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Universality in the screening cloud of dislocations surrounding a disclination

Alex Travesset
Physics Department, Iowa State University and Ames National Lab, Ames, Iowa, 50011-3160, USA

~Received 5 May 2003; published 24 September 2003!

A detailed analytical and numerical analysis for the dislocation cloud surrounding a disclination is presented.
The analytical results show that the combined system behaves as a single disclination with an effective charge
which can be computed from the properties of the grain boundaries forming the dislocation cloud. Expressions
are also given when the crystal is subjected to an external two-dimensional pressure. The analytical results are
generalized to a scaling form for the energy which up to core energies is given by the Young modulus of the
crystal times a universal function. The accuracy of the universality hypothesis is numerically checked to high
accuracy. The numerical approach, based on a generalization from previous work by Seung and Nelson@Phys.
Rev. A38, 1005~1988!#, is interesting on its own and allows to compute the energy for an arbitrary distribution
of defects, on an arbitrary geometry with an arbitrary elastic energy with very minor additional computational
effort. Some implications for recent experimental, computational, and theoretical work are also discussed.
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I. INTRODUCTION

Topological defects, mainly disclinations and dislocatio
play a crucial role in the understanding of the physics
many two-dimensional~2D! systems.1 Although computa-
tional techniques such as analytical methods, Ewald sum
tion techniques,2 Monte Carlo simulations,3 etc., can be used
in many different contexts, they become quite inefficient
other situations, particularly with crystals having a bound
or lying on a curved background. In this paper, a new
proach based on previous work by Seung and Nelson4 will
be discussed in detail. The computational methods develo
allow to obtain the lowest energy configuration for an ar
trary distribution of defects in a crystal lying on an arbitra
geometry with an arbitrary elastic energy at zero tempe
ture. The method is general enough to include Bravais
tices other than the triangular case. A discussion of
screening cloud of dislocations surrounding a disclinat
will be presented. This problem will be used as a test
ground where the results may be compared with the ana
cal predictions from elasticity theory derived in this pape

An interesting experimental example where the dislo
tion cloud surrounding a disclination appear is given by c
loidal particles crystallizing on the surface of a sphe
~colloidosomes!.5 As a consequence of the Euler theorem6

an sphere must have a total disclination charge of 12. If
total number of particles forming the sphere is large enou
the ground state contains more defects than the 12 nece
to satisfy the Euler theorem. Those additional defects
dislocations surrounding a disclination, as illustrated in F
1, arranging in the form of grain boundaries. Those gr
boundaries have two very distinctive features~1! terminate
inside the medium and~2! have a total disclination charge o
11. These features are intimately related to the geometr
the problem and should appear whenever the Gaussian
vature is large enough.7–9 Similar structures have been als
observed in simulations of the Thomson problem.10–12

Clouds of dislocations~with the minus disclinations playing
the role of plus charges! should also appear in crystals on
negatively curved background.13 Those situations are rel
0163-1829/2003/68~11!/115421~15!/$20.00 68 1154
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evant as two dimensional analogs of the frustration ass
ated with the three-dimensional tetrahedral packing14 and
other surface physics problems.15,16

The problem of grain boundaries radiating out of disc
nations is also important for understanding certain aspect
the problem of two-dimensional melting. The KTHNY~Refs.
17–19! scenario predicts a two stage melting from a crys
into an isotropic phase via an hexatic phase. This picture
been confirmed by a large number of examples~see Refs.
20,3 for reviews!. Very precise numerical simulations21 have
found very good agreement with the predictions of t
KTHNY scenario. Different inherent structures~IS! charac-
terize each phase, and disclinations appear as forming g
boundaries with very similar characteristics as the o
found in the Colloidosome problem. Similar structures ha
been found in recent simulations, and the defects have b
characterized by 1/f noise.22 Recent experiments on

FIG. 1. ~Color online! Ground state configurations for a larg
and small colloidosome. For a large colloidosome, finite len
grain boundaries radiate out of the disclination~from Ref. 5!.
©2003 The American Physical Society21-1
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ALEX TRAVESSET PHYSICAL REVIEW B68, 115421 ~2003!
plasmas23 and colloids,24,25 have also found a similar situa
tion, with correlation functions in good agreement with t
KTHNY scenario and grain boundaries with similar chara
teristics. Alternative melting scenarios have exploited
short-range nature of the stresses produced by grain bo
aries of dislocations.26

The physics of Langmuir monolayers has received a lo
attention in recent years,27 but many important question
have not yet been clarified. It seems very clear that topolo
cal defects play a crucial role in both the solid and liqu
phases,28 playing a major role in problems such as melting
the collapse of the monolayers.29 More sophisticated sys
tems, such as sphyngomyelin, where additional hydro
bonding may be formed, show a much richer pha
diagram.30 Biphasic surfactant monolayers show addition
defect structures~mesas!.31

Grain boundaries radiating from a central disclination
also found in hexaticI * and crystalJ* tilted liquid crystal
phases.32 The tilt is used to force a disclination and a patte
of radial grain boundaries~with five arms! is observed.

The methods described in this paper are also relevan
a restricted type of quantum dots33 in which the density of
electrons is small and the external disorder potential is w
enough so that the electrons in the dot form a Wigner crys
dubbed ‘‘Wigner crystal islands’’ in Ref. 34. The analys
and energetics of defects is very similar to the one prese
except for a minor change of boundary conditions.

