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Theory of nuclear-induced spectral diffusion:
Spin decoherence of phosphorus donors in Si and GaAs quantum dots
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We propose a model for spectral diffusion of localized spins in semiconductors due to the dipolar fluctua-
tions of lattice nuclear spins. Each nuclear spin flip flop is assumed to be independent, the rate for this process
being calculated by a method of moments. Our calculated spin decoherencé,jim@.64 ms for donor
electron spins in Si:P is a factor of 2 longer than spin echo decay measuremerif® Raclear spins we show
that spectral diffusion is well into the motional narrowing regime. The calculation for GaAs quantum dots
gives Ty, =10—50 us depending on the quantum dot size. Our theory indicates that nuclear induced spectral
diffusion should not be a serious problem in developing spin-based semiconductor quantum computer archi-
tectures.
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[. INTRODUCTION fluctuations could arise either because the effective magnetic
field B¢ is changing dynamically or because the electgon

Electron and nuclear spins in semiconductors are promigactor is varying. There are many physical processes leading
ing qubit candidates for quantum computation because theto spectral diffusion, and here we are specifically interested
intrinsic quantum two level nature together with existingin the limiting processes at the lowest temperatures. The
semiconductor microelectronics technology can potentiallyphysical process of interest to us is therefore dipolar nuclear
satisfy the strict control and scalability requirements of afluctuations.
quantum computefQC). Hence electron spins in quantum  The first order of magnitude estimate of this effect was
dots(QD’s) (Ref. 1) and donor impuritie%as well as nuclear applied to Si:P donor electron$,while our recent pap@r
spins in semiconductotave been suggested as candidateused the same methods to estimate the SD rate in GaAs
building blocks for feasible QC architecturtsiowever, to  QD’s. However, these estimates assumedpriori that
build such a device major advances in single spin manipulaauclear pairs flipflopped slowlyand hence the echo decay
tions are needed, and for this purpose realistic calculations afias ~exp—7°) with a rate given by an unjustified phenom-
semiconductor spin dynamics are essential to guide the exnological equatiofEq. (15) in Ref. 17 and Eq(8) in Ref.
perimental effort currently taking place. A question of par-6]. Here we propose a description for this decoherence
ticular importance is whether a localized spin will remain mechanism, arising from dipolar fluctuations of the lattice
unaffected by the many interactions invariably present in aauclear spins, affecting the qubit Zeeman frequency through
semiconductor environment during a time interval longhyperfine coupling. Even though we still treat each nuclear
enough for fault tolerant quantum computati@quivalentto  pair as an independent Markovian random variglle ap-
10*—10° quantum gating time¥. In a recent papfrwe  proximation which seems reasonable for temperatures well
showed that spin coherence of bound electronic states iabove nuclear dipolar ordering, happening on the nK $cale
semiconductors is limited by spin-spin interactions at lowour theory describes fast and slow flip flops on the same
temperatures. When this interaction is between the qubitfpoting incorporating motional narrowing effects previously
themselves, it can in principle be incorporated into the QGabsent in former treatmentsvhich happens when the fluc-
Hamiltonian, although this will lead to more complicated tuation is so fast that SD is suppressedfe also derive mi-
gate sequences. In particular we are not aware of any thesroscopic expressions for these flip-flop rates, leading to a
retical QC work specifically working out such gate se-more refined calculation of nuclear SD for GaAs QD’s and
guences incorporating interqubit interactions. Therefore it isSi:P donor electrons, together with a treatment of this effect
instructive to analyze the error introduced by ignoring soméor a 3'P donor nucleus.
of these interactions, as we did in the case of dipolar coupled In the case of localized spins precessing in a magnetic
spin qubitsS The presence of many nonresonant spins in thdield B, knowledge of three phenomenological parameters is
system, such as lattice nuclei, also leads to phase fluctuatigufficient to describe the spin 1/2 dynamics: The gyromag-
of the spin qubit, an effect which is hard to control. This hasnetic ratioy which determines the precessing frequefmy
been denoted spectral diffusié8D) since the qubit Zeeman equivalently theg factor g=2mcy/e, with e the electronic
frequency will diffuse through the spin resonance line. Speceharge,m the bare electron mass, andhe speed of light
tral diffusion specifically refers to fluctuations in the Zeemanthe longitudinal relaxation time or spin-flip time,, and fi-
frequencyyB.s=0gugBes/f (Whereg is the effectiveg fac-  nally the transverse relaxation time or dephasing tifge
tor, ug=eh/2mc the Bohr magneton, anB.; the effective  which is often denoted coherence time since it sets the time
local magnetic fieldl of the electron due to external effects scale of coherent superpositions between states along the B
arising from the semiconductor environment. Note that sucliield direction! However, electron spins in a solid state en-
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vironment often have different precession frequencies, eithetheory reduces to the earlier simple approximations of Refs.
due to hyperfine fields from nearby nuclear spins or from6,11 in the appropriate limits.
unequal gyromagnetic ratio&rising, for example, from The phosphorus donor impurity in silicon is the textbook
varying carrier effective mags Therefore the transverse example of a localized electron spin in a semiconductor. It
magnetization of a spin ensemble will decay in a time scaldas been extensively studied experimentally using electron
T3 which is in general much shorter than the single spinspin resonancéESR (Refs. 13—1pand successful theories
dephasing timeT,. The latter time scale can be measuredfor its gyromagnetic ratio andl, were developed”*® How-
using am/2— 7 spin echo sequenéeThe time it takes for €ver Ty for P in Si remained unexplained, even though it
this echo to decay to @&/of its initial value conveniently Was measured thirty years afoOur model leads to &y
defines our single spin coherence time and has been histofi¥0 times longer than the measured valtieis agreement
cally calledT,, (spin memory tim§ since the echo envelope should be considered reasonclslblle since existing th_eones for
usually does not decay exponentially as predicted by thél—1 are also qf.f by a factor of 2. Our theory pred_lcts a
Bloch equations from whicf, was first defined. (In Ap- sSmooth transition of the echo envelope from Gaussian SD to
q 2 p

