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Universality in the screening cloud of dislocations surrounding a disclination
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A detailed analytical and numerical analysis for the dislocation cloud surrounding a disclination is presented.
The analytical results show that the combined system behaves as a single disclination with an effective charge
which can be computed from the properties of the grain boundaries forming the dislocation cloud. Expressions
are also given when the crystal is subjected to an external two-dimensional pressure. The analytical results are
generalized to a scaling form for the energy which up to core energies is given by the Young modulus of the
crystal times a universal function. The accuracy of the universality hypothesis is numerically checked to high
accuracy. The numerical approach, based on a generalization from previous work by Seung an@Rgtson
Rev. A38, 1005(1988)], is interesting on its own and allows to compute the energy for an arbitrary distribution
of defects, on an arbitrary geometry with an arbitrary elastic energy with very minor additional computational
effort. Some implications for recent experimental, computational, and theoretical work are also discussed.
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[. INTRODUCTION evant as two dimensional analogs of the frustration associ-
ated with the three-dimensional tetrahedral packirand
Topological defects, mainly disclinations and dislocationsother surface physics problertrs®
play a crucial role in the understanding of the physics of The problem of grain boundaries radiating out of discli-
many two-dimensional2D) systems. Although computa- Nations is also important for understanding certain aspects of
tional techniques such as analytical methods, Ewald summabe problem of two-dimensional melting. The KTHNRefs.
tion techniqueg,Monte Carlo simulationd etc., can be used 17-19 scenario predicts a two stage melting from a crystal
in many different contexts, they become quite inefficient ininto an isotropic phase via an hexatic phase. This picture has
other situations, particularly with crystals having a boundaryoeen confirmed by a large number of exampisse Refs.
or |y|ng on a curved background_ In this paper, a new ap20,3 for I’eVieW$. Very precise numerical Simullati_O%JrShave
proach based on previous work by Seung and Nélgdh ~ found very good agreement with the predictions of the
be discussed in detail. The computational methods developd§THNY scenario. Different inherent structurekS) charac-
allow to obtain the lowest energy configuration for an arbi-terize each phase, and disclinations appear as forming grain
trary distribution of defects in a crystal lying on an arbitrary boundaries with very similar characteristics as the ones
geometry W|th an arbitrary e|astic energy at zero temperaf_ound in the Colloidosome problem. Similar structures have
ture. The method iS genera' enough to inc|ude Bravais |atbeen found in recent SimulationS, and the defects have been
tices other than the triangular case. A discussion of th&haracterized by 1/ noise? Recent experiments on
screening cloud of dislocations surrounding a disclination
will be presented. This problem will be used as a testing a
ground where the results may be compared with the analyti-
cal predictions from elasticity theory derived in this paper.
An interesting experimental example where the disloca-
tion cloud surrounding a disclination appear is given by col-
loidal particles crystallizing on the surface of a sphere
(colloidosomes® As a consequence of the Euler theorgm,
an sphere must have a total disclination charge of 12. If the .
total number of particles forming the sphere is large enough, —
the ground state contains more defects than the 12 necessary
to satisfy the Euler theorem. Those additional defects are &
dislocations surrounding a disclination, as illustrated in Fig.
1, arranging in the form of grain boundaries. Those grain
boundaries have two very distinctive featufd$ terminate
inside the medium an(®) have a total disclination charge of
+1. These features are intimately related to the geometry of
the problem and should appear whenever the Gaussian cur-
vature is large enough?® Similar structures have been also
observed in simulations of the Thomson probfémt?
Clouds of dislocationgwith the minus disclinations playing FIG. 1. (Color online Ground state configurations for a large
the role of plus chargeshould also appear in crystals on a and small colloidosome. For a large colloidosome, finite length
negatively curved backgrourtd. Those situations are rel- grain boundaries radiate out of the disclinatiérom Ref. 5.
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plasma$&® and colloids**?° have also found a similar situa- but for the sake of simplicity this point will be ignoréd:he
tion, with correlation functions in good agreement with the Young modulus and Poisson ratio are

KTHNY scenario and grain boundaries with similar charac-

teristics. Alternative melting scenarios have exploited the MmN

short-range nature of the stresses produced by grain bound- Ko=4u 2u+N\’
aries of dislocation&®
The physics of Langmuir monolayers has received a lot of A\
attention in recent year$, but many important questions V= 2utN ©)

have not yet been clarified. It seems very clear that topologi-

cal defects play a crucial role in both the solid and liquid  ysing known analytical techniques, the strains for a dis-
phases? playing a major role in problems such as melting or|ocation and a disclination may be solved in linear oR3dr.

the collapse of the monolayefs.More sophisticated sys- For a dislocation with Burgers vecttr=be, the result i&°
tems, such as sphyngomyelin, where additional hydrogen

bonding may be formed, show a much richer phase b Ko .
diagram® Biphasic surfactant monolayers show additional Ux=5—| ¢+ 8—S|n(2¢)

