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Artificial light and quantum order in systems of screened dipoles
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The origin of light is an unsolved mystery in nature. Recently, it was suggested that light may originate from
a new kind of order, quantum order. To test this idea in experiments, we study systems of screened magnetic/
electric dipoles in two-dimension&D) and 3D lattices. We show that our models contain an artificial light—a
photonlike collective excitation. We discuss how to design realistic devices that realize our models. We show
that the “speed of light” and the “fine-structure constant” of the artificial light can be tuned in our models. The
properties of artificial atomébound states of pairs of artificial chargese also discussed. The existence of
artificial light (as well as artificial electronin condensed-matter systems suggests that elementary particles,
such as light and electron, may not be elementary. They may be collective excitations of quantum order in our
vacuum. In our model, light is realized as a fluctuation of string-nets and charges as the ends of open strings
(or nodes of string nets
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[. INTRODUCTION states contain a new kind of order, a topological ofdRe-
cently, we find that even gapless quantum states in two,
What is light? Where light comes from? Why light exists? three, or other dimensions can contain an order that is be-
Every one probably agrees that these are fundamental quegend Landau’s symmetry-breaking thed/We call this or-
tions. But one may wonder if they are scientific questionsder quantum order. A preliminary theory of quantum order is
philosophical questions, or even religious question. Beforaleveloped. We find some quantum orders can be character-
answering these questions and the questions about the quézed by projective symmetry groupPSQ just like
tions, we would like to ask three more questions: What issymmetry-breaking orders can be characterized by symmetry
phonon? Where phonon comes from? Why phonon effsts?group. Using quantum orders and PSG, we classified over
We know that these are scientific questions and we knowt00 different two-dimensiondRD) spin liquids that have the
their answers. Phonon is a vibration of a crystal. Phonosame symmetr{. Intuitively, we can view quantum/
comes from a spontaneous translation symmetry breakingopological order as a description of pattern of quantum en-
Phonon exists because the translation-symmetry-breakingnglements in a quantum stdt&he pattern of quantum
phase actually exists in nature. entanglements is much richer than pattern of classical con-
It is quite interesting to see that our understanding of digurations.
gapless excitation phonon is rooted in our understanding of We know that the fluctuations of pattern of classical con-
phases of matter. According to Landau’s thebphases of figurations (such as latticéslead to low-energy collective
matter are different because they have different broken synmexcitations(such as phononsSimilarly, the fluctuations of
metries. The symmetry description of phases is very powerpattern of quantum entanglement also lead to low-energy
ful. It allows us to classify all possible crystals. It also pro- collective excitations. However, we find that the collective
vides the origin for gapless phonons and many other gaplesxcitations from quantum order can be gapless gauge
excitations? boson&~'° and/or gapless fermions. The fermions can even
However, light, as a (1) gauge boson, cannot be a appear from pure bosonic models on latticé1214.16-18
Nambu-Goldstone mode from a broken symmetry. There- If we believe in quantum order, then the three questions
fore, unlike phonon, light cannot originate from a symmetry-about light will be scientific questions. Their answers will be
breaking state. This may be the reason why we treat lighfA) light is a fluctuation of quantum entangleme(®) light
differently than phonon. We regard light as an elementarycomes from the quantum order in our vacuum, éaglight
particle and phonon as a collective mode. exists because our vacuum contains a particular entangle-
However, if we believe in the equality between phononment(i.e., a quantum ordgrthat supports () gauge fluc-
and light and if we believe that light is also a collective modetuations.
of a particular “order” in our vacuum, then the very exis-  According to the picture of quantum order, elementary
tence of light implies an order not found earlier in our particles(such as photon and electhjomay not be elemen-
vacuum. Thus, to understand the origin of light, we need tdary after all. They may be collective excitations of a bosonic
deepen and expand our understanding of phases of matteystem. Without experiments at Planck scale, it is hard to
We need to discover a new kind of order that can producegrove or disprove if photon and electron are elementary par-
and protect light. ticles or not. However, one can make a point by showing that
After the discovery of fractional quantum HalFQH)  photon and electron can emerge as collective excitations in
effect*® it became clear that Landau’s symmetry-breakingcertain lattice bosonic models. So photon and electron do not
theory cannot describe different FQH states, since thoskaveto be elementary particles.
states all have the same symmetry. It was proposed that FQH The emergent gauge fluctuations frémeal bosonic mod-
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els (also called dynamically generated gauge figldas a the duality between statistical(l) lattice gauge models and
long history. Emergent (1) gauge field has been introduced statistical membrane mode¥s®**6According to the string-

in quantum disordered phase of 1D CPN model’®*?°The  net picture, a gapless gauge boson is a fluctuation of large
U(1) gauge fields have also been found in the slave-bosostring nets and charge is the end of open strings.

approach to spin liquid states of ) and SUN) spin mod- However, we would like to stress that this paper is not
els on 2D square lattice!® The slave-boson approach not about the equivalence between gauge theory and string-net
only introduces a (1) gauge field, it also introduces gapless theory. It is about how to construct realistic local bosonic
fermion fields. However, due to the confinement of tHd)U models that have emergent gauge bosons. We find that to
gauge field in 31D and 1+ 2D, none of the above gauge have low-energy gauge bosons, we do not need to introduce
field and gapless fermion fields leads to gapless gaugg gauge theoryor a string-net theobyat high energies. At
bosons and gapless fermions that appear as low-energygh energies we may have a local bosonic model. To have
phySica.| quasiparticles. Th|S Ied .tO a.n Opinion that tl”(G.)U emergent gauge bosons we S|mp|y need to Choose a Ham”_
gauge field and the gapless fermion fields are not real and agpjan such that the model contains strong string-net fluctua-
just an unphysical artifact of the “unreliable” slave-boson (ions at low energies. These string-net fluctuations naturally
approach. Thus, the key to finding emergent gauge boson 8,4 1o gauge bosons. From the point of view of condensed
not to write down a Lagrangian that contaigauge fields matter physics, such a phase with strong string-net fluctua-

but to show thagauge bosonactually appear in the physical tions represents a state of matter that cannot be characterized

low-energy spectrum. Only when the dynamics of gaug ) ] . S .
field is such that the gauge field is in the deconfined phasegzslgaﬂgsvu tsoSl}j?emlgtsr)é;btrgal(rl:;grat:ti(r)irzyé \{c\rqees\i\g”obrg?rlg ?rlnsour
can the gauge boson appear as a low-energy quasiparticfé.

