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Mechanical and electromechanical coupling in carbon nanotube distortions
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A simple approach is presented for using bond-stretching and bond-bending modes to describe the static
deformations of carbon nanotubes and related actuation effects. This approach allows us to analyze various
phenomena in a unified way and to clarify their relationships. We discuss gap energy modulation by external
strains, dimensional and torsional deformations caused by charge injection, and stretch-induced torsion. We
show how symmetry determines the property dependence on the chiral angle of nanotubes. Electrically driven
actuator responses related to deformation-induced modulation of electron kinetic energy are particularly inter-
esting and relevant for applications. The strong oscillatory dependence of these responses on the nanotube
geometry is explained within an intuitively clear picture of bonding patterns. We show how anisotropic~shear!
deformations play an important role in nanotubes, making their responses distinctly different from graphite’s.
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I. INTRODUCTION

Carbon nanotubes are particularly noteworthy nanosco
systems1 whose widely investigated electronic and mecha
cal properties are interesting for diverse applications.2,3 In
this paper we study how microscopic atomic displaceme
within nanotubes provide for specific mechanical a
electromechanical couplings, which are important to int
convert electrical and mechanical energy and could be u
in nanoscale~electro!mechanical devices.4,5 We describe the
deformations of nanotubes resulting from the charge in
tion as well as coupling between stretching and torsio
deformations.

Electromechanical actuation using single-wall nanotu
~SWNTs! has been demonstrated in electrochemical ce6

Actuator strains of above 1% have been observed,3 which is
about ten times that of high modulus ferroelectrics, sugg
ing the technological opportunity for direct conversion
electrical energy into mechanical energy. Currently availa
nanotube sheets and long fibers comprise bundles of SW
Each bundle typically contains from 30 to 100 SWNTs
various diameters and chiral vectors (N,M ):1 from zigzag
(N,0) to armchair (N,N) tubes. In a recent publication7 we
studied a simplified electron-lattice model at low charge
jection levels and showed that the electromechanical ac
tion of SWNTs strongly depends on (N,M ). We found that
the electromechanical response of individual tubes, part
larly semiconducting zigzag nanotubes, can be much la
than for graphite. Here we extend this study using a m
complete picture of elastic interactions and including t
sional deformations. We also provide a simple bonding p
ture to explain the behavior of different nanotube types.

Stretch-induced torsion of SWNTs has been found in m
lecular dynamics simulations.8 Here we show that this effec
is caused by curvature-derived elastic anisotropy and tha
maximum stretch-induced torsion is expected for nanotu
having a chiral angle midway between that for armchair a
zigzag tubes. The predicted stretch-induced torsional r
0163-1829/2003/68~11!/115415~11!/$20.00 68 1154
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tions are small unless the carbon nanotubes are quite l
We show that nanotubes with inherent elastic anisotro
such as BC2N tubes,9 can exhibit increased stretch-induce
torsional rotations.

Our focus will be on providing a simple, unified descri
tion of the relationships between various effects. The
proach consists of finding the static lattice distortion patte
D that minimize the total per-carbon adiabatic energy of
system:

E~D!5U~D!1Eel~D!, ~1!

whereU is the lattice elastic potential energy, including e
ergies of all valence electrons of theundopedsystem, andEel
is the energy ofdn extra electrons per carbon that can b
added.

We find it convenient to discuss static distortions of nan
tubes in terms of effective 2-d displacements of atoms of
parent graphene sheet out of which nanotubes are roll1

Bond-stretching and bond-bending displacements of the h
agonal atomic lattice are considered that can form bothiso-
tropic and anisotropic distortion modes. The latter mode
turn out to be responsible for many interesting effects s
cific to nanotubes. Appropriate empirical expressions forU
will be built that are based entirely on the symmetry requi
ments, in the spirit of the continuum mechanics, and conn
tions being established between the microscopic displa
ments picture and the macroscopically observable distort
~Sec. II!. For Eel we use a tight-binding model ofp-electron
bands1 whose parameters can be affected by the lattice
tortions ~Sec. III!. When a strain is applied to the undope
system, the deformationD occurs so as to minimizeU and
this results in modulation of some electronic paramete
such as the gap energy10 ~Sec. IV!, and, possibly, in a strain
‘‘along another direction’’~Sec. VI!. Conversely, if charges
are added to the system, the lattice will try to accommod
them with the deformationD that minimizesE ~Sec. V!. For
©2003 The American Physical Society15-1
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illustrative purposes, some parametrization will be used
carry out numerical calculations.

II. MACROSCOPIC AND MICROSCOPIC
2-d DISTORTIONS

Elastic in-plane deformations of the graphene sheet p
vide a natural basis for the effective 2-d description of nano-
tube deformations. An arbitrary 2-d crystal structure may
have many atoms in the unit cell~graphene has two atoms!
and, correspondingly, many deformation degrees of freed
From the standpoint ofuniform macroscopic distortions
however, ‘‘internal’’ degrees of freedom are disguised a
the only static observable is the deformation of the unit c
as a whole or, alternatively, of the triangle built of the prim
tive lattice vectors and assumed periodically repeated.
specify the 2-d deformationof the triangle, one needs thre
parameters, precisely as many as is needed to specify
uniform in-plane deformations of a 2-d elastic continuum.
Let us choose a convenient 2-d system of coordinates with
axesx and y ~axes in Fig. 1 are related to the underlyin
hexagon structure!. With overall translation and rotation ex
cluded, a general linear~uniform! deformation@displacement
(dx,dy) of the point (x,y)] of the elastic continuum can b
described as

S dx

dyD 5S g01gx hx

hx g02gx
D S x

yD . ~2!

FIG. 1. Four carbon atoms of the repeating motif are depic
along with the three types of bondsda , db , and dc . The carbon
atom displacements corresponding to the defined anisotropic di
tion modes are schematically shown in the four panels. The na
tube axis is at the anglef to thex axis.
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Parameterg0 corresponds to isotropic distortions, while p
rametersgx andhx correspond to anisotropic distortions an
are components of the pure shear strain tensor.

