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Theory of nuclear-induced spectral diffusion:
Spin decoherence of phosphorus donors in Si and GaAs quantum dots

Rogerio de Sousa and S. Das Sarma
Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, US

~Received 27 November 2002; published 29 September 2003!

We propose a model for spectral diffusion of localized spins in semiconductors due to the dipolar fluctua-
tions of lattice nuclear spins. Each nuclear spin flip flop is assumed to be independent, the rate for this process
being calculated by a method of moments. Our calculated spin decoherence timeTM50.64 ms for donor
electron spins in Si:P is a factor of 2 longer than spin echo decay measurements. For31P nuclear spins we show
that spectral diffusion is well into the motional narrowing regime. The calculation for GaAs quantum dots
givesTM510250 ms depending on the quantum dot size. Our theory indicates that nuclear induced spectral
diffusion should not be a serious problem in developing spin-based semiconductor quantum computer archi-
tectures.
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I. INTRODUCTION

Electron and nuclear spins in semiconductors are prom
ing qubit candidates for quantum computation because t
intrinsic quantum two level nature together with existi
semiconductor microelectronics technology can potenti
satisfy the strict control and scalability requirements o
quantum computer~QC!. Hence electron spins in quantu
dots~QD’s! ~Ref. 1! and donor impurities2 as well as nuclear
spins in semiconductors3 have been suggested as candid
building blocks for feasible QC architectures.4 However, to
build such a device major advances in single spin manip
tions are needed, and for this purpose realistic calculation
semiconductor spin dynamics are essential to guide the
perimental effort currently taking place. A question of pa
ticular importance is whether a localized spin will rema
unaffected by the many interactions invariably present i
semiconductor environment during a time interval lo
enough for fault tolerant quantum computation~equivalent to
1042106 quantum gating times.5! In a recent paper6 we
showed that spin coherence of bound electronic state
semiconductors is limited by spin-spin interactions at l
temperatures. When this interaction is between the qu
themselves, it can in principle be incorporated into the Q
Hamiltonian, although this will lead to more complicate
gate sequences. In particular we are not aware of any t
retical QC work specifically working out such gate s
quences incorporating interqubit interactions. Therefore i
instructive to analyze the error introduced by ignoring so
of these interactions, as we did in the case of dipolar coup
spin qubits.6 The presence of many nonresonant spins in
system, such as lattice nuclei, also leads to phase fluctua
of the spin qubit, an effect which is hard to control. This h
been denoted spectral diffusion~SD! since the qubit Zeeman
frequency will diffuse through the spin resonance line. Sp
tral diffusion specifically refers to fluctuations in the Zeem
frequencygBeff5gmBBeff /\ ~whereg is the effectiveg fac-
tor, mB5e\/2mc the Bohr magneton, andBeff the effective
local magnetic field! of the electron due to external effec
arising from the semiconductor environment. Note that s
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fluctuations could arise either because the effective magn
field Beff is changing dynamically or because the electrong
factor is varying. There are many physical processes lead
to spectral diffusion, and here we are specifically interes
in the limiting processes at the lowest temperatures. T
physical process of interest to us is therefore dipolar nuc
fluctuations.

The first order of magnitude estimate of this effect w
applied to Si:P donor electrons,17 while our recent paper6

used the same methods to estimate the SD rate in G
QD’s. However, these estimates assumeda priori that
nuclear pairs flipflopped slowly~and hence the echo deca
was;exp2t3) with a rate given by an unjustified phenom
enological equation@Eq. ~15! in Ref. 17 and Eq.~8! in Ref.
6#. Here we propose a description for this decohere
mechanism, arising from dipolar fluctuations of the latti
nuclear spins, affecting the qubit Zeeman frequency thro
hyperfine coupling. Even though we still treat each nucl
pair as an independent Markovian random variable~an ap-
proximation which seems reasonable for temperatures
above nuclear dipolar ordering, happening on the nK sca!,
our theory describes fast and slow flip flops on the sa
footing incorporating motional narrowing effects previous
absent in former treatments~which happens when the fluc
tuation is so fast that SD is suppressed!. We also derive mi-
croscopic expressions for these flip-flop rates, leading t
more refined calculation of nuclear SD for GaAs QD’s a
Si:P donor electrons, together with a treatment of this eff
for a 31P donor nucleus.

In the case of localized spins precessing in a magn
field B, knowledge of three phenomenological parameter
sufficient to describe the spin 1/2 dynamics: The gyrom
netic ratiog which determines the precessing frequency~or
equivalently theg factor g52mcg/e, with e the electronic
charge,m the bare electron mass, andc the speed of light!,
the longitudinal relaxation time or spin-flip timeT1, and fi-
nally the transverse relaxation time or dephasing timeT2,
which is often denoted coherence time since it sets the t
scale of coherent superpositions between states along t
field direction.7 However, electron spins in a solid state e
©2003 The American Physical Society22-1
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vironment often have different precession frequencies, ei
due to hyperfine fields from nearby nuclear spins or fr
unequal gyromagnetic ratios~arising, for example, from
varying carrier effective mass!. Therefore the transvers
magnetization of a spin ensemble will decay in a time sc
T2* which is in general much shorter than the single s
dephasing timeT2. The latter time scale can be measur
using ap/22p spin echo sequence.8 The time it takes for
this echo to decay to 1/e of its initial value conveniently
defines our single spin coherence time and has been his
cally calledTM ~spin memory time!9 since the echo envelop
usually does not decay exponentially as predicted by
Bloch equations from whichT2 was first defined.7 ~In Ap-
pendix B we show that measuring ap/22p echo is equiva-
lent to measuring the modulus squared of a single spin
diagonal density matrix element.!

It has been known for a very long time that SD caused
nearby nonresonant spins is usually the dominant echo d
mechanism.10 However, all former SD theories assumed
single relaxation rate for the nonresonant spins, an appro
mation perfectly suitable for ‘‘T1 samples,’’ whereby these
spins change their states through spin flips only. The theo
of Herzog and Hahn,10 and later Klauder and Anderson,11

described the central spin Zeeman frequency as a ran
variable evolving in time according to Gaussian and Lore
zian conditional probabilities, respectively. These assum
tions lead to ap/22p echo decay of the form exp
(22T1

21d2t3/3) and exp(2T1
21dt2), respectively, as long a

t!T1, with 2t being the time interval between the fir
pulse and the echo. Bothd (t→` linewidth for the condi-
tional probabilities! and T1 ~spin-flip time of nonresonan
spins! are parameters that can, in principle, be calcula
from the interactions. If the conditiont@T1 is satisfied, one
obtains exp(2T1d

2t) and exp(2dt), respectively, character
izing the motional narrowing regime. Interestingly, Gauss
SD correctly describes motional narrowing sinceT1 appears
in the numerator, but Lorentzian SD does not, the de
being independent ofT1. Motivated by this inadequacy o
the Lorentzian theory, Zhidomirov and Salikhov12 proposed
a many parameter model, which treated the number of fl
of a spin i during a time intervalt as a Poisson random
variable parametrized byt/T1, the frequency change on th
central spin beingD i . Their theory obtained the correct mo
tional narrowing limit and agreed with experiment in dilu
T1 samples where the nonresonant spins are randomly
tributed. Our problem, however, is in a completely differe
regime. Here SD is caused by Si and GaAs lattice nuc
which haveT1 of the order of hours and hence the releva
time scale is given by the dipolar interaction, which var
substantially depending on the specific pair flip floppi
~such a system is denominated a ‘‘T2 sample,’’ sinceT2
!T1 for the spins that create the SD effect!. We generalize
the latter theory12 to many relaxation ratesTnm

21 , each corre-
sponding to a pairn,m of nuclear spins. We also present
microscopic theory to calculate these flip-flop rates. Al
gether this approach is, to our knowledge, the first system
attempt to describe SD inT2 samples. We also show that ou
11532
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theory reduces to the earlier simple approximations of R
6,11 in the appropriate limits.