31 )%
defect structuregmesas

Grain boundaries radiating from a central disclination are “ Ko
also found in hexatid* and crystalJ* tilted liquid crystal Uy=—5— In(r/a) + —cos(2q§)). (4)
phases? The tilt is used to force a disclination and a pattern 2m\N+2u 8u
of radial grain boundariegvith five armg is observed. The strains for disclinations of chargeare'
The methods described in this paper are also relevant for
a restricted type of quantum ddtdn which the density of S 2u 2u
electrons is small and the external disorder potential is weak Ur=— ﬁf( 1- 20N (Ast1/2)— 20N In(r/R)),
enough so that the electrons in the dot form a Wigner crystal,
dubbed “Wigner crystal islands” in Ref. 34. The analysis S

and energetics of defects is very similar to the one presented u¢,=2—r ¢. (5)
except for a minor change of boundary conditions. m

Dislocation clouds also appear in many other problemsrhere is an arbitrary constaAt which will be determined in
such as, partially polymerized membrafi@s} Wigner  Appendix A.

crystals?’ and in carbon nanotubes, particularly in the so  plugging Eqs(4) and(5) into Eq. (1), the energy for the
called “onion” rings, which are successive spherical layersgisjocation of Burger vectob is
of graphite®®

The organization of the paper is as follows. A review of |b|?
continuum results is given in Sec. Il. The discretized ap- F =5, KolIn(R/a)+consj. (6)
proach is introduced in Sec. Ill and compared against the
continuum results for isolated defects. The scaling relationé\s is shown in Appendix A, the constaAg is related to the
satisfied by the energy are derived in Sec. IV. Numericatwo-dimensional pressurH. Following the same steps as
results are presented in Sec. V and their universality witfor a dislocation, the energy for an isolated disclination of
respect to the Lame coefficients is discussed in Sec. VI. Secharges=(7/3)q; under pressure becomes
tion VIl is a brief overview of the effect of curvature. We 5 5
wrap up with some conclusions in Sec. VIII. Several techni- S mll

_ > 2 2
calities are relegated to the appendixes. F= 32w KoR™+ 8B RE. @
Il. CONTINUUM RESULTS The energy (_jependenc_e, grow_ing Fa%. is energetically
_ _ o very costly. Grain boundaries of dislocations may screen out
The elastic energy of a continuum is giver’by the disclinations, thus reducing the huge energy cost of an
1 isolated disclination, if the angle of the grain boundary ex-
F=—| d2r12uu?.4 ) 2 1 a}ctly compensa’ges the missing or additional Wg@enql-
ZJ 20U+ MUea)l, @ tiple of 77/3 for triangular latticg caused by the disclination.

From the geometric argument in Fig. 2, the angle of grain

where the strain tensor is defined as boundaryd is given by

uwi(%Jr%Jr%% _ @ 2R 'sin(6/2) =nb, )
2\9Xg  IX,  IXg X, i . ) )

wheren is the total number of dislocations all having Bur-
The quadratic term in the strain tensor is usually dropped, agers vectoib. Further assuming a constant spacing of dislo-
it usually amounts to higher order negligible corrections tocations within the grairD, the relationB=Rb/D holds and
the total energy. Those terms cannot be entirely neglected déne gets
disclinations are involved.(For consistency, other energy
terms quadratic in the strain tensor should also be included, 2sin(#/2)=b/D. 9
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FIG. 2. (Color online Relation between the aperture anglef
a grain boundary of dislocations and its total Burgess vetboand
radius of the crystaR.

Upon identifying # with the missing or additional wedge
removed to form the disclinatichEq. (9) becomes

2.77'
SI%

leading to an equation for the spacibgas a function of the
number of armsn. A detailed analytical proof for this result
using linear elasticity theory is provided in Appendix B,

=b/D,

(10

where the total energy of the system of a disclination and an

m-arm grain boundarysee Fig. % is given by Eq.(B8).
There is also a linear term iR arising from two different

PHYSICAL REVIEW B 68, 115421 (2003

At perfect screeningm(a/D)=q;(w/3) and the energy
grows logarithmically withm. All previous results assume an
infinite system(largeR). How largeR must be in order that
the infinite radius result hold, will be estimated next.

The interaction energy of two grain boundaries decays
exponentially fast as a function of their mutual distaffte,
with a decay length

Age= P 14

B~ 5 (14)

D being the distance between dislocations within the grain
(Fig. 2. Dislocations that are a distantefrom the disclina-
tion will be invisible to the dislocations in other arms if

2L sin(7/m)>2\g. (15
Therefore from Eqs(14) and(10) it follows that
3
L> —m?h. (16)
n

For R>L the infinite result(12) will hold. The dependence
of Eq. (16) on m? points out that the behavigi2) for large
number of arms will not be reached until the radris very
large.

Ill. DISCRETIZATION OF THE ELASTIC FREE ENERGY

We consider a two-dimension&D) triangular lattice of
monomers with lattice constaat The actual position of the
(n,m) monomer is described hy, ; and it may be decom-
posed as

17

whereu, is the strain at poinb ande ,i=1,2 define a basis

r(n’m): ne,+me,+ Un,m) »

contributions, the stresses of grain boundaries of disloca@f the Bravais lattice. For a triangular lattice it is
tions, discussed in Appendix C and the core energies of the

K, a2

defects. The total contribution to the energy is then
Mz DR

b 2
(S— mB)
o H(
(11)

a
F= 327 2775 +4mc
where the functiorH is defined in the appendix EGC3).