. . . ; motional narrowin havior, this transition being well de-
pendix B we show that measuringrd2— 7 echo is equiva- otional narrowing behavior, this transition being well de

lont t ing th dul d of & sinale Spi fﬁcribed by a correlation function. If the echo decay34?
ent 1o measuring the modulus squared ot a single Spin Oly,nar pyclej is measured, we predict an echo envelope
diagonal density matrix elemept.

. purely exponential, well into this motional narrowing re-
It has been known for a very long time that SD caused byyime " with T,,=0.60 s. An important point discussed here is

nearby ponr(?sonant spins is usually the dominant echo decg,y sp s rapidly suppressed by reducing the amount of
mechamsrﬁ. However, all former SD theories assumed apyclear magnetic moments in the lattice. Our calculations
singlerelaxation rate for the nonresonant spins, an approxishow that isotopic purification of S{exchanging spin-
mation perfectly suitable for T, samples,” whereby these 1/229Sj nuclei by spin-3°Si) may lead to coherence times as
spins change their states through spin flips only. The theorigieng as 100 ms for P impurities in Si, a result supported by
of Herzog and Hah®? and later Klauder and Andersoh, recent experiment€ Unfortunately, Ga and As nuclei have
described the central spin Zeeman frequency as a randono stable spin-0 isotopes, hence it seems that the only way to
variable evolving in time according to Gaussian and Lorentincrease spin coherence in these materials is to suppress flip-
zian conditional probabilities, respectively. These assumpflop events by nuclear polarization, as can, for example, be
tions lead to aw/2—m echo decay of the form exp done by applying a strong external magnetic field or by using
(—2T;*8%713) and expt-T;'67), respectively, as long as the Ove'rhauser effect. Furthermore, we recently rgpdfmd
7<T,, with 27 being the time interval between the first ca@lculations for a GaAs quantum dothis was particularly
pulse and the echo. Both (t—x linewidth for the condi- mportant sinceTy, has never been measured in this system,
tional probabilities and T, (spin-flip time of nonresonant and a realistic assessment of the feaS|b|I|t_y of a quantum dot
sping are parameters that can, in principle, be calculatediU@ntum computer was needed. The detailed calculation pre-

from the interactions. If the conditior>T, is satisfied, one sented here confirms our previous estimates. Hence the