The phosphorus donor impurity in silicon is the textbo
example of a localized electron spin in a semiconductor
has been extensively studied experimentally using elec
spin resonance~ESR! ~Refs. 13–15! and successful theorie
for its gyromagnetic ratio andT1 were developed.15,16 How-
ever TM for P in Si remained unexplained, even though
was measured thirty years ago.17 Our model leads to aTM
two times longer than the measured value~this agreement
should be considered reasonable since existing theories
T1 are also off by a factor of 215,16!. Our theory predicts a
smooth transition of the echo envelope from Gaussian SD
motional narrowing behavior, this transition being well d
scribed by a correlation function. If the echo decay of31P
donor nuclei is measured, we predict an echo envel
purely exponential, well into this motional narrowing re
gime, withTM50.60 s. An important point discussed here
how SD is rapidly suppressed by reducing the amount
nuclear magnetic moments in the lattice. Our calculatio
show that isotopic purification of Si~exchanging spin-
1/229Si nuclei by spin-028Si) may lead to coherence times a
long as 100 ms for P impurities in Si, a result supported
recent experiments.18 Unfortunately, Ga and As nuclei hav
no stable spin-0 isotopes, hence it seems that the only wa
increase spin coherence in these materials is to suppress
flop events by nuclear polarization, as can, for example,
done by applying a strong external magnetic field or by us
the Overhauser effect. Furthermore, we recently reportedTM
calculations for a GaAs quantum dot.6 This was particularly
important sinceTM has never been measured in this syste
and a realistic assessment of the feasibility of a quantum
quantum computer was needed. The detailed calculation
sented here confirms our previous estimates. Hence
present paper together with other recent calculations og
factor19 andT1 ~Ref. 20! available in the quantum dot litera
ture provides a general picture for electron spin dynamics
these heterostructures.

It is instructive to clarify the relationship between o
results and recently published theories21 on related issues. In
Ref. 21 the authors considered a Hamiltonian which c
tained only hyperfine couplings between a single elect
and the lattice nuclei, discarding the essential ingredien
the spectral diffusion effect, which is the dipolar interacti
between nuclei. Hence their mechanism is based on flip fl
between electron and nuclear spins. But when aB field is
applied electron-nuclear flip flops are forbidden by ene
conservation, since the nuclear Zeeman energy is 103 times
smaller than the electronic Zeeman splitting. Therefore th
mechanism is only relevant at lowB fields, when the hyper-
fine coupling is of the same magnitude or greater than
electronic Zeeman energy, leading to the conditionB
&\g I uC(0)u2!100 G, whereg I is the nuclear gyromag
netic ratio anduC(0)u25102221025 cm23 is the electron’s
probability density on a nucleus. The theory presented he
valid in the opposite limitB@100 G.

This paper is organized in two parts: General theory a
applications. In the first part~Sec. II! we describe our theory
of spectral diffusion due to a dipolar coupled spin syste
2-2
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This general theory can be easily applied to other spin re
nance experiments, such as three pulse echoes. In the
part ~Sec. III! we give numerical results for three particul
cases, and discuss their implications for the current exp
mental effort in semiconductor spin quantum computati
We conclude in Sec. IV with a summary and some gene
comments.

II. GENERAL THEORY

A. Stochastic theory for the nuclear bath

Our problem is to describe the dynamics of a carrier s
S coupled to a lattice of nuclear spinsIn . The total Hamil-
tonian can be separated into three parts:H5HS1HSI
1HI ,

HS5gSBSz , ~1!

HSI5(
n

AnI nzSz , ~2!

HI52g IB(
n

I nz24 (
n,m

bnmI nzI mz

1 (
n,m

bnm~ I n1I m21I n2I m1!, ~3!

An5gSg I\H 8p

3
uC~Rn!u2

2E d3r uC~r !u2
ur2Rnu223@~r2Rn!• ẑ#2

ur2Rnu5 J ~4!

'gSg I\H 8p

3
uC~Rn!u22

123 cos2un

uRnu3
u~ uRnu2r 0!J ,

~5!

bnm52
1

4
g I

2\
123 cos2unm

Rnm
3

. ~6!

Here the Hamiltonians are divided by\ to simplify the no-
tation; gS and g I are gyromagnetic ratios,An the coupling
with a nucleus located at positionRn , Rnm the relative vec-
tor between two nuclei, andunm the angle between this vec
tor and theB field direction. The electron-nucleus couplin
An includes a hyperfine term and a residual dipolar inter
tion. The hyperfine term comes from the singularity of t
integral @Eq. ~4!#, which is removed by integrating over th
angular coordinates first. Here we will assume this dipo
term is only effective foruRnu.r 0, which is a proper length
scale for the electron’s wave function (u is the step function,
while un the angle betweenRn and theB field!. The nuclear
spins are in constant turmoil due to their mutual dipolar
teraction. To see how this affects the spinS we approximate
each nuclear spin operator 2I nz by a classical random vari
ablesn8(t)561, which is valid only if the nuclei have spin
1/2 ~this description is still accurate for spinI .1/2, as long
11532
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as the nuclei are in the slow SD regime, see below!. Hence
the Zeeman frequencyvz of the electron spin becomes

vz~ t !5gSB1
1

2 (
n

Ansn8~ t !. ~7!

On the other hand, the evolution of the nuclei is strong
affected by the field produced by the central spinS. This
effect is treated by assuming the nuclei evolve according
the effective Hamiltonian

HI85HI1
1

2 (
n

AnI nz , ~8!

which conserves total spin in thez direction. Therefore when
any I nz flips, a correspondingI mz must flop in the opposite
direction. These flip-flop events show that we cannot tr
the random variablessn8 as independent of each othe
Rather, we will treat pairs of spins as independent rand
variables. Hence Eq.~7! becomes

vz~ t !5 (
n,m

Dnmsnm~ t !1const, ~9!

with Dnm5uAn2Amu/2, andsnm561 random variables un
correlated with each other. We further make the Markov
assumption that the probability thatsnm changes sign during
a time intervalt is given byt/Tnm , independent of past val
ues ofsnm ~this Markovian approximation is reasonable
the absence of any contrary evidence about the stoch
fluctuations of the nuclear spins!. Hence the number of flip
flops N(t) is a Poisson random variable with parame
t/Tnm , and we may write

snm~ t !5snm~0!~21!N(t), ~10!

with N(t) having the distribution

P~N~ t !5k!5
1

k! S t

Tnm
D k

expS 2
t

Tnm
D . ~11!

In the next section we show how to calculate the flip-fl
rateTnm

21 .
We now proceed to the derivation of the spin echo dec

The complex in-plane magnetization

v~ t !5^Sx&1 i ^Sy&, ~12!

can be calculated for any spin echo sequence by taking
average10,11

v~ t !5K expS i E
0

t

s~ t8!vz~ t8!dt8D L . ~13!