KoR?+

The pressurdl has been set to zero. The total number of

dislocations isn=m(R/D). The core energy has been pa-
rametrized a€.,=Koa’c, wherec is a dimensionless co-
efficient (but not independent of the elastic constants

If the spacingD is given by Eq.(10), the leadingR? term
in Eq. (11) is canceled and only the linear term iy which
we denote a$, survives:

f= H(2w3)+4wc m&a—zR. (12
D 47 D
For future reference, we quote the result for lange
1 2
f:{E 1-In 3|t C mKanB. (13

=&
1B
e2=§ex+ 7ey. (18
The discrete elastic free energy that we will use is
€ 1 Mbe Mbe+1 2
F=—- rod —1)%+ 0 (———) .
2 5 (o =05 02 |5 T T
(19

The summation in the first term runs over links defined by
verticesa,b, and in the second term the sum runs over all
nearest neighbors of poifit Other discretizations are also
possible but do not modify the results as it will be discussed.

In order to proof the equivalence of E¢L9) with the
continuum resulf1), one must define the discrete derivatives
first. The derivatives of a general functidfr) are only de-
fined along the discrete direction of the triangular lattice, so
a general derivative is precisely defined from

A= f(rb+ae;)—f(rb)
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1
f(rb+ae2)—f(rb)—E[f(rb+ael)—f(rb)] I m=l 1=-2/3
ayf(rp)=
Y ( ; a\/§/2 025k m=0.43 1/:
(20 ' "
m=1/2 }:,é)
Using the previous definition, the discrete metric becomes ¢ 332*3/1:1/3
K, ~n=3/8 1-3/8
gij(b)=diryd;ry. (21 021
The distance between two nearest neighbor points is
|ra—rp| = (1+2u;;el el ) Y2 (22) 0151
where the discrete strain tensor is defined from the deriva- ! |
tives (20) by 2 26
R/a
u 23 % % %% ) (23 FIG. 3. (Color onling Results for the energy of an isolated
2 IXg X, IXg IX, dislocation as function oR for different values of the elastic con-
. . ) tants.
Expanding Eq.(22) using Eq.(D2), the first term of the sants
discrete energy is identical to E€t) with Even with additional dislocations, the total number of points
will still grow as (6—q;)R2.
\= Ee Energies of single defect§he energies of isolated dislo-
4 7 cations and disclinations will be compared against the ana-
lytical predictions derived previously. This will provide a
J3 benchmark to the present approach.
K= € (24) In Fig. 3 the minimum energy results of a configuration

containing a dislocation for different values of the Lame co-
The same expansion to the second term using the relatioredficients. A fit to the form of Eq(6) yields
(D3)—(D5) lead to

F
——=0.03952)In(r) (28
>\:9§U, Kolb|?
in agreement within of 1% with the analytical result 4/8
J3 =0.03979. The small deviation may be attributed to the ne-
w=—9—c¢. (25) glect of higher order terms in the continuum calculation.
4 Core energies may be computed from the intercept in Fig 3.

The results are summarized in Table I. It should be noted that
core energies for crystals with the same Young modulus are
different.

The elastic constants of the two terms combined are then

A= —3(e+ 90), The results of the same analysis for single disclinations
4 are shown in Table Il. The most accurate determination
B yields
n=—4(e=90) (26)
> —0.0078%1), (29
and, therefore, Eq19) provides a suitable discretization of R“Kos

Eq. (1) with arbitrary elastic constants. It should be recalledy gty for plus and minus disclinationéResults for\ = u
that higher order terms in the displacement are dropped tere first obtained with less accuracy by Ref. Although

lead to Eq.(26). _ . the coefficient is off from the analytical resulf) by a sig-
In this paper, the particular geometry that will be used
consists of a plus or minus disclinatidga pentagon or an TABLE |. Core energies of dislocations as a function of Lame

heptagon, respectivelyt the center of the crystal. The total coefficients @ ,\).
number of monomers forming the crystal is a function of the
linear sizeR and depends on the total number of dislocations(#,\) ~ (1.-3) (L0 G GYH V3 3
If only a center defect of chargg is present, the total num- ( )
ber of monomers is

44
£ 0.0921) 0.0421) 0.0391) 0.0291) 0.02851)
R2+R core

M=(6-0a)—5—+1. @7 Ko’
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TABLE II. Coefficient [Eg. (29)] as a function of the Lame
coefficients u,\), for fivefold (+) and sevenfold {) disclina-
tions.

s -3 go Gy @h S e

R%(+) 0.008@1) 0.00791) 0.00781) 0.007 8%1)
R%(—) 0.00791) 0.00781) 0.00791) 0.007 8%1)
R(+) —0.0031) 0.0041) 0.00711) 0.081)
R(—) 0.0071) 0.0081) 0.0091)

T

nificant amount, it is remarkably universal as a function of
the elastic constants. The energies are also the same for bo
plus and minus disclinations within a 0.1% accurdayore
accurate results do show that sevenfold defects have a ma
ginally lower energy. There is, however, a term that grows
linearly with R in the discretized energy. This term is quoted
also in Table II.