Dislocation clouds also appear in many other proble
such as, partially polymerized membranes,35,36 Wigner
crystals,37 and in carbon nanotubes, particularly in the
called ‘‘onion’’ rings, which are successive spherical laye
of graphite.38

The organization of the paper is as follows. A review
continuum results is given in Sec. II. The discretized a
proach is introduced in Sec. III and compared against
continuum results for isolated defects. The scaling relati
satisfied by the energy are derived in Sec. IV. Numeri
results are presented in Sec. V and their universality w
respect to the Lame coefficients is discussed in Sec. VI. S
tion VII is a brief overview of the effect of curvature. W
wrap up with some conclusions in Sec. VIII. Several tech
calities are relegated to the appendixes.

II. CONTINUUM RESULTS

The elastic energy of a continuum is given by39

F5
1

2E d2r @2muab
2 1l~uaa!2#, ~1!

where the strain tensor is defined as

uab5
1

2 S ]ua

]xb
1

]ub

]xa
1

]ur

]xb

]ur

]xa
D . ~2!

The quadratic term in the strain tensor is usually dropped
it usually amounts to higher order negligible corrections
the total energy. Those terms cannot be entirely neglecte
disclinations are involved.4 ~For consistency, other energ
terms quadratic in the strain tensor should also be includ
11542
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but for the sake of simplicity this point will be ignored.! The
Young modulus and Poisson ratio are

K054m
m1l

2m1l
,

n5
l

2m1l
. ~3!

Using known analytical techniques, the strains for a d
location and a disclination may be solved in linear order.39,4

For a dislocation with Burgers vectorb5bex the result is39

ux5
b

2p S f1
K0

8m
sin~2f! D

uy52
b

2p S m

l12m
ln~r /a!1

K0

8m
cos~2f! D . ~4!

The strains for disclinations of charges are4

ur52
s

2p
r S 12

2m

2m2l
~As11/2!2

2m

2m1l
ln~r /R! D ,

uf5
s

2p
rf. ~5!

There is an arbitrary constantAs which will be determined in
Appendix A.

Plugging Eqs.~4! and ~5! into Eq. ~1!, the energy for the
dislocation of Burger vectorb is

F5
ubu2

8p
K0@ ln~R/a!1const#. ~6!

As is shown in Appendix A, the constantAs is related to the
two-dimensional pressureP. Following the same steps a
for a dislocation, the energy for an isolated disclination
charges5(p/3)qi under pressure becomes

F5
s2

32p
K0R21

pP2

8B R2. ~7!

The energy dependence, growing asR2, is energetically
very costly. Grain boundaries of dislocations may screen
the disclinations, thus reducing the huge energy cost of
isolated disclination, if the angle of the grain boundary e
actly compensates the missing or additional wedge~a mul-
tiple of p/3 for triangular lattice! caused by the disclination
From the geometric argument in Fig. 2, the angle of gr
boundaryu is given by

2R sin~u/2!5nb, ~8!

wheren is the total number of dislocations all having Bu
gers vectorb. Further assuming a constant spacing of dis
cations within the grainD, the relationB5Rb/D holds and
one gets

2 sin~u/2!5b/D. ~9!
1-2
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Upon identifying u with the missing or additional wedg
removed to form the disclination,9 Eq. ~9! becomes

2 sinS p

6mD5b/D, ~10!

leading to an equation for the spacingD as a function of the
number of armsm. A detailed analytical proof for this resu
using linear elasticity theory is provided in Appendix B
where the total energy of the system of a disclination and
m-arm grain boundary~see Fig. 5! is given by Eq.~B8!.
There is also a linear term inR arising from two different
contributions, the stresses of grain boundaries of dislo
tions, discussed in Appendix C and the core energies of
defects. The total contribution to the energy is then

F5

S s2m
b

D D 2

32p
K0R21FHS 2p

a

D D14pcGm K0

4p

a2

D
R,

~11!

where the functionH is defined in the appendix Eq.~C3!.
The pressureP has been set to zero. The total number
dislocations isn5m(R/D). The core energy has been p
rametrized asEcore5K0a2c, wherec is a dimensionless co
efficient ~but not independent of the elastic constants!.

If the spacingD is given by Eq.~10!, the leadingR2 term
in Eq. ~11! is canceled and only the linear term inR, which
we denote asf, survives:

f [FHS 2p
a

D D14pcGmK0

4p

a2

D
R. ~12!

For future reference, we quote the result for largem:

f 5H 1

4p F12 lnS 2p2

3m D G1cJ mK0a2
R

D
. ~13!

FIG. 2. ~Color online! Relation between the aperture angleu of
a grain boundary of dislocations and its total Burgess vectornb and
radius of the crystalR.
11542
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At perfect screeningm(a/D)5qi(p/3) and the energy
grows logarithmically withm. All previous results assume a
infinite system~largeR). How largeR must be in order that
the infinite radius result hold, will be estimated next.

The interaction energy of two grain boundaries deca
exponentially fast as a function of their mutual distance40

with a decay length

lGB5
D

2p
, ~14!

D being the distance between dislocations within the gr
~Fig. 2!. Dislocations that are a distanceL from the disclina-
tion will be invisible to the dislocations in other arms if

2L sin~p/m!@2lg . ~15!