Thus many researches, after the initial finding of Refs. 9,1 odels.

have been concentrating on finding the deconfined phase of !N the following few sections, we will discuss in detail 2D
the gauge field. and 3D spin models and derive their low-energy effective

One way to obtain deconfined phase is to go to highefh€ory. We will show that these models contain strong string-
dimensions. Th&€P" model at three and higher dimensions Nét fluctuations and emergent gauge bosons. For persons
will have a deconfined phase with emergerm_ljgauge who are interested in eXperimental realization of the Spin
bosons. Following Ref. 10, a gapless deconfinétl) dauge models and experimental probe of artificial light, they can go
boson can also be found in a 8U spin model on 3D cubic directly to Sec. X and XI.
lattice* The model also contains gapless fermions. In 1
+3D, the two kinds of excitations can be separated since
they interact weakly at low energies. We will call these 1 Il. A 2D MODEL

+3D excitations, artificial light, and artificial electron. The L . I
gapless properties of these collective excitations are pro- To construct a realistic model that contains artificial light

tected by the quantum order in the spin ground staté>  @s its low-energy collective excitation, we consider systems
Recently, a simpler and more realistic 3D interacting bosorformed by integral spins. We will consider two cases. In the
model was found to contain an artificial ligttiut not mass- ~ first case spin$ carry magnetic dipole moment=S. In the

less fermions®® Exact soluble models and realistic Joseph-second case, we want the spins to carry electric dipole mo-
son junction arrays that realizetl2D Z, gauge excitations mentd=S. However, due to the time-reversal symmetry in
and related topological ordér can be found in Refs. real molecule, it is impossible for a molecules with a finite
17,18,22—-25. We see that gauge bosons appear naturally aflin to carry an electric dipole moment proportional to the
commonly in quantum ordered stateslo¢al bosonic mod- Spin. But it is possible to have a molecule whose ground

els We do not need to introduce them by hand as elementar§tates are formed biwo spinS multiples:|m, o), with m
particles. =-S5, ...,+S and o*==*=1. We wil call ¢* the

Motivated by lattice gauge thed/and projection by en- z-component of isospin. Such a molecule can be viewed as
ergy gap introduced in Refs. 27,28, in this paper, we willcarrying spinS and isosping. This kind of molecules can
construct realistic 2D and 3D spin models with screened dicarry a finite electric dipole momerd=o“S and have a
pole interaction. Our models contain an artificial light astime-reversal symmetry since under time reversat;,$)
their low-energy excitation. Concrete devices that realize our~(— o —S). We will use the above magnetic dipoles
models are also designed. Building these devices and obsery-S or electric dipolesix oS to build our systems.
ing artificial light in these devices will show for the first ~ We start with a honeycomb lattice that will be called the
time, to the best of our knowledge, that elementary particled; lattice. To form a magnetic dipole system, we place an
such as light, can be created artificially with designed propintegral spinS on every link of theH lattice. For an electric
erties(such as designed “speed of light” and designed valuedipole system, we place an integral sj@rand an isospir-
of “fine-structure constant/. on every link. We note that the spins form a Kagome lattice

Our models also demonstrate the well-known connectionwhich will be called theK lattice. There are two ways to
between gauge theory and theory of 108p8>3¢a U(1) label a spin. We can use a site indeaf the K lattice or we
gauge theory is actually a dynamical theory of nets of closedan use a pair of site indicg) that labels a link in thed
strings. In other words, gauge theory and string-net theorattice (see Fig. 1L Using these two labels, our model Hamil-
are dual to each other. This duality is directly connected tdonian can be written as
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whereC is a string connecting nearest-neighbor sites in the
H lattice and productl;, is over all the nearest-neighbor
links of the H lattice that form the string»;,=+1 if the
arrow of link (ij) points fromi to j and 7 ,=—1 if the
arrow of link (ij) points fromj to i. We note that the string
operator alternatively increase or decreas&; along the
string. If all afiJ-):l, the string operator has the following
simple form:

= + " + “ ..
FIG. 1. TheK lattice formed by filled dots and thel lattice U(C)=S(i,i)StiyiahSigip 3
formed by vertices. The spins in our model are on the filled dots. . . . L

The lattice contains a closed string created by alternatively incread¥here stringC is formed by theH lattice sitesiy ,i,, . ...

ing and decreasing the’S? of the spins, along a closed path. The USing the string operator, we can create all th_e degenerate
lattice also contains a string net with nodes and ends. The string néfound states by repeatedly applying closed-string operators
is created by alternatively increasing and decreasingsfi®¢ by 1 to one of the ground states.
or 2 along the string net. Artificial light corresponds to fluctuations ~We note that the above string operatofQY can be de-
of the string net. A pair of artificial charges,andB, corresponds to  fined even when loog intersects or overlaps with itself. In
the ends of an open string. Note that the artificial charges live on théact, those self-intersecting/overlapping loops are more typi-
H lattice. cal configurations of loops. Such kinds of loops look like
nets of closed strings and we will call them closed string
2 nets. Nets with open strings will be called open string nets.
H:UZ > Th 4 St +J> (S92 String operators (C) will be called string-net operator. The
[ @ [ degenerate ground states are formed by closed string nets.
If t,J# 0, then the ground-state degeneracy will be lifted.

_ i Z oA (1S Sy +1/'STS e+ H.e). (1) T.het term vv_iII me_lke string nets fluctqate and mgrm will
N =y give strings in string net a string tension. As we will see later,
the closed string net fluctuations becom@ ) .gauge fluctua-
tions.
Herea is one of the three vectors that conne¢t &attice site The degenerate ground states are invariant under local

i to its three nearest neighbors. Theterm enforces a con- Symmetry transformations generated by
straint that the tota$” of the three spins around a site in the
H lattice is zero. Also,¢,; is the angle of linklJ in the _ . 2 2
xy-plane andS*=S'+iS’. SummationZ;, is over all U(qﬁi)—ex;{éi: (”i‘f’i; ‘T<i,i+a>S<i,i+a>>
nearest neighbors in thi€ lattice. The above Hamiltonian
applies to both magnetic dipole systems and electric dipol@vhere 7= +1 if the arrows of links(i,i+ ) all point toi
systems. For magnetic dipole systems, we regafcas a  and 7= —1 if the arrows of links(i,i+ ) all point away
numberc?=1. For electric dipole systems, we regarlas  from i (see Fig. 1 The above transformation is called the
the z-component of the Pauli matrices. gauge transformation. Thus we can also say that the degen-

For the time being, we will treatr{ classically and as- erate ground states are gauge invariant.
sume eachr{ to take a fixed but random value &f1 or
— 1. (For magnetic dipole systems, we will set aff=1.) ll. A FOUR-SPIN SYSTEM
Let us first assumé=t=t'=0 andU>0. In this case the , ) ) )
Hamiltonian is formed by commuting terms that perform lo- !N this Section, we will start to derive the,Iow-energy
cal projections. The ground states are highly degenerate arfdf€ctive theory of our model for cagg)+#0 andt’=0. We
form a projected space. One of the ground states is the sta@$SUMé andJ to satisfyt,J<U andJ>0. The ground state
with ¢S*=0 for every spin. Other ground states can beW|II_no I_onger be _degenerate. The low-energy excitations are
constructed from the first ground state by drawing a loop inmalnly'ln the projected space. To understand.the Iqw—energy
the H lattice and then alternatively increasing or decreasin%ynam'cs' we assum&>1 and use a semiclassical ap-
the oS/ for the spins on the loop by the same amount. Suc roach. : .
a process can be repeated to construct all the degenerateT0 understand the dynam.|cs of our mozdel, Ie;[ us consider
ground states. We see that the projected space has some n model of .four spins described @12% Stz S(ag» and
local characters despite that it is obtained via a local projec>4y [S€€ Fig. 2a)J:
tion.