It is also instructive to compare the continuum strain so-
lution r 5 (5) with the configuration from the discrete calcu-
lation. The difference will be quantified from the function

FIG. 5. (Color onling Degrees of freedom of a grain boundary.
[rp=ral

_— 30
R 30

E(rb): XZIGB/R, (31)

and it is plotted in Fig. 4. The relative error is always belowWhich by definition satisfies €x<1. x=1 implies that
0.01%, becoming as low as 1. grains reach the boundary while=0 implies no disloca-

tions. Equation(11) will be generalized(for zero tempera-

ture) by assuming that for intermediate valuesxothe fol-

The degrees of freedom defining a grain boundary of dis-
locations argsee Fig. 5 m: number of armslgg: length of
the grain boundary from the central disclinatidh, angle of

E=K,R?Q(x,m,D,¥), (32

L o ) where asx—0 Q approaches Ed7). This scaling law how-
the grain with some specified crystallographic akisspac-  gyer, may break down if the sub-leading linear termsin
ing of dislocations within each grain. The spaclgloes not  pecome comparable. The condition expressing this situation
generally need to be restricted to be constant. The linear sizg given by[see Eq(12)]

of the system iR

It is convenient to define the dimensionless variable TXe

Qx)~ 35 (33

10°

If the term square iR vanishes, this equation must hold for
somex. and scaling will break down for a{>x. .

If the square term iR does not cancel, then the scaling
relation must hold for larg® as well. That will be the case
for spacingsD not satisfying Eq.(10). The Q function
should exhibit a minima roughly at the critical, where the
additional angle added by the dislocations compensates the
missing or additional angle by the disclinations. The critical
Xm IS given by

Xm=2D sin =/(6m)], (39

10'80' : s ' o : s ' il with the additional constraint,,<1. Therefore th& should
exhibit a minima forx,.
The angleV, defined as the angle of the grain with re-
FIG. 4. (Color onling Plot of function E(r,) describing the  spect a crystallographic axis, for amgrain boundary com-
relative difference of the analytical solution and the numerical re-mensurate with th@-fold symmetry of the central disclina-
sult. tion will be constrained to
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©
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T

R 60 FIG. 6. (Color onling Plot of the scaling

sh s 0 H function (32) for D=5, m=5, ¥ = /5 and sizes

y \5 80 R=10-170. The dashed line is a fit with an ex-
B 90 H trapolation tox—>1. The straight lines provide

90 a visual solution to Eq(33) and an estimate of

100 || the criticalx, as a function oR.

2
E/(K, a°)

e mx+ x
=
o

T M =25000) take 9 min at a 13° precision and 5 min at
O=W<—. (35  107° precision in a Dell 1.80 GHz dual Xeon processor run-
ning LINUX RED HAT. Further computational details will be

A straightforward analytical calculation shows ti@should ~ Presented elsewhere.
be independent o¥ . It will be shown that this result ignores
H/]i?\gc?gt?itégmts imposed on the Burgers vector by the under- B. Scaling as a function ofl g5 and D
' A plus disclination will be placed at the center of the
crystal and grain boundaries will be fixed to have arigfle
=7/5 and number of armm=5. The energy will be inves-
A. Some computational details tigated as a function of the parametégg andD. The elastic

Iconstants will be chosen as= .

V. NUMERICAL STUDY OF GRAIN BOUNDARIES

The calculations have been done by relaxing an initia The energy of relaxed configurations is plotted in Fig. 6 as
configuration consistent with the given distribution of defects function o?¥he scalin variat?les T@funﬁtion i Iot?éd
using the conjugate gradient method. The numerical accu- 9 : P

racy was tested by checking the convergence of the findP" & plus disclination and =5 grain t_)oundary with spac-
results as a function of the tolerance error in the algorithm!ng PZS' The_plots follow the ansatz in E(B2) well, with
Whenever different initial configurations consistent with theObVIous deviations fqr values oxfcllo.ser to 1. . .

given distributions of defects were tried, the final result was In order to determine the coefficient of the linear term in

found to be identical. The energies were computed to a seve'rD‘l’ defined as in Eq. (12), it will be assumed that the points

L o Fig. 6 forx~1, which clearly do not scale, are described
digit precision or more. on L )
For each value of the parameters, results were obtaine Eq.(12). The results are plotted in Fig. 7 and one obtains

for linear sizes ranging frorR= 10 toR= 200 corresponding or thef coefficient
to typical volume sizes from 247 to 140000 monomers.
Those lattices are, in many cases, larger than some experi- f=0.0815). (36)
mental systems available. Free boundary conditions were in-
corporated by allowing the system to reach its natural exten
without any external constraint.

