)va(p) analysis from optical micrographs of the polished and chemi-
0(p)=m— ) (4.9  cally etched surfaces of the sheets and the data were pro-

cessed to obtain the distributions of the equivalent radius.
The deviation from equilibrium for the local curvature The average grain radius and the variation coefficient of the
model, expressed a&(p)—120°, is shown in Fig. 8. It is GSD are reported in Table Il. Although the average size in-
clearly seen that for more than 80% of grains the departurereases with increasing temperature, the shape of the reduced
from the equilibrium value is limited within=2.5° and that distribution remains substantially constant, indicating that
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TABLE II. Average grain size and variation coefficient of the T " i i "
experimental GSD’s measured on 0.5-mm thin sheets of a nonori- 1.5 ; = experimental .
ented 3% Si electrical steel annealed for 60 s at different tempera- > model (Z=25 mm-1)
tures. 2

g 10}
Annealing temperature (R z
o e
(°C) (um) Kesp S o5l
g o
850 46.6 0.594 =
950 79.8 0.590 0.0 . . . : :
1050 133.1 0.567 00 05 10 15 20 25 30 35
1150 227.3 0.506 p

FIG. 10. Comparison between the experimental GSD from Ref.

normal grain growth occurred. In addition, especially in the37 (points and the quasistationary GSD calculated with 25 Pm
sample annealed at 1150 °C, the final grain diameter is alonstant inhibition(solid curve.

most equal to the sheet thickness.
The reduced GSD's are compared with the theoretical dis- Finally, in Fig. 11, the model predictions for the von

tribution without inhibition in Fig. 9. Again it is worth noting  Neumann—Mullins relationship have been compared with the
that all the experimental distributions overlap each other andi4i5 obtained in experiments on normal 2D grain growth of a
the model fits very well to the data. 30-mm high, 80-mm long, and 15-mm thin film of succino-
In the second example, GSD’s measured from & polycrysjgrije (SCN) in controlled conditiong® and further reviewed
talline texture-free 80-nm thin film of pure aluminum i, ejiminate the contributions of grains with anomalous
(99.999% produced by vacuum evaporation at low temperafyahavior® SCN is a low melting point(58.08°Q, easily
ture on a(100) NaCl substrafé have been considered. Grain  iifieq transparent organic material with isotropic proper-

growth was induced by annealing in a vacuum furnace afies often used in solidification studies as a model analog of
200°C up to 480 s obtaining average grain sizes ranging,erais. It permitsn situ topological measurements as well as

from about 30 nm to about 40 nm. Grain-size distributionSyhe getermination of the process kinetics by analyzing the

were determined by measuring the grain area by transmigime evolution of the system.

sion electron microscopy on more than 500 grains. In the experiments, the area growth rate constant for the
The occurrence of normal grain growth was confirmed bYayerage grain was determined at a temperature 0.35 °C below

a linear relationship between the mean grain area and thge melting temperature of SCN confirming that the process
annealing time, and by the monomodal GSD’s. The size disy 54 governed by a parabolic la )xt, or (R)2=t. From

tributions, when pllottt'ed asa functi_on of the reduced' raﬂjus the analysis of the growth rate of individual grains as a func-

overlap_perfectly, indicating a stationary growth regime with o of their topological clasgnumber of faces the experi-

a self-s_|m|lar GSD shape_, ) ._mental von Neumann—Mullins diagram was determined with
In Fig. 10 the comparison between the experimental diSthe ass0ciated scattét 1 standard deviation

tribution determined after the longest annealing ti@#e0 9 It can be deduced that, although the presence of surface

and that calculated by the present model with a constangqoying and of the glass surfaces containing the polycrys-
inhibition of 25 mm ~ is shown. It can be observed that, i5jine SCN could have affected the system behavior induc-
although it is necessary to consider a limited inhibition COMving some deviations from ideality, nevertheless the off-

tribution, probably due to the presence of a substrate or 1 ,;ijibrium vNM curve from the local curvature approach
grain-boundary grooving, there is a very good match be-

tween the distributions.

4 T T T T
1.0 T T T T T T T ] ¥ average curvature
s 850 °C local curvature
*
950 °C B exp. Run1
0.8t ° 1 2
o '0*\3* *x 1050 °C O exp. Run2
-— o
3 Tz v 1150 °C
506 v ]
° o A model (Z=0 mm-1)
2 x v ¥
= v
S 04rx M E
[} v
o *
[ il T\ o
o 02 E
b .. r
¥y O .3 ! L L L
0.0 ; . . — L o -2 1 0 1 2
00 05 10 15 20 25 30 35 40 m(p) - 6

FIG. 11. Von Neumann—Mullins plot of experimental data from
FIG. 9. Comparison among the 2D GSD’s measured in a non2D grain growth of succinonitril¢pointy and comparison with the
oriented 3% Si electrical steel annealed for 60 s at different tempresent model with different descriptions of boundary curvature
peratureqpointy and the present modésolid curve.

(curves.
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here proposed is not incompatible with the experimentathan that of the analytical model by Hillert and similar,
data. On the other hand, the measurement of angles at théhere the average boundary curvature is used to evaluate the
triple joints is a very difficult experimental task and devia- driving force for grain coarsening. At the same time, it
tions of +2.5° from the equilibrium value can be hardly closely approaches the results obtained by numerical models
revealed. such as Monte Carlo and Surface Evolver.

No quantitative data are reported to support the hypoth- The effect of inhibition, both constant and time depen-
esis that this result is also associated with a better descriptid#nt, can be taken into account. A constant inhibition pro-
of the GSD shape by the discrete model but the GSD waguces a more peaked GSD whose shape resembles a log-

found to have a right-skewed shape similar to the gamm&ormal distribution. _ _
distribution® Comparisons with available experimental data show that

the model predicts the shape of the GSD of real systems with
V. CONCLUSIONS good accuracy. It is also observed that the introduction of the
local grain-boundary curvature causes a slight deviation from
The model, which extends previous analytical theories|inearity in the von Neumann—Mullins plot which is still
predicts the grain growth kinetics and the evolution of thecompatible with the available experimental data. This behav-
grain-size distribution of a polycrystalline thin film through a ior has been justified admitting a small departure of the av-
probabilistic approach based on elementary interactions berage angles at triple junctions from the equilibrium value
tween grain pairs together with a simple topological model.120° induced by the local curvature. Therefore the model can
The introduction of the local grain-boundary curvature, inbe considered for specific applications to polycrystalline sol-
contrast with all the analytical 2D models of grain growth in ids only where limited off-equilibrium conditions at the junc-
the literature, permits us to obtain a right-skewed asymptoti¢ions can be permitted by the slowness of diffusion processes
GSD also in absence of inhibition. Its realistic shape repreeperating to attain the rearrangement of the boundary net-
sents a better approximation of the experimental evidencesork.
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