Let us introduce a string operator that is formed by the _ z _ 2 2 z 2
product ofS}, operators H=2 [U(Sfio1) = Sisn)*H AShi)? )

)
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Sis ’ as, 5 where Lagrangian
1 2
1 ag,;
521 SZ23 A4y dzs L:EZ (‘9||+l)+a0| a0|+1) +4U (10
dz4
4 3 4 3 In the largeW limit, we can drop thagli/4U term and obtain
(a) (b) .
L=723 Z (8110~ aj+1)? (11

FIG. 2. (a) A four-spin system andb) a simple lattice gauge
theory is described by lattice gauge fielt];,;, and ag;, i o ) )
=1,23.4. which is just the Lagrangian of a(ll) lattice gauge theory

on a single square with

where we have assumedt4d~1 and 1-1~4. The Hilbert
space is spanned byw<12>n<23>n<34>n<41>>, where integer Ai+1= vy, Air1i= — Oiiva (12
N¢,i+1) Is the eigenvalue OS(Zi,H—l)' If U>J, then the low-
energy excitations are described pynnn) states with en-
ergy E=4Jn?. All other excitations have energy of order
As we will see in Sec. IV, these low-energy excitations hap-
pen to be identical to the excitations of g1V lattice gauge .
theory on the same squdigee Fig. 2)]. Thus our four-spin aj()—a;()+ ()= ¢i(t),  agi(t)—ag(t)+ ¢i(t)
model describe a gauge theory at low energies. (13

To obtain an effective lattice gauge theory from our spin,,.-h is called the gauge transformation.
model, we would like to write down the Lagrangian of our  \we  note  that low-energy  wave  function

four-spin model. Since the spins are mainly in theplane, W (ay,803,834,84) IS @ SUPerposition ofnnnn) states. All

+ +i6: . v B .
we haveS;;, =Se*'%i. In this caseSfy, is the corresponding  the jow-energy states are gauge invariant, i.e., invariant un-
momentum —id/d6; of variable 6. If we write the  ger gauge transformaticm; — a;; + ¢;— ¢;

Hamiltonian in the form H= 1PTVP where PT The electric field of a continuum (@) gauge theory is

Z Z Z .
(17529 +S(349»S(ay) and given by e=a—da,. In a lattice gauge theory, the electric
field becomes a quantity defined on the links

as the lattice gauge fieldsee Fig. 20)]. One can check that
the above Lagrangian is invariant under the following trans-
formation:

4U+2J -2U 0 -2U
v -2U 4U+2) -—2U 0 © eij:éij_(ao,j_ao,i)- (14)
— + - ' . . .
0 20 4U+2) 2V We see that our lattice gauge Lagrangian can be written as
—2U 0 —2U  4U+2] L=(1/43)Se?,,,. Comparing with continuum (1) gauge
then the Lagrangian will be theory Lxe?— b?, we see that our Lagrangian contains only
the kinetic energy corresponding &. A more general lat-
1. . tice gauge theory also contains a potential-energy term cor-
L=—TM®, ) gaug y p ay

responding tdy?.

N To obtain a potential-energy term, we generalized our spin
where @ —(0 12> 0<23> ,(9(34 41>) and M=V~ +. Obvi- model to

ously, we do not see any sign of gauge theory in the above

Lagrangian. To obtain a gauge theory, we need to derive the

Lagrangian in another way. Using the path-integral represen- H=> [U(Sfi-1jy= v 1) >+ (S i1)°
I

tation of H, we find
D(p)D(0)ex fdt S, 6 . .
f (P)D(6) F{ (2 (@i+ 7D ” We note that(nnn|e'’%i-tie~'%.i+|nnny=0. Thus at the
first order oft, the extra term has no effect at low energies.

f D(p)D(ﬁ)D(ao)ex;{ f dt( 2 S(. 1y <| +1) 10'23 Lor\(/jv(;erzrl)eﬂrgy effect of extra term only appears at the sec-

We can repeat the above calculation to obtain the follow-

+t(e' %i-1he %+ 1+ H.c.)]. (15

—Fi(p,ap) (8) ing Lagrangian:
~ 1 .
where H:E![J(S(Zi,i+1)2+aO,i(Sfi—l,i)_ Sfi+1y— (a5;/40). =EZ (aj;41+a0j—agj1+1)?
After integrating outS;; ;, ;,, we obtain '
2
. a - ta Ao
Z:f D<a>D<a0>eXF{‘f dtl(6.6.20)|, (9 St TR He) o). (16
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It is a little more difficult to see in Lagrangian why the extra IV. QUANTUM GAUGE THEORY
term has no low energy effect at the first ordert.oket us

concentrate on the fluctuations of the following form: In this Section, we will reverse the above calculation and

start with the classical lattice gauge theory described by the
o 17) Lagrangian Eq(22). We would like to quantize it and find its

a|7l,| ¢| ¢|71- . . . .

Hamiltonian. This will allow us to calculate the energy levels

In the lattice gauge theory, such types of fluctuations aref the lattice gauge theory and compare them with the energy
called the pure gauge fluctuations. After integrating ayt, levels of the four-spin model.

the Lagrangian for the above type of fluctuations has a form  As a gauge theory, path integral

L= % (.ﬁimij ¢J_ Zit(ei(¢i—1_¢i+1)+ HC) with mij = O(U _1) .