The code was written ig++ using objected oriented de-
sign. This provides the flexibility of incorporating any poten-

tially new geometry, distribution of defects or discretization P .
energy at any future time with a very minute effort. The Codeboundary contribution EAC?2) and a core energy which may

has some limitations too, one of them being that nonintegebe estimated from a single dislocatiegiven in Table ). The

i . ; S : fw ntributions giv
spacinggcases were dislocations within the grain should be 0 contributions give

slightly nonconstant to mimic fractions of the lattice spaging
have not been implemented effectively. Typical minimiza- f=0.063 (grain boundary+0.029 (core energy=0.092,
tions of a system withR= 100 (total number of monomers (37)

%ince we are not looking for a high precision value for the
coefficient, two values forgg were included for any giveR.
This provides strong evidence of the robustness of the fit.
The theoretical value of thecoefficient arises from a grain
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X -8 FIG. 7. (Color onling Plot of the fit(12) to
w4 P 1 the results folR~Igg.
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4
‘.'
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considering the approximations involveasically linear (0<x<Xx.): The inclusion of more defects dramatically
elasticity theory and noninteracting grainshe agreement |owers the energy.
with Eq. (36) is acceptable. (x>x.): The core energy contribution sets in and scaling

_The value obtained formay be cross checked by assum- preaks down, the energy grows linearly wihas apparent
ing that the scaling behavior will break down when the valueggy, Fig. 7.

for the '".‘eaf term is, Say one thi(d, o_f the square term. The "}t should be noted from Fig. 6 that if the intermediate
mt;art_f,ecutonEof g‘; str:aught I|nt§s Irt] F'?'ﬂ? prq;{lde a visual region could be extrapolated to~1 before the core energy
solution o q'( ) and an estimate of the cri ical; as a terms would become noticeable, the energy would go to zero
function of R in reasonable self-consistent agreement, par- 2 L . .
ticularly for large values oR. as (- 1.) , that is, mglepende_nt of t_he !lnear S'Re.‘ .
The following three regions may be clearly identified Atyplc_al relaxed final conﬂguratlon is shown in F|g..12_.
The plot is only for a small region around the central discli-

from Fig. 6.
(x~g): The energy is dominated by the strains of thenation, but it clearly shows that for regions away of the de-

central disclination and the effect of adding additional ge-fects the triangles forming the crystal are almost equilateral

fects is negligible. (unstrainedl
x107°
10 T T T T T T T ¥ T
9k & o
[ 1
8 [ ] 4
u
]
7+ n " i
| |
[}
— L] . .
X . " .-."'. FIG. 8. (Color onling Plot of the scaling
G ° . m o GE" ) function (32) for D=3, A=u, m=5, and ¥
et - = /5 for sizesR=10-200 g = ).
n
5r .l - r B
=} = - f
4 L . B §
mh m_ B ‘r ! "
]
sk “!J...',. :‘* i
2O 011 0{2 013 0I4 015 016 0|7 018 019 1
X
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§ y-4 FIG. 9. (Color onling Fit (11) to the values
i o’ R~lgg-
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C. Scaling function for nonoptimal D values at fixedm and ¥ Although the result is not too different, the quantitative

agreement is not very good. This may be attributed to assum-
ing linear elasticity, which as already seen is not very accu-
rate if disclinations are involved.

The energy foiD =7 does not exhibit a minima because
at should appear for values »f>1. The total energy for
D=7 is significantly larger than fob=5, as it becomes
apparent from the relative scale of thexis of the plot. The
theoretical estimate E¢B8) for [I=0,D=7, m=5 is

The Q function for D values significantly different than
D.it= 3 are plotted in Figs. 8=3) and 11 D=7).

For D<D; the scaling function has a minima as a func-
tion of x in reasonable agreement with the value predicted b){
Eq. (34). As is very apparent from Fig. 9 the energy grows h
guadratically(compare with Fig. 1pwith the system size,
even in the presence of the grain boundaries. The fit gives

=0.00554). (39) E _
K .R2 =0.0011. (40
0 K0R2
This result should be compared with the theoretical estimatehe result in Fig. 11 approaches this limit, although the sta-
(B8) for II=0, D=3, m=5: tistics are not as good as in fér=23.
. —0.0039. 39 D. Dependence on the orientation of the grain¥
KoR The dependence on the angleis plotted in Fig. 10 for

angles¥ =0,7/10,7/5. Typical final relaxed configurations
are shown in Figs. 12¥ = 7/5) and 13 =0). The final

8ol relaxed configurations fo¥ = /5 are very regular while the
dislocations for the anglé =0 display a rather jagged pat-
tern. Provided that the total Burgers vector is zero, the only
60 difference in the energies arises from the grain boundary
terms. Therefore, the energy difference in Fig. 10 should be
attributed to the constraints induced by the lattice to the Bur-
40 gers vector. This point might be substantiated numerically
with a more comprehensive calculation, but this has not been
done, partly because the angle is not well defined for
201 values ofm different than 5. The previous considerations
reflect that the optimal angle fon=5 grain boundaries is
given by WV = 7/5.