. : _ present paper together with other recent calculationg of
obtains expt T,5°7) and exp-ér), respectively, character factor'® andT; (Ref. 20 available in the quantum dot litera-

izing the motional narrowing regime. Interest]ngly, Gaussiary, ¢ provides a general picture for electron spin dynamics in
SD correctly describes motional narrowing sificeappears  ihase heterostructures

in the numerator, but Lorentzian SD does not, the decay ¢ js instructive to clarify the relationship between our
being independent of ;. Motivated by this inadequacy of yegyits and recently published theoffesn related issues. In
the Lorentzian theory, Zhidomirov and Salikité\proposed  Ref. 21 the authors considered a Hamiltonian which con-
a many parameter model, which treated the number of flipgained only hyperfine couplings between a single electron
of a spini during a time intervalt as a Poisson random and the lattice nuclei, discarding the essential ingredient of
variable parametrized by T,, the frequency change on the the spectral diffusion effect, which is the dipolar interaction
central spin being\; . Their theory obtained the correct mo- between nuclei. Hence their mechanism is based on flip flops
tional narrowing limit and agreed with experiment in dilute between electron and nuclear spins. But wheB feld is

T, samples where the nonresonant spins are randomly digipplied electron-nuclear flip flops are forbidden by energy
tributed. Our problem, however, is in a completely differentconservation, since the nuclear Zeeman energy Jstifites
regime. Here SD is caused by Si and GaAs lattice nucleismaller than the electronic Zeeman splitting. Therefore their
which haveT; of the order of hours and hence the relevantmechanism is only relevant at los fields, when the hyper-
time scale is given by the dipolar interaction, which variesfine coupling is of the same magnitude or greater than the
substantially depending on the specific pair flip floppingelectronic Zeeman energy, leading to the conditiBn
(such a system is denominated &,"“sample,” sinceT, <#hv|¥(0)|?<100 G, wherey, is the nuclear gyromag-
<T, for the spins that create the SD effedtVe generalize netic ratio andW¥ (0)|?2=10??—10?° cm 2 is the electron’s
the latter theord? to many relaxation rate§,}, each corre- probability density on a nucleus. The theory presented here is
sponding to a pain,m of nuclear spins. We also present a valid in the opposite limiB>100 G.

microscopic theory to calculate these flip-flop rates. Alto- This paper is organized in two parts: General theory and
gether this approach is, to our knowledge, the first systematiapplications. In the first patSec. 1) we describe our theory
attempt to describe SD if, samples. We also show that our of spectral diffusion due to a dipolar coupled spin system.
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This general theory can be easily applied to other spin resas the nuclei are in the slow SD regime, see bglddence
nance experiments, such as three pulse echoes. In the neke Zeeman frequenacy, of the electron spin becomes
part (Sec. Ill) we give numerical results for three particular

cases, and discuss their implications for the current experi- _ } ,

mental effort in semiconductor spin quantum computation. wA1)=7ysB+ 2 zn: Ann(1). ™
We conclude in Sec. IV with a summary and some general , .
comments. On the other hand, the evolution of the nuclei is strongly

affected by the field produced by the central sfinThis
Il. GENERAL THEORY effect is t_reated by assuming the nuclei evolve according to
the effective Hamiltonian
A. Stochastic theory for the nuclear bath

Our problem is to describe the dynamics of a carrier spin H =H,+ % > Anlng, (8)
S coupled to a lattice of nuclear spihs. The total Hamil- n

tonian can be separated into three parté=Hs+Hs;  which conserves total spin in thzdirection. Therefore when
+H,, any |, flips, a corresponding,,, must flop in the opposite
direction. These flip-flop events show that we cannot treat

Hs=vsBS;, @ the random variablesr; as independent of each other.
Rather, we will treat pairs of spins as independent random
HSIZZ Al nsS,, 2) variables. Hence Ed7) becomes
n

)= Apmonm(t) +const, 9)
HI:_')’IBE Inz_42 Brml nzd mz n=m
" n=m with A, n=|A,—An|/2, ando,,= + 1 random variables un-
correlated with each other. We further make the Markovian
+ nzm Bam(Tn+Tm-FTn-lm+), (3 assumption that the probability that,, changes sign during
a time intervatlt is given byt/T,,, independent of past val-
ues of o, (this Markovian approximation is reasonable in
A= ysylﬁ{S_W|q,(Rn)|z the absence of any contrary evidence about the stochastic
3 fluctuations of the nuclear spindHence the number of flip
flops N(t) is a Poisson random variable with parameter