Therefore from Eqs.~14! and ~10! it follows that

L@
3

p
m2b. ~16!

For R.L the infinite result~12! will hold. The dependence
of Eq. ~16! on m2 points out that the behavior~12! for large
number of arms will not be reached until the radiusR is very
large.

III. DISCRETIZATION OF THE ELASTIC FREE ENERGY

We consider a two-dimensional~2D! triangular lattice of
monomers with lattice constanta. The actual position of the
(n,m) monomer is described byr (n,m) and it may be decom-
posed as

r (n,m)5ne11me21u(n,m) , ~17!

whereub is the strain at pointb andei ,i 51,2 define a basis
of the Bravais lattice. For a triangular lattice it is

e15ex

e25
1

2
ex1

A3

2
ey . ~18!

The discrete elastic free energy that we will use is

F5
e

2 (
^bc&

~ urbcu21!21s(
b,c

S 1

2
2

rbc•rbc11

urbcuurbc11u D
2

.

~19!

The summation in the first term runs over links defined
verticesa,b, and in the second term the sum runs over
nearest neighbors of pointb. Other discretizations are als
possible but do not modify the results as it will be discuss

In order to proof the equivalence of Eq.~19! with the
continuum result~1!, one must define the discrete derivativ
first. The derivatives of a general functionf (r ) are only de-
fined along the discrete direction of the triangular lattice,
a general derivative is precisely defined from

]xf ~rb!5
f ~rb1ae1!2 f ~rb!

a

1-3
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]yf ~rb!5

f ~rb1ae2!2 f ~rb!2
1

2
@ f ~rb1ae1!2 f ~rb!#

aA3/2
.

~20!

Using the previous definition, the discrete metric become

gi j ~b!5] irb] j rb . ~21!

The distance between two nearest neighbor points is

ura2r bu5~112ui j eab
i eab

j !1/2, ~22!

where the discrete strain tensor is defined from the der
tives ~20! by

uab5
1

2 S ]ua

]xb
1

]ub

]xa
1

]ur

]xb

]ur

]xa
D . ~23!

Expanding Eq.~22! using Eq. ~D2!, the first term of the
discrete energy is identical to Eq.~1! with

l5
A3

4
e,

m5
A3

4
e. ~24!

The same expansion to the second term using the rela
~D3!–~D5! lead to

l59
A3

4
s,

m529
A3

4
e. ~25!

The elastic constants of the two terms combined are the

l5
A3

4
~e19s!,

m5
A3

4
~e29s! ~26!

and, therefore, Eq.~19! provides a suitable discretization o
Eq. ~1! with arbitrary elastic constants. It should be recall
that higher order terms in the displacement are droppe
lead to Eq.~26!.

In this paper, the particular geometry that will be us
consists of a plus or minus disclination~a pentagon or an
heptagon, respectively! at the center of the crystal. The tot
number of monomers forming the crystal is a function of t
linear sizeR and depends on the total number of dislocatio
If only a center defect of chargeqi is present, the total num
ber of monomers is

M5~62qi !
R21R

2
11. ~27!
11542
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Even with additional dislocations, the total number of poin
will still grow as (62qi)R

2.
Energies of single defects.The energies of isolated dislo

cations and disclinations will be compared against the a
lytical predictions derived previously. This will provide
benchmark to the present approach.

In Fig. 3 the minimum energy results of a configuratio
containing a dislocation for different values of the Lame c
efficients. A fit to the form of Eq.~6! yields

F

K0ubu2
50.0395~2!ln~r ! ~28!

in agreement within of 1% with the analytical result 1/8p
50.03979. The small deviation may be attributed to the
glect of higher order terms in the continuum calculatio
Core energies may be computed from the intercept in Fig
The results are summarized in Table I. It should be noted
core energies for crystals with the same Young modulus
different.

The results of the same analysis for single disclinatio
are shown in Table II. The most accurate determinat
yields

F

R2K0s2
50.007 85~1!, ~29!

both for plus and minus disclinations.~Results forl5m
were first obtained with less accuracy by Ref. 4.! Although
the coefficient is off from the analytical result~7! by a sig-

FIG. 3. ~Color online! Results for the energy of an isolate
dislocation as function ofR for different values of the elastic con
stants.

TABLE I. Core energies of dislocations as a function of Lam
coefficients (m,l).

(m,l) (1,2 2
3 ) ( 1

2 ,0) (2
3 , 1

3 ) ( 3
8 , 3

8 ) SA3

4
,
A3

4
D

Ecore

K0a2

0.092~1! 0.042~1! 0.039~1! 0.029~1! 0.0285~1!
1-4
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UNIVERSALITY IN THE SCREENING CLOUD OF . . . PHYSICAL REVIEW B 68, 115421 ~2003!
nificant amount, it is remarkably universal as a function
the elastic constants. The energies are also the same for
plus and minus disclinations within a 0.1% accuracy~more
accurate results do show that sevenfold defects have a
ginally lower energy!. There is, however, a term that grow
linearly with R in the discretized energy. This term is quot
also in Table II.

It is also instructive to compare the continuum strain
lution rA ~5! with the configuration from the discrete calc
lation. The difference will be quantified from the function

E~r b!5
urb2rAu

urbu1urAu
~30!

and it is plotted in Fig. 4. The relative error is always belo
0.01%, becoming as low as 1026%.