E/(K,a’)

0 | . ! . | . | . |
80 100 120 140 160

R/a E. Dependence on the number of armsn

FIG. 10. (Color onling Comparison of different energies for ~ The analysis for different values af will be restricted to
m=5 andD=5 \ = u for different values of¥'. the optimal spacing valug®) and to the more relevant case
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3 - FIG. 11. (Color online Plot of the scaling
g °r . function (32) for D=7, A=u, m=5, and ¥
- =7/5 for sizesR=10—-100 \=pu).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x~1 (Icg~R). Some representative relaxed configurationgtion, and at this precision, contributions from second order
are shown in Figs. 14-17. Similarly as it was found in theelasticity theory which have not been included may become
investigation of the dependence &h Sec. V D the con- important.
straint that dislocations can only be oriented along directions For largerm the results show a larger energy, which is in
defined by the triangular lattice is the origin of additional qualitative agreement with the logarithmic dependence given
frustration, leading to jagged arrangements which follow theby Eq. (13). Numerical results for largen become increas-
ideal orientations only approximately. ingly difficult because it is difficult to direct the dislocations
The results corresponding to the energy are shown in Figalong the correct directions and also, because of the small
18. For finite radius, the smaller values for are clearly  number of dislocations per arm involved. A study including
favored. AsR becomes large the values for the energy be{arger volumes than the ones performed here is necessary for
come degenerat@vithin the numerical accuragyn mfor m  mqre rigorous results. Finite size effects have been predicted
within the rangem=2—5. An evaluation of thed function ;5 pe negligible quadratically as a function of [see Eq.

in Eq. (12) points out that then=2 result should have the (12)1 The convergence is roughly consistent with that depen-
lowest energy. However, the difference in energy for armsyonce

m=2-—6 are small compared with the core energy contribu-
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20. Except for very small systems, the universality hypoth-

Results for minus disclinations have not been compute@sis holds very well. Although cannot be conveyed from the
with the same accuracy as for positive ones. Neverthelesglot, the energies for different Poisson ratio collapse to the

90.

F. Scaling collapse for minus disclinations

the same trends as for fivefold defects are observed, &&ame universal result with an accuracy less than 0.1%. This
shown in Fig. 19. The data collapses well to the assumeg@roves that the assumed form for the energy dependence is

form (32), and the overall energy in the intermediate regionindeeduniversal independent of the microscopic details of

the lattice.

is smaller than for fivefold defects.

This universality of the@ function is also remarkable
since the present calculation goes beyond linear elasticity,

not only through the quadratic term in displacements kept in

The main assumption in the scaling forms for the energythe strain tenso(23), but also through the higher powers of

(32) is that the only dependence on the elastic constantthe strain tensor implicitly neglected in going from the dis-
arises from the Young modulus. This is also true for all sub<crete energy19) to the continuum resultl). Those nonlin-

UNIVERSALITY OF THE RESULTS

VL.

ear elasticity terms have shown to be quite important when

obvious from Table I. Therefore, we will present the resultsdisclinations are involved, and yet, do not seem to disturb in

by subtracting out the core energy contribution, and the reany way the scaling form assumed for tik function. It

leading terms, except for the core energy coefficeas is

sults should then become universal.
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but also with respect to higher order terms in the elastiof additional grain boundaries is also a viable mecharfiSm.
energy. An spherical cap of aperture angjewill have a Gaussian
curvature K = y?/R?. Therefore, for largey the Gaussian
curvature will suffice to screen out the disclination and no
additional dislocations will be needed. The limit of vanish-
Although the results presented in this paper are interestingngly small y has been discussed at length in this paper.
on their own, much of the motivation for carrying out such aDisclinations are screened out by grain boundaries going all
project arises as an effort to provide efficient computationathe way to the boundary of the spherical cap. Therefore, for
tools for investigating crystals on frozen geometries. We willintermediate values of, structures of grain boundaries in-
therefore present a brief outline of some preliminary resultserpolating within these two cases should be obse?ved.
for that problem. This will also provide a broader perspective The result of a minimization for large is illustrated in
of the versatility of the method. Fig. 21. It is found that, opposite to what happens for the flat
Screening of disclination by grain boundaries is not thecase, additional dislocations actually increase the elastic en-
only mechanism available if disclinations are allowed toergy of the system. One should notice that the triangles next
buckle out of the plane: Gaussian curvature without the neetb the boundaries are equilateral, which implies that the

VIl. THE SPHERICAL CAP

x10°

R FIG. 19. (Color online Plot of the scaling
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strains are very smalbnd so is the energyA more detailed (4) The convergence of the result zero temperatuyas
presentation of the results for crystals on spherical capfast and stable.
(positive curvaturgincluding an investigation of the inter- (5) The results are very universal, valid for a wide range

mediate regime as well as a similar analysis for some miniof potentials. Microscopic details only enter via the elastic
mal surfaces(negative curvatujewill be presented else- constants.

where. We provided a very detailed analysis for the problem of
the dislocation cloud screening a disclination. It has been
VIIl. CONCLUSIONS found that the system composed from a disclination cherge
andm-radial grain boundaries of dislocations separated a dis-
A. Summary of the paper tanceD behaves as a single disclination with an effective

The advantages of the computational method presentecharge
are as follows.