We see that, in the large-limit, the above form of fluctua- Z:f D(a)D(ay)

tions are fast fluctuations. Sineg live on a compact space

(i.e., ¢; and ¢;+ 27 represent the same pointhese fast 1

fluctuations all have large energy gap of ordérNow we xexp{ —iJ dt(— > (aji1+a0;—agjs1)?
see that the term te'(¢i-17%i+1) averages to zero for fast 4T o
fluctuations and has no effect at the first ordet.iHowever,

at second order in there is a termt?I1;_y ' (%i-1)* %ii+1) +g cosd))
=t2e'%i% -1, Such a term does not depend ¢pand does

not average to zero. Thus we expect the low-energy effectivehould not be regarded as a summation over different func-

: (23

Lagrangian to have a form tions [a;(t),a0;(t)]. Here we regard two paths related by
1 22 the gauge transformation E(.3) as the same path. Thus the
: 0i . .
L= 5 EI (81 1+80j— Aj+1)2+ 4_UI +gcosd, path integral should be regarded as a summation over gauge

equivalent classes of paths. Thig;(t),a0;(t)] is a many-
(18)  to-one label of the gauge equivalent classes. We can obtain a

whereg=O(t2/U) and®=3a;,, is the flux of the U1) one-to-one label by “fixing a gauge.” We note thata;;

2
= — m<n/'n/’n/’n/)|ei((9<34>+(9<41))|n’,n',l’],h)

gauge field through the square. transforms asXja;— 2ja;;=Zj(a;;+ ¢i— ¢;) under gauge
To calculateg quantitatively, we would like to first derive transformation. By tuningp;, we can always makéj?iij
the low-energy effective Hamiltonian. If we treat théeerm  =0. Thus for any patha;;(t),a,;(t)], we can always make
as a perturbation and treat the low-energy states as degenergauge transformation to makega;;=0. Therefore, we can
ate states, then at second ordet,iwe have fix a gauge by choosing a gauge fixing condition
(n",n",n",n"|HgglNNNN) z a;;=0. (24
]

Such a gauge is called the Coulomb gauge, which has form
d-a=0 for a continuum theory. In the Coulomb gauge our

x(n',n’,n,n|e'?a2* %3)nnnr) path integral becomes
o 2t?
+ three other similar terms— T (19 z:f D(a)D(ap) ][] 8/ > aij)
i ]
wheren’=n+1. Thus the low-energy effective Hamiltonian 1 .
is Xexp{—if dt(ﬁ 2 (air1+agi—agj+1)?
I
> [U(Sh_ 1= Shie1) 2+ (S0 10) —4—t2cos(c1>)
: (i—1i) ™ Xi,i+1) (i,i+1) ] : +gcos<D) . (25
(20)

We note that a coupling betweem,; and a;; has form
ap;2;a;j . Thus, fora;; satisfying constrain®;a; =0, ay;
anda;; do not couple. Sincay; has no dynamicé.e., noay;

terms, we can integrate oud,;. The resulting path integral

. . becomes
As discussed before, the pure gauge fluctuations has a large

The corresponding Lagrangian is given by Ef8) with

4t2

energy gap of orded. The low-energy effective theory be-
low U can be obtained by letting — and we get Z:J D(a)l_i[ g 2 ajj
1 . ) 1 ]
L:E E. (ai+1Fagj—agj+1) " tgcos® (22 X ex —if dt o E aﬁi+1+g cosd (26)
I

which contains both electric energy and magnetic energy. which is the path integral in the Coulomb gauge.

115413-5



XIAO-GANG WEN

PHYSICAL REVIEW B 68, 115413 (2003

In general, a path integral in the Coulomb gauge can b&he t term in Eq. (1) can be written asS’cos (i) i

obtained by the following two simple steps) inserting the

gauge fixing conditiorl;5(=;a;;) and(b) drop theay; field.
For our problem, constrainil;5(Zja;;) makesaj,=ay;s

=ag,=ay= 0/4. The path integral takes a simple form

1.
_ o T2
Z—f D(e)ex;{ |f dt(lGJ'g +g cosa)
we note that configuration  af,,a8,3,834,841)
=(7l2,712,712,712) is gauge

(27)

formation that transforms#/2,7/2,m/2,7/2) to (27,0,0,0)].
Also, a;,=2m is equivalent toa;,=0 sincea; ;1= 0+ 1)

equivalent to
(a12,a93,a34,a47) = (27,0,0,0) [i.e., there is a gauge trans-

+ ofjk>ajk) which is not gauge invariant. Thus the average of
thet term in the projected space is zero. Nonzero potential
terms can only be generated from therm via higher-order
perturbation, and the resulting potential term must be gauge
invariant. The simplest gauge invariant term has form
cos(,) which is generated at the third ordertifU. Hence
g~t3S78/U2. In the smallt limit, the second orded; term
will make all o{=1. In the following we will calculate thg
term assumingr{=1.

At third order, the effective Hamiltonian in the projected
space has the following matrix elements:

live on a circle. Thusd=27 and =0 correspond to the
same physical point. The path integral Eg7) describes a
particle of mass (8 ! on a unit circle. Flux energy
—gcosd is the potential experienced by the particle. When
g=0, the energy levels are given By,=4Jn? which agrees

1| Him){m[H[n)(n[H | ¥ )

(Em—Ew)(En—Ey) ’
(30

4
<\I,1|Heff|q,2>:§’

exactly with the energy levels of Ed¢5) at low energies.
Hence Eq.(5) is indeed a gauge theory at low energies.

V. EFFECTIVE GAUGE THEORY OF LATTICE SPIN
MODEL

whereEy~0 is the energy of¥, ), =’ is a sum over all
high-energy statem) and|n) that arenot in the projected
space, andH, is thet termH,=tS™*3;,0{03S"S; . When
[ W)=ePW, ), we find (Wi|HeW,)=6x2
Xt3578/(2U)2. Thusgn,=6tS /U2

In a numerical calculation, we considered our model on a

Using a similar calculation, we find that our 2D lattice single hexagon, a single cell, of th¢ lattice and assumed
model Eq.(1) can be described by the following Lagrangian S=1. Solving the six-spin model exactly, we found that the

in the largey limit:

1 .
L=— > [a;+ag(i)—ag(j)1?+g> 7,cod®,)
4] <ij) p

+3,>, olol. (28
13)

Here,a;;= 6,5 if the arrow of link (see Fig. 1 points fromi
to j anda;= — 6,5 if the arrow points frony to i. p labels
the plaquettes in thed lattice and ®,=a;,+azt---
+ag,, Where 1...,6 are the sisites around plaquette
23y sums over all the nearest-neighbor si¢e¥) in the K
lattice. 7,=1 if all of,,... , og, are equal and €7,
<0.5 otherwise. In smali limit J=J.

Let us first explain the potential termJ; > ;070. We
start with a low-energy state in the projected spaég. The

action of thet termtS™2¢{0S"S; on such a state gives us

a high-energy state with energyJ4-2¢{o3U. The second
order perturbation int gives rise to contribution—2

Xt?S™%/(4U—20705U). We see thatfo5=1 has a lower
energy than o{oj=—1.
2t?S4/3U. We find thatJ;=t?>S %/3U. The dynamics of

The energy difference is

low-energy sector and the high-energy sector start to mix
when g~0.28J. In that case, perturbation theory breaks
down.

The J; term favors a ground state with alff=1 or of
=—1. Such a ground state spontaneously breaks the time-
reversal symmetry. The time-reversal-symmetry breaking
happens even when we include the quantum fluctuations of
ol generated byyH=J'% o} as long as)’ <max(g|,t#U).