IV. SCALING RELATIONS FOR GRAIN BOUNDARIES

The degrees of freedom defining a grain boundary of d
locations are~see Fig. 5! m: number of arms,l GB: length of
the grain boundary from the central disclination,C: angle of
the grain with some specified crystallographic axis,D: spac-
ing of dislocations within each grain. The spacingD does not
generally need to be restricted to be constant. The linear
of the system isR.

It is convenient to define the dimensionless variable

TABLE II. Coefficient @Eq. ~29!# as a function of the Lame
coefficients (m,l), for fivefold ~1! and sevenfold (2) disclina-
tions.

s (1,2 2
3 ) ( 1

2 ,0) (2
3 , 1

3 ) ( 3
8 , 3

8 )

R2(1) 0.0080~1! 0.0079~1! 0.0078~1! 0.007 85~1!

R2(2) 0.0079~1! 0.0078~1! 0.0079~1! 0.007 85~1!

R(1) 20.003~1! 0.006~1! 0.007~1! 0.08~1!

R(2) 0.007~1! 0.008~1! 0.009~1!

FIG. 4. ~Color online! Plot of function E(r b) describing the
relative difference of the analytical solution and the numerical
sult.
11542
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x5 l GB/R, ~31!

which by definition satisfies 0<x<1. x51 implies that
grains reach the boundary whilex50 implies no disloca-
tions. Equation~11! will be generalized~for zero tempera-
ture! by assuming that for intermediate values ofx the fol-
lowing scaling behavior holds:

E5K0R2Q~x,m,D,C!, ~32!

where asx→0 Q approaches Eq.~7!. This scaling law how-
ever, may break down if the sub-leading linear terms inR
become comparable. The condition expressing this situa
is given by@see Eq.~12!#

Q~xc!;
pxc

3R
f . ~33!

If the term square inR vanishes, this equation must hold fo
somexc and scaling will break down for allx.xc .

If the square term inR does not cancel, then the scalin
relation must hold for largeR as well. That will be the case
for spacingsD not satisfying Eq.~10!. The Q function
should exhibit a minima roughly at the criticalxm where the
additional angle added by the dislocations compensates
missing or additional angle by the disclinations. The critic
xm is given by

xm52D sin@p/~6m!#, ~34!

with the additional constraintxm,1. Therefore theQ should
exhibit a minima forxm .

The angleC, defined as the angle of the grain with r
spect a crystallographic axis, for anm-grain boundary com-
mensurate with thep-fold symmetry of the central disclina
tion will be constrained to
-

FIG. 5. ~Color online! Degrees of freedom of a grain boundar
1-5
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FIG. 6. ~Color online! Plot of the scaling
function ~32! for D55, m55, C5p/5 and sizes
R5102170. The dashed line is a fit with an ex
trapolation tox2.1. The straight lines provide
a visual solution to Eq.~33! and an estimate of
the criticalxc as a function ofR.
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0<C,
p

m
. ~35!

A straightforward analytical calculation shows thatQ should
be independent ofC. It will be shown that this result ignore
the constraints imposed on the Burgers vector by the un
lying lattice.

V. NUMERICAL STUDY OF GRAIN BOUNDARIES

A. Some computational details

The calculations have been done by relaxing an ini
configuration consistent with the given distribution of defe
using the conjugate gradient method. The numerical ac
racy was tested by checking the convergence of the fi
results as a function of the tolerance error in the algorith
Whenever different initial configurations consistent with t
given distributions of defects were tried, the final result w
found to be identical. The energies were computed to a se
digit precision or more.

For each value of the parameters, results were obta
for linear sizes ranging fromR510 toR5200 corresponding
to typical volume sizes from 247 to 140 000 monome
Those lattices are, in many cases, larger than some ex
mental systems available. Free boundary conditions were
corporated by allowing the system to reach its natural ext
without any external constraint.

The code was written inC11 using objected oriented de
sign. This provides the flexibility of incorporating any pote
tially new geometry, distribution of defects or discretizati
energy at any future time with a very minute effort. The co
has some limitations too, one of them being that noninte
spacings~cases were dislocations within the grain should
slightly nonconstant to mimic fractions of the lattice spacin!
have not been implemented effectively. Typical minimiz
tions of a system withR5100 ~total number of monomers
11542
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M525 000) take 9 min at a 10210 precision and 5 min at
1025 precision in a Dell 1.80 GHz dual Xeon processor ru
ning LINUX RED HAT. Further computational details will be
presented elsewhere.

B. Scaling as a function ofl GB and D

A plus disclination will be placed at the center of th
crystal and grain boundaries will be fixed to have angleC
5p/5 and number of armsm55. The energy will be inves-
tigated as a function of the parametersl GB andD. The elastic
constants will be chosen asl5m.

The energy of relaxed configurations is plotted in Fig. 6
a function of the scaling variables. TheQ function is plotted
for a plus disclination and am55 grain boundary with spac
ing D55. The plots follow the ansatz in Eq.~32! well, with
obvious deviations for values ofx closer to 1.

In order to determine the coefficient of the linear term
R, defined asf in Eq. ~12!, it will be assumed that the point
on Fig. 6 forx;1, which clearly do not scale, are describ
by Eq.~12!. The results are plotted in Fig. 7 and one obta
for the f coefficient

f 50.081~5!. ~36!