(1) Crystals with boundaries can be treated very effi- b
ciently. Sef=S—Mg- (41)

(2) There are no long range interactions. An entire sweep
over the whole system may be performed with a time pro+f s_=0 then the total energy of the system grows linearly
portional to the total volume of the system. with the system size, similarly as for an infinitely long linear

(3) The calculations may be extended to additional geomgrain boundaries composed of dislocations only. The systems
etries with a negligible additional effofonly introducing the  exhibits a remarkable universality with respect the elastic
coordinates defining the geometry constantgup to core energy termand higher order elastic
terms. The analytical expressions derived have been com-
pared with the numerical results, and when disclinations are
involved the discrepancy occasionally may be as large as
25%. Linear elasticity theory does not provide accurate
quantitative estimates for the energetics of some problems
involving disclinations.

B. Implications for other problems

We will briefly discuss some of the implications the re-
sults found in this paper have for the problems presented in
the Introduction. It has been shown that for very small sys-
tems, grain boundaries with the smaller number of arms have
the lowest energy. This is a general result in agreement with
other continuum calculatiofisn the context of the sphere.

FIG. 21. Crystal on an spherical cap. No additional dislocationsThe experimental results in colloidosomes do show the same
are needed. trends® It would be very interesting to image larger colloi-
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dosomes and analyze how the defect structures are changed, ACKNOWLEDGMENTS
although that seems difficult in view of the equilibration

tlmleshmvol;/ed.b h hat if disclinati . fying discussions with David Nelson, whom | cannot thank
t has also been shown that It disclinations appear In 8,41 | also acknowledge many interesting discussions
crystal phase, grain boundaries of dislocations should followiin M. Bowick. | acknowledge S. Rotkin for explaining the
Isolated disclinations are almost forbidden at zero tempergperest of this problem in the context carbon nanotubes. This

ture. At finite temperatures some properties of the grain willyork has been supported by lowa State University start-up
change, but for distances close enough to a disclination, thgnds.

huge strains that dominate the energy will make additional
dislocations inevitable. Stringsm(=2 graing or higherm APPENDIX A: ENERGY OF A DISCLINATION

grains should surround the disclinations, even at finite tem-

perature. Most of these grains will have a nonzero disclina- The stresses of a single disclination at the origin may be
tion charge(positive or negative This qualitative picture Ccomputed from the Airy function of a disclination

seems in agreement with recent numefitahd experimen-

tal result$*? where the correlation functions do show Y= G—S[AR2+r2|n(r)], (A1)
agreement with the KTHNY scenariand therefore with the 2

unbinding of disclinations while the typical snapshots of ;ere s=(m/3)q;,G=K/4m, and A is an undetermined
configurations in equilibrium contain grain boundaries with -onstant.

nonzero disclination charge. Theories based on grain Tne stresses for a disclination are given by

boundarie® ignore the possibility of having nonzero discli-

nation charge from the very beginning. It has been shown in 5 s[xy
this paper that grain boundaries with nonzero disclination oy=—Gs —
charge have energies comparable as grain boundaries of pure '
dislocations(with total disclination charge zeroprovided 5
the spacing within dislocations is fine-tuned appropriately. A D_g E+A+ X——I |/ A2
complete discussion of the temperature effects is obviously Tyy= 293 r2 Nlee/r) |, (A2)
of great interest but it is beyond the scope of this paper. ) ’

Many parts of this work arised as a result of many clari-

p_cdlia Y
0, =G5S §+A+ = —In(lgg/r) |.
C. Outlook i r ]

The following issues in this work need either further un- The stress along the radial direction is
derstanding or just higher precision data.

Dynamic defect distribution: A global minimization for Ko
dislocation positions and orientations would directly provide el Cayy
the minimum energy configurations. This is a difficult task
since it has been shown that the energy has many almo#terefore, writingA= —1/2+4xI1/K,—In(R), the stress at
degenerate local minima. the boundanR is o, =11, andIl is interpreted as the two-

Noninteger spacings: Dislocations with noninteger spacdimensional pressure the material.
ings such a® =5(=/3)=5.23, which imply that every third Plugging Eq.(A2) into Eq. (1), the energy becomes
dislocation must be separated an additional lattice constant, 5 )
have not been implemented. This may be of some impor- F=S—K R2+ il R2 (Ad)
tance in connection with Eq10). 327 ° 8B

The degeneracy of the energy as a functiomofalues

A+%+In(r)> (A3)

should be further refined, since the accuracy of the results d\ghereB:,uH\ is the two-dimensional bulk modul.us. The
result that the stress tensor E42) has an energy given by

not allow to discriminate for small values ai. h ion Eq(A4) will b d quite b
The effects of an applied pressure has not been investf— e expression Eq Wil be used quite frequently.