In nanotubes, there would also be another natural sys
of coordinates related to the nanotube axis~in Fig. 1 thex
axis is at anglef.0 to the nanotube axis!. With the coordi-
nates rotated as

S x1

y1
D 5S cosf 2sinf

sinf cosf D S x

yD , ~3!

g0 remains invariant while shear components are known
transform as

S g

h D 5S cos 2f 2sin 2f

sin 2f cos 2f D S gx

hx
D .

Macroscopic deformations of the tube as a whole are defi
and measured with respect to the tube axis. The three pa
eters (g0 ,g,h) translate into the observable longitudinal d
mensional changedL/L5g i5g01g, the transverse chang
dR/R5g'5g02g, and the torsional deformationdf l
5h/pR ~the latter is in turns per unit length,R being the
tube radius!.

For a full description of the 2-d deformation of the
graphene unit cell with two atoms, one however needs
parameters. We consider the deformations in terms of ra
~bond-stretching: da , db , dc for, respectively, bonds
da , db , dc) and tangential~bond-bending:r a , r b , r c) dis-
placements of carbon atoms, as should be clear from Fig
Let us express those displacements as linear combination
the correspondingisotropic(S, Q) andanisotropic(A1 , A2)
and (B1 , B2) distortion modes, e.g.,

da5S/32A1/2A32A2/2,

db5S/31A1 /A3, ~4!

dc5S/32A1/2A31A2/2

for radial displacements and similarly forr a , r b , and r c
throughQ, B1, andB2. It is clear, however, that theQ mode
is not a deformation mode; it describes the overall rotation
the triangle, which is irrelevant for our purposes. Similarly
the exclusion of the translations out of consideration, we
Q50 in agreement with the definition~2! @nonzeroQ would
in general require two different off-diagonal elements of t
transformation matrix in Eq.~2!#. The five modes left can be
used as five convenient necessary parameters. The isot
modeSdescribes the overall size change of the triangle. T
anisotropic distortionsAi andBi result in the triangle shape
modifications indicated in Fig. 1. It is also useful to intr
duce the rotated anisotropic deformation modes (Ai , A')
and (Bi , B') defined with respect to the nanotube ax
They respectively relate to (A1 , A2) and (B1 , B2) as
(x1 ,y1) to (x,y) in Eq. ~3!.

From Fig. 1 and from the corresponding definitions, o
can obtain the following compact expressions for the mac
scopic deformations:
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d•g05S/3,

d•g5~B2A!/2A3, ~5!

d•h5~C2D !/2A3,

where

A5Aicos 3f1A'sin 3f,

B5Bisin 3f2B'cos 3f,
~6!

C52Aisin 3f1A'cos 3f,

D5Bicos 3f1B'sin 3f.

The length unitd above stands for the undeformed near
neighbor carbon-carbon bond length, another length uni
be used is the second order carbon-carbon distanca
5dA3. Notice that macroscopic results~5! and ~6! are in-
variant with respect to rotationf→f12p/3 as one should
expect from the symmetry of the hexagon structure.

The elastic energy of the in-plane deformations of
graphene sheet is known to be invariant with respect to
rotation of the 2-d system of coordinates. Using all rotation
ally invariant combinations of the introduced deformati
modes, the harmonic deformation energy per carbon a
can in general be written as

U05
KS

2
S21

KA

2
~Ai

21A'
2 !1

KB

2
~Bi

21B'
2 !

1KAB~AiB'2A'Bi!. ~7!

It is up to ab initio and/or empirical models to establis
numerical values of the elastic constants. In this paper,
will be using some estimates for illustrative purposes. F
instance, a good representation of the elastic propertie
graphene in an empirical force constant model is achieved
including terms up to four near neighbor levels as descri
and referenced in Ref. 1. Using this model, one can exp
the elastic constants in Eq.~7! through the force constant
f i

( j ) , e.g.,

KS5f r
(1)/61f r

(2)12f r
(3)/317f r

(4)/3

for the S mode, and so on. Then, using numerical values
the force constants quoted on p. 169 of Ref. 1, one wo
arrive at the following magnitudes of the elastic constants~in
eV/Å2):

KS57.74, KA54.56, KB57.14, KAB51.21. ~8!

With these numbers,Ai modes turn out to be softer thanBi
modes, and the coupling betweenAi and Bj modes is rela-
tively weak. It is useful to compare relative strengths in E
~8! to the nearest neighbor elastic spring model used in R
7 whereKS5K/6 and KA5K/4: evidently ~8! yields rela-
tively softerAi modes.

For a given macroscopic distortion (g0 ,g,h) of the un-
doped sheet, the microscopic distortion modes adjust so
11541
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minimize the microscopic energy~7!. The resulting rotation-
ally invariantmacroscopicdeformation energy per carbon

Um
0 5

C0

2
g0

21
Csh

2
~g21h2!, ~9!

where the effective elastic energiesC059d2KS and Csh
512d2Zab /zab .11 While going from Eq.~7! to Eq. ~9!, one
can also answer an interesting question: When are displ
ments ofall atoms in the unit cell of graphene describab
using a 2-d continuum? For this to happen, the optimal d
tortion modes should satisfyAi5B' andA'52Bi , which
requires thatKA5KB . With the numbers in Eq.~8! and d
51.42Å, the elastic energies areC05140.5 eV andCsh
581.1 eV. The effective 2-d Poisson ratio n5(C0
2Csh)/(C01Csh) turns out to be 0.27, close to the earli
reported12 value within the same force constant model, a
the in-plane stiffness per carbon isC5C0Csh/(C01Csh)
551.4 eV.