Since we are not looking for a high precision value for thf
coefficient, two values forl GB were included for any givenR.
This provides strong evidence of the robustness of the
The theoretical value of thef coefficient arises from a grain
boundary contribution Eq.~C2! and a core energy which ma
be estimated from a single dislocation~given in Table I!. The
two contributions give

f 50.063 ~grain boundary!10.029 ~core energy!50.092,
~37!
1-6
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FIG. 7. ~Color online! Plot of the fit ~12! to
the results forR; l GB .
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considering the approximations involved~basically linear
elasticity theory and noninteracting grains!, the agreemen
with Eq. ~36! is acceptable.

The value obtained forf may be cross checked by assum
ing that the scaling behavior will break down when the va
for the linear term is, say one third, of the square term. T
intersection of the straight lines in Fig. 6 provide a visu
solution to Eq.~33! and an estimate of the criticalxc as a
function of R in reasonable self-consistent agreement, p
ticularly for large values ofR.

The following three regions may be clearly identifie
from Fig. 6.

(x;0): The energy is dominated by the strains of t
central disclination and the effect of adding additional d
fects is negligible.
11542
e
e
l

r-

-

(0!x,xc): The inclusion of more defects dramatical
lowers the energy.

(x.xc): The core energy contribution sets in and scali
breaks down, the energy grows linearly withR, as apparent
from Fig. 7.

It should be noted from Fig. 6 that if the intermedia
region could be extrapolated tox;1 before the core energ
terms would become noticeable, the energy would go to z
as (x21)2, that is, independent of the linear sizeR.

A typical relaxed final configuration is shown in Fig. 1
The plot is only for a small region around the central disc
nation, but it clearly shows that for regions away of the d
fects the triangles forming the crystal are almost equilate
~unstrained!.
FIG. 8. ~Color online! Plot of the scaling
function ~32! for D53, l5m, m55, and C
5p/5 for sizesR510–200 (l5m).
1-7
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FIG. 9. ~Color online! Fit ~11! to the values
R; l GB .
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C. Scaling function for nonoptimal D values at fixedm and C

The Q function for D values significantly different than
Dcrit5

5
3 p are plotted in Figs. 8 (D53) and 11 (D57).

For D,Dcrit the scaling function has a minima as a fun
tion of x in reasonable agreement with the value predicted
Eq. ~34!. As is very apparent from Fig. 9 the energy grow
quadratically~compare with Fig. 10! with the system size
even in the presence of the grain boundaries. The fit giv

E

K0R2
50.0055~4!. ~38!

This result should be compared with the theoretical estim
~B8! for P50, D53, m55:

E

K0R2
50.0039. ~39!

FIG. 10. ~Color online! Comparison of different energies fo
m55 andD55 l5m for different values ofC.
11542
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Although the result is not too different, the quantitativ
agreement is not very good. This may be attributed to ass
ing linear elasticity, which as already seen is not very ac
rate if disclinations are involved.

The energy forD57 does not exhibit a minima becaus
that should appear for values ofx.1. The total energy for
D57 is significantly larger than forD55, as it becomes
apparent from the relative scale of they axis of the plot. The
theoretical estimate Eq.~B8! for P50, D57, m55 is

E

K0R2
50.0011. ~40!

The result in Fig. 11 approaches this limit, although the s
tistics are not as good as in forD53.

D. Dependence on the orientation of the grainC

The dependence on the angleC is plotted in Fig. 10 for
anglesC50,p/10,p/5. Typical final relaxed configuration
are shown in Figs. 12 (C5p/5) and 13 (C50). The final
relaxed configurations forC5p/5 are very regular while the
dislocations for the angleF50 display a rather jagged pa
tern. Provided that the total Burgers vector is zero, the o
difference in the energies arises from the grain bound
terms. Therefore, the energy difference in Fig. 10 should
attributed to the constraints induced by the lattice to the B
gers vector. This point might be substantiated numerica
with a more comprehensive calculation, but this has not b
done, partly because the angleC is not well defined for
values of m different than 5. The previous consideratio
reflect that the optimal angle form55 grain boundaries is
given byC5p/5.

E. Dependence on the number of armsm

The analysis for different values ofm will be restricted to
the optimal spacing values~9! and to the more relevant cas
1-8
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FIG. 11. ~Color online! Plot of the scaling
function ~32! for D57, l5m, m55, and C
5p/5 for sizesR5102100 (l5m).
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x;1 (l GB;R). Some representative relaxed configuratio
are shown in Figs. 14–17. Similarly as it was found in t
investigation of the dependence onC Sec. V D the con-
straint that dislocations can only be oriented along directi
defined by the triangular lattice is the origin of addition
frustration, leading to jagged arrangements which follow
ideal orientations only approximately.

The results corresponding to the energy are shown in
18. For finite radius, the smaller values form are clearly
favored. AsR becomes large the values for the energy
come degenerate~within the numerical accuracy! in m for m
within the rangem5225. An evaluation of theH function
in Eq. ~12! points out that them52 result should have the
lowest energy. However, the difference in energy for ar
m5226 are small compared with the core energy contrib

FIG. 12. Final configurations form55, D55, C5p/5, andl
5m. Results correspond toR590.
11542
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tion, and at this precision, contributions from second or
elasticity theory which have not been included may beco
important.