Ir=Rn|>=3[(r—Ry)- 2] t/Tom, and we may write
[t @ YT y
. Tam(t)=0onm(0)(—1) (), (10
8 , 1-3coge, with N(t) having the distribution
~ysnh| 5 (W (R)IP= ——0(R ~1o) [, k
IRl PNt k)= — [ =" ! 11
(5) (NO=K == e -] @D
1, 1-3 cog0nm In the next section we show how to calculate the flip-flop
bom=— 3 ¥h—— " ®  raeT i,

3

Rim We now proceed to the derivation of the spin echo decay.
Here the Hamiltonians are divided Hyto simplify the no- ~ The complex in-plane magnetization
tation; yg and v, are gyromagnetic ratio9), the coupling .
with a nucleus located at positid®,, R, the relative vec- () =(S9+i(S), (12
tor between two nuclei, and,, the angle between this vec- can be calculated for any spin echo sequence by taking the
tor and theB field direction. The electron-nucleus coupling averagé®!!
A, includes a hyperfine term and a residual dipolar interac- t
tion. The hyperfine term comes from the singularity of the _ . , N g
integral[Eq. (4)], which is removed by integrating over the v(t)—<exp< ! fos(t Jo(t)dt )>
angular coordinates first. Here we will assume this dipolar . .
term is only effective fofR,|>r,, which is a proper length For thew/2— 1 echo considered here the echo functagt)
scale for the electron’s wave functiod {s the step function, =1 for O<t<rands(t)=—1 for 7<t. Therefore
while 6, the angle betweeR,, and theB field). The nuclear
spins are in constant turmoil due to their mutual dipolar in- v()=1T1 vam(D), (14)
teraction. To see how this affects the sfime approximate n<m
each nuclear spin operatot 2 by a classical random vari-
ableaé(t)z + 1 yvhig:h is_ valid only if the nuclei have spin oo ()= < COS{AnmJts(t/)(_1)N(t,)dt,}>’ (15)
1/2 (this description is still accurate for spin>1/2, as long 0

(13
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where we take an average ower(0)= =1 with probabil-  Apart from a factor of 2 these expressions differ by a term
ity 1/2 [this average applies to an ensemble of spins; howwhich takes into account the small broadening due to spin-
ever, we show in Appendix B that the effect of the echo isflip processes. Since this term was introduced heuristically
precisely to remove this average, making) exactly equal and only changes numerical values by a negligible amount
to a single spin in-plane magnetizatjoin Appendix A we  we will not include it here.
calculate this average, and the resuif is Notice that nothing should be concluded about the quali-
tative decay ofv(27) before performing the product over
Vnm(t) = (7= t)o (D) + (t— v {R(1), (16)  pairs in Eq.(14). For example, in the particular case of SD
. 1 caused by dilute paramagnetic impurities,,~r 2 with r
(F) /4y _ . being the impurity-electron distancé can be shown that
vnm(t)—ex;{ T )[an_l_nmsm}"(ant)+coshant)}, v(27)~exp(—ar—b7)'? after calculating Eq(14) and tak-
(17) ing a spatial average. Indeed exactly this behavior was seen
in the electron spin echo decay of Si:P when the P concen-
) ) tration was high enough such that spectral diffusion due to
Unm()=Rpmexp — T_nm) TTCOSHant) nearby nonresonant electrons was domiftahtere we deal
nm with even more complicated expressions oy, [our Egs.
Rom , (57), (62), and(67)]. Moreover it is often the case thﬁﬁ,ﬁ
tT SiN(Rymt) — AR mCosh Ry (t—27) ] ¢, ~A,m and use of the limitg19), (21) becomes unjustified.
nm Hence in our calculations below we perform the prodid)
(18)  using the exact expressiofkd).