In the time-reversal symmetry-breaking phase, §) de-
scribes a 1) lattice gauge theory.

When t'#0, more complicated term of form ca(

+ ¢) can be generated, whede depends onr?,, . .. ,0%;.

In this case,o{ might have a certain pattern in the ground
state, which can break translational and/or rotational symme-
try. But as long ag’ is small, the quantum fluctuations of

can be ignored and the model contains @)Wapless gauge
boson if we ignore the instanton effect.

However, in 2+ 1D, we do have an instanton effect. Due
to the instanton effect, a () gauge excitation develops a
gap®’ The instanton effect is associated with a change of the
U(1) flux ® from O to 27 on a plaquette. To estimate the
importance of the instanton effect, let us consider a model
with only a single plaquetté.e., the single-hexagon model

isospina? is described by an Ising model. The ground statediscussed befoyeSuch a model is described by

is a ferromagnetic state with adtf=1 (or of=—1).

At second order, theterm can also generate thig¢erm in
Eq. (1). ThusJ—J~t?/U.

Second, let us explain potential termgX;»7,cos(Pp).
We first note that the gauge transformation Etj.generates
the following transformation

aij—>aij + ¢i - ¢J . (29)

1.
L= ——6#%+gcosh. 31)
¥ g (

The instanton effect corresponds to a pa#it), where ¢
goes fromf(—=)=0 to #(+x)=27. To estimate the in-
stanton action, we assume
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0 fort<0 From the construction, it is clear that the closed-string-net
_ Hilbert space is identical to the low-energy Hilbert space of
6(t)=) 2mU/T for O<t<T (32) our model Eq(1), which is formed by states with energy less
2m for T<t. thanU. From our derivation of effective lattice gauge theory
Eq. (29), it is also clear that the closed-string-net Hamil-
tonian Eq.(36) is directly related to the lattice gauge La-
grangian Eq.(28). In fact, the Hamiltonian of the lattice
gauge theory is identical to the closed-string-net Hamiltonian
when T=(/2)\/3gJ/2. From the density of the instanton Eq. (36). The string tensior®,J(S9)? term in the string-net
gas,\@e‘sa we estimate the energy gap of th€lgauge theory corresponds to the (ﬁ/)éE<ij>[éij+aO(i)—ao(j)]2
boson to be term in the gauge theory, and string hoppitigsg(W,
[Pyy=ed +H.c.) term in the string-net theory corresponds to the
A~\[ige 208 34) ) SHng Y Ponds,
g2 pncosy) term in the gauge theory. Sinc&~ m
Thus, to have a nearly gapless gauge boson, we require they, corresponds to the electric flux along the link, a closed
above gap to be much less than the bandwidth of gauge fielgo of increased/decreasedS? corresponds to a loop of

The minimal instanton action is found to be

S.=m\29/3] (33

\/ﬁ. This requires electric flux tube. A string net corresponds to a “river” net-
work of electric flux.
g We see that the (1) gauge theory Eq(28) is actually a
g=0.23J, ex;{ —2.4\[3) <Ll (39 dynamical theory of nets of closed strings. Typically, one

expects a dynamical theory of closed string nets to be written
If the above condition is satisfied, we can ignore the mass terms of string nets, as in E¢B6). However, since we are
gap of the gauge boson and regard th@&)gauge theory as more familiar with field theory, what we did in the last few
in the deconfined phase. Therefore, E2f) is the condition  sections can be viewed as an attempt in trying to describe a

to have an artificial light in our 2D model. string net theory using a field theory. Through some math-
ematical trick, we have achieved our goal. We are able to

VI. STRING NET THEORY AND STRING NET PICTURE write the string-net theory in the form of gauge-field theory.
OF ARTIFICIAL LIGHT AND ARTIFICIAL CHARGE The gauge-field theory is a special field theory in which the

. o field does notorrespond to physical degrees of freedom and

As mentloned before, the.low-energy excitations below the physical Hilbert space is nonlodah the sense that the
arzezdescrlbe_ by closed strmg ne_ts of lncreasedIFjecreas?&al physical Hilbert space cannot be written as a direct
0’S’. (see Fig. 1 To make this picture more precise, We .qqct of local Hilbert spacésThe point we try to make
would like to define a closed-string-net theory on a lattice. here is that gauge theofst least the one discussed Heigea

The Hilbert space of the closed-string net theory is aSUbE:Iosed-string-net theory in disguise. Or, in other words,
space of thf Hilbert space of our model E) (here we g5 g6 theory and closed-string-net theory are dual to each
assume alby=1). The closed-string net Hilbert space con- gher. We would like to point out that in Refs. 34,36 various
tains a state with als{=0. If we apply the closed-string net quality relations between lattice gauge theories and theories
operator Eq(2) to theSf=0 state, we obtain another state in of extended objects were reviewed. In particular, some sta-
the closed-string-net Hilbert space. Such a state is formed bystical lattice gauge models were found to be dual to certain
Sf==1 along the closed loop, or more generally a closedstatistical membrane modets.This duality relation is di-
string netC if we include self-intersection and overlap. Thus, rectly connected to the relation between gauge theory and
U(C) in Eq. (2) can be viewed as a string-net creation opera<losed-string-net theory in our dipole models.
tor. Other states in the closed-string-net Hilbert space corre- In the largeJ/g (hence largeA y,,49 limit, the ground
spond to multiple-string-net states and are generated by retates for both the dipole model and string net model are
peatedly applying the closed-string net operators Bto  given byS*= 0 for every spin. In this phase, the closed string

the Sf=0 state. nets or the electric flux tubes do not fluctuate much and have
The Hamiltonian of our closed-string net theory is givenan energy proportional to their length. This implies that the
by U(1) gauge theory is in the confining phase. In the sra&l

limit, the closed string nets fluctuate strongly and the space is
~ 1 filled with closed string nets of arbitrary sizes. According to
_ 72\ T o . ;
Hstr_EI I(S) Ep 2(9Wp+H-C')' (36 the calculation in the preceding section, we note that the

. smallJ/g phase can also be viewed as the Coulomb phase
where>, sums over all the plaquettes of thelattice, and  ith gapless gauge bosons. Combining the two pictures, we
W, is the closed-string-net operator for the closed stringsee that gapless gauge bosons correspond to fluctuations of
around plaquett@. One can check that the above Hamil- large closed string nets.
tonian acts within the closed-string net Hilbert space. The  After relating the closed string®r closed string nejso
term gives strings in string nets a finite string tension, andartificial light, we now turn to artificial charges. To create a
the g term causes the string nets to fluctuate. pair of particles with opposite artificial charges for the arti-
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ficial U(1) gauge field, we need to draw an open striagan
open string ngtand alternatively increase and decrease the
o*S* of the spins along the stringee Fig. 1 The end points

of the open strings, as the end points of electric flux tubes,
correspond to particles with opposite artificial charges. We
note that charged particles live on the H-lattice. In the con-
fining phase, the string connecting the two artificial charges
does not fluctuate much. The energy of the string is propor-
tional to the length of the string. We see that there is a linear
confinement between the artificial charges.