For largerm the results show a larger energy, which is
qualitative agreement with the logarithmic dependence gi
by Eq. ~13!. Numerical results for largem become increas-
ingly difficult because it is difficult to direct the dislocation
along the correct directions and also, because of the s
number of dislocations per arm involved. A study includin
larger volumes than the ones performed here is necessar
more rigorous results. Finite size effects have been predi
to be negligible quadratically as a function ofm @see Eq.
~12!#. The convergence is roughly consistent with that dep
dence.

FIG. 13. Final configurations form55, D55, C50, and l
5m. Results correspond toR590.
1-9
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F. Scaling collapse for minus disclinations

Results for minus disclinations have not been compu
with the same accuracy as for positive ones. Neverthel
the same trends as for fivefold defects are observed
shown in Fig. 19. The data collapses well to the assum
form ~32!, and the overall energy in the intermediate regi
is smaller than for fivefold defects.

VI. UNIVERSALITY OF THE RESULTS

The main assumption in the scaling forms for the ene
~32! is that the only dependence on the elastic consta
arises from the Young modulus. This is also true for all su
leading terms, except for the core energy coefficientc as is
obvious from Table I. Therefore, we will present the resu
by subtracting out the core energy contribution, and the
sults should then become universal.

Energy values forx;1 plotted this way are shown in Fig

FIG. 14. Relaxed configurations form53, D53, andl5m.
Results correspond toR590.

FIG. 15. Relaxed configurations form54, D54, andl5m.
Results correspond toR590.
11542
d
s,
as
d

y
ts
-

s
-

20. Except for very small systems, the universality hypo
esis holds very well. Although cannot be conveyed from
plot, the energies for different Poisson ratio collapse to
same universal result with an accuracy less than 0.1%. T
proves that the assumed form for the energy dependenc
indeeduniversal, independent of the microscopic details
the lattice.

This universality of theQ function is also remarkable
since the present calculation goes beyond linear elasti
not only through the quadratic term in displacements kep
the strain tensor~23!, but also through the higher powers o
the strain tensor implicitly neglected in going from the d
crete energy~19! to the continuum result~1!. Those nonlin-
ear elasticity terms have shown to be quite important wh
disclinations are involved, and yet, do not seem to disturb
any way the scaling form assumed for theQ function. It
seems reasonable then to assume that the results pres
are not onlyuniversalwith respect the two elastic constant

FIG. 16. Relaxed configurations form57, D57, andl5m.
Results correspond toR590.

FIG. 17. Relaxed configurations form510, D511, and l
5m. Results correspond toR590.
1-10
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FIG. 18. ~Color online! Plot of the energies
for l GB;R as function ofR for l5m. m53
~square!, m54 ~cross!, m55 ~circle!, m57 ~dia-
mond!, andm510 ~down triangle!.
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but also with respect to higher order terms in the ela
energy.

VII. THE SPHERICAL CAP

Although the results presented in this paper are interes
on their own, much of the motivation for carrying out such
project arises as an effort to provide efficient computatio
tools for investigating crystals on frozen geometries. We w
therefore present a brief outline of some preliminary res
for that problem. This will also provide a broader perspect
of the versatility of the method.

Screening of disclination by grain boundaries is not
only mechanism available if disclinations are allowed
buckle out of the plane: Gaussian curvature without the n
11542
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of additional grain boundaries is also a viable mechanism4,8

An spherical cap of aperture angleg will have a Gaussian
curvatureK5g2/R2. Therefore, for largeg the Gaussian
curvature will suffice to screen out the disclination and
additional dislocations will be needed. The limit of vanis
ingly small g has been discussed at length in this pap
Disclinations are screened out by grain boundaries going
the way to the boundary of the spherical cap. Therefore,
intermediate values ofg, structures of grain boundaries in
terpolating within these two cases should be observed.9

The result of a minimization for largeg is illustrated in
Fig. 21. It is found that, opposite to what happens for the
case, additional dislocations actually increase the elastic
ergy of the system. One should notice that the triangles n
to the boundaries are equilateral, which implies that
FIG. 19. ~Color online! Plot of the scaling
function ~32! for D57, l5m, m57, and C
5p/7 for sizesR5102200. The dashed line is
the universal function for a plus disclination.
1-11



or

ALEX TRAVESSET PHYSICAL REVIEW B68, 115421 ~2003!
FIG. 20. ~Color online! Plot of the energy
with the core energy contribution subtracted f
l GB;R as function ofR for m55 and different
values of the Poisson ration.
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strains are very small~and so is the energy!. A more detailed
presentation of the results for crystals on spherical c
~positive curvature! including an investigation of the inter
mediate regime as well as a similar analysis for some m
mal surfaces~negative curvature! will be presented else
where.

VIII. CONCLUSIONS

A. Summary of the paper

The advantages of the computational method prese
are as follows.

~1! Crystals with boundaries can be treated very e
ciently.

~2! There are no long range interactions. An entire swe
over the whole system may be performed with a time p
portional to the total volume of the system.

~3! The calculations may be extended to additional geo
etries with a negligible additional effort~only introducing the
coordinates defining the geometry!.

FIG. 21. Crystal on an spherical cap. No additional dislocatio
are needed.
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~4! The convergence of the results~at zero temperature! is
fast and stable.