When the graphene sheet is wrapped to form a car
nanotube, the effective 2-d elastic description would underg
certain changes. From the results ofab initio
calculations,13,14 it is known that even in the ground state
nanotubes the equilibrium bond lengthsda , db , anddc can
differ from each other and are different from the graphe
bond lengthd. These effects can easily be absorbed in o
description by thinking that the ground states of nanotu
are somewhat deformed~with respect to graphene!. It should
be understood that the deformation is in general anisotro
~the rotational invariance is lifted since a new selected dir
tion would now exist—the nanotube axis!. Using general
symmetry considerations,15 one can show that the deforma
tion of the ground state can be described by th
R-dependent distortion parameters (SR ,AR ,BR) so that

Ai5ARcos 3f, A'5ARsin 3f,

Bi5BRsin 3f, B'52BRcos 3f. ~10!

Note that Eqs.~10! are required by the symmetry. That i
extraction of the functions (SR ,AR ,BR) from ab initio
data13,14 for, say, armchair nanotubes would be sufficient
describe the deformed ground states for the tubes of arbit
chirality. In this paper we do not pursue these numerical
to theab initio data.

When using expression~7! for the elastic energy, we now
understand that the deformation modesS,Ai , . . . used there
are calculated relative to their values in the correspond
ground states. In addition to this, however, the curvature
nanotubes of a finite radiusR also modifies the very elasti
couplings. First, the elastic constantsK in Eq. ~7! can be
renormalized with corrections}1/R21•••. That is, all coef-
ficients in Eqs.~7! and~9! and quantities derived from them
are in generalR dependent. Second, the rotational invarian
of the elastic energy is also lifted. Using the same symme
considerations,15 one can show that this axial symmet
breaking in the harmonic approximation will occur in th
form U5U01dU,
5-3
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dU5KSA
a SA1KSB

a SB1
KA

a

2
~Ai

22A'
2 !1

KB
a

2
~Bi

22B'
2 !

1KAB
a ~AiB'1A'Bi!, ~11!

where definitions~6! have been used and anisotropy para
eters Ka}1/R21•••. While the isotropic deformation en
ergy ~7! is already sufficient for description of some of th
effects, the elastic anisotropy expressed in Eq.~11! is essen-
tial for others, as discussed in Sec. VI.

III. SINGLE ELECTRON SPECTRUM

We consider the electron kinetic energy to arise both fr
nearest neighbor~NNH! and second neighbor~SNH! hop-
ping between carbon atoms as depicted in Fig. 2. The h
ping integrals are modulated by the lattice distortions prov
ing thus the electron-lattice interaction.~An additional effect
would, e.g., follow from the modulation of Coulomb repu
sion between extra charges.! As is customary, a linear modu
lation with distances is assumed. So NNH integrals
modulated as

ta5t02ada , tb5t02adb , tc5t02adc , ~12!

wheret0 is the NNH integral on the undistorted lattice anda
the NNH coupling constant. Similarly, SNH integralst1 , t2,
andt3 are modulated with the SNH distances, the modulat
strength given by the SNH coupling constantb. We expect
b/a;0.1. Expressing changes of distances in terms of in
duced distortion modes~4! will yield the corresponding cou
pling constants for each of the modes, as done below. W
SNH included, the charge conjugation symmetry of the h
filled system is broken and the band energies have the f

e6~kW !5t~kW !6j~kW ! ~13!

for the conduction and valence bands, respectively, wh
j(kW ) originates from the NNH andt(kW ) from the SNH, and
kW5(kx ,ky) is the 2-d dimensional wave vector. With th
definitions of Fig. 2,

t~kW !522t1coskxa22t2cosk2a22t3cosk1a, ~14!

FIG. 2. NNH and SNH integrals, whose modulation is tak
into account.
11541
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j2~kW !5ta
21tb

21tc
212tatccoskxa12tatbcosk2a

12tbtccosk1a, ~15!

wherek65(kx6A3ky)/2. For not too small diameter nano
tubes the low excitation energy region is always close to
special, ‘‘Dirac,’’ points in the momentum space, where t
gap between the valence and conduction states of the~iso-
tropic! graphene spectrum@as determined by Eq.~15!# van-
ishes. Then one can use expansions of the exact band
gies~14! and~15! in momenta around the special points a
in ~small! deviations of hopping integrals around their ba
values. For certainty, we choose the special pointKW

5(4p/3a,0) and, from now on, all momentakW5(kx ,ky)
will be measured with respect to that special point (kx
→4p/3a1kx). @It should be clear that the other inequivale
special point could beKW 85(24p/3a,0), which, in view of
the even dependence of spectrum~13! on electron quasimo-
menta, results just in a factor of 2 taken into account bel
in the summation over the relevant electron states.# After
some exercise, one reduces Eqs.~14! and ~15! to

t~kW !/t05t0~kW !/t01A3~b/a!$Ŝ13@kx~Â11B̂2!

1ky~Â22B̂1!#a/4%, ~16!

j2~kW !/t0
25~312Ŝ22A3Â1!~kxa2Â1!2/4

1~312Ŝ12A3Â1!~kya2Â2!2/4

1A3Â2~kxa2Â1!~kya2Â2!. ~17!

Here t0 is the equilibrium value oft and we introduced
dimensionless variablesŜ52aS/t0 , Â152aA1 /t0 , Â2

52aA2 /t0 , B̂152aB1 /t0 B̂252aB2 /t0 to save space in
formulas~the same would be used for rotated modesAi and
A' . Applicability of expansions~16! and ~17! requireskxa
!1 andkya!1 as well as relatively small distortion ampl
tudes. In view of this and the smallness ofb/a, one can
safely neglect the terms in Eq.~16! that are proportional to
ka!1.

For the (N,M ) tube, the chiral anglef ~Figs. 1 and 2! is
defined through sinf5(N2M)/2Ch , where the dimension-
less tube circumferenceCh5(N21M21NM)1/2 ~it is related
to the tube radius as 2pR5aCh). We considerf belonging
to the interval between 0~armchair tubes! and p/6 ~zigzag
tubes!. The anglef is complementary to the chiral angleu
as defined in Ref. 1:f5p/62u. Of extreme importance is
the divisibility of N2M by 3, the ‘‘remainder’’q50, 61 is
introduced by

N2M53m1q, ~18!

where m is the appropriate integer. The electron mome
can lie only on a set of quantization lines, the one m
closely approaching the special point is described by

kxsinf1kycosf522pq/3Cha5K0 /a. ~19!
5-4
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According to Eq.~17!, the lowestj-energy in the equilibrium
system isj05t0(3K0

2/4)1/25uqut0d/2R, finite for semicon-
ducting nanotubes (uqu51), and zero for metallic ones (q
50).