For thep/22p echo considered here the echo functions(t)
51 for 0<t,t ands(t)521 for t<t. Therefore

v~ t !5 )
n,m

vnm~ t !, ~14!

vnm~ t !5K cosFDnmE
0

t

s~ t8!~21!N(t8)dt8G L , ~15!
2-3
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where we take an average oversnm(0)561 with probabil-
ity 1/2 @this average applies to an ensemble of spins; h
ever, we show in Appendix B that the effect of the echo
precisely to remove this average, makingv(t) exactly equal
to a single spin in-plane magnetization#. In Appendix A we
calculate this average, and the result is22

vnm~ t !5u~t2t !vnm
(F)~ t !1u~ t2t!vnm

(E)~ t !, ~16!

vnm
(F)~ t !5expS 2

t

Tnm
D F 1

RnmTnm
sinh~Rnmt !1cosh~Rnmt !G ,

~17!

vnm
(E)~ t !5Rnm

22expS 2
t

Tnm
D H 1

Tnm
2

cosh~Rnmt !

1
Rnm

Tnm
sinh~Rnmt !2Dnm

2 cosh@Rnm~ t22t!#J ,

~18!

with Rnm
2 5Tnm

222Dnm
2 . We distinguish two limits in the

above expressions: For nuclear pairs causing fast spe
diffusion, considerTnm

21@Dnm . In that case we have

vnm
(E)~ t !'vnm

(F)~ t !'expS 2
1

2
Dnm

2 Tnmt D1O~Dnm
2 Tnm

2 !,

~19!

which shows that fast flip-flopping nuclei do not even for
an echo. Rather, they contribute to a ‘‘motional narrowe
signal,8 which decays exponentially in a time scale th
lengthens asTnm

21 increases. The idea is that the echo
quence can not refocus the spins if their Zeeman freque
changes appreciably overt. For largeTnm

21 the nuclear pair
contributes to a homogeneously broadened line, not an e
peak.12 The slow SD limitTnm

21!Dnm implies

vnm
(E)~ t !5expS 2

t

Tnm
D H cos@Dnm~ t22t!#

1
1

DnmTnm
sin~Dnmt !J 1O~Dnm

22Tnm
22!. ~20!

After performing the product over these slow nuclear pa
Eq. ~14! will have a peak att'2t. This is because ift
Þ2t, the argument of the product will be zero for some p
n,m making the whole product vanish. Assuming the ec
peak occurs exactly at 2t, we get

vnm
(E)~2t!'expH 2

1

Tnm
F2t2

sin~2Dnmt!

Dnm
G J . ~21!

If in addition to this slow spectral diffusion regime, we loo
at the limit Dnmt!1, the result is

vnm
(E)~2t!'expF2

1

6

Dnm
2

Tnm
~2t!3G , ~22!

which is very similar to an expression derived previously
us6 using Gaussian spectral diffusion as a starting po
11532
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Apart from a factor of 2 these expressions differ by a te
which takes into account the small broadening due to sp
flip processes. Since this term was introduced heuristic
and only changes numerical values by a negligible amo
we will not include it here.

Notice that nothing should be concluded about the qu
tative decay ofv(2t) before performing the product ove
pairs in Eq.~14!. For example, in the particular case of S
caused by dilute paramagnetic impurities (Dnm;r 23 with r
being the impurity-electron distance! it can be shown that
v(2t);exp(2at2bt2)12 after calculating Eq.~14! and tak-
ing a spatial average. Indeed exactly this behavior was s
in the electron spin echo decay of Si:P when the P conc
tration was high enough such that spectral diffusion due
nearby nonresonant electrons was dominant.17 Here we deal
with even more complicated expressions forDnm @our Eqs.
~57!, ~62!, and~67!#. Moreover it is often the case thatTnm

21

;Dnm and use of the limits~19!, ~21! becomes unjustified
Hence in our calculations below we perform the product~14!
using the exact expressions~18!.

Finally, it is easy to calculate the correlation function@see
Eq. ~A4!#

xc~ t !5 lim
t8→0

^v~ t !v~ t8!&2^v~ t !&^v~ t8!&

^v2~ t8!&2^v~ t8!&2
~23!

5 (
n,m

PnmexpS 2
2t

Tnm
D , ~24!

Pnm5Tnm
21Dnm

2 Y (
i , j

Ti j
21D i j

2 . ~25!

The averages in Eq.~23! assumesnm(t50)511 for all
pairsn,m. Thenxc(tc)5e21 defines the correlation time fo
the effect of the nuclear bath on the spinS. While the two
parameter Gaussian SD theory has a simple exponential
relator xc5exp(2t/T1), Eq. ~24! in general does not deca
exponentially. This correlator makes clear the difference
tween our many parameter (Tnm , Dnm) stochastic theory and
these simpler theories. Ift!tc , we will havexc(t);1, each
snm(t) performing less than one flip flop on average. Belo
we show numerically that this regime leads tovE(2t)
;exp(2t3). Therefore, when our calculatedTM!tc , we pre-
dict a Gaussian SD decay for the echo. However, whenTM
@tc , xc(TM)!1 indicating that mostsnm have already per-
formed many flip flops. In this case we obtainvE(2t)
;exp(2t), characterizing a motional narrowing regim
since the nuclear bath dynamics may be considered
Therefore the importance of our correlation function is
describe the transition to motional narrowing induced by
nuclear pairs, not just a single one satisfyingTnm

21@Dnm .
It is important to discuss the case of general nuclei w

spin I .1/2, where Eq.~10! does not apply. Thens(t) will
be a random walk variable with equal probabilities of mo
ing right or left,

s~ t !52ID,~2I 22!D, . . . ,22ID. ~26!
2-4
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Of course forI .1/2 we cannot represents(t) as an analyti-
cal function of the number of stepsN(t). However, for small
t @such thatxc(t)'1, or tTnm

21!tDnm!1] Eq. ~22! will still
hold, sinces(t) will take at most one step~of length 2D).
We will use this fact when considering GaAs nuclei, whi
haveI 53/2 ~see below!.

B. Calculating the nuclear flip-flop rates

We now show how to calculate the rateTnm
21 appearing in

Eq. ~18!, for dipolar coupled spinI nuclei. As noted above
we will assume the nuclear dynamics to be decoupled fr
the central spinS through the effective HamiltonianHI8 , Eq.
~8!. Furthermore, we will separateHI8 in a secular partH0

and flip-flop termsFnm(t) which contain an harmonic time
dependence

HI85H01 (
n,m

Fnm~ t !, ~27!

H052(
n

S g IB2
1

2
AnD I nz24 (

n,m
bnmI nzI mz, ~28!

Fnm~ t !5bnm~ I n1I m21I n2I m1!cos~vt !, ~29!

where we have introduced a fictitious frequency variablev
for theoretical convenience—eventually we are intereste
thev50 limit. We shall see that it is useful to introduce th
frequencyv: The rateTnm

21 will be obtained by taking the
v→0 limit. Suppose we haveN nuclear spinsIn . We will
label the eigenstates ofH0 by the indexa50,1, . . . ,2N:
H0ua&5Eaua&. Obviously we simply haveua&5um1m2••

•mN& with mi561/2. The transition rate between two o
these states induced byFnm(t) is then given by Fermi’s
golden rule to be

Wa,b
n,m5

p

2
bnm

2 u^auFnmub&u2@d~Ea2Eb2v!

1d~Ea2Eb1v!#, ~30!

with Fnm5(I n1I m21I n2I m1). The central spin phas
changes byDnm5uAn2Amu/2 during one of these events
Moreover, we will assume the nuclei in thermal equilibriu
each stateua& populated with a Boltzmann probability

p~a!5expS 2
Ea

kBTD Y (
b

expS 2
Eb

kBTD . ~31!