~5! The results are very universal, valid for a wide ran
of potentials. Microscopic details only enter via the elas
constants.

We provided a very detailed analysis for the problem
the dislocation cloud screening a disclination. It has be
found that the system composed from a disclination chargs-
andm-radial grain boundaries of dislocations separated a
tanceD behaves as a single disclination with an effecti
charge

seff5s2m
b

D
. ~41!

If seff50 then the total energy of the system grows linea
with the system size, similarly as for an infinitely long line
grain boundaries composed of dislocations only. The syst
exhibits a remarkable universality with respect the elas
constants~up to core energy terms! and higher order elastic
terms. The analytical expressions derived have been c
pared with the numerical results, and when disclinations
involved the discrepancy occasionally may be as large
25%. Linear elasticity theory does not provide accur
quantitative estimates for the energetics of some proble
involving disclinations.

B. Implications for other problems

We will briefly discuss some of the implications the r
sults found in this paper have for the problems presente
the Introduction. It has been shown that for very small s
tems, grain boundaries with the smaller number of arms h
the lowest energy. This is a general result in agreement w
other continuum calculations7 in the context of the sphere
The experimental results in colloidosomes do show the sa
trends.5 It would be very interesting to image larger collo

s
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dosomes and analyze how the defect structures are chan
although that seems difficult in view of the equilibratio
times involved.

It has also been shown that if disclinations appear i
crystal phase, grain boundaries of dislocations should foll
Isolated disclinations are almost forbidden at zero temp
ture. At finite temperatures some properties of the grain w
change, but for distances close enough to a disclination,
huge strains that dominate the energy will make additio
dislocations inevitable. Strings (m52 grains! or higher m
grains should surround the disclinations, even at finite te
perature. Most of these grains will have a nonzero discli
tion charge~positive or negative!. This qualitative picture
seems in agreement with recent numerical21 and experimen-
tal results,24,23 where the correlation functions do sho
agreement with the KTHNY scenario~and therefore with the
unbinding of disclinations! while the typical snapshots o
configurations in equilibrium contain grain boundaries w
nonzero disclination charge. Theories based on g
boundaries26 ignore the possibility of having nonzero discl
nation charge from the very beginning. It has been show
this paper that grain boundaries with nonzero disclinat
charge have energies comparable as grain boundaries of
dislocations~with total disclination charge zero!, provided
the spacing within dislocations is fine-tuned appropriately
complete discussion of the temperature effects is obviou
of great interest but it is beyond the scope of this paper.

C. Outlook

The following issues in this work need either further u
derstanding or just higher precision data.

Dynamic defect distribution: A global minimization fo
dislocation positions and orientations would directly provi
the minimum energy configurations. This is a difficult ta
since it has been shown that the energy has many alm
degenerate local minima.

Noninteger spacings: Dislocations with noninteger sp
ings such asD55(p/3)55.23, which imply that every third
dislocation must be separated an additional lattice cons
have not been implemented. This may be of some imp
tance in connection with Eq.~10!.

The degeneracy of the energy as a function ofm values
should be further refined, since the accuracy of the result
not allow to discriminate for small values ofm.

The effects of an applied pressure has not been inve
gated numerically.

The computational method presented can be used to c
pute the energy of any distribution of defects in a tw
dimensional crystal. Results are in progress to investigate
effects of curvature and the interactions between discl
tions.

We hope that the considerable detail presented in this
per will not obscure the main results obtained, but on
contrary, will provide convincing arguments for the utility o
the present approach. The code used in this paper wil
made publicly available. It may be also requested from
author.
11542
ed,

a
.

a-
ll
he
l

-
-

in

in
n
ure

ly

st

-

nt,
r-

do

ti-

m-
-
he
-

a-
e

e
e

ACKNOWLEDGMENTS

Many parts of this work arised as a result of many cla
fying discussions with David Nelson, whom I cannot tha
enough. I also acknowledge many interesting discussi
with M. Bowick. I acknowledge S. Rotkin for explaining th
interest of this problem in the context carbon nanotubes. T
work has been supported by Iowa State University start
funds.

APPENDIX A: ENERGY OF A DISCLINATION

The stresses of a single disclination at the origin may
computed from the Airy function of a disclination4

x5
Gs

2
@AR21r 2ln~r !#, ~A1!

where s5(p/3)qi ,G5K0/4p, and A is an undetermined
constant.

The stresses for a disclination are given by

syx
D 52GsFxy

r 2 G ,

syy
D 5GsF1

2
1A1

x2

r 2
2 ln~ l GB/r !G , ~A2!

sxx
D 5GsF1

2
1A1

y2

r 2
2 ln~ l GB/r !G .

The stress along the radial direction is

s rr 5
K0

4p S A1
1

2
1 ln~r ! D ~A3!

therefore, writingA521/214pP/K02 ln(R), the stress at
the boundaryR is s rr 5P, andP is interpreted as the two
dimensional pressure the material.

Plugging Eq.~A2! into Eq. ~1!, the energy becomes

F5
s2

32p
K0R21

pP2

8B R2, ~A4!

whereB5m1l is the two-dimensional bulk modulus. Th
result that the stress tensor Eq.~A2! has an energy given by
the expression Eq.~A4! will be used quite frequently.