One-dimensional~momentumk) ‘‘ j bands’’ along the
quantization lines are obtained from Eq.~17! and have the
familiar Dirac form

j2~k!5D21v i
2k2, ~20!

where the gap parameter

D5v'uK02Â'u/a ~21!

and the effective Fermi velocities

v i5vF2at0Â/2, v'5vF1at0Â/2. ~22!

HerevF /at05A3/21Ŝ/2A3, and the dimensionlessÂ is de-
fined through dimensionlessÂi andÂ' as in Eq.~6!. Higher
lying energy bands are evidently also described by Eq.~21!,
where theq used in the definition ofK0 would be ‘‘dis-
placed’’ by 3m, wherem is an integer. If, e.g., the lowes
energy band corresponds toq521, the first higher lying
band would be withq52, still the next withq524, and so
on.

The curvature affects the effective 2-d description of the
electron spectrum of nanotubes. As we discussed in Sec
even in the ground states, nanotubes are deformed with
spect to graphene. In our applications, it means that all
tortion modes in Eqs.~16! and ~17! and further on would
have to be displaced likeS→SR1S, Ai→ARcos 3f1Ai ,
etc. In addition, the curvature changes the overlap
p-orbitals which can be represented as another source o
effective external distortionAR→AR1Ae , SR→SR1Se , Se

5A3Ae , so that bonds along the tube axis do not chan
while the other bonds change their length appropriately.
elegant analysis of the modulation of the NNH by curvatu
was, e.g., given by Kane and Mele,16 from their work we
deduce the valueAe5t0p2/4A3aCh

2 . In our calculations be-
low, we will be taking into account only the anisotropy ter
Ae as responsible for curvature-derived gaps in qua
metallic tubes.

IV. MODULATION OF THE GAP BY DEFORMATIONS

The modulation of the gap energyEg52D by the longi-
tudinalg i and torsionalh strain is the effect whose extensiv
analysis was given in Ref. 10, where references to ea
work can also be found. Here we discuss it within our fram
work, indicating differences with the treatment of Ref.
and giving a simple physical picture for the peculiar featu
of the effect.

Equation~21! shows how the gap parameterD is modu-
lated by the bond-stretching modesS,Ai , and A' . When
strainsg i and/orh are applied, they cause lattice distortio
so as to minimize the elastic energy~7!: in general both
bond-stretching and bond-bending modes are excited bu
latter do not affect the gap. The isotropic displacements
simply determined byS53g0d, while the anisotropic dis-
11541
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placements are related to the shear strain components

Ai52A3za~g cos 3f1h sin 3f!d,
~23!

A'52A3za~g sin 3f2h cos 3f!d.

Using equilibriumg05(12n)g i/2 andg5(11n)g i/2, it is
now straightforward to find the gap modulationdEg of semi-
conducting tubes (q561) at small strains:

dEg

ad
5

p~n211~11n!za!

A3Ch

g i ~24a!

13qza@~11n!g isin 3f22h cos 3f#/2. ~24b!

Apart from the difference in notation, Eq.~24b! agrees with
the result of Ref. 10 on the chiral dependence of the ma
modulation effect. Noteworthy is the appearance of the f
tor za in Eqs.~23! and~24!, which would be 1.28 with num-
bers ~8!. Analytical calculations of Ref. 10 assume that t
lattice deforms under strain as if it was a 2-d elastic con-
tinuum. The factorza accounts for the difference caused b
the actual elastic properties of the lattice, this factor becom
unity11 when the difference effectively disappears. In the e
treme case ofKB5KAB50, the factorza becomes 0, and the
largest part of the gap modulation~24b! disappears becaus
the shear deformation would be realized only through
bond-bending modes. In the opposite extreme case ofKB
5`, all the shear occurs through bond-stretching modes
the factorza52. Reference 10 provides numerical results
modulation for a specific choice of the coupling constanta.
Equation~24a! reflects a correction}1/R coming from the
modulation of the Fermi velocity in Eq.~21!.

The notable feature of Eq.~24b! is the factorq which
leads to oscillations of the responses of the semiconduc
tubes as a function ofN2M . Consider, e.g., zigzag tube
that have the strongest response to the longitudinal str
The longitudinal extension of the~10, 0! tube with q51
results in a gap increase, while the extension of the~11, 0!
tube with q521 results in a gap decrease. We find tha
very transparent physical picture can be offered to und
stand this fascinating behavior. Let us calculate the contri
tions to the gap energy of the semiconducting tubes com
from different types of nearest neighbor carbon-carb
bonds, i.e., the matrix elements of the corresponding part
the Hamiltonian at the conduction band minimum wave v
tors @kxa5K0sinf, kya5K0cosf; see Eq.~19!#. The prob-
lem is equivalent to finding the phase factors for three v
tors representing the three types of bonds that maximize
conduction-valence band splitting. One readily d
rives that the bondsdi contribute 2cos(w1fi) to D/t0,
where w52qp/22f, fa52p/31K0sin(f2p/6)/A3, fb

5K0cosf/A3, andfc522p/32K0sin(f1p/6)/A3. Table
I gives numerical examples of the bond contributions
four tubes. We will call ‘‘bonding’’ those bonds whose con
tribution is negative and ‘‘antibonding’’ those whose cont
bution is positive. By definition, an expansion of the bondi
bonds increases the gap, and their contraction decrease
gap; effects for the antibonding bonds are the opposite. Ta
5-5
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I illustrates a dramatic difference of the bonding patterns
tubes withq51 and21. Indeed, the bondda along the tube
axis of the zigzag tubes turns out to be bonding for the~10,
0! tube and antibonding for the~11, 0! tube, leading to ef-
fects in agreement with Eq.~24b!. By the same token, it is
clear that a twist of a certain direction would result in opp
site effects on the gap for tubes~10, 5! and ~10, 6!.