gated numerically.
The computational method presented can be used to comAPPENDIX B: ANALYTICAL PROOF OF THE OPTIMAL
pute the energy of any distribution of defects in a two- DISLOCATION SPACING

dimensional crystal. Results are in progress to investigate the We will first compute the stresses generated by a finite

effects of curvature and the interactions between d'SCI'nagrain boundary of lengthsg, with dislocations within the

rain separated by distan€e The stresses of a dislocation

. : ; f Burgers vectoib located at they axis at point are
per will not obscure the main results obtained, but on thegiven gy & P (@)

contrary, will provide convincing arguments for the utility of
the present approach. The code used in this paper will be
made publicly available. It may be also requested from the
author.

oy XY=
I+ (y—2)2

O'Xy—
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Gb X' (y=2° (B1)
- ) [ —
O ey
2 _ 2
= Gb(y—2) Y2

[X2+(y—2)4?

whereG=Ky/4m, whereKj is the Young modulus. The total

stresses will be computed from the methods used in disloca-

tion pile-ups?! One obtains

_Gbo x*=(y—2)?

(o IX———™
YD g, e+ (y-2)2

Db X +1ep)X
__ b yx (y+lce) _ (B2)
H ly2+x%2 X2+ (y+lgg)2
A similar calculation yields
~ Gb x2 . x2
WS D y2+x2 X2+ (y+lgp)?
1 [ X%+ (y+lgp)?
1 (y+lge) ’ 83
2 X2ty
~ Gb x? NG
7xx D |y?+x% X2+ (y+lgp)?
1 [ x%+(y+lgp)?
2 X2ty

If the grain is now rotated and angkthe stresses at dis-
tancesr <l gg will be [wherer = \/(x?+y?)]

Gb| . Xy
Oyx=— 1" sm¢9c050+—2 ,
r

Gb x20052¢9+y23in20+I i), ®4)
Oyy=——| — n ri,
yy D r2 r2 GB

Gb| x?cog6 y3sirfe
O-XX:_F 2 - ] +In(IGB/r) .

Adding togethem arms separated an anglerm, one ob-
tains

U;?X:_me_b x|
D | 2
G Gb| —x*Hy® | (Ias/T) (B5)
oo =—M—|———+In r |,
yy D or2 GB
Gb| x2—y?
O'Sx_—mF ?Hn(IGB/r) s
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where the identityS " ;cog(2ml/m)==",sir?(27/m)=m/2
has been used.
The stresses for a disclination have already been com-

puted[Eq. (A2)]:
X
05X= -G S[ —y
r

1 NG
o), =Gs E+A+r—2—|n(|GB/r) , (B6)
1 y?
aXDX=Gs§+A+r—2—|n(|GB/r) :
The total stresses are
b Xy
D _
Oyx —G(s—am) r—,
b [o2
oyDyze(s—Bm) —=In(lgg/r) [+II,  (B7)
b \[y? ]
aEsz(s——m) y——In(IGB/r) +11,
D r2

where the external pressufé is given byIl=[(A—1/2)s
+(b/2H)m]G. Using Eq.(A4) for the modified disclination
charges.s=s— (b/D)m, one finds

2 2
. Seff > 7TH 2
F= 327TKOR + 87TBR . (B8)
Therefore, perfect screening implisg=0,
b B9
s= Bm (B9)

and there is no external pressuie=0, the system of discli-
nation plus grain boundary does diverge quadratically with
the system size. It can also be proved that within the same
approach, the term linear in system size vanishes also. It
should be emphasized that H®9) is a linear order result.
One should expect that if all orders were included, some
modifications should occur, among them formulB9)
should become Eq10).

APPENDIX C:
ENERGY OF A GRAIN BOUNDARY OF DISLOCATIONS

The energy of a linear grain boundary ofdislocations
with Burgers vector perpendicular to the grain is a well
known resulf® Here we just outline the aspects important
for this paper. The total energy is given by

Koa? )
n| droyy,

E= 8

(CD

115421-14



UNIVERSALITY IN THE SCREENING CLOUD CF. ..

where g, is the stress tensor of the dislocations in #e
direction. The final result of the energy is

2ma

D

 Kga?
" 44D

wherea is the lattice constant and

R, (C2

H(X)=—In(1—e )+

o (3
For smallx (dislocations separated a distanibe>a), the
usual formulaH(x)=—In(x)+1 follows. If x is not small

enough, the formul&C3) must be used.

APPENDIX D: RELATIONS OF BASE VECTORS

If e, ande, are the triangular defining the triangular lat-

tice we obtain the following relations:

> elel,=361, (D1)
b

PHYSICAL REVIEW B 68, 115421 (2003
where the sum is over all nearest neighbari also follows
i ok O ij skl oli okj ski slj
; ehpehuelnehy= g (918K + 8" 8+ 89)  (D2)
and
i ok I 6 ij okl li pKj Ij pki
% eabeabeab+leab+l:§(5 5 +R"RY+R'R ),

(D3)

whereR = cos(/3) 8') + sin(w/3) €. Similarly,
i j k Al 6 jiplk lipjk iglj
> ehpehoi18hehn 1= g (RIRNHRIRI+ 661
b
(D4)
and
i A Bk Al 6jilk li ojk ikplj
% €apeheehnehn 1= g (&' RN+ RIS+ 54RY).
(DY)
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