Finally, it is easy to calculate the correlation functicee
with R2 =T, 2—A2 . We distinguish two limits in the Eq. (A 4){ y t

above expressions: For nuclear pairs causing fast spectral

diffusion, considefT >A . In that case we have , ,
. - {oo(t)—(o®)(a(t"))
1 Xe(t) = lim (@) —(a(t)? (23
2 w —(w
vﬁ(t)wvﬁﬁ%(t)wex;{ = S ARmTant |+ O(A T A, v-0
oo => P 4 Zt) 24
which shows that fast flip-flopping nuclei do not even form TR B (24)

an echo. Rather, they contribute to a “motional narrowed”
signal® which decays exponentially in a time scale that
lengthens asT,,} increases. The idea is that the echo se- Pom=ThiA2 / > T AE. (25)
guence can not refocus the spins if their Zeeman frequency

changes appreciably ovet For IargeT;nl1 the nuclear pair
contributes to a homogeneously broadened line, not an ec
peak'? The slow SD limitT, <A, implies

v(n?(t)=exr1< -

The averages in Eq23) assumeo,(t=0)=+1 for all
airsn,m. Theny.(t.) =e ! defines the correlation time for
the effect of the nuclear bath on the sg@nWhile the two
t parameter Gaussian SD theory has a simple exponential cor-
)lCOS{Anm(t—ZT)] relator y.=exp(—t/T;), Eq. (24) in general does not decay
nm exponentially. This correlator makes clear the difference be-
tween our many parametef {,, A, stochastic theory and
+O(AZT,2). (200 these simpler theories. tf<t,, we will havey.(t)~1, each
o,m(t) performing less than one flip flop on average. Below
After performing the product over these slow nuclear pairswe show numerically that this regime leads #@(27)
Eqg. (14) will have a peak at~27. This is because it ~exp(— 7). Therefore, when our calculatdg, <t , we pre-
# 2, the argument of the product will be zero for some pairdict a Gaussian SD decay for the echo. However, whgn
n,m making the whole product vanish. Assuming the echo>t., x.(Tw)<1 indicating that most-,,, have already per-
peak occurs exactly at72 we get formed many flip flops. In this case we obtairng(27)
) ~exp(—7), characterizing a motional narrowing regime
vﬁ(Zr)%exp{—Ti 5 Sln(iAan) J (o)  Since the nuclear bath dynamics may be considered fast.
nm nm

Therefore the importance of our correlation function is to
If in addition to this slow spectral diffusion regime, we look describe the transition to motional narrowing induced by all
at the limitA,,,7<<1, the result is

nuclear pairs, not just a single one satisfyl'n@ﬁ>Anm.
(E) 1A,
vhm(21)=~ex T8 T,

It is important to discuss the case of general nuclei with
spin|>1/2, where Eq(10) does not apply. Thea(t) will

which is very similar to an expression derived previously by

u$ using Gaussian spectral diffusion as a starting point. o(t)=21A,(21-2)A, ... ,—2IA. (26)

A SIN(Annt)

Aannm

T—

2

(22 be a random walk variable with equal probabilities of mov-
ing right or left,
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Of course forl >1/2 we cannot represenf(t) as an analyti- temperatures# 10 mK). Hence a reasonable approximation
cal function of the number of stepi(t). However, for small is to assumekgT>%7y,B, and p(a)=(21+1)"N for all

t [such thaty(t)~1, ortT, l<tA,<1] Eq.(22) will still statega). This in fact makes E¢32) much easier to calcu-
hold, sinces(t) will take at most one stefof length 2A). late, particularly since we will employ a technique similar to
We will use this fact when considering GaAs nuclei, whichthe method of moments due to Van VIetk: Therefore we
havel = 3/2 (see below assumep(a) to be the same for all states and rewrite Eq.
(32) in the form
B. Calculating the nuclear flip-flop rates T,}%(w)ZZWbﬁmpnm(w), (33

We now show how to calculate the réfgy, appearing i with p,, () playing the role of a density of states given by
Eq. (18), for dipolar coupled spin nuclei. As noted above,

we will assume the nuclear dynamics to be decoupled from

- - 2 _ _
the central spirg through the effective Hamiltoniak, , Eq. Prm(@) = 221+ N ;) [(@lF amlb)[*0(Ea—Ep— ).
(8). Furthermore, we will separatd, in a secular part{, (34)
and flip-flop termsFan,(t) which contain an harmonic time The invariance of the trace operation allows us to calculate
dependence

any moment ofo,,(w) exactly. We define thath moment
as

H{=Ho+n§m Fam(t), (27) . .
<wn>:f wnpnm(w)dw/f Pam(@)do. (39
0 0

1 ,
Ho=—2, <y|B— —An)lnz—42 bomlndmz, (280  As an example of how to calculate these moments, consider
n 2 n<m the normalization constant