For quasimetallic tubes (q50), the gap modulation is
given by dEg5A3as0A' , where s05sin(Aesin 3f1A')
with A' from Eq.~23! andg5(11n)g i/2. In the absence o
the curvature-induced gap (Aesin 3f50), of course, strains
could only produce a finite gap. With the curvature-deriv
gap in place, there would be a range of relatively sm
strains where the gap can be decreased. We note that a
longitudinal extensiong i.0 particularly leads to such a
effect. It is intuitively clear that the curvature makes hoppi
integrals ‘‘perpendicular’’ to the tube axis smaller than tho
‘‘parallel’’ to the axis. The curvature-derived gap would b
decreased if all the hopping integrals become more eq
brated, and for this one needs a longitudinal extension an
transverse contraction.

V. CHARGE-INDUCED DISTORTIONS

Suppose one addsdn extra electrons (dn,0 for holes!
per carbon atom to a SWNT. How would interatomic d
tances be affected? Here we study the contribution to b
length changes arising from the modulation of electron h
ping integralst by lattice distortions. The basic illustration
very simple: if an extra electron or hole is added to a ha
filled two-site system, this would cause an expansion of
intersite bond bydd5a/K, whereK is the elastic constan
and the hopping integral is modulated asdt52add. We
will show that this relaxation mechanism can produce s
prisingly different results for carbon nanotubes having diff
ent values ofN andM.

To evaluate the lattice deformation to accommodate a
tional charges on the nanotube, we need to know the en
Eel of extra charges as a function of the distortion coor
nates. It is well known that one-dimensional electron-phon
systems can be unstable with respect to the Peierls distor
and exhibit the formation of nonuniform polaronic disto
tions. Fornot very smallcarbon nanotubes, however, the
effects seem practically irrelevant. The estimated transi
temperatures~e.g., Ref. 17! and polaron binding energies17,18

are on the order of 1 K or smaller. So even quite low te
peratures in excess of those estimates are sufficient to
vent nonuniform charge distributions. Of course, quant

TABLE I. The bonding patterns for four tubes. The contrib
tions from bondsda , db , anddc are normalized so that their sum
gives the gap parameter in units oft0.

Tube da db dc D/t0

~10,0! 21.0 0.588 0.588 0.176
~11,0! 1.0 20.415 20.415 0.169
~10,5! 0.954 20.1 20.715 0.139
~10,6! 20.916 0.227 0.818 0.128
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fluctuations also act to render polaronic states unstable. W
a uniform distribution of excess charges over the lattice s
and relatively low temperatures, it will be safe to assume t
electrons or holes added to the system are accommodat
the band states of the lowest available excitation energies~In
fact, the authors of Ref. 18 in a recent publication19 also used
the band states to be filled by extra charges.! The lattice
displacements affectEel through the variation of the ban
parameters, as discussed in Sec. III.

With only one ~with account of degeneracy! electronic
band being filled, the variable part of the electronic ene
per carbon takes the form

Eel5A3~b/a!Sdn1~1/f !E
0

dk

j~k!dk, ~25!

where only one practically non-negligible term from Eq.~16!
is left. The coefficientf relates the boundarydk of the occu-
pied states in the momentum space to the charge injec
level: dk5 f udnu, f 5pCh /aA3.

The lattice energy is given by Eq.~7!, and the resulting
distortion pattern is obtained by minimization of the tot
energy ~1!. Equation ~25! is independent ofBi distortion
modes which then acquire a finite value only through
elastic coupling toAi modes in Eq.~7!. Substituting those
derived values in Eq.~7! then leads to the effective lattic
potential energy in terms ofS andAi modes only:

U5KSS2/21KA8 ~Ai
21A'

2 !/2, ~26!

where KA85KA2KAB
2 /KB . With parameters ~8!, KA8

54.35 eV/Å2. The dimensional changes~5! then would be

d•g52uA/2A3, d•h5uC/2A3 ~27!

where the correction factoru512KAB /KB50.83 if ~8! is
used.

As an instructive example, we first analyze the effe
linear in dn. Then the second term in Eq.~25! reduces to
Dudnu. Let us neglect all the curvature effects for this illu
tration. The minimization of the total energy is trivial, an
yields the optimal distortion patterns

KSS

udnu
56A3b1

pauqu

3A3Ch

, ~28a!

KA8Ai

udnu
5

pauqu
3Ch

cos 3f, ~28b!

KA8A'

udnu
5

pauqu
3Ch

sin 3f1A3aq/2. ~28c!

This corresponds to the following macroscopic distortion

g05
1

A3KSd
S 6b1

pauqu
9Ch

D udnu, ~29a!
5-6
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g52
ua

4KA8d
S puqu

6A3Ch

1q sin 3f D udnu, ~29b!

h5
ua

4KA8d
q cos 3fudnu, ~29c!

upper and lower signs in Eqs.~28! and ~29! stand for elec-
tron and hole doping.

Of course, the most interesting are the proportional tq
terms in Eqs.~29b! and~29c! that lead to responses oscilla
ing as a function ofN2M . For semiconducting tubes, thes
terms are dominating, and they establish a large scale an
ropy of the axial (g i5g01g) and radial (g'5g02g) re-
sponses. The electron-hole symmetric effect here is inv
to the gap modulation effect discussed in the previous s
tion: extra charges at the band extremum want to decre
their energy by decreasing the gap. The bonding picture
lustrated in Table I helps to understand the peculiar osc
tions and anisotropy. So for the~10, 0! tube (q51, 3f
5p/2) the bonds along the tube axis are bonding; they th
fore shrink upon charge injection. The bonds ‘‘perpendic
lar’’ to the tube axis are antibonding and they would expa
This picture reverses for the tube~11, 0! with q521, in full
agreement with Eq.~29b!. We note that these peculiar effec
in Eqs.~29b! and~29c! result exclusively from the excitation
of the A' mode~28c! that directly modulates the gap~21!.