APPENDIX B: ANALYTICAL PROOF OF THE OPTIMAL
DISLOCATION SPACING

We will first compute the stresses generated by a fin
grain boundary of lengthl GB, with dislocations within the
grain separated by distanceD. The stresses of a dislocatio
of Burgers vectorb located at they axis at point (0,z) are
given by

sxy5Gbx
x22~y2z!2

@x21~y2z!2#2
,
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syy52Gb~y2z!
x22~y2z!2

@x21~y2z!2#2
, ~B1!

sxx5Gb~y2z!
3x21~y2z!2

@x21~y2z!2#2
,

whereG5K0/4p, whereK0 is the Young modulus. The tota
stresses will be computed from the methods used in dislo
tion pile-ups.41 One obtains

sxy5
Gb

D E
2 l gb

0

dzx
x22~y2z!2

@x21~y2z!2#2

52
Db

H F yx

y21x2
2

~y1 l GB!x

x21~y1 l GB!2
G . ~B2!

A similar calculation yields

syy52
Gb

D F2
x2

y21x2
1

x2

x21~y1 l GB!2

1
1

2
lnS x21~y1 l GB!2

x21y2 D G , ~B3!

sxx52
Gb

D F x2

y21x2
2

x2

x21~y1 l GB!2

1
1

2
lnS x21~y1 l GB!2

x21y2 D G .

If the grain is now rotated and angleu the stresses at dis
tancesr ! l GB will be @wherer 5A(x21y2)]

syx52
Gb

D Fsinu cosu1
xy

r 2 G ,

syy52
Gb

D F2
x2cos2u

r 2
1

y2sin2u

r 2
1 ln~ l GB/r !G , ~B4!

sxx52
Gb

D Fx2cos2u

r 2
2

y2sin2u

r 2
1 ln~ l GB/r !G .

Adding togetherm arms separated an angle 2p/m, one ob-
tains

syx
G 52m

Gb

D Fxy

r 2 G ,

syy
G 52m

Gb

D F2x21y2

2r 2
1 ln~ l GB/r !G , ~B5!

sxx
G 52m

Gb

D Fx22y2

2r 2
1 ln~ l GB/r !G ,
11542
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where the identity( l 51
m cos2(2pl/m)5(l51

m sin2(2pl/m)5m/2
has been used.

The stresses for a disclination have already been c
puted@Eq. ~A2!#:

syx
D 52GsFxy

r 2 G ,

syy
D 5GsF1

2
1A1

x2

r 2
2 ln~ l GB/r !G , ~B6!

sxx
D 5GsF1

2
1A1

y2

r 2
2 ln~ l GB/r !G .

The total stresses are

syx
D 52GS s2

b

D
mD Fxy

r 2 G ,

syy
D 5GS s2

b

D
mD Fx2

r 2
2 ln~ l GB/r !G1P, ~B7!

sxx
D 5GS s2

b

D
mD F y2

r 2
2 ln~ l GB/r !G1P,

where the external pressureP is given byP5@(A21/2)s
1(b/2H)m#G. Using Eq.~A4! for the modified disclination
chargeseff5s2(b/D)m, one finds

F5
seff

2

32p
K0R21

pP2

8pB R2. ~B8!

Therefore, perfect screening impliesseff50,

s5
b

D
m ~B9!

and there is no external pressureP50, the system of discli-
nation plus grain boundary does diverge quadratically w
the system size. It can also be proved that within the sa
approach, the term linear in system size vanishes also
should be emphasized that Eq.~B9! is a linear order result.
One should expect that if all orders were included, so
modifications should occur, among them formula~B9!
should become Eq.~10!.

APPENDIX C:
ENERGY OF A GRAIN BOUNDARY OF DISLOCATIONS

The energy of a linear grain boundary ofn dislocations
with Burgers vector perpendicular to the grain is a w
known result.40 Here we just outline the aspects importa
for this paper. The total energy is given by

E5
K0a2

8p
nE d2rsxy , ~C1!
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wheresxy is the stress tensor of the dislocations in thexy
direction. The final result of the energy is

E5
K0a2

4pD
HS 2pa

D DR, ~C2!

wherea is the lattice constant and

H~x!52 ln~12e2x!1
x

ex21
. ~C3!

For small x ~dislocations separated a distanceD@a), the
usual formulaH(x)52 ln(x)11 follows. If x is not small
enough, the formula~C3! must be used.

APPENDIX D: RELATIONS OF BASE VECTORS

If e1 ande2 are the triangular defining the triangular la
tice we obtain the following relations:

(
b

eab
i eab

j 53d i j , ~D1!
ic

ry

ev

ev

nd
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where the sum is over all nearest neighborsb. It also follows

(
b

eab
i eab

j eab
k eab

l 5
6

8
~d i j dkl1d l i dk j1dkid l j ! ~D2!

and

(
b

eab
i eab

j eab11
k eab11

l 5
6

8
~d i j dkl1Rli Rk j1Rl j Rki!,

~D3!

whereRi j 5cos(p/3)d i j 1sin(p/3)e i j . Similarly,

(
b

eab
i eab11

j eab
k eab11

l 5
6

8
~Rji Rlk1Rli Rjk1dkid l j !

~D4!

and

(
b

eab
i eab

j eab
k eab11

l 5
6

8
~d j i Rlk1Rli d jk1d ikRl j !.

~D5!
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