In the smalid/g limit, the largeg causes strong fluctua-
tions of the closed string nets, which leads to gaple€b U
gauge fluctuations. The strong fluctuations of the string con-
necting the two Charges also Changes the linear Conﬁning FIG. 3. Two sublattices of H lattice. In a 3DH lattice, the open
potential to the In() potential between the charges. dots link to the layer above and the filled dots to the layer below.

To understand the dynamics of particles with artificial
charges, let us derive the low-energy effective theory for [¢i+ao(i)]2 o
those charged particles. Let us first assutret=t’=0. A L=> T_Z t(elleimeimaA) + H.c),
pair of charged particles with opposite unit artificial charges ' w (40)
can be created by applying the open-string operator(&q.
to the ground state. We find that each charged particle haghere (j) are next-nearest neighbors in tHdattice andk is
energyU and the string costs no energy. Let us first treatthe site between siteand sitej. The above Lagrangian also
charged particles as independent particles. In this case thells us that the charged particles are bosons. We also note
total Hilbert space of charged particles is formed by statehat a flipped spin corresponds to two artificial charges.
[{ni}), wheren; is the number of artificial charges on sitef ~ Therefore, each unit of artificial charge corresponds to a half-
the H lattice. |{n;}) is an energy eigenstate with enerBy integer spin.
=UZn?. Such a system can be described by the following Using the string net picture, we can give more concrete

rotor Lagrangian: answers to the three questions about light:
1) What is light? Light is a fluctuation of closed string
1. nets of arbitrary sizes.
L= ZI mqoiz, (37) 2) Where light comes from? Light comes from the collec-

tive motions of “things” that our vacuum is made ¢f.In

whereg, is an angular variable. The creation operator of theparticular, light comes from the large closed string nets that

A o . fill the vacuum.

charged particle is given bg/?i. Now, let us include the fact , . . .

that the charged particles are always the ends of open strings 3 Why light eX|sts?.L|ght exists becaqse our vacuum
(or nodes of string netsSuch a fact can be implemented by qntams strong fluctuat!ons of looplike objedthe closed
including the U1) gauge field in the above Lagrangian. Us- string net3 of arbitrary size.

. . - . . We would like to stress that the above string net picture of
g\g thefgauge invariance, we find that the gauged Lagrangiap " o light in nature is just a proposal g%'hertla3 may be
as a form )

other theories that explain what is light and where light
1 comes from. In this paper, we try to argue that the string-net
L= —[¢+ag(i)]2. (38  Picture is at least self-consistent, since there are actual mod-
T 4u els that realize the string-net picture of light. We also try to
argue that the string-net picture of light is more natural than
After including the gauge field, the single charge creationthe current theory of light where light is regarded as a vector

operatore'?i is no longer physical since it is not gauge in- gauge field that is introduced by hand.
variant. The gauge invariant operator

. ) ) ) VIl. A 3D MODEL
e 'Pie'ig,. . . @'y 1ine' iy (39
Our 2D model and the related calculations can be easily

always creates a pair of opposite charges. In fact, the abowgeneralized to three dimensions. To construct our 3D model,
gauge invariant operator is nothing but the open-string neive first construct a 3 lattice that is formed by layers &f
operator Eq(2). We also see that the string-net operator Eqlattices stacked on top of each other. Note thhitlattice can
(2) is closely related to the Wegner-Wilson loop be divided into two triangular sublatticdsee Fig. 3. We
operator:?-3839 link the sites in one sublattice to the corresponding sites in

Thet term generates a hopping of charged particles to théhe layer above and link the sites in the other sublattice to the
next-nearest neighbor in thid lattice. Thus, ift#0, the layer below. The spins are place on the links of the BD
charged particles will have a nontrivial dispersion. The cordattice. The lattice formed by the spins is called BDattice.
responding Lagrangian is given by Actually, the 3DK lattice is nothing but the conner-sharing
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tetrahedron lattice or the pyrochlore lattice. The 3D Hamil- IX. EMERGENT LOW-ENERGY GAUGE INVARIANCE
tonian still has the form in Eql). But nowi label the sites

in the 3DH .Iatt|<-:e and| .the 3|te§ in the ,3EK lattice. & (4) in obtaining artificial light and in PSG characterization of
connects sité to its four linked neighbors in the 3Bl lat- o ,antum orders, we are ready to make a remark about the
tice. The Iow—energ_y. effective theory stlll_ha_s the formin E_q-gauge invariance. We note that after including the higher
(28) and the conditions to observe artificial light are still orgert/U terms, formally, the Lagrangian is not invariant
given by Eq.(35. The main difference between therPD  ynder gauge transformation E(9). As a result, the so-
model and ¥ 3D model is that the artificial light, if it exists, called pure gauge fluctuatiorie/hich should be unphysical
is exactly gapless in £3D. The effective Lagrangian for in gauge theoryactually represent physical degrees of free-
the charged particles still has the form in E4O). dom. However, those fluctuations all have a large energy gap
of orderU.2”?® The low-energy fluctuationgssuming there
is a finite energy gap between the low-energy and high-
VIIl. EMERGENT QUANTUM ORDERS energy excitationsshould be gauge invariant, and the effec-
tive Lagrangian that describes their dynamics should be
Our 3D model contains twd =0 quantum phases with gauge invariant.
the same symmetry. One phagaseA) appears inj>|g| Due to the finite mixing between the low-energy and
limit and is gappedsee Eq.(35))]. The other phaséphase high-energy excitations caused by therm, the low-energy
B) appears ing|>J limit. PhaseB contains a nontrivial excitations are not invariant under the particular gauge trans-

guantum order which is closely related to the artificial ”ghtformatlon_ defined in Eq(4). Ho_wever, since the mixing is
init. perturbative, we can perturbatively modify the gauge trans-

. . . formations such that the low-energy excitations are invariant

By including thet term between spins beyond nearest o . i .

. . . nder a modified gauge transformation. To obtain the modi-
neighbors, our model can even support different kinds o

L S . fied gauge transformation, we continuously chandeom
nontrivial quantum orders. For example, by adjusting the dlf'zero to a small value. This will cause the eigenstates of our

ferentt terms, we can independently tune the value and the, e to rotate. The rotation is generated by a unitary matrix
sign ofg in gcﬁs@p) for d|ffeLent k('j”d of pla:jquebttes. Ifar:j; W. Then the modified gauge transformation is given by
are positive then we get phage discussed above, where ~ = —— 2 2 t -
there is zero gauge qu>_< through all the plaqgeteé%pfvl. ,'[“ijo(r?') Ihvgexrgfdlig‘;]elflgggéig’ig a>?lfg-ﬁsofgi;lr\‘f/lvat.ionByWﬁleflr(glave
It we tuneg to be negatlve for the plaquettes in the layers Ofthe ,Iow—energy excitations invariant. The nontrivial point
the 3DH lattice and positive for the plaquettes between thehere is  that the  modified : gauge  generator

layers, then we get a phagghaseC) with a quantum order WEi(ﬂi(ﬁiEani,im)S(Zi,wa>)WT is still a local operator. This

not found earlier. In phas€ there is# flux through the | likelv to be th ¥ £ 100 | o destrov th
plaquettes in the layers and zero flux through the otheS 'K€ly 10 b€ n€ case 1l IS not 100 large to destroy the
energy gap between the low- and high-energy excitations.

plaquettes. Phasgé has the same symmetry as pha@sand
B, and contains a gapless artificial light. The ph&sand We see that bOth. thg (@) gauge structure and the PSG are
emergent properties in our model.

phaseC are separated by phagethat appears in smag We would like to remark that the key to obtaining a low-

limit. . . )
energy effective gauge theory is not to formally derive an

Quantum orders in phad®and C can be more precisely ; ) . )
characterized by the projective symmetry group or P& effective Lagrangian that have a gauge invariance, but to
show all the pure gauge fluctuations to have a large energy

semiclassical limit, phasB is described by an ansatz where e
gap. In this limit, as we have seen for thdgerm, all the

all (e'®i)~1, while phaseC is described by an ansatz where ; . .
some(e‘aii>~l and other(e‘aii>~—1 The PSG for an an- 92uge noninvariant terms will drop out from the low-energy

satz is formed by all the combined gauge and symmet ffective theory. Only gauge invariant combinations can ap-

H : ,28
transformations that leave the ansatz invarightVe find ear in the effective theof:
that the PSG’s for the ansatz of phaBend the ansatz of

After seeing the importance of gauge transformation Eq.

phaseC are different. It was shown that PSG is a universal X. REALISTIC DEVICES
property of a quantum phase that can be changed only
through phase transitiori$. The different PSG’s for phas® In the following, we will discuss how to design realistic

and phaseC indicate that phas® and phaseC are indeed devices that realize our 2D and 3D models. First we note that
different quantum phases that cannot be changed into eaciur 2D model Hamiltonian Eq.1l) can be realized by mag-
other atT=0 without a phase transition. Using PSG we cannetic or electric dipoles which form a Kagome lattiaes-
also describe more complicated quantum orderdlux con-  suming only dipolar interactions between the dipplésor
figuration. We can even use PSG to classify all the quan-such a systerh=S?U/2, t'=3S?U/2, andJ=—2U. So the
tum orders in our modgfin semiclassical limit coupling constants do not have the right values to support an
The different quantum orders in phaBand phase& can  artificial light. Thus the key to design a working device is to
be distinguished in experiments by measuring the dispersiofind a way to reduce the couping betwesh. We need to
relation of the charged particle. From Ed0), we see that reduce thet term andt’ term by a factor~4S?. We also
the hopping of the charged particles is affected by the fluxeed to introduce an anisotropic spin ter8f)€ to bring J
through the plaquettes. close to zero.
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FIG. 4. (a) A 2D device and(b) a 3D device made of electric
dipoles screened by superconducting films.

We can use molecules with a finite electric dipole moment

d as our spins. For a fixed, the molecule should have two
degenerate ground states with angular momentusnin the

PHYSICAL REVIEW B 68, 115413(2003
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FIG. 5. The phase diagram ¢ 2D and(b) 3D electric dipole
systems. The dash line represents the time-reversal symmetry-

Coulomb

Confined

d direction. If we allow the molecule to rotate, the ground breaking transition. The transition happensTat-t?S™4/U. The

states of the molecule will contain 282 1) state§ S, 0%),

dash-dot line marks the bandwidth of artificial light, which is of

§’=-S§, ... Sando’= =1 s corresponds to the spin de- order \V3g. The thin solid line in(a) marks energy gap of the
gree of freedom and* the isospin degree of freedom. The artificial light. The artificial light exists in the shaded region where

tunneling between thexS states generates ternsH

=J'¢*, which leads to quantum fluctuation of. We also
need to put the molecule, say, in@yy buckyball so the
dipole can rotate freely. We note
SAN@Cg (Ref. 40 is commercially available from Luna
Nanomaterialghttp://www.lunananomaterials.conwhereA

is a rare-earth atom such as Y,Er,Gd, ...
SAABN@Cg, can be made withA and B being different

T,A<\/‘j_g. In (b) the cross marks the position of a zero-
temperature phase transition between the confined phase and the
Coulomb phase. The artificial light is exactly gapless in the Cou-

that endohedraliomb phase.

energy gap and the Coulomb phase where the artificial light

If endohedrajs gapless. In principle, the quantum phase transition can be

a continuous phase transition although it does not change any

rare-earth atoms, such an endohedral may have the propertiggmmetry. We know that the Coulomb phase corresponds to

discussed above.

a phase with strong fluctuations of large closed strings. There

One way to reduce,t’ is to embed dipoles in a fully are two ways in which the Coulomb phase can change into
gapped superconductor. A particular design for our 2D modethe confined phase. In the first method, the large closed string

is given in Fig. 4a). The sample is formed by a supercon-

ducting film. Circular holes of diameterare drilled through

nets break up into small open string nets. This corresponds to
condensation of charged bosons and produces a Anderson-

the film to form a Kagome lattice. The dipoles are placed InH|ggS phase(Note that a confined phase is the same as a

the holes. A largeh will reducet. The screening of the su-

Anderson-Higgs phaseSuch a transition is expected to be

perconducting film also makes the dipoles tend to point horiof first order*>~*® In the second method, the large closed

zontally(i.e.,$*=0). In this casel can be tuned by changing
d/I. If we choosel=10 nm, S=2, and dipole moment

string nets start to cost too much energy and the ground state,
after transition, contains only dilute small closed string nets.

0.1e nm, we findU~40 mK. The operating temperature t0 Such a transition was believed to be continutus.

observe artificial light is about 1 mK, which is achievable.
The 3D model can be realized by the device in Figdp) 4
We note that the 30K lattice is formed by alternatively

Both types of transitions are between the same pair of
phases, the Coulomb and the confined phases. Both types of
transition can appear in our 3D dipole model. However, in

stackingK lattices and triangular lattices together. The topthe larget limit, we expect the quantum phase transition

and the bottom layers in Fig(d) are screeneH lattices just

from the Coulomb phase to the confined phase to be of the

like Fig. 4@, while the middle layer is a screened triangular second type and continuous. The continuous phase transition

lattice. The distance between layers asd needs to be
tuned to reproduce the term. Thet term andJ term can be
adjusted similarly, as in the 2D device.

XI. PHYSICAL PROPERTIES OF 2D AND 3D DEVICES

will become a smooth cross over at finite temperat(iseg
Fig. 5(b)]. If U is not large enough, the quantum phase tran-
sition can be of the first type, which is a first-order phase
transition. Such a first-order phase transition will extend to
finite temperatures.

In the 2D electric-dipole system, there is no zero-

The 2D and 3D devices are described by model Hamilyeherature quantum phase transition and the artificial light

tonian Eq.(1) with coupling constantd), J, t, andt’. The
low-energy effective theory Eq28) contains only two cou-

pling constants] andg in largeU limit. J andg are deter-
mined byU, J, t, andt’. If U=40 mK, we can tund to

makeg=6 mK. We can tune) to makeJ=g/2=3 mK.

always has a finite energy gap [see Eq.(34)]. The thin
solid line in Fig. %a) marks the scale of the energy gap.

When the energy gap is much less than the bandwigg
of the atrtificial light, we say the artificial light exists.
Our 2D and 3D dipole systems have boundaries. Some

The phase diagrams of the 2D and 3D devices argnteresting questions arise. To the artificial light, what is the

sketched in Fig. 5. Both 2D and 3D electric dipole systemsproperties of the boundary? If we shine artificial light onto

have a phase transition & ~t>S™*/U, which breaks the the boundary, does artificial light get reflected or absorbed?
time-reversal symmetry. The 3D system also has a quantums we place an artificial charge near the boundary, whether
phase transition at/J~1. The quantum phase transition the charge is attracted or repelled by the boundary? These
separates the confined phase where the artificial light has ajuestions can be answered by our string net picture of arti-
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ficial light and artificial charges. We note that the closedlar momentumm#, the lowest-energy level of the artificial
strings are always confined in the sample. The ends of opegtom is of ordeff In(m)/3J/7]= 1.7 In(m) mK.
strings always cost an energy of ordéeven when the open  For the 3D model, if the layer separationlis we find

string is ended on the boundary. This means that the closeflat the Lagrangian in the continuum limit is given by
strings do not break up near the boundary. Since the closed

strings represent electric flux tube, we find that the electric

2
flux of the artificial light can never leave the sample, neither L:f d3x 1 (e§+e§+ l_zeg)
can it end at the boundary of the sample. Therefore, to the 43 \/§|Z |2
artificial light, the outside of the sample behaves like a per-
fect dia-electric media that repels all the artificial electric .. 3v3gl2 [ 2170 21%0)
flux. If we place an artificial charge near the boundary, the _f d 4l 312 312 thy ], (44

charge will be repelled by the boundary.
To understand the physical properties of the artificial IIghtWheree and b are the atrtificial electric field and artificial

in the 2D model, we can take the continuum limit by writing magnetic field in 3D, respectively. We see that, in general,
the speed of artificial light is different in different directions.

3= X ax), For simplicity, we choosé,=| and ignore the anisotropy in
ag;=ag(X) (41) the speed of artificial light. That is, we work with the follow-
0T GOV ing simplified Lagrangian:
where a=(ay,a,) is a 2D vector field(the vector gauge
potential in 2D, a, corresponds to the potential field,is 1 3\/§gl
near site, ox, is the vector that connects thandj sites in L=J 3x( ——e’— 2 bz). (45)
the H lattice, andl is the distance between the neighboring ZANE]

sites in theH lattice. In the continuum limit, the Lagrangian _
Eq. (28) becomes The speed of artificial light is,= \9gJI%/#2. If we take

J=3 mK, g=6 mK, and|=10 nm, we findc,=20 m/s.

_ [ 4 1 &2 3\/§g|2b2 The bandwidth of the artificial light is abol,= mc,%/2
L_f X 433 T4 ' (42) =20 mK. The above 3D Lagrangian can be rewritten in a
more standard form
wheree= d;a— d,a, andb=d,a,— d,a, are the correspond-
ing artificial electric field and artificial magnetic field. We 1 (1
see that the velocity of our artificial light isc, L= f daxﬁ(c—ez —Cabz), (46)
a

=\ogar2~(NAIWt. If we take J=3 mK, g
=6 mK, andl=10 nm, we find that the speed of the artifi-
cial light is aboutc,=20 m/s. The bandwidth of the artificial

light is aboutE,= wc,//2l =20 mK. The gap of the artifi- 2y -1 N e
cial light is aboutA ~ 0.0, | (9t12)! and mc2~2.3 mK. The artificial atom has an

From Eq. (40), we find the continuum Lagrangian that energy-level spaclnémc§a2~0.01 mK and a size of order
describes the charged particles in the 2D mdifelthe U~ /amca~(6m3t/3)1=87. _
>t limit) to be In the following, we will discuss one experiment that can
detect some of the above properties in the 2D sydidote
2 that it is easier to create a 2D devicH.we place the tip of
L=J d?x E (¢,T(iat—a0—U)¢>,— T|(ai+iai)¢||2 a scanning tunneling microscope near an electric dipole, we
1=12 can induce couplinggH=E(t)S, +H.c. to the electric di-
— _ otl? =0 pole.S;” flips a spin on a link, which creates a pair of bosons
+ ¢ (id+ap—U)d— T|(<9i—|ai)¢|| ; (43)  on the two ends of the link. The two bosons carry positive
and negative artificial charges. If we measure the high-
whereg, describe the positively charged bosomsdescribe ~ frequency capacitance of the fibwe can see peaks at the
the negatively charged bosong, , i, describe the charged €nergy levels of the artificial atora=2U +[In(m)\3J/m]

bosons on the even sites of tHdattice, andy,, i, describe =[80+1.7Inm)] mK=[1668+ 35.In(m)] MHz. ~We QISO
the charged bosons on the odd sites of khkattice. It costs note that an ac voltage on the tip, at lower frequencies, can

2U energy to create a pair of charged bosons. The mass (?fniitgsggﬂgiIﬁg;t.aﬂoggffgggttgﬁtgﬁ:; fgar;nr:zgai:n;ﬁi;_
the bosons isn=(9t12) ! and mc2=2.3 mK. We would 9 P 9

. ; cial light.
like to note that the boson velocity can be larger than the From the above discussion, it is clear that the electric

speed of artificial light. The potential energy between a posi-dipole systems, if they can be created, really provide a model

tive and a negative charge ‘i&r)z(@/w)ln r. Abound  for artificial light, artificial charge, and artificial electromag-
state of a positive charge and a negative chéageartificial  netic interaction in both two and three dimensions. We know

atom has a size of orddry/337t/J=6.6. For each angu- that the SWUN)-spin model that realizes 3D atrtificial light,

where o= (1/27) VJ/3g=1/15 is the artificial fine structure
constant. The mass of the charged bosoris of order
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