Figure 3 displays equilibrium deformations of a series
nanotubes for the electron doping leveldn50.5% calculated
through a numerical optimization of the total energy. T
figure shows not only the linear effects@Eqs. ~29!# but also
the interplay of effects coming from the curvature and
filling of the electron states above the band edge. The app
ance of a small gap}Ae drastically changes the responses
quasimetallic nanotubes for very low doping levels. Ho
ever, the role of a small gap quickly diminishes upon
crease of the doping level. For calculations, in addition to
elastic constants~8!, we used electronic parameters:a
55 eV/Å andb/a50.2. The results are practically indepe
dent of the value oft0. The salient qualitative features—a
oscillating character of the responses as a function of
nanotube geometry and a large scale anisotropy of the
mensional changes—are clearly seen.

A further increase of the injection level leads to charg
starting to fill in the higher lying energy bands. The lowe
critical densities are found asdnmet52A3/Ch

2 , dnsem

52/Ch
2 . This yields, e.g.,dnmet.1.2% for the~10, 10! nano-

tube, anddnsem.1.7% for the~11, 0! nanotube. The onset o
the filling in the next higher lying bands leads to sudd
changes~they would be smoothed by finite temperatures! in
the responses—obviously, a distortionA' that decreases ga
~21! for the first band~say, with q51) would increase the
gap for the second band~with q522). ‘‘Conflict of inter-
ests’’ of different bands are studied with the single band
tegral in Eq.~25! replaced with( i*0

dkij i(k)dk over multiple
bandsi with appropriate boundariesdki . In Fig. 4 we show
calculatedg i for a series of carbon nanotubes as a funct
of the injection level. Sharp changes in the responses
11541
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clearly seen for the tubes~16, 0! and ~17, 0!, whose critical
densities are within the displayed injection range. In the
simplified calculations, we neglected possible changes
critical densities anddki caused by the lattice deformation

Within the same model, the dimensional response
graphite would be a smooth curve20

g05
1

A3KSd
Fbdn1a

2

p S pudnu

3A3
D 3/2G , ~30!

while g5h50. In graphite, it is only the isotropic mode tha
gets excited upon charge injection leading to the isotro
expansion/contraction of the lattice. The second neighbor
fect }b in Eq. ~30! provides for charge conjugation symm
try breaking between electron and hole doping, and is
same as in the nanotubes independently of their geom
@Eq. ~29a!#. This term is important to account for th

FIG. 3. Deformations of nanotubes for the electron doping le
dn50.5%. Shown are results for four ‘‘families’’ of carbon nano
tubes: withN511 ~crosses!, 12 ~diamonds!, 13 ~triangles!, and 14
~squares!. The square data points are connected with broken lin
The upper panel shows changes in the nanotube length, the m
panel shows changes in the nanotube radius, and the lower p
shows torsional shear.
5-7
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electron-hole doping asymmetry of graphite intercalat
compounds, as suggested in earlier work.14,21,22Experiments
on electrochemical actuators with carbon nanotubes6 also in-
dicated an asymmetric response. Being linear in the dop
concentrationdn, this term can be dominating for graphi
and quasimetallic tubes withq50 ~at least for the armchai
tubes!. The strong electron-hole asymmetry of the graph
and armchair nanotube responses caused by the modul
of SNH is clearly seen in Fig. 4.

On the other hand, the electron-hole symmetric NN
modulation ~modulation of the Fermi velocity! in graphite
results in the second term in Eq.~30! }a. Similar isotropic
parts are also present in the nanotube responses@see, e.g., the
second term in Eq.~29a!#. They, however, have a differen
functional dependence ondn. It is interesting to see how
those parts converge to the}udnu3/2 behavior of the graphite
with increasing doping and/or with increasing nanotube s
Figure 5 illustrates this convergence as relative deviation
the corresponding parts of the responses. In fact, there
two universal behaviors there: one for metallic tubes and
for semiconducting tubes; the curves within each class tra
form into each other withdn scaling asCh

22 , whereCh is
the tube circumference.

Of course, much larger deviations from the graphite
havior can occur due to anisotropic modes. These take p
even for metallic tubes, but, for semiconducting tubes at
doping levels, the electron-hole symmetric NNH gap mod
lation is especially significant leading to dimensional
sponses that can be substantially larger than graphite’s.
nanotube strains caused by charge injection may general
thought of as ‘‘fluctuating around’’ the graphite respons
exhibiting the sharp transitions described above. The am
tude of the fluctuations and the spacing between them
crease with the size of the nanotubes, gradually approac

FIG. 4. Longitudinal dimensional changes for a series of do
nanotubes as a function of the injection level. Note that in t
figure as well as in Figs. 5 and 6, the injection level is shown
percent (dn50.01 is equivalent todn51%). A positivedn corre-
sponds to electron doping and a negativedn to hole doping.
Crosses are for the~10, 0! zigzag tube, diamonds for the~11, 0!
tube, triangles for the~16, 0! tube, squares for the~17, 0! tube, and
filled circles for the ~10, 10! armchair tube. Lines just connec
the calculated data points. The dashed line shows result~30! for
graphite.
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the graphite response asN,M→`. With the increasing in-
jection level, relative deviations from the graphite curve a
become smaller.

It is the quantization of electronic states in nanotubes t
makes anisotropic distortion modes a prominent feature
the accommodating lattice relaxation. An excitation of t
anisotropic distortion modes causes the macroscopic s
deformations. The anisotropy of the longitudinal and tra
versal responses of nanotubes is one consequence; the
is the torsional deformations. At very low injection level
the behavior of the latter is shown in Eq.~29c!, numerical
results for higher doping levels are shown in Figs. 3 and
As we discussed, the onset of filling in higher energy ban
causes sudden changes in responses, clearly seen in Fig.
twisting deformations.