an(t):bnm(|n+|m—+In—|m+)00$wt): (29 A(|):fm
0

pPrm(@)dw
where we have introduced a fictitious frequency variable

for theoretical convenience—eventually we are interested in

the w=0 limit. We shall see that it is useful to introduce the = ; > (a|Fpml b)(b|Fmla)
frequencyw: The rateT, > will be obtained by taking the 4(21+ 1N ab

w—0 limit. Suppose we havdl nuclear spind,,. We will

label the eigenstates df, by the indexa=0,1,...,2" _ 1 Tr{Fzm}

Hola)=E,|a). Obviously we simply havda)=|m;m,- - 4(21+1)N n

-my) with m;==*1/2. The transition rate between two of 2 1(1+1)

these states induced Wy, (t) is then given by Fermi's _ <

golden rule to be 15 21+1 [21(1+1)+1]. (36)

It is straightforward to prove the following relations:
m_T . 2 2

m}g:b :Ebnm|<a||:nm|b>| [5(Ea_Eb_w) 1

(0)=w=2C(NTH{[Ho,FnmllniIm_}= §|An—Am|,

+8(E;—Ep+w)], (30) 37
with Fpon=nhslm-+1n-Ime). The central spin phase _N+1
changes byA,,=|A,—An|/2 during one of these events. C(I)=E> (21+1) , (39)
Moreover, we will assume the nuclei in thermal equilibrium, 8 1(I+D)[21(1+1)+1]
each statéa) populated with a Boltzmann probability
(w?)==C)Tr{[ Ho,Faml’}, (39
/3ol
a)=exp — exg ———=|. 31 _ 16
P& p( W/ ¥ Gt/ O ((0-@)?)=F1141) X (by=bm)?, (40
i#n,m
Then the flip-flop rate for a paimm becomes 4 5
(%) =CIN{[Ho.[ Ho,Faml]7} (41
Tam(@)=2, p(WLT. (32 a2 1
nm ab P ab <(w—w)4>=§|(|+l)‘—§[2|(|+1)+1]
At zero temperaturep(a) will be nonzero only for the
ground state. Furthermore, iB>b,,/y1~0.1G this % bV (]+
ground state will simply bé0)=|l,I, ... ), andT, =0 ivkzn,m (Bni =B+ 11+ 1)
for all pairsnm, leading to vanishing zero temperature deco- )
herence. However, nuclear Zeeman energies are only > 2 (byi—bii)? (42)
~1 mK/T, much lower than typical dilution refrigerator ifom oM '
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Using these expressions we can discuss various possibilities

for the shape op,m(w), which is clearly an even function of
o with peaks att |A,—A,|/2. The most common choice in

line shape theory is to assume each peak to be a Gaussian

a Lorentzian with a cutoff at the wingsTo decide between
these, we define a dimensionless parameter

_ <(w—5)4> - +<1—3f) #En’m (Pni—bmi)
h 3<(w—5)2>2 3 z (bnl_bmi)z}ZI
i#n,m
(43)

Here we have introduced the occupation probabilifgr a

nucleus at sité (sums involving one site and two sites are =|—1/2,+1/2m;, .. .,

proportional tof and 2, respectively. For a Gaussian func-
tion this ratio would be exactly 1. For a Lorentzian, it would
be equal to~ a,;,/ 5,n=>1, Wherea,, is the cutoff ands,
the halfwidth at half maximum. Clearlff <1 leads to

Lorentzian rates. Here we will adopt the following approxi-

mation: Whenevek,,,<10 we will approximatep,,(w) by
a Gaussian; if,,>10 we will use the Lorentzian fit. The
Gaussian approximation leads to

(w—a)zl

2
2Kpm

1
an(w)ZA(|)\/2—T|eXF{—

(w+w)?
+eXF{—Tﬁm ]. (44)
with
Knm™— V<(“)_6)2>- (45)

The desired flip-flop rate is then obtained by settisgO in
Egs.(44) and (33),

b2 A —A 2
nm(gnm\lo) 2\/_A|)_e F{_lns—zml
nm

Knm

(46)

For ¢,m,>10 we assume the Lorentzian form

N w—o