Then the flip-flop rate for a pairnm becomes

Tnm
21~v!5(

a,b
p~a!Wa,b

n,m . ~32!

At zero temperaturep(a) will be nonzero only for the
ground state. Furthermore, ifB@bnm /g I I;0.1 G this
ground state will simply beu0&5uI ,I , . . . ,I &, and Tnm

2150
for all pairsnm, leading to vanishing zero temperature dec
herence. However, nuclear Zeeman energies are
;1 mK/T, much lower than typical dilution refrigerato
11532
m
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temperatures (*10 mK). Hence a reasonable approximati
is to assumekBT@\g IB, and p(a)5(2I 11)2N for all
statesua&. This in fact makes Eq.~32! much easier to calcu
late, particularly since we will employ a technique similar
the method of moments due to Van Vleck.8,23 Therefore we
assumep(a) to be the same for all statesa, and rewrite Eq.
~32! in the form

Tnm
21~v!52pbnm

2 rnm~v!, ~33!

with rnm(v) playing the role of a density of states given b

rnm~v!5
1

2~2I 11!N (
a,b

u^auFnmub&u2d~Ea2Eb2v!.

~34!

The invariance of the trace operation allows us to calcu
any moment ofrnm(v) exactly. We define thenth moment
as

^vn&5E
0

`

vnrnm~v!dv/E
0

`

rnm~v!dv. ~35!

As an example of how to calculate these moments, cons
the normalization constant

A~ I !5E
0

`

rnm~v!dv

5
1

4~2I 11!N (
a,b

^auFnmub&^buFnmua&

5
1

4~2I 11!N
Tr$Fnm

2 %

5
2

15

I ~ I 11!

2I 11
@2I ~ I 11!11#. ~36!

It is straightforward to prove the following relations:

^v&5v52C~ I !Tr$@H0 ,Fnm#I n1I m2%5
1

2
uAn2Amu,

~37!

C~ I !5
15

8

~2I 11!2N11

I ~ I 11!@2I ~ I 11!11#
, ~38!

^v2&52C~ I !Tr$@H0 ,Fnm#2%, ~39!

^~v2v!2&5
16

3
I ~ I 11! (

iÞn,m
~bni2bmi!

2, ~40!

^v4&5C~ I !$@H0 ,@H0 ,Fnm##2%, ~41!

^~v2v!4&5
28

3
I ~ I 11!H 2

1

5
@2I ~ I 11!11#

3 (
iÞn,m

~bni2bmi!
41I ~ I 11!

3F (
iÞn,m

~bni2bmi!
2G2J . ~42!
2-5
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Using these expressions we can discuss various possibi
for the shape ofrnm(v), which is clearly an even function o
v with peaks at6uAn2Amu/2. The most common choice i
line shape theory is to assume each peak to be a Gaussi
a Lorentzian with a cutoff at the wings.8 To decide between
these, we define a dimensionless parameter

jnm5
^~v2v!4&

3^~v2v!2&2
511S 123 f

3 f D (
iÞn,m

~bni2bmi!
4

F (
iÞn,m

~bni2bmi!
2G2 .

~43!

Here we have introduced the occupation probabilityf for a
nucleus at sitei ~sums involving one site and two sites a
proportional tof and f 2, respectively!. For a Gaussian func
tion this ratio would be exactly 1. For a Lorentzian, it wou
be equal to;anm /dnm@1, whereanm is the cutoff anddnm
the halfwidth at half maximum. Clearlyf !1 leads to
Lorentzian rates. Here we will adopt the following approx
mation: Wheneverjnm<10 we will approximaternm(v) by
a Gaussian; ifjnm.10 we will use the Lorentzian fit. The
Gaussian approximation leads to

rnm~v!5A~ I !
1

A2pknm
H expF2

~v2v!2

2knm
2 G

1expF2
~v1v!2

2knm
2 G J , ~44!

with

knm5A^~v2v!2&. ~45!

The desired flip-flop rate is then obtained by settingv50 in
Eqs.~44! and ~33!,

Tnm
21~jnm<10!52A2pA~ I !

bnm
2

knm
expS 2

uAn2Amu2

8knm
2 D .

~46!

For jnm.10 we assume the Lorentzian form

rnm~v!5A~ I !
dnm

p F u~v2v1anm!2u~v2v2anm!

dnm
2 1~v2v!2

1
u~v1v1anm!2u~v1v2anm!

dnm
2 1~v1v!2 G , ~47!

with u being the step function. It is important to note th
this Lorentzian must have a cutoff so that its second
higher moments do not diverge. The parametersanm anddnm
can be easily related to Eqs.~40! and ~42!:

dnm'
p

2A3
A^~v2v!2&3

^~v2v!4&
, ~48!
11532
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anm'A2^~v2v!4&

^~v2v!2&
. ~49!

The Lorentzian flip-flop rate is

Tnm
21~jnm.10!54A~ I !

bnm
2

dnm

12u~ uAn2Amu22anm!

11@~An2Am!/~2dnm!#2
.

~50!

Therefore Tnm
21 will be suppressed unlessuAn2Amu

&knm ,dnm . This effect stems from energy conservation: F
a flip flop to happen, an amountuAn2Amu/2 of energy must
be absorbed by the dipolar term inH0. To see this conside
two states withI 51/2, ua&5u11/2,21/2,m3 , . . . ,mN&, ub&
5u21/2,11/2,m3 , . . . ,mN&. Their energy difference is

Ea2Eb5
1

2
~A12A2!24 (

iÞ1,2
~b1i2b2i !mi . ~51!

If we calculate the average square of this expression u
^mi

2&51/4, ^mi&50 we get

^~Ea2Eb!2&5S A12A2

2 D 2

14 (
iÞ1,2

~b1i2b2i !
2, ~52!

showing that an adjustment of the spin system can sup
energies up to;knm to compensate for the central spin fiel
We believe that the above expressions forTnm

21 are consider-
ably more precise than the phenomenological rates use
the earlier literature without any derivations.6,17,24

III. APPLICATIONS

A. Electron spin of a phosphorus donor in silicon

We now turn to applications of our theory for systems
interest to quantum computation in spin-qubit-based se
conductor architectures. We start by considering the elec
spin of a shallow donor in silicon. In natural sample
95.33% of silicon atoms have no nuclear magne
moment:25 Those are the28Si isotopes. Spectral diffusion i
then caused by the remaining fractionf nat50.0467 of 29Si
isotopes which are spin 1/2 nuclei with gyromagnetic ra
g I

Si55.313103 (s G)21. These nuclei will produce a hyper
fine field on the electron donor impurity given by Eq.~5!,
which is proportional to the electron’s probability density
the nuclear siteRn , uC(Rn)u2. For this state we assume th
Kohn-Luttinger wave function13,26

C~r !5
1

A6
(
j 51

6

F j~r !uj~r !eik j •r , ~53!

k j50.85
2p

aSi
k̂ j , k̂ jP$x̂,2 x̂,ŷ,2 ŷ,ẑ,2 ẑ%, ~54!

F1,2~r !5

expF2A x2

~nb!2
1

y21z2

~na!2 G
Ap~na!2~nb!

, ~55!
2-6
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THEORY OF NUCLEAR-INDUCED SPECTRAL . . . PHYSICAL REVIEW B 68, 115322 ~2003!
with the appropriate corresponding envelope functionsF j
@Eq. ~55!# with anisotropies in they and z directions. Here
n5(0.029 eV/Ei)

1/2 with Ei being the ionization energy o
the impurity (Ei50.044 eV for the phosphorus impurity
hencen50.81 in our case!, aSi55.43 Å the lattice paramete
for Si, a525.09 Å andb514.43 Å characteristic lengths fo
Si hydrogenic impurities.13 Moreover, we will use experi-
mentally measured values for the charge density on eac
lattice site26,27

uuj~Rn!u25h'186. ~56!

Hence the hyperfine interaction is given by

An5
16p

9
gS

Sig I
Si\h@F1~Rn!cos~k0Xn!

1F3~Rn!cos~k0Yn!1F5~Rn!cos~k0Zn!#2

2gS
Sig I

Si\
123 cos2un

uRnu3
u~ uRnu2na!, ~57!

with k05(0.85)2p/aSi , andgS
Si51.763107 (s G)21 the gy-

romagnetic ratio for the electron donor. It is instructive
check the experimental validity of Eq.~57! by calculating the
inhomogeneous linewidth (;1/gS

SiT2* ). A simple statistical
theory applied to Eq.~7! leads to26

^~v/gS
Si2B!2&5

f

~2gS
Si!2 (

RnÞ0
An

2 . ~58!

For f 50.0467 our calculated root mean square linewidth
equal to 0.89 G. On the other hand, an ESR scan lead
2.5 G/2A2 ln 251.06 G.13 Therefore our model is able to ex
plain 84% of the experimental hyperfine linewidth@the re-
sidual dipolar term in Eq.~57! only contributes;0.1% to
this linewidth#.

Before discussing our spin echo decay results we sho
mention how the29Si fraction f enters our calculations. Fo
example, Eq.~14! becomes

v~2t!5 )
n,m

@vnm~2t!# f 2
, ~59!

since the probability of a pairn,m to be 29Si is f 2. Also
single and double sums in Eqs.~40! and~42! are proportional
to f and f 2 ~these sums are calculated assuming the pairn,m
is already occupied; hence the question is whether or not
iÞn,m contains a29Si). To perform our numerical calcula
tions we take the natural logarithm of Eq.~59!. Then we take
advantage of the fact thatbnm}Rnm

23 @Eq. ~6!# decays fast as
a function of the inter-nuclear distanceRnm . Therefore we
achieve faster convergence by summing over lattice siten
together with some of its close neighborsm. Both the range
of sitesn and the number of neighbors included in the su
were increased systematically to ensure proper converge
From the convergence check we concluded that summ
within eight characteristic lengths of the wave functio
(;40aSi for the Si:P case! plus including up to six neares
neighbor shells gave excellent convergence.
11532
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Figure 1 shows the echo signal@Eq. ~18!# as a function of
time for natural Si andBi@111#. Clearly the echoes occur a
t52t. The echo envelope, defined by the maximum of ea
peak, should be compared with the empirical experimenta
of Chiba and Hirai,17

vexp~2t!5expF2S 2t

0.6 msD2S 2t

0.4 msD
3G . ~60!

Clearly our theory is able to explain quite successfully t
exp(2t3) decay, but our exponential tail is twenty time
smaller than the measured value. Therefore our theory s
gests this extra exponential decay is coming from other
coherence mechanisms, perhaps related to imperfection
the ESR pulses.@Recent experimental data18 suggest dipolar
scattering between donor electrons is responsible for the
tra exponential decay seen in Eq.~60!.# Nevertheless, our
TM50.64 ms is;2 times larger than the measured value
0.3 ms, a quite good agreement in view of former spin
laxation calculations.14 Including the residual dipolar term in
An @see Eq.~57!# changesTM by less than 1%, showing tha
here SD is dominated by flipflopping nuclei inside the ele
tron’s wave function@if we set the hyperfine term to zero i
Eq. ~57!, we getTM51.721.9 ms for 0,r 0<na]. It is in-
teresting to note that former SD estimates9,17 neglected the
hyperfine contribution, arguing that nuclei inside the ele
tron’s wave function could not flip flop due to the largeDnm
they would induce. Surprisingly, our calculation shows th
this coupling is very important, although estimates us
only the dipolar term would still lead to reasonable resu
The hyperfine term becomes more and more important as
wave function size increases. Figure 2 shows the behavio
2 ln vE(2t) for Bi@111# and a few values off. As 2t is
increased, the echo envelope changes from a ‘‘Gaus
spectral diffusion’’ regime11 @;t3, well described by Eq.
~22!# to 2 ln v;t @see Eq.~19! and ~21! for Dnmt@1]. The
‘‘experimental window’’ 0.1&2 ln v&3 falls within this
crossover for many values off, including natural isotopic
abundance. The exponential behavior obtained for longt
can be understood by looking at the correlation function@Eq.
~24!# which also appears in Fig. 2~right scale!. Notice that
this correlation function decays smoothly over 3 time d

FIG. 1. Calculated echo peaksvE(t) and echo envelopevE(2t)
as a function of time for a single donor electron spin in Si:P. W
assumed the Si lattice had natural abundance of29Si ( f 50.0467)
andBi@111#. We also show a fit for our echo envelope that co
pares well with the experimental fit of Ref. 17@see Eq.~60!#.
2-7
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ROGERIO DE SOUSA AND S. DAS SARMA PHYSICAL REVIEW B68, 115322 ~2003!
cades, but its behavior is clearly nonexponential~see Fig. 9!,
making evident the difference between our current comp
theory and former heuristic ones based on the two param
Gaussian conditional probability.6,10,11The small correlation
between Zeeman frequencies before and after the applica
of thep pulse explains this motional narrowing behavior f
v(2t) ~see discussion at the end of Sec. II A!. Note that Fig.
2 suggests it might be more appropriate to fit2 ln v(2t) to a
function which approachest at long times andt3 at short
time scales. Such a fit could possibly yield a better desc
tion for experimental data as long as other contribut
mechanisms~electron-electron dipolar scattering6 for ex-
ample! are properly subtracted.

It is interesting to see if the Si sixfold degeneracy emb
ded into the Kohn-Luttinger state@Eq. ~53!# has a strong
effect onTM . We obtainTM;0.3 ms at natural abundanc
using a hydrogenic state with Bohr radius;20 Å. Therefore
we can conclude that the strong oscillations ofAn reduce
Tnm

21 by a small amount, hence increasingTM ~as Dnm is
larger the energy cost for nuclear flip flops is higher!. This
gives an idea about the effect of the electron’s field on
29Si nuclei. Figure 3 showsTM as a function off. Only one
purified sample with f 5(0.1260.08)% was studied
experimentally,28 leading to TM50.52 ms. Note that this
value is significantly different than what we have in Fig.
(;0.1 s) simply because at such low values off the concen-
tration of donors (431016 cm23) lead to strong electron
electron dipolar scattering~see Fig. 2 of Ref. 6!. It would be
quite interesting to see spin echo measurements for diffe
values off, but as the isotopic purity increases one will ha
to decrease donor concentration significantly to ensure
dipolar scattering is not prevailing~for that purposeTM
should be independent of donor concentration, showing s
ration for low P concentration17!.

An interesting confirmation of our theory would be
measureTM as a function of theB field tilting angle u.
Figure 4 shows this angular dependence in samples
natural isotopic abundance.u50° meansBi@001#, while u

FIG. 2. The left scale shows the logarithm of thep/22p echo
envelope as a function of 2t for electron spins of Si:P. For all29Si
isotopic fractionsf this function undergoes a crossover from Gau
ian spectral diffusion behavior@v;exp(2kt3)# to motional narrow-
ing @v;exp(2kt)#. The correlation functionxc(2t) is shown on
the right scale; motional narrowing behavior corresponds to sm
values ofxc . This correlation function shows non-exponential d
cay, quite distinct from former theories6,10,11~see also Fig. 9 below!.
Here we haveBi@111#.
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590° Bi@110# ~unfortunately Ref. 17 measuredTM only for
Bi@111#). Preliminary experimental data shows excelle
qualitative agreement with Fig. 4.35 Incidentally, our theory
does not depend on theB field intensity, except forB*10 T:
Then kBT@\g IB does not hold, and also the magne
length l B5(\c/eB)1/2&20 Å, and B is already deforming
the electron’s wave function. The latter effect does in fa
appear in the quantum dot case, since its radius depe
crucially on l B @see Eq.~64!#.

B. Nuclear spin of a phosphorus donor in silicon

31P nuclear spins@gS
P51.083104 (s G)21] are promising

qubit candidates when implanted in a Si matrix.3 Its interac-
tion with the lattice is rather weak, leading to a measu
T1;5 h atB50.8 T andT51.25 K.14 Here we calculate the
contribution of 29Si spectral diffusion on the decoheren
time TM of an isolated31P nucleus. There is an importan
difference between this calculation and the one related to
Si:P electron spin above. Even though the flip-flop rate o
pair n,m of29Si (Tnm

21) is determined in exactly the same wa
as above@Eqs.~46! and~50! with An given by Eq.~57!#, the
corresponding phase change on the31P spin is given by

-

ll

FIG. 3. Decoherence time (TM) of the Si:P electron spin as
function of 29Si content f. The straight line resembles a simp
theory derived previously6 where f only altered the flip-flop pair
probability. Our theory deviates from this behavior sincef also en-
ters the moments@Eqs.~40! and~42!#. The change in slope seen i
TM is explained by the transition from Gaussian to Lorentzian
flop expressions forTnm

21 @see Eqs.~46! and ~50!#.

FIG. 4. Behavior of Si:P electron spinTM as a function ofB
field tilting angle with respect to the crystal lattice for samples w
natural abundance of29Si. To our knowledge, this dependence h
never been probed experimentally, and would be an interesting
for the accuracy of our theory.
2-8
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THEORY OF NUCLEAR-INDUCED SPECTRAL . . . PHYSICAL REVIEW B 68, 115322 ~2003!
Dnm5uAn82Am8 u/2, ~61!

An85gS
Pg I

Si\
123 cos2un

uRnu3
, ~62!

where An8 is the dipolar interaction between a29Si nucleus
located atRn and the31P located at the origin~in principle we
should include the effect of the31P dipolar field on the flip-
flop ratesTnm

21 , but we determined it to be negligible on th
TM calculation both in this section and the preceding one!. It
is easy to see that this phase changeDnm is in most cases
;103 smaller than the corresponding one for the electr
Therefore the motional narrowing conditionTnm

21@Dnm will
be satisfied for many more pairs than in the last sect
Hence we should expectv;exp(2kt) for a wide range of
parameters@see Eq.~19!#.

Figure 5 shows the calculated shape of the echo enve
as a function of 2t. The qualitative behavior is similar to
Fig. 2 above, except for the rather abrupt crossover fr
Gaussian SD to motional narrowing behavior. Forf
<0.0467 the observed decay is indeedv;exp(2kt) as pre-
dicted above. This behavior can be understood by lookin
the correlation functionxc ~right scale on Fig. 5! which goes
to zero in only one time decade, evidencing the abrupt
pearance of the motional narrowing regime. Unfortunat
there are no experimental data available to verify this qu
tative result. Figure 6 depicts the dependence ofTM as a
function of f.

The dependence on the tilting angleu ~Fig. 7! is signifi-
cantly different than the one in Fig. 4. This can be explain
by the fact that while in the former case first neare
neighbor flip-flop dominated~about 92% ofTM

21), here first
nearest neighbor amounts only to 3% of the rate, which
dominated by second nearest neighbors (;90% of TM

21).
This is why we see more oscillations in Fig. 6 than in Fig.
Second nearest neighbors are 12 in number, and have a
intricate lattice configuration than the four first neare
neighbors. Quite interestingly, in Fig. 7,TM is maximized

FIG. 5. Logarithm ofp/22p echo envelope as a function o
echo time 2t for 31P nuclear spins in Si:P. This function undergo
an abrupt crossover from Gaussian spectral diffusion behavio
motional narrowing, quite different from the smooth transition se
on Fig. 2. On the right scale we plotted the correlation functionxc ,
which shows a sharper transition to motional narrowing as co
pared to Fig. 2~herexc changes over one time decade, as oppo
to three in Fig. 2!.
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when B points in the@110# direction, and displays a shar
peak in the@111# direction, while Fig. 4 showsTM mini-
mized whenB points in both directions.

C. Electron spin in a gallium arsenide quantum dot

Recent interest in the spin properties of a single elect
GaAs QD is motivated by its potential use as a qubit.1,29 One
advantage over Si:P is the nondegenerate conduction b
with the minimum at theG point. Therefore the exchang
interaction of a double dot is a smooth function of the int
dot barrier and distance, quite different from two Si:P d
nors, where this exchange may oscillate dramatically a
function of donor separation.30

The GaAs lattice has a zinc-blende structure with 50
of 75As, 30.2% of69Ga, and 19.8% of71Ga.25 These nuclei
have spinI 53/2, but here we present calculations using t
spin 1/2 stochastic theory together with spin 3/2 flip-fl
rates. Since the correlation function is very close to 1 in
neighborhood of our calculatedTM , the electron is well into
the slow SD regime, making this approximation very acc
rate for our purpose. The electron hyperfine interaction w
these nuclei will lead to an inhomogeneous linewidth
about 50 G for small dots~with Fock-Darwin radius,
;20 nm; donor impurities in bulk GaAs have even high
broadening31!. If one has an ensemble of these dots, the
coherence timeTM can be measured by using ap/22p
pulse. However, ensembles of dots always contain size
tribution. SinceTM will be quite sensitive to the radius,

to
n

-
d

FIG. 6. DepictsTM versus29Si contentf for31P nuclear spins.
Similar to Fig. 3, the change in slope aroundf ;0.01 occurs due to
the crossover to LorentzianTnm

21 @Eq. ~50!#.

FIG. 7. Spectral diffusion decay timeTM versusB field tilting
angle for31P nuclei. This calculation assumes natural abundanc
29Si, f 50.0467.
2-9
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ROGERIO DE SOUSA AND S. DAS SARMA PHYSICAL REVIEW B68, 115322 ~2003!
~see below!, it might be more appropriate to measure dec
herence by applying an ESR field to a single dot and t
measuring the signal using transport experiments, e
though such experiments would only lead to a lower bou
on TM .32

The energy eigenstates of a quantum dot in the prese
of spin-orbit coupling are a mixture of spin states up a
down. Therefore if the electron spin is up, it will flip withi
a time T1 with the corresponding emission of a phono
However, for the spin to flip a virtual transition to an excite
orbital state has to happen, since spins do not couple dire
to the phonon strain field. The result is a strong sensitivity
dot size and applied fieldB, T1

21},8B5. For B;1 T and,
;30 nm a recent theory leads toT1;1 ms, showing that for
the small dots in a quantum computer architecture spin-
scattering is strongly suppressed.20 Recently we showed tha
the dominant decoherence mechanism in these small
(,&50 nm) is nuclear spectral diffusion.6 Here, our detailed
calculation of this effect confirms the accuracy of the sim
theory presented earlier,6 justified by Eq.~22! and the fact
that the correlation function@Eq. ~24!# is still quite close to 1
in the neighborhood ofTM . For uzu<z0/2, the quantum dot
wave function can be simply approximated as

C~r !5A2

z0
cosS p

z0
zD 1

Ap,~B!
expS 2

x21y2

2,2~B!
D ,

~63!

and we assumeC50 for z.z0/2. This state is a reasonab
description for the lowest orbital of a quantum well of thic
nessz0, with electrostatic lateral parabolic confinement w
radius,0. The Fock-Darwin radius,(B) includes the addi-
tional B field confinement

,~B!5
l Bl 0

~ l B
41 l 0

4/4!1/4
, ~64!

l B5A\c

eB
. ~65!

Then the hyperfine couplingAn for a nucleus located at
coordinate (Xn ,Yn ,Zn) from the center of the dot become

An5
16

3

gSg I\aGaAs
3

,2~B!z0

d~ I !cos2S p

z0
ZnDexpS 2

Xn
21Yn

2

,2~B!
D

3u~z0/22uZnu! ~66!

2gSg I\
123 cos2un

uRnu3
u@Xn

21Yn
22,2~B!#. ~67!

Here aGaAs55.65 Å, gS523.863106 (s G)21 ~assuming
g520.44 independent of, for the dot electron19!, g I
54.58, 8.16, 6.423103 (s G)21, and charge densitiesd(I )
59.8, 5.8, 5.831025 cm23 for 75As, 71Ga, and 69Ga,
respectively.33 The residual dipolar coupling again leads to
very small correction (,1% of TM).
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Figure 8 shows the behavior ofTM as a function of Fock-
Darwin radius, for three different quantum well thicknesse
z0. For eachz0 , TM displays a minimum as a function of,.
This arises from two competing effects: If we decrease
wave function size, fewer nuclei contribute to SD, hen
TM→` as ,→0. However when we increase, the wave
function flattens, making two close pairsn,m produce simi-
lar hyperfine fields. Since it is the differenceuAn2Amu which
causes phase fluctuation,TM→` as ,→`. ThereforeTM
must have a minimum as a function of the Fock-Darw
radius,. At this minimum,TM;10 ms for all z0. For all QD
sizes considered here the SD decay is found to be;exp
(2t3), the correlation function being close to 1 in the neig
borhood ofTM ~Fig. 9!. The dependence withu is similar to
Fig. 4.

IV. CONCLUSION

We have developed a detailed quantitative theory
nuclear spectral diffusion of localized spins in semicond
tors. By treating each nuclear pair independently, we are a
to show that the echo signal arises from the interplay
tween fast and slow nuclear flip flops. The echo envelo
undergoes a smooth transition from a Gaussian SD deca
an exponential motional narrowing when the nuclear b
loses correlation over time, this transition being well d
scribed by an appropriate correlation function. The Loren
ian approximation gives a good description of the interme
ate crossover regime, and our theory gives a microsco
justification for the use of these phenomenological con
tional probabilities. This behavior is quite general and sho
be observed in any decoherence mechanism where q
phase fluctuation takes place. We apply our theory to th
physical systems proposed as QC architectures, showing
SD should not be a decisive constraint in their developm
(TM.10 ms; thereforeTM /tJ@106 for all architectures,
wheretJ is the time scale for the exchange gate6!. Our cal-
culated Si:P electron donor spin results agree well with
isting experimental data for natural abundance of29Si, while
TM increases very fast as these isotopes are removed
the lattice. In addition our calculation shows that the m
important contribution to SD comes from nuclei inside t
electron’s wave function spread, as opposed to electrons
away as was suggested before.17 The 31P nuclear spin is
found to be in the motional narrowing regime, weakly a

FIG. 8. TM versus Fock-Darwin radius, for various quantum
well thicknesses,z055, 10, 20 nm. Decoherence achieves a ma
mum as a function of,. HereBi@111#.
2-10
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THEORY OF NUCLEAR-INDUCED SPECTRAL . . . PHYSICAL REVIEW B 68, 115322 ~2003!
fected by 29Si. Our GaAs quantum dot calculations confir
our earlier estimates based on a simpler theory.6 Although
there are no Ga or AsI 50 isotopes, one way to reduce SD
to suppress flip-flop events by nuclear polarization. The m
difference betweenT1 and T2 samples is the presence
several relaxation rates. This feature is evident in Fig.
where we show correlation functions for many cases trea
here. Increasing QD radius, increasesTM and reduces
xc(TM), pushing large QD’s to the motional narrowing r
gime. This result is clear evidence that SD does not af
delocalized states~such as conduction electrons!, since all
nuclear pairs will be in the motional narrowing regime@Eq.
~19!#.

We now briefly discuss the approximations assumed
our work. Certainly the most important one is that we tre
nuclear pairs as independent Markovian processes, ma
random flip flops with a Poisson distribution. We believe th
approximation is reasonable for a nuclear bath at temp
tures much higher than its dipolar ordering critical tempe
ture (;\bnm /kB;1029 K), since in this case the spin co
relation length can be assumed of the order of one lat
parameter. Of course this condition will always hold for d
lution refrigerators~which operate at mK temperatures!, and
specially for the experiment discussed in this paperT
51.6 K).17 At high spin temperature the nuclear system u
dergoes frequent transitions through its (2I 11)N available
states. An important assumption implicit in our model is th
only a subset of these transitions, namely, flip flops betw
close nuclear pairs@described bysnm , Eq. ~9!# are respon-
sible for the SD effect at external magnetic fieldsB
@100 G. Four spin processes stem from higher order pe
bations in Eq.~29!, and can be neglected whenbnm&Dnm ,
which is the case for the relevant nuclear pairs„otherwise,
the conditionbnm@Dnm immediately implies motional nar
rowing @see Eq.~19!# and this pair gives a negligible contr
bution to the SD rate…. Preliminary experimental results35 on
the orientation dependence ofTM show excellent qualitative
agreement with Fig. 4, suggesting the pair flip-flop picture
quite appropriate. One limitation of the uncorrelated pair
proximation is that the echo peaks always occur att52t.

FIG. 9. Nonexponential decay of the correlation functionxc as a
function of time@see Eq.~23!#. Initially xc shows strong exponen
tial decay, dominated by the fastest rate. Then slower processes
over. For Si:P we assume natural29Si abundance, whileBi@111#.
GaAs-QD’s show a clear tendency to motional narrowing as,
~Fock-Darwin radius! increases.
11532
in

,
d

ct

n
t
ng

a-
-

e

-

t
n

r-

s
-

This happens because the product@Eq. ~14!# will be zero
away from 2t as long as a single pair undergoes slow SD
global treatment of all pairs such as the one achieved in
two parameter Gaussian theory leads to an echo peak for
betweent and 2t.11 Nevertheless to our knowledge this e
fect does not seem to be present inp/22p echo
experiments,8,17 our approximation being appropriate in th
respect. Another approximation that seems reasonable
neglect back action. We assume that the nuclei evolve un
a static central spin field@Eq. ~8!#, unchanged by its effect on
this spin.

Finally, we comment on the relationship between our c
rent work and a number of other recent publications in
literature dealing with spin relaxation in the context of sem
conductor quantum computer architectures.20,36,37 We em-
phasize that our theory deals exclusively with electron s
decoherencein the absence of any phonon effects. Our work
provides a theory for nuclear-induced spectral diffusion
~localized! electron spin in semiconductors, and as such
deal with electronic spin decoherence arising from the fl
tuations induced by electron-nucleus hyperfine interacti
caused by nuclear spin dipolar flip flops. Since the flip flo
conserve nuclear energy, no phonons are required for
decoherence studied in this work.

Our work is a comprehensive theory for nuclear induc
spectral diffusion in the spin decoherence of localized el
trons in semiconductors—we do not invoke the empiri
approximations and the heuristic arguments which were u
to obtain earlier expressions for spectral diffusion existing
the literature.11,17,24As such our results are applicable an
relevant not only to considerations involving solid state sp
qubit-based quantum computer architectures but also to
problems involving spin decoherence due to electron-nuc
hyperfine coupling where phonon effects are negligible~i.e.,
at low temperatures!. In particular, our results apply to spi
echo measurements in semiconductors at low temperatu
and it is therefore gratifying that we have been able to qu
titatively explain hitherto unexplained Si spectral diffusio
results of Ref. 17 dating back thirty years. We emphasize
our theory is still approximate since we are forced to mak
number of approximations, the most important one being
assumption of uncorrelated flip flops among spin pairs.
though we believe this assumption of uncorrelated flip flo
to be valid at ‘‘high’’ nuclear spin temperature (@nK), it is
still worthwhile to consider further improvement of ou
theory by taking into account the full non-Markovian natu
of the spin flip-flop processes in future work.
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APPENDIX A: STOCHASTIC THEORY FOR A SINGLE
FLIP-FLOPPING PAIR

The problem is to evaluate the average@Eq. ~15!# for a
single nuclear pairn,m

ake
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v~ t !5K cosFDE
0

t

S~ t8!~21!N(t8)dt8G L , ~A1!

with N(t) a Poisson random variable with parametert/T ~for
simplicity we dropped the subscriptnm from vnm , Dnm ,
Tnm). Expanding the cosine and rearranging the produc
integrals we get

v~ t !5 (
k50

`

~21!kD2kE
0

t

dt2kS~ t2k!E
0

t2k
dt2k21S~ t2k21!•••

3E
0

t2
dt1S~ t1!^~21!j&, ~A2!

with j5N(t1)1•••1N(t2k). Using the inequalityt>t2k
>t2k21>•••>t1>0 together with the fact that a sum o
two Poisson variables with parameterst i /T and t j /T equals
another Poisson with (t i1t j )/T, we get

j5N~ t2k2t2k21!1N~ t2k222t2k23!1•••1N~ t22t1!

12@N~ t2k21!1N~ t2k23!1•••1N~ t1!#, ~A3!

^~21!j&5expH 2
2

T
@~ t2k2t2k21!

1~ t2k222t2k23!1•••1~ t22t1!#J , ~A4!

since the number of flip flopsN(t2k2t2k21) are assumed
independent random variables for nonoverlapping time in
vals t2k2t2k21 ~Markovian approximation!. Using Eqs.~A2!
and ~A4! we rewrite the echo decay in the form

v~ t !5 (
k50

`

~21!kD2kv2k~ t ! ~A5!

with v2k(t) satisfying the integral recurrence relation

v2k~ t !5E
0

t

dt2kexpS 22
t2k

T DS~ t2k!E
0

t2k
dt2k21

3expS 2
t2k21

T DS~ t2k21!v2k22~ t2k21!, ~A6!

andv0(t)51. We can transform Eq.~A6! into an algebraic
recurrence relation by using the properties of Lapla
transforms34

ṽ2k~p!5E
0

`

e2ptv2k~ t !dt. ~A7!

The free induction signalvF(t) @Eq. ~17!# is obtained by
settingS(t)51 for all times. Then Eq.~A6! becomes

ṽ2k~p!5
1

p~p12T21!
ṽ2k22~p!, ~A8!

and the Laplace transform ofvF(t) is easily calculated to be
11532
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ṽF~p!5
p12T21

p~p12T21!1D2
. ~A9!

The inverse transform of this expression can be obtained
expanding in partial fractions34

vF~ t !5expS 2
t

TD F 1

RT
sinh~Rt!1cosh~Rt!G , ~A10!

where R25T222D2. We now turn to thep/22p echo
vE(t), which is obtained by setting the echo function to

S~ t !5122u~ t2t!. ~A11!

Then Eq.~A6! becomes

ṽ2k~p!5
1

p~p12T21!
F ṽ2k22~p!22 exp~2pt!

3exp~22tT21!E
0

t

dt8exp~2t8T21!v2k22~ t8!G
~A12!

and after summing the series we get

ṽ~p!5
p12T21

D21p~p12T21!
1

2D2exp~2pt!

D21p~p12T21!
f ~t!,

~A13!

f ~t!5exp~22tT21!E
0

t

dt8exp~2t8T21!vF~ t8!.

~A14!

Using Eq.~A10!, the inverse transform becomes

v~ t !5vF~ t !1u~ t2t!
2D2

R2
exp~2tT21!

3sinh~Rt!sinh@R~ t2t!# ~A15!

5u~t2t !vF~ t !1u~ t2t!vE~ t !, ~A16!

which after rearrangement leads to Eq.~18! for t.t,

vE~ t !5R22exp~2tT21!$T22cosh~Rt!1RT21sinh~Rt!

2D2cosh@R~ t22t!#%. ~A17!

APPENDIX B: EQUIVALENCE OF ENSEMBLE pÕ2Àp
ECHO ENVELOPE AND AVERAGE SINGLE SPIN

DYNAMICS

Equation ~15! was derived by averagingsnm(t50),
which clearly applies only to an ensemble of spins. Theref
an interesting question is how the single spin off diago
density matrix element̂S'& @analogous to Eq.~12!, the in-
plane magnetization in theSz basis but withoutsnm(0) av-
erage# behaves under nuclear dynamics average only.
result is that the modulus squared of this quantity is exa
equal to thep/22p echo envelope, as we show below. T
evolution under Eq.~9! is given by
2-12
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^S'~ t !&5 )
n,m

K expF iDnmE
0

t

~21!Nnm(t8)dt8G L , ~B1!

whereNnm(t) are independent Poisson random variables r
resenting the nuclear dynamics, on which the averag
taken. Using the same methods of Appendix A, it is easy
show that the argument of the product~B1! is given by

Snm
' ~ t !5K cosFDnmE

0

t

~21!Nnm(t8)dt8G L
1K sinFDnmE

0

t

~21!Nnm(t8)dt8G L
5vnm

(F)~ t !1 i
Dnm

Rnm
expS 2

t

Tnm
D sinh~Rnmt !, ~B2!

wherevnm
(F)(t) is the free induction decay derived above@Eq.

~17!#. Clearly the difference between a single spin and
ensemble is the presence of the complex term in Eq.~B2!,
I.

-
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which leads to strong interference effects when the prod
over pairs is taken. To see this, we calculate

uSnm
' ~ t !u25@vnm

(F)~ t !#21
Dnm

2

Rnm
2

expS 2
2t

Tnm
D sinh2~Rnmt !

5vnm
(E)~2t !. ~B3!

Therefore the effect of this complex part is to enhance
coherence of the single spin, making it exactly equal to
p/22p echo envelope

u^S'~t!&u25vE~2t!. ~B4!

Notice that if we performed the product over pairs witho
this complex part,S' would decay similarly to free induction
vF(t). Many authors define a coherence timetc equal to the
1/e decay of the modulus of the off diagonal density matr
If the echo is dominated by Gaussian SD, we simply ha
tc5TM /41/3.
o

.
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