For numerical calculations in this paper, we chose to
crease the parameterb/a because of the increased stiffne

d
s

FIG. 5. Relative deviations of the isotropic NNH part of nan
tube responses (gNT) from that of graphite (gGR) as a function of
the charge injection level. Results are shown as follows: with
solid line for the~10, 10! tube, with the dashed line for the~11, 0!
tube, with the dash-dotted line for the~15, 15! tube, and with the
dash-dot-dotted line for the~17, 0! tube.

FIG. 6. Torsional shear deformations for a series of elect
doped chiral semiconducting nanotubes as a function of the in
tion level. Crosses are for the~10, 5! tube, diamonds for the~10, 9!
tube, triangles for the~12, 7! tube, squares for the~13, 6! tube, and
x’s for the ~14, 6! tube. Lines here just connect the calculated d
points.
5-8
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KS , as compared to parameters used in Ref. 7, and in o
to keep the results for graphite closer to experimental d
~see, e.g., a compilation in Ref. 14!. Of course, numerically
results are affected by the choice of parameters; however
salient qualitative features distinguishing the behavior
nanotubes from graphite are quite robust. We hope th
more accurate parametrization of the model can be achie
by fitting to results ofab initio calculations, such as in Re
14, and to experimental data, which is not attempted her

The behavior discussed above arises at low temperat
in the single-electron picture. Thermal excitation of charg
into higher lying energy bands will likely be bringing nan
tube responses closer to that of the graphite’s, as wel
decreasing the sharpness of transitions. However, since
separation between energy bands is large compared with
room temperature thermal energies for not-too-large tub
we expect the thermal corrections to be relatively sm
Also, superimposed on the discussed effects can be a
form expansion}dn2 coming from the Coulomb repulsio
of extra charges, whose magnitude depends on the posi
ing of counterions and dielectric properties of the mediu
Coulombic intratube repulsion may dominate actuation wh
charge injected is large. This repulsion will, however, be
sent in the system where extra electrons and holes are i
duced as a result of photoexcitation and then quickly rela
the band edges and spend some time there. Evaluation o
e-e correlation effects would require further studies.

VI. STRETCH-INDUCED TORSION

In this section we deal with purely mechanical couplin
conversion of the tensile strain into torsion,8 the effect very
familiar for ordinary helical springs. In our effective 2-d
treatment, the tensile longitudinal deformation is describ
by the straing i and the torsiondf l5h/pR by theh com-
ponent of the shear tensor. The problem of the stre
induced torsion can then be posed as finding the equilibr
h for a giveng i . It is quite clear that in an isotropic syste
with rotationally invariant elastic energy@Eq. ~9!#, the result-
ing optimal deformation for a giveng i would haveh50 and
the stretch-induced torsion would not occur in the cor
sponding tube. The effective 2-d system has to beaniso-
tropic for the optimalh not to vanish. Also, the system has
have lifted the reflection symmetry around the nanotube a
Um(g0 ,g,h)ÞUm(g0 ,g,2h), we can relate this tochiral-
ity of the system. Nanotubes readily give examples of s
systems.

Two main questions are to be clarified.~1! How doesh
depend on the tube radiusR? General scaling arguments fo
not-too-small tubes with short-range elastic interactions
quire h to be an even function of 1/R: h5h01h2 /R2

1h4 /R41•••;h0 here reflects the magnitude of the ba
elastic anisotropy of the unwrapped sheet and equals to
when the latter is elastically isotropic, whileh2 ,h4 , . . . are
curvature derived effects.23 Correspondingly, the large2R
scaling for the systems with bare anisotropy~like type-II
BC2N tubes9! is df l}1/R and for the systems with
curvature-derived anisotropy~like carbon nanotubes! is df l
}1/R3.24 ~2! How doesh depend on the relative orientatio
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of the tube axis, or on the chiral anglef? This dependence
relates to the symmetry properties of the unwrapped sh
and/or to the symmetry breaking introduced by the wrappi

Let us study the latter for carbon nanotubes. One can
the optimized microscopic distortions for a given macr
scopic deformation (g0 ,g,h) to derive the following macro-
scopic elastic anisotropy per carbon from Eq.~11!:

dUm5C0
ag0g1

Csh
a

2
@~g22h2!cos 6f12gh sin 6f#.

~31!

The functional form@Eq. ~31!# is required by the symmetry
of the axial anisotropy on a hexagonal background and
be also obtained directly using the same symme
considerations.15 Note that five anisotropy parameters of E
~11! have been reduced to only two. For small anisotropy,
effective anisotropy energies are found asC0

a53d2(zbKSB
a

2zaKSA
a ) andCsh

a 53d2(za
2KA

a2zb
2KB

a12zazbKAB
a ). Both en-

ergies are curvature derived and scale as 1/R21•••.
Optimizing Um5Um

0 1dUm for a giveng i and small an-
isotropy, we find the equilibriumh shear as

h/g i52~11n!Csh
a sin 6f/2Csh. ~32!

Equation~32! indicates that maximum torsion for tubes
the same radius occurs at the chiral anglef5p/12, in the
middle between armchair and zigzag tubes, and vanishe
achiral tubes, in agreement with results of molecular dyna
ics simulations.8

We now want to relate the curvature-derived stretc
induced torsion in Eq.~32! to another effect, the chirality
dependence of the stiffness of nanotubes that was discu
in Refs. 25 and 13. With the sameUm we calculate anisot-
ropy corrections to the longitudinal stiffness as

]2Um

]g i
2

5C1
~12n2!

