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A simple approach is presented for using bond-stretching and bond-bending modes to describe the static
deformations of carbon nanotubes and related actuation effects. This approach allows us to analyze various
phenomena in a unified way and to clarify their relationships. We discuss gap energy modulation by external
strains, dimensional and torsional deformations caused by charge injection, and stretch-induced torsion. We
show how symmetry determines the property dependence on the chiral angle of nanotubes. Electrically driven
actuator responses related to deformation-induced modulation of electron kinetic energy are particularly inter-
esting and relevant for applications. The strong oscillatory dependence of these responses on the nanotube
geometry is explained within an intuitively clear picture of bonding patterns. We show how anisdsiopar
deformations play an important role in nanotubes, making their responses distinctly different from graphite’s.
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[. INTRODUCTION tions are small unless the carbon nanotubes are quite long.
We show that nanotubes with inherent elastic anisotropy,

Carbon nanotubes are particularly noteworthy nanoscopisuch as BGN tubes? can exhibit increased stretch-induced
system$ whose widely investigated electronic and mechani-torsional rotations.
cal properties are interesting for diverse applicatiohsn Our focus will be on providing a simple, unified descrip-
this paper we study how microscopic atomic displacement§on of the relationships between various effects. The ap-
within nanotubes provide for specific mechanical andproach consists of finding the static lattice distortion patterns
electromechanical couplings, which are important to interD that minimize the total per-carbon adiabatic energy of the
convert electrical and mechanical energy and could be usegystem:
in nanoscaldelectromechanical device®® We describe the
deformations of nanotubes resulting from the charge injec-
tion as well as coupling between stretching and torsional
deformations.

Electromechanical actuation using single-wall nanotubesvhereU is the lattice elastic potential energy, including en-
(SWNT9 has been demonstrated in electrochemical €ells.ergies of all valence electrons of thadopedsystem, andE,
Actuator strains of above 1% have been obsefvetiich is  is the energy ofén extra electrons per carbon that can be
about ten times that of high modulus ferroelectrics, suggestadded.
ing the technological opportunity for direct conversion of We find it convenient to discuss static distortions of nano-
electrical energy into mechanical energy. Currently availabléubes in terms of effective @8-displacements of atoms of a
nanotube sheets and long fibers comprise bundles of SWNTparent graphene sheet out of which nanotubes are rblled.
Each bundle typically contains from 30 to 100 SWNTs of Bond-stretching and bond-bending displacements of the hex-
various diameters and chiral vectors,(M):! from zigzag agonal atomic lattice are considered that can form figh
(N,0) to armchair ,N) tubes. In a recent publicatibnve  tropic and anisotropic distortion modes. The latter modes
studied a simplified electron-lattice model at low charge in-turn out to be responsible for many interesting effects spe-
jection levels and showed that the electromechanical actuasific to nanotubes. Appropriate empirical expressionsUor
tion of SWNTs strongly depends omN(M). We found that  will be built that are based entirely on the symmetry require-
the electromechanical response of individual tubes, particuments, in the spirit of the continuum mechanics, and connec-
larly semiconducting zigzag nanotubes, can be much largdions being established between the microscopic displace-
than for graphite. Here we extend this study using a morenents picture and the macroscopically observable distortions
complete picture of elastic interactions and including tor-(Sec. I). For Eg we use a tight-binding model af-electron
sional deformations. We also provide a simple bonding pichand$ whose parameters can be affected by the lattice dis-
ture to explain the behavior of different nanotube types.  tortions (Sec. Il). When a strain is applied to the undoped

Stretch-induced torsion of SWNTs has been found in mosystem, the deformatioD occurs so as to minimizel and
lecular dynamics simulatiorfsHere we show that this effect this results in modulation of some electronic parameters,
is caused by curvature-derived elastic anisotropy and that theuch as the gap enerdy(Sec. V), and, possibly, in a strain
maximum stretch-induced torsion is expected for nanotube&along another direction”(Sec. V). Conversely, if charges
having a chiral angle midway between that for armchair andare added to the system, the lattice will try to accommodate
zigzag tubes. The predicted stretch-induced torsional rotathem with the deformatio® that minimizesE (Sec. V). For

E(D)=U(D)+Ee(D), ()
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¥ Parametery, corresponds to isotropic distortions, while pa-
X rametersy, and n, correspond to anisotropic distortions and
it < ,', . are components of the pure shear strain tensor.
PN PEEIRN In nanotubes, there would also be another natural system
Jgl N T of coordinates related to the nanotube afiisFig. 1 thex
e b: \ / b: \ axis is at anglep>0 to the nanotube axisWith the coordi-
e s;\\j A YR nates rotated as
Z & \d\a\\\\\“l\ ////ac/ \d\;\\\\\ X cos¢ —sing) | x
SR D R 1):( 0s¢ ‘/’)( ) @
sin cos
A,, radial B,, tangential Y1 ¢ ¢y
vo remains invariant while shear components are known to
transform as
VAN AN 3
SN SN (y) (COSZ(;S —Sln2¢>>(7x
Jodg N Cdel n] \sin2¢ cos2p |\ n)
’ | \ ’ 1 \
) ; AN , ; AN Macroscopic deformations of the tube as a whole are defined
/ - ~ \ / - ~ \ H H
P ~. N P ~. N and measured with respect to the tube axis. The three param-
/////dc do\\-\\‘ g de da™~ eters (yo,7,7) translate into the observable longitudinal di-
P E’ o ? mensional changéL/L = y;= yo+ ¥, the transverse change
A,, radial B,, tangential 6R/IR=vy, =y,—v, and the torsional deformationS¢,

= y/7R (the latter is in turns per unit lengtl being the
FIG. 1. Four carbon atoms of the repeating motif are depictedpe radiug

along with the three types of bonds, dy, andd.. The carbon For a full description of the 2+ deformation of the
atom displacements corresponding to the defined anisotropic diStoﬁraphene unit cell with two atoms, one however needs five
tion modes are schematically shown in the four panels. The nangs, 5 meters. We consider the deformations in terms of radial
tube axis is at the anglé to thex axis. (bond-stretching: 685, &,, 6. for, respectively, bonds
d,, d,, d;) and tangentialbond-bendingr, ry, r) dis-
illustrative purposes, some parametrization will be used tgplacements of carbon atoms, as should be clear from Fig. 1.
carry out numerical calculations. Let us express those displacements as linear combinations of
the correspondingsotropic(S, Q) andanisotropic(A;, Ay)
and B, B,) distortion modes, e.g.,
Il. MACROSCOPIC AND MICROSCOPIC
2-d DISTORTIONS 5,=SI3—A/2\/3—A,/2,

Elastic in-plane deformations of the graphene sheet pro-
vide a natural basis for the effectived?description of nano-
tube deformations. An arbitrary @-crystal structure may
have many atoms in the unit céfjraphene has two atoms ‘Sc:S/:*”_A1/2\/§+A2/2
and, correspondingly, many deformation degrees of freedon?Or radial displacements and similarly for,, r,, andr,

From the standpoint ofuniform macroscopic distortions, throughQ, By, andB,. It is clear, however, that th@ mode
however, “internal” degrees of freedom are disguised andg 1,5 deformation mode; it describes the overall rotation of
; lthe triangle, which is irrelevant for our purposes. Similarly to

as a Wh.0|e or, alternatively, of the tnan_gle_ built of the primi- the exclusion of the translations out of consideration, we set
tive lattice vectors and assumed periodically repeated. T?gzo in agreement with the definitiof2) [nonzeroQ would
specify the 2d deformationof the triangle, one needs three

i il . ded t . tin general require two different off-diagonal elements of the
pa_r]f;\me grs,lprec:jsefy as many fas ('; nlee 1ed 1o _speC|fy Weansformation matrix in Eq2)]. The five modes left can be
uniform In-plane deformations of a @-elastic continuum. —,seq 5 five convenient necessary parameters. The isotropic

Let us chgose a co_nver_uentdZsysteIm O; coorrgjmateds V;"'Fh modeS describes the overall size change of the triangle. The
axesx andy (axes in Fig. 1 are related to the underlying ;nisoropic distortions\, and B result in the triangle shape
hexagon structuje With overall translation and rotation ex- modifications indicated in Fig. 1. It is also useful to intro-

cluded, a general lineduniform) deformation displacement duce the rotated anisotropi :
. . : pic deformation modés, (A,)
gaxax)) 3f the point &,y)] of the elastic continuum can be and B, B,) defined with respect to the nanotube axis.
escribed as They respectively relate toAj, A,) and B4, B,) as
(X1,y1) to (x,y) in Eq. (3).
[
oy

8,=S/3+A, /43, (4

n From Fig. 1 and from the corresponding definitions, one
Yo ¥x 7 X ) can obtain the following compact expressions for the macro-
Mx Yo— ¥/ \Y/ scopic deformations:
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d-yo=9/3, minimize the microscopic enerdy). The resulting rotation-
ally invariantmacroscopiaeformation energy per carbon is
d-y=(B-A)/2/3, 5
Cc C
0_=-0 o ~sh o5, 2
d-=(C—D)/2y3, Un=% vt 5 (¥ + 79, 9)
where where the effective elastic energi&,=9d’Kg and Cq,
A=A(cos 3p+A, sin 3¢, =12d°Z,5/ 2. 1 While going from Eq.(7) to Eq.(9), one
can also answer an interesting question: When are displace-
B=Bsin 3¢— B, cos 3 ments ofall atoms in the unit cell of graphene describable
©6) using a 2d continuum? For this to happen, the optimal dis-
C=—Asin3p+A, cos 3p, tortion modes should satist =B, andA, =—By, which
requires thatk ,=Kpg. With the numbers in Eq8) andd
D=Bjcos 3+ B, sin 3¢. =1.42A, the elastic energies a@,=140.5 eV andCg,

=81.1eV. The effective 2t Poisson ratio v=(C,
The length unitd above stands for the undeformed nearest—C)/(C,+ Cg,) turns out to be 0.27, close to the earlier
neighbor carbon-carbon bond length, another length unit teeported? value within the same force constant model, and
be used is the second order carbon-carbon distamce the in-plane stiffness per carbon @=CyCg,/(Co+ Csp

=d+/3. Notice that macroscopic resulfS) and (6) arein- =51.4 eV.
variant with respect to rotationp— ¢+ 27/3 as one should When the graphene sheet is wrapped to form a carbon
expect from the symmetry of the hexagon structure. nanotube, the effective @-elastic description would undergo

The elastic energy of the in-plane deformations of thecertain changes. From the results o#b initio
graphene sheet is known to be invariant with respect to thealculations;>**it is known that even in the ground state of
rotation of the 2d system of coordinates. Using all rotation- nanotubes the equilibrium bond lengttis, d,, andd, can
ally invariant combinations of the introduced deformationdiffer from each other and are different from the graphene
modes, the harmonic deformation energy per carbon atorbond lengthd. These effects can easily be absorbed in our
can in general be written as description by thinking that the ground states of nanotubes
are somewhat deformdwith respect to graphendt should
be understood that the deformation is in general anisotropic
(the rotational invariance is lifted since a new selected direc-
tion would now exist—the nanotube axidUsing general
+Kas(AB.—A, B)). (7)  symmetry consideratior’,one can show that the deforma-
tion of the ground state can be described by three
g—dependent distortion parameteS;(Ag,Bg) so that

Ks

Ka Ke
U0=—-8*+ o~ (Af+A?)+ = (Bf +BY)

It is up to ab initio and/or empirical models to establish
numerical values of the elastic constants. In this paper, w
will be using some estimates for illustrative purposes. For

instance, a good representation of the elastic properties of Aj=AgC0s3p, A, =Agsin3g¢,
graphene in an empirical force constant model is achieved by
including terms up to four near neighbor levels as described Bj=Bgsin3¢4, B, =—Bgcos 3p. (10)

and referenced in Ref. 1. Using this model, one can express

the elastic constants in E@7) through the force constants Note that Eqs(10) are required by the symmetry. That is,
d)i(”, e.g., extraction of the functions §5,Ag,Bg) from ab initio
W @ ® @ datd®“for, say, armchair nanotubes would be sufficient to
Ks= ¢ [6+ "+ 26713+ 7713 describe the deformed ground states for the tubes of arbitrary
for the Smode, and so on. Then, using numerical values oghirality. In .t'his paper we do not pursue these numerical fits
o theab initio data.

the force constants quoted on p. 169 of Ref. 1, one woul Wh : iof) for the elasti
arrive at the following magnitudes of the elastic constaints en using expressiof) or the eastic energy, we now
eV/IA?): understand that the_deformatlpn mO(S};A.H, ... used there_
are calculated relative to their values in the corresponding
Ks=7.74, Ko=4.56, Kg=7.14, Kog=1.21. (8) ground states. Ir! gddition to this, hovy_ever, the curvatur_e in
nanotubes of a finite radiuR also modifies the very elastic
With these numbers); modes turn out to be softer thad couplings. First, the elastic constari{sin Eq. (7) can be
modes, and the coupling betweén and B; modes is rela- renormalized with corrections1/R?+ - - -. That is, all coef-
tively weak. It is useful to compare relative strengths in Eqg.ficients in Eqs(7) and(9) and quantities derived from them
(8) to the nearest neighbor elastic spring model used in Refare in generaR dependent. Second, the rotational invariance
7 whereKgs=K/6 andK,=K/4: evidently (8) yields rela- of the elastic energy is also lifted. Using the same symmetry
tively softer A; modes. consideration$? one can show that this axial symmetry
For a given macroscopic distortiony{,y,7) of the un-  breaking in the harmonic approximation will occur in the
doped sheet, the microscopic distortion modes adjust so as form U=U%+ 5U,
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Y . E2(K) =t2+t2+t2+ 2t t.coskea+ 2t ,tpcosk_a
X SN + 2tpt.cosk, a, (15

J/ \ wherek.. = (k£ \/§ky)/2. For not too small diameter nano-
ts Sodp|ty N tubes the low excitation energy region is always close to the
~— ) “t special, “Dirac,” points in the momentum space, where the
o N gap between the valence and conduction states ofisioe
7 No B tropic) graphene spectrufias determined by Eq15)] van-
, ed ishes. Then one can use expansions of the exact band ener-
J d. © ty N gies(14) and(15) in momenta around the special points and
_______________________ in (small deviations of hopping integrals around their bare
values. For certainty, we choose the special pdi%t

FIG. 2. NNH and SNH integrals, whose modulation is taken — (47/3a,0) and, from now on, all momenta= (k,ky)

into account. will be measured with respect to that special poikt (
—4/3a+k,). [It should be clear that the other inequivalent
K2 a special point could bdaf’:(—4w/3a,0), which, in view of
SU=K2,SA+K3SB+ 7(Af—Af)+ T(Bﬁ— B?) the even dependence of spectr(@8) on electron quasimo-
menta, results just in a factor of 2 taken into account below
+K3s(ABL+A, B, (11)  in the summation over the relevant electron statéster

some exercise, one reduces E@sl) and(15) to
where definitiong6) have been used and anisotropy param-

etersK?x1/R*+ - ... While the isotropic deformation en- 7(K)to= 7o(K)/to+ \3( Bl a){S+3[ k(A + B,)
ergy (7) is already sufficient for description of some of the *
effects, the elastic anisotropy expressed in #d) is essen- + ky(AZ_ 91)]3/4}, (16)

tial for others, as discussed in Sec. VI.

2(k)/t2=(3+25-2\3A;)(ka—A,)%/4
Ill. SINGLE ELECTRON SPECTRUM Elr=( V3R (ka—Ay)
Q A A \2
We consider the electron kinetic energy to arise both from + (3+28+2‘/§A1)(kya Az) 14
nearest neighbo(NNH) and second neighbqiSNH) hop- A A A
ping between carbon atoms as depicted in Fig. 2. The hop- +3A(ka—Ay)(ka—Ay). 17
ping integrals are modulated by the lattice distortions providere 7, is the equilibrium value ofr and we introduced
ing thus the electron-lattice interactia@n additional effect

would, e.g., follow from the modulation of Coulomb repul- dimensionless variabless= —aSity, A;=—aA;/to, Az

sion between extra charggas is customary, a linear modu- ~ — aAylty, By=—aB;/ty B,=—aB;/t, to save space in
lation with distances is assumed. So NNH integrals ardormulas(the same would be used for rotated modesnd
modulated as A, . Applicability of expansiong16) and(17) requiresk,a
<1 andk,a<1 as well as relatively small distortion ampli-
t,=to—ad,, tp=to—ad,, t.=to—ad,, (120 tudes. In view of this and the smallness @f«, one can

) ) ) ) safely neglect the terms in E¢L6) that are proportional to
wheret, is the NNH integral on the undistorted lattice amd kg<1.

the NNH coupling constant. Similarly, SNH integrais t», For the (N,M) tube, the chiral angle> (Figs. 1 and 2is
andt; are modulated with the SNH distances, the modulatiojefined through sigp=(N—M)/2C,,, where the dimension-
strength given by the SNH coupling constghtWe expect |ess tube circumferend@,= (N2+M2+NM)Y2 (it is related
Bla~0.1. Expressing changes of distances in terms of introtg the tube radius as?R=aC;,). We considerd belonging
duced distortion mode@l) will yield the corresponding cou- to the interval between Garmchair tubesand /6 (zigzag

pling constants for each of the modes, as done below. Wity peg. The angles is complementary to the chiral angke
SNH included, the charge conjugation symmetry of the halfa5 defined in Ref. 1= m/6— 6. Of extreme importance is
filled system is broken and the band energies have the forghe divisibility of N—M by 3, the “remainder’q=0, +1 is

. . . introduced by
€+ (K)=7(k) £ &£(k) 13

for the conduction and valence bands, respectively, where N=M=3m+aq, (18)

§(|Z) originates from the NNH and(k) from the SNH, and  wherem is the appropriate integer. The electron momenta

k=(ky,ky) is the 2d dimensional wave vector. With the can lie only on a set of quantization lines, the one most

definitions of Fig. 2, closely approaching the special point is described by
7(K)=— 2t,cosk,a—2t,cosk_a—2tscosk .a, (14) kysing+kycosp=—2mq/3ChLa=K/a. (19
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According to Eq(17), the lowest-energy in the equilibrium
system isé&y=1to(3K3/4)Y?=|q|tod/2R, finite for semicon-
ducting nanotubes|§|=1), and zero for metallic onesy(
=0).

One-dimensionalmomentumk) “ ¢ bands” along the
quantization lines are obtained from Ed.7) and have the
familiar Dirac form

£2(k)=A%+vfk?, (20
where the gap parameter
A=v, |Ky—A, |/a (21)
and the effective Fermi velocities
UH:UF_atoA/Z, UL:UF‘FatoA/Z. (22)

Herev/aty=\/3/2+S/2\/3, and the dimensionledsis de-
fined through dimensionleds; andA, as in Eq.(6). Higher
lying energy bands are evidently also described by(Ed),
where theq used in the definition oK, would be “dis-

placed” by 3m, wherem is an integer. If, e.g., the lowest

energy band corresponds tp=—1, the first higher lying
band would be witlg=2, still the next withgq=—4, and so
on.

The curvature affects the effectived2elescription of the

PHYSICAL REVIEW B68, 115415 (2003

placements are related to the shear strain components

A=— \/§za(ycos 3p+ nsin3¢)d,
(23)
A, = —\3z,(ysin 3¢— 5 cos 3p)d.

Using equilibriumy,=(1—»)y/2 andy=(1+v)y/2, itis
now straightforward to find the gap modulatiék of semi-
conducting tubesq= *+1) at small strains:

OBy m(v—1+(1+v)z,)
ad J3Ch, Y

+3qz,[(1+v)y sin3¢—2ncos 3p]/2.

(249

(24b)

Apart from the difference in notation, E(R4b) agrees with
the result of Ref. 10 on the chiral dependence of the major
modulation effect. Noteworthy is the appearance of the fac-
tor z, in Egs.(23) and(24), which would be 1.28 with num-
bers(8). Analytical calculations of Ref. 10 assume that the
lattice deforms under strain as if it was ad2elastic con-
tinuum. The factorz, accounts for the difference caused by
the actual elastic properties of the lattice, this factor becomes
unity’* when the difference effectively disappears. In the ex-
treme case oKg=Kg=0, the factorz, becomes 0, and the
largest part of the gap modulatid@4hb) disappears because

electron spectrum of nanotubes. As we discussed in Sec. lthe shear deformation would be realized only through the
even in the ground states, nanotubes are deformed with réond-bending modes. In the opposite extreme cask gf
spect to graphene. In our applications, it means that all dis=, all the shear occurs through bond-stretching modes and

tortion modes in Eqs(16) and (17) and further on would
have to be displaced lik&—Sg+S, Aj—AgC0os 3p+A,

the factorz,=2. Reference 10 provides numerical results on
modulation for a specific choice of the coupling constant

etc. In addition, the curvature changes the overlap 0Equati0r_l(246? reflects a corre_ctio_nc 1/R coming from the
m-orbitals which can be represented as another source of thgodulation of the Fermi velocity in Eq21).

effective external distortiodg— Agr+As, Sg—Sg+Se, Se

The notable feature of Eq24b) is the factorq which

=/3A., so that bonds along the tube axis do not changéeads to oscillations of the responses of the semiconducting
while the other bonds change their length appropriately. Arfubes as a function o —M. Consider, e.g., zigzag tubes
elegant analysis of the modulation of the NNH by curvaturethat have the strongest response to the longitudinal strain.

was, e.g., given by Kane and Méféfrom their work we

The longitudinal extension of th€l0, 0 tube withq=1

deduce the valud=t,m%/4\/3aC2 . In our calculations be- results in a gap increase, while the extension of(ttig 0
low, we will be taking into account only the anisotropy term tube withq=—1 results in a gap decrease. We find that a
A, as responsible for curvature-derived gaps in quasiVery transparent physical picture can be offered to under-

metallic tubes.

IV. MODULATION OF THE GAP BY DEFORMATIONS

The modulation of the gap enerdgy=2A by the longi-

stand this fascinating behavior. Let us calculate the contribu-
tions to the gap energy of the semiconducting tubes coming
from different types of nearest neighbor carbon-carbon
bonds, i.e., the matrix elements of the corresponding parts of
the Hamiltonian at the conduction band minimum wave vec-

tudinal y and torsionaly strain is the effect whose extensive tors [kya=Kosin¢, ka=Kqcose; see Eq.(19)]. The prob-
analysis was given in Ref. 10, where references to earlielem is equivalent to finding the phase factors for three vec-
work can also be found. Here we discuss it within our frame+ors representing the three types of bonds that maximize the

work, indicating differences with the treatment of Ref. 10conduction-valence band splitting.

One readily de-

and giving a simple physical picture for the peculiar featuregives that the bondgl; contribute —cosf+¢) to Alt,

of the effect.
Equation(21) shows how the gap paramet&ris modu-
lated by the bond-stretching mod&A, and A, . When

where o= —qm/2— ¢, ¢,=2m/3+Ksin(p—/6)/\/3, ¢y
=Kocos¢/\/3, and¢.= —2/3— Ksin(p+/6)/\/3. Table
I gives numerical examples of the bond contributions for

strainsy; and/or» are applied, they cause lattice distortions four tubes. We will call “bonding” those bonds whose con-

so as to minimize the elastic enerdy): in general both

tribution is negative and “antibonding” those whose contri-

bond-stretching and bond-bending modes are excited but tHaution is positive. By definition, an expansion of the bonding
latter do not affect the gap. The isotropic displacements arbonds increases the gap, and their contraction decreases the

simply determined byS=3vy,d, while the anisotropic dis-

gap; effects for the antibonding bonds are the opposite. Table
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TABLE 1. The bonding patterns for four tubes. The contribu- fluctuations also act to render polaronic states unstable. With
tions from bonddd,, d,, andd, are normalized so that their sum a uniform distribution of excess charges over the lattice sites

gives the gap parameter in units tgf and relatively low temperatures, it will be safe to assume that

electrons or holes added to the system are accommodated in
Tube da dy de Alt the band states of the lowest available excitation energies.
(10,0 10 0.588 0.588 0176  fact the authors of Ref. 18 in a recent publicatialso used
(11,0 1.0 0415 0415 0.169 the band states to be filled by extra charg&he lattice

displacements affedE,, through the variation of the band
parameters, as discussed in Sec. lll.

With only one (with account of degeneragyelectronic
band being filled, the variable part of the electronic energy

| illustrates a dramatic difference of the bonding patterns ofP€r carbon takes the form
tubes withq=1 and—1. Indeed, the bond, along the tube

axis of the zigzag tubes turns out to be bonding for (@ Eo= ﬁ(ﬂ/a)85n+(1/f)j§k§(k)dk’ (25)
0) tube and antibonding for thell, O tube, leading to ef- 0

fects in agreement with Eq24b). By the same token, it is h | icall ligible t ¢
clear that a twist of a certain direction would result in oppo-w ere only one practically non-negligible term from Eig)

site effects on the gap for tub€s0, 5 and (10, © is left. The coefficienf relates the boundargk of the occu-
For quasimetallic tubesq(=0),’ the gap r’nodulation is pied states in the momentum space to the charge injection
given by SE,=+3asyA,, where sy=sin(Acsin 3p+A,) level: sk=f|on|, f=mCp/a\3. .
with A, from Eq.(23) andy=(1+ »)yy/2. In the absence of The lattice energy is given by Eq7), and the resulting
the cquvature-induced gapA(sin 3¢:(”)) of course. strains distortion pattern is obtained by minimization of the total
could only produce a finite gap. With the curvature-derivedenergy(1)'. Equatlon(25)'|s mdgpendent oB; distortion
gap in place, there would be a range of relatively smallmc’d?s Wh'Ch then acquire a finite value or)ly -through the
strains where the gap can be decreased. We note that a sm lﬁl$t'c dcoulpllng_togi ?O?ﬁs "? Eg'(?' tShUDStf'ftu“t'f]g tlhct)?e
longitudinal extensiony>0 particularly leads to such an e;lvet_ Iva ues in tq( ) an %"’}AS Od ee Ie? lve latlice
effect. It is intuitively clear that the curvature makes hoppingpo ential energy In terms andA; modes only.
integrals “perpendicular” to the tube axis smaller than those
“parallel” to the axis. The curvature-derived gap would be U=KS%2+KA(Af+A?)/2, (26)
decreased if all the hopping integrals become more equili- , 5 _ )
brated, and for this one needs a longitudinal extension and/o¥here Ky=Ka—Kjzg/Kg. With parameters (8), Kj
transverse contraction. =4.35 EV/,&?. The dimensional changeé§) then would be

(10,9 0.954 -0.1 —0.715 0.139
(10,6 —0.916 0.227 0.818 0.128

V. CHARGE-INDUCED DISTORTIONS d-y=—UuA2\3, d-p=uCl2\3 (27)

Suppose one addén extra electrons gn<0 for holes where the correction factan=1-K,g/Kg=0.83 if (8) is
per carbon atom to a SWNT. How would interatomic dis- Used. . . _
tances be affected? Here we study the contribution to bond AS @n instructive example, we first analyze the effects
length changes arising from the modulation of electron hoplinear in én. Then the second term in E€5) reduces to
ping integralgt by lattice distortions. The basic illustration is A|n|. Let us neglect all the curvature effects for this illus-
very simple: if an extra electron or hole is added to a half-tration. The minimization of the total energy is trivial, and
filled two-site system, this would cause an expansion of the/ields the optimal distortion patterns
intersite bond bysd= a/K, whereK is the elastic constant
and the hopping integral is modulated &s= —add. We K<S
will show that this relaxation mechanism can produce sur- 2
prisingly different results for carbon nanotubes having differ-
ent values olN andM.

To evaluate the lattice deformation to accommodate addi-
tional charges on the nanotube, we need to know the energy = cos 3¢, (28b)
E, of extra charges as a function of the distortion coordi- |on|  3Cy
nates. It is well known that one-dimensional electron-phonon
systems can be unstable with respect to the Peierls distortion, KiA,  ma|q|
and exhibit the formation of nonuniform polaronic distor- AR T  Gin 3¢+ \3aq/2. (280
tions. Fornot very smallcarbon nanotubes, however, these |on| 3Ch
effects seem practically irrelevant. The estimated transitio
temperaturege.g., Ref. 17and polaron binding energi€s®
are on the order of 1 K or smaller. So even quite low tem- 1 g
peratures in excess of those estimates are sufficient to pre- Vo= (t B malq
vent nonuniform charge distributions. Of course, quantum \/§st 9Ch

mal|q|

3.3C;,’

+\38+ (289

YFhis corresponds to the following macroscopic distortions:

|on|, (29a
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y=- ua [ _mld +qsin3¢ ||én|, (29b) 0zr § g\ r
4K ,d | 64/3Cy, i \ o S
. ool A A
S g B-a . LN’ S vy ]
Ua Yo} S | SN W o]
7= ———0C0s 3| dn|, (290 = g v L ]
4Kad —01F § g
upper and lower signs in Eq&8) and (29) stand for elec- _ook . ‘ 1
tron and hole doping. 0 5 10 15
Of course, the most interesting are the proportionad| to N-M (M 20)
terms in Eqs(29b) and(29¢) that lead to responses oscillat- ‘
ing as a function oN—M. For semiconducting tubes, these ook A ]
terms are dominating, and they establish a large scale aniso i % A E p
ropy of the axial f=yo+y) and radial ¢, = yo— ) re- . oif * K A PR
sponses. The electron-hole symmetric effect here is inverse -®-g-a" . &\ Lo ro
to the gap modulation effect discussed in the previous sec™ g g Bl \...,/..@.. ........ v B -
tion: extra charges at the band extremum want to decreas ™ f § ‘g/ v
their energy by decreasing the gap. The bonding picture il- 0.1} & -
lustrated in Table | helps to understand the peculiar oscilla- X ]
tions and anisotropy. So for th€lo, 0 tube (=1, 3¢ ‘0-20_ : 0 5
= 7/2) the bonds along the tube axis are bonding; they there: N—M (M 20)
fore shrink upon charge injection. The bonds “perpendicu-
lar” to the tube axis are antibonding and they would expand. 0.2]
This picture reverses for the tulgel, 0 with g=—1, in full C s &
agreement with Eq29b). We note that these peculiar effects 0.1 4 o] b g ]
in Egs.(29b) and (290 result exclusively from the excitation £ E/ﬂ\ // | / | SR a ]
of the A, mode (280 that directly modulates the gdgl). 0Dl P Vo : v AT
Figure 3 displays equilibrium deformations of a series of « I Y7 _— — ‘g’ 1
nanotubes for the electron doping levil=0.5% calculated —0.1F A \ﬁl & ]
through a numerical optimization of the total energy. The : ¢ ]
figure shows not only the linear effedi&gs. (29)] but also -0.2¢ . ‘
the interplay of effects coming from the curvature and the 0 5 NV (M 20) 10 15

filling of the electron states above the band edge. The appeal

ancelof a small gap A, drastically changes _the responses of FIG. 3. Deformations of nanotubes for the electron doping level
quasimetallic nanotubes for very.IOW d‘?p'_”,g levels. HO_W' 6n=0.5%. Shown are results for four “families” of carbon nano-
ever, the role of a small gap quickly diminishes upon in-ynes: withN=11 (crosses 12 (diamonds, 13 (triangles, and 14
crease of the doping level. For calculations, in addition to thgsquares The square data points are connected with broken lines.
elastic constants8), we used electronic parameters  The upper panel shows changes in the nanotube length, the middle

=5 eV/A andp/a=0.2. The results are practically indepen- panel shows changes in the nanotube radius, and the lower panel
dent of the value of,. The salient qualitative features—an shows torsional shear.

oscillating character of the responses as a function of the

nanotube geometry and a large scale anisotropy of the delearly seen for the tubgd 6, 0 and (17, 0, whose critical

mensional changes—are clearly seen. densities are within the displayed injection range. In these
A further increase of the injection level leads to chargessimplified calculations, we neglected possible changes of

starting to fill in the higher lying energy bands. The lowestcritical densities andk; caused by the lattice deformations.

critical densities are found asdNme=2v3/C2, SNgem Within the same model, the dimensional response of

=2/C2. This yields, €.g.0n e~ 1.2% for the(10, 10 nano-  graphite would be a smooth cuRle

tube, anddng.,=1.7% for the(11, O nanotube. The onset of

the filling in the next higher lying bands leads to sudden 1 2 ( 7T|5n|)3/2

changegthey would be smoothed by finite temperatures Yo=—| Bon+ a—

the responses—aobviously, a distortidn that decreases gap \/§st 7\ 33

(21) for the first band(say, withq=1) would increase the \hjle y==0. In graphite, it is only the isotropic mode that

gap for the second ban@vith g=—2). “Conflict of inter-  gats excited upon charge injection leading to the isotropic

ests” of different bands are StUd'esE with the single band in-expansion/contraction of the lattice. The second neighbor ef-

tegral in Eq.(25) replaced withs; [ "'¢;(k)dk over multiple  fect =g in Eq. (30) provides for charge conjugation symme-

bandsi with appropriate boundarie$k; . In Fig. 4 we show try breaking between electron and hole doping, and is the

calculatedy, for a series of carbon nanotubes as a functiorsame as in the nanotubes independently of their geometry

of the injection level. Sharp changes in the responses af&q. (293]. This term is important to account for the

: (30
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FIG. 4. Longitudinal dimensional changes for a series of doped F|G. 5. Relative deviations of the isotropic NNH part of nano-
nanotubes as a function of the injection level. Note that in thisype responsesy) from that of graphite ¢r) as a function of
figure as well as in Figs. 5 and 6, the injection level is shown inthe charge injection level. Results are shown as follows: with the
percent $n=0.01 is equivalent t@n=1%). Apositive on corre-  sojig line for the(10, 10 tube, with the dashed line for tha1, 0
sponds to electron doping and a negati#e to hole doping.  type, with the dash-dotted line for tr@5, 15 tube, and with the
Crosses are for th€l0, 0 zigzag tube, diamonds for thd1, 0  {ash-dot-dotted line for thél7, 0 tube.
tube, triangles for th€16, 0 tube, squares for th@7, 0 tube, and
filled circles for the(10, 10 armchair tube. Lines just connect
the calculated data points. The dashed line shows r¢30)tfor
graphite.

the graphite response &M — . With the increasing in-
jection level, relative deviations from the graphite curve also
become smaller.

It is the quantization of electronic states in nanotubes that
makes anisotropic distortion modes a prominent feature of
the accommodating lattice relaxation. An excitation of the
anisotropic distortion modes causes the macroscopic shear
Heformations. The anisotropy of the longitudinal and trans-

gﬁgcegg;tlmoerglll’ictTLIJSt)éirvmviucl;a—nob(thlgr;sl??(t)lrn'?h;o;r?rr]iﬂglitre versal responses of nanotubes is one consequence; the other
q -~ is the torsional deformations. At very low injection levels,

tubeg. The strong electron-hole asymmetry of the graphite,

, -the behavior of the latter is shown in E®9¢, numerical
and armchair nanotube responses caused by the mOdU|at'Pqults for higher doping levels are shown in Figs. 3 and 6
of SNH is clearly seen in Fig. 4. : )

. As we discussed, the onset of filling in higher energy bands
On the other ha_nd, the electron-hole symmetric. NNHcauses sudden changes in responses, clearly seen in Fig. 6 for
modulation (modulation of the Fermi velocijyin graphite

results in the second term in E(O) xa. Similar isotropic tWIIS:tcljrr]gnS?r{grrirgstlggliulations in this paper, we chose to in-
parts are also.present in the nanotube respc[lse&se.g., the crease the paramet@r o because of the increased stiffness
second term in Eq(293]. They, however, have a different

functional dependence oéin. It is interesting to see how
those parts converge to thd on|®? behavior of the graphite
with increasing doping and/or with increasing nanotube size.
Figure 5 illustrates this convergence as relative deviations of
the corresponding parts of the responses. In fact, there are
two universal behaviors there: one for metallic tubes and one
for semiconducting tubes; the curves within each class trans-
form into each other withdn scaling ascgz, whereCy, is

the tube circumference.

Of course, much larger deviations from the graphite be-
havior can occur due to anisotropic modes. These take place
even for metallic tubes, but, for semiconducting tubes at low I ! ‘ ! ‘
doping levels, the electron-hole symmetric NNH gap modu- 00 0z 04 06 08 10
lation is especially significant leading to dimensional re- on (%)
sponses that can be substantially larger than graphite’s. The g1, 6. Torsional shear deformations for a series of electron
nanotube strains caused by charge injection may generally kyped chiral semiconducting nanotubes as a function of the injec-
thought of as *fluctuating around” the graphite response tion level. Crosses are for @0, 5 tube, diamonds for thélL0, 9
exhibiting the sharp transitions described above. The amplitube, triangles for th¢l12, 7 tube, squares for the3, 6 tube, and
tude of the fluctuations and the spacing between them decs for the (14, 6 tube. Lines here just connect the calculated data
crease with the size of the nanotubes, gradually approachingpints.

electron-hole doping asymmetry of graphite intercalation
compounds, as suggested in earlier wdrkl22Experiments
on electrochemical actuators with carbon nanotfiaéso in-
dicated an asymmetric response. Being linear in the dopin

0.1]

0.0 K

100 7

—0.1}
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Ks, as compared to parameters used in Ref. 7, and in ordaf the tube axis, or on the chiral ang#? This dependence
to keep the results for graphite closer to experimental dateelates to the symmetry properties of the unwrapped sheet
(see, e.g., a compilation in Ref. 14Df course, numerically and/or to the symmetry breaking introduced by the wrapping.
results are affected by the choice of parameters; however, the Let us study the latter for carbon nanotubes. One can use
salient qualitative features distinguishing the behavior otthe optimized microscopic distortions for a given macro-
nanotubes from graphite are quite robust. We hope that scopic deformationvg,?y, 7) to derive the following macro-
more accurate parametrization of the model can be achievestopic elastic anisotropy per carbon from Eifl):
by fitting to results ofab initio calculations, such as in Ref.
14, and to experimental data, which is not attempted here. ca

The behavior discussed above arises at low temperatures 6U,,=C§yoy+ 75[(3/2— 7?)cos 6p+ 27 sin 6¢].
in the single-electron picture. Thermal excitation of charges (31)
into higher lying energy bands will likely be bringing nano-

twbe responses closer to that of t.h.e graphite’s, as .We" &Phe functional form Eq. (31)] is required by the symmetry
decreas_mg the sharpness of trans_mons. However, since t i the axial anisotropy on a hexagonal background and can
separation between energy bands is large compared with ttbee also obtained directly using the same symmetry

room temperature thermal energies for not—too—_large tUbe%onsiderationé? Note that five anisotropy parameters of Eq.
we expect the thermal corrections to be relatively small.(I

: . 11) have been reduced to only two. For small anisotropy, the
Also, superimposed on the discussed effects can be a uni,~ . . . o2 a

. 5 . . effective anisotropy energies are found @§=3d“(z,K3g
form expansionx on“ coming from the Coulomb repulsion ~ Ka dC2 — 302(2K2 — 72K2 4 K2 ) Both
of extra charges, whose magnitude depends on the position—Za sa) andCgy=3d%(z;K,) — 2K +22,2,K,g). Both en-

ing of counterions and dielectric properties of the medium £'91€S are curvature Odenved and scale &
Optimizing U= U+ 6U, for a giveny and small an-

Coulombic intratube repulsion may dominate actuation when : '~
charge injected is large. This repulsion will, however, be abiSotropy, we find the equilibriumy shear as
sent in the system where extra electrons and holes are intro-
duced as a result of photoexcitation and then quickly relax to

the band edges and spend some time there. Evaluation of the
e-e correlation effects would require further studies.

7l yj=—(1+ v)C¥sin 64/2Cq. (32

Equation(32) indicates that maximum torsion for tubes of
the same radius occurs at the chiral anglte 7/12, in the
VI. STRETCH-INDUCED TORSION middle between armchair and zigzag tubes, and vanishes for
achiral tubes, in agreement with results of molecular dynam-
ics simulation$

We now want to relate the curvature-derived stretch-

In this section we deal with purely mechanical coupling:
conversion of the tensile strain into torsidthe effect very

familiar for ordlnary hehcql Springs. In our effgacuve dZ_ induced torsion in Eq(32) to another effect, the chirality
treatment, the tensile longitudinal deformation is describe . ;
. . a dependence of the stiffness of nanotubes that was discussed
by the strainy; and the torsionv¢, = /7R by the » com- . . .
in Refs. 25 and 13. With the samé,, we calculate anisot-
ponent of the shear tensor. The problem of the stretch- : o .
! . I .7 ropy corrections to the longitudinal stiffness as
induced torsion can then be posed as finding the equilibrium

n for a giveny,. Itis quite clear that in an isotropic system

with rotationally invariant elastic enerd¥qg. (9)], the result- 2 2 2

. ) . . d°Up, (1—v9) (1+v)

ing optimal deformation for a gives would haven=0 and 5 =C+ C3+ Cicos6p, (33
the stretch-induced torsion would not occur in the corre- 7 2 4

sponding tube. The effective @-system has to baniso-
tropic for the optimalz not to vanish. Also, the system has to whereC is the contribution coming fronu?, and discussed
have lifted the reflection symmetry around the nanotube axisn Sec. Il. All C energies in Eq(33) are R dependent. The
Um(70,7,7) #Un(v0,7,— 1), We can relate this tehiral-  coefficient C, in (33) that provides for a chirality depen-
ity of the system. Nanotubes readily give examples of suchlence is the same that determines the torsional sh&ap)n
systems. Eq. (33 predicts a monotonic dependence of the stiffness on
Two main questions are to be clarified) How does# the chiral angle between 0 and6, which was indeed found
depend on the tube radilR? General scaling arguments for in empirical calculationd® Comparing Eq(33) to results of
not-too-small tubes with short-range elastic interactions reRef. 25, we conclude that%>0 and is substantial in the
quire 7 to be an even function of Bt 7=ny+7,/R*>  sense that its magnitude is comparable to the ov&ale-
+14/R*+ - - ;o here reflects the magnitude of the barependence of the longitudinal stiffness. The absolute magni-
elastic anisotropy of the unwrapped sheet and equals to zetade of these effects, however, may strongly depend on the

when the latter is elastically isotropic, whilg,, 74, ... are  details of the empirical model used for calculations. Refer-
curvature derived effectS. Correspondingly, the largeR ence 25 found very significant variations of the stiffness with
scaling for the systems with bare anisotrofike type-I| the radius of nanotubes when using the Tersoff interatomic
BC,N tubes) is 6¢,x1/R and for the systems with potential and much smaller with the Brenner potenta;
curvature-derived anisotrofjike carbon nanotubgss d¢, initio calculationd® also indicate a weaR dependence of the

«1/R%.%* (2) How doesz depend on the relative orientation stiffness. Molecular dynamics simulations of Ref. 8 yield
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and, therefore, is expected to be minuscule. In contrast, the

inherent anisotropy enerd¥q. (34)] of BC,N tubes leads to
a finite effect already in the first order,

7l yo=—(C§/Cgr)sin 26,

and could be observable.

VIl. SUMMARY

FIG. 7. Element of the type-Il BAN tube structure with four We have developed a simple framework for an effective
atoms in the unit cell. Solid circles denote C atoms while large andjescription of the static lattice deformations for the hexago-
small open circles denote respectively N and B atoms. See Ref. Q3] atomic structure of carbon nanotubes, as well as of the
for details of the full structure. actuation responses related to those deformations. For single

) o walled nanotubes of arbitrary geometry, we analyzed dimen-
~0.01 for the rati32) for the (10, 5 tube. The direction of = gjonal and torsional deformations caused by charge injection
the twist found agrees with the sign &3, deduced from the  and the torsional rotations induced by stretching. The dimen-
stiffness calculation®’ sional changes induced by charge injection are the basis for

One could expect a much larger stretch-induced torsiogarbon nanotube electromechanical actuatdastificial
effect in the tubes which are elastically anisotropic already inmuscles. Since the predicted actuation is a sensitive function
the unwrapped sheet state. An example of such may bgf structure when the amount of charge injection is small,
type-Il BGN tubes(see Fig. 7, where an anisotropy is ex- these actuation results may be important for optimization of
pected by virtue of the different interatomic interactions be-nanotube actuators for targeted app”cations_ However,
tween different types of atoms. We therefore restrict our atpresent assemblies of many nanotubes, such as long fibers
tention to then, term. As is clear from Fig. 7, the symmetry and sheets, are polydispersed in nanotube type—so an aver-

element left on the parent sheet is the reflection around thgge response is likely to be obtained which is more graphite-
AB axis. Using this as a general symmetry constraint, ongike.

derives the anisotropic part of the elastic energy as Shear(anisotropi¢ deformations play an important role
for individual nanotubes leading to large and fascinating de-
8U = Cgyo( y COS 21 + 7SI 2¢7) viations from the behavior of graphite. It has been recog-

nized that anisotropic deformations can introduce symmetry
S, _ breakind® and modulate the gap enef§yn nanotubes. We
+ = L(y"=n")cos4py+2ynsinddi], (34 have shown that charge injection can conversely result in
shear deformations that would significantly effect the pro-
where ¢,=¢—7/6 and C§ and CZ, are some anisotropy duced dimensional changes. Charge-induced strains exhibit a
energies. OptimizindJ, now for a giveny, and small an-  strong “oscillatory” dependence on the nanotube geometry
isotropy leads to the following chiral dependence of the ef{N,M). Deviations from the charge induced strain of graph-

a

fect: ite are predicted to be particularly large for semiconducting
tubes at low injection levels. A large anisotropy of dimen-
nly = —[(1—v)Cfsin 2¢,+ (1+ v)CEsin 4¢,]/2Cgp,. sional changes is expected, which may lead, e.g., to a de-

(35)  creasing diameter and increasing length upon charge injec-
tion. For the same sign of carrier injection, some tubes may
It follows from Eg.(35) that the torsional shear vanishes for experience a longitudinal expansion and others a contraction.
¢=ml6 and¢=2x/3, that is, along respective§BandOB A similar oscillatory dependence is also predicted for the
vectors in Fig. 7, as one should expect. In addition, the syscharge-induced torsional twists. Even the electronic band
tem may have another couple of such directions dependingtructure of the nanotubes can reveal itself thro(sfiarp
on the anisotropy parameters. The latter determine the sigfhanges of the actuation responses as a function of the
and magnitude of the torsion. Some information on elastiGharge injection level. We found that the peculiar oscillatory
properties of BGN tubes is available fromab initio  pehavior of the semiconducting tubes’ responses can be eas-
calculationd® but not sufficient for us to make estimates. ily understood in terms of the bonding pattern, near the band
Torsion of nanotubes can also be caused by hydrostati¢ninima, which changes withN— M. Dimensional changes in

like forces that would result in the isotropic lattice the fiber direction during charge injection can be most en-
expansion/contraction in the absence of the anisotropy. Onganced for semiconducting zigzag tubes. On the other hand,
can find equilibriumy for a giveny, describing the isotropic  charge-induced torsional rotations have the largest magni-
effect. With the curvature-derived anisotropy enefdsq. tude for chiral semiconducting nanotubes.
(31)] of carbon nanotubes, a finitg appears only in the The curvature-induced isotropy breaking of elastic inter-

second order of the anisotropy parameter, actions in carbon nanotubes also gives rise to the stretch-
ama 1 induced torsional rotations about the nanotube axial direc-
7l o= (CoCqi{ Cgr)sin 6¢, tion. We showed that this stretch-torsional coupling may be
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enhanced using chiral nanotubes in which the anisotropy athirality dependence of the effects we discussed. A param-

elastic interactions is increased through substitution of caretrization of our model using detaileab initio calculations

bon atoms. and experimental results for graphite and armchair or zigzag
Quantitative predictions of our model depend on the val-nanotubes will likely permit a further refinement of calcula-

ues of several parameters, such as effective elastic constaniign outputs for nanotubes having any chirality.

and electron-lattice interaction constants, for which we used

reasonable estimates. While the magnitude of predicted ef-

fects will be affected_ by these parameter es_timates,. our ACKNOWLEDGMENTS
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