2
C0

a1
~11n!2

4
Csh

a cos 6f, ~33!

whereC is the contribution coming fromUm
0 and discussed

in Sec. II. All C energies in Eq.~33! are R dependent. The
coefficient Csh

a in ~33! that provides for a chirality depen
dence is the same that determines the torsional shear in~32!.
Eq. ~33! predicts a monotonic dependence of the stiffness
the chiral angle between 0 andp/6, which was indeed found
in empirical calculations.25 Comparing Eq.~33! to results of
Ref. 25, we conclude thatCsh

a .0 and is substantial in the
sense that its magnitude is comparable to the overallR de-
pendence of the longitudinal stiffness. The absolute mag
tude of these effects, however, may strongly depend on
details of the empirical model used for calculations. Ref
ence 25 found very significant variations of the stiffness w
the radius of nanotubes when using the Tersoff interato
potential and much smaller with the Brenner potential;ab
initio calculations13 also indicate a weakR dependence of the
stiffness. Molecular dynamics simulations of Ref. 8 yie
5-9
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;0.01 for the ratio~32! for the ~10, 5! tube. The direction of
the twist found8 agrees with the sign ofCsh

a deduced from the
stiffness calculations.25

One could expect a much larger stretch-induced tors
effect in the tubes which are elastically anisotropic already
the unwrapped sheet state. An example of such may
type-II BC2N tubes~see Fig. 7!, where an anisotropy is ex
pected by virtue of the different interatomic interactions b
tween different types of atoms. We therefore restrict our
tention to theh0 term. As is clear from Fig. 7, the symmetr
element left on the parent sheet is the reflection around
AB axis. Using this as a general symmetry constraint,
derives the anisotropic part of the elastic energy as

dUm5C0
ag0~g cos 2f11h sin 2f1!

1
Csh

a

2
@~g22h2!cos 4f112gh sin 4f1#, ~34!

where f15f2p/6 and C0
a and Csh

a are some anisotropy
energies. OptimizingUm now for a giveng i and small an-
isotropy leads to the following chiral dependence of the
fect:

h/g i52@~12n!C0
asin 2f11~11n!Csh

a sin 4f1#/2Csh.

~35!

It follows from Eq. ~35! that the torsional shear vanishes f
f5p/6 andf52p/3, that is, along respectivelyAB andOB
vectors in Fig. 7, as one should expect. In addition, the s
tem may have another couple of such directions depen
on the anisotropy parameters. The latter determine the
and magnitude of the torsion. Some information on ela
properties of BC2N tubes is available fromab initio
calculations26 but not sufficient for us to make estimates.

Torsion of nanotubes can also be caused by hydrost
like forces that would result in the isotropic lattic
expansion/contraction in the absence of the anisotropy.
can find equilibriumh for a giveng0 describing the isotropic
effect. With the curvature-derived anisotropy energy@Eq.
~31!# of carbon nanotubes, a finiteh appears only in the
second order of the anisotropy parameter,

h/g05~C0
aCsh

a /Csh
2 !sin 6f,

FIG. 7. Element of the type-II BC2N tube structure with four
atoms in the unit cell. Solid circles denote C atoms while large
small open circles denote respectively N and B atoms. See R
for details of the full structure.
11541
n
n
be

-
t-

e
e

-

s-
g

gn
ic

ic-

ne

and, therefore, is expected to be minuscule. In contrast,
inherent anisotropy energy@Eq. ~34!# of BC2N tubes leads to
a finite effect already in the first order,

h/g052~C0
a/Csh!sin 2f1 ,

and could be observable.

VII. SUMMARY

We have developed a simple framework for an effect
description of the static lattice deformations for the hexa
nal atomic structure of carbon nanotubes, as well as of
actuation responses related to those deformations. For s
walled nanotubes of arbitrary geometry, we analyzed dim
sional and torsional deformations caused by charge injec
and the torsional rotations induced by stretching. The dim
sional changes induced by charge injection are the basis
carbon nanotube electromechanical actuators~artificial
muscles!. Since the predicted actuation is a sensitive funct
of structure when the amount of charge injection is sm
these actuation results may be important for optimization
nanotube actuators for targeted applications. Howe
present assemblies of many nanotubes, such as long fi
and sheets, are polydispersed in nanotube type—so an
age response is likely to be obtained which is more graph
like.

Shear~anisotropic! deformations play an important rol
for individual nanotubes leading to large and fascinating
viations from the behavior of graphite. It has been reco
nized that anisotropic deformations can introduce symme
breaking16 and modulate the gap energy10 in nanotubes. We
have shown that charge injection can conversely resul
shear deformations that would significantly effect the p
duced dimensional changes. Charge-induced strains exhi
strong ‘‘oscillatory’’ dependence on the nanotube geome
(N,M ). Deviations from the charge induced strain of grap
ite are predicted to be particularly large for semiconduct
tubes at low injection levels. A large anisotropy of dime
sional changes is expected, which may lead, e.g., to a
creasing diameter and increasing length upon charge in
tion. For the same sign of carrier injection, some tubes m
experience a longitudinal expansion and others a contrac
A similar oscillatory dependence is also predicted for t
charge-induced torsional twists. Even the electronic ba
structure of the nanotubes can reveal itself through~sharp!
changes of the actuation responses as a function of
charge injection level. We found that the peculiar oscillato
behavior of the semiconducting tubes’ responses can be
ily understood in terms of the bonding pattern, near the b
minima, which changes withN2M . Dimensional changes in
the fiber direction during charge injection can be most
hanced for semiconducting zigzag tubes. On the other h
charge-induced torsional rotations have the largest ma
tude for chiral semiconducting nanotubes.

The curvature-induced isotropy breaking of elastic int
actions in carbon nanotubes also gives rise to the stre
induced torsional rotations about the nanotube axial dir
tion. We showed that this stretch-torsional coupling may

d
9
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enhanced using chiral nanotubes in which the anisotrop
elastic interactions is increased through substitution of c
bon atoms.

Quantitative predictions of our model depend on the v
ues of several parameters, such as effective elastic cons
and electron-lattice interaction constants, for which we u
reasonable estimates. While the magnitude of predicted
fects will be affected by these parameter estimates,
framework both establishes the underlying physics and lik
provides qualitatively reliable trends. A limited comparis
to a set ofab initio data obtained in the context of studies
Ref. 14 has been favorable, but showed both similarities
differences. It is remarkable that the symmetry of inter
tions in nanotubes imposes very definite requirements on
,
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chirality dependence of the effects we discussed. A par
etrization of our model using detailedab initio calculations
and experimental results for graphite and armchair or zig
nanotubes will likely permit a further refinement of calcul
tion outputs for nanotubes having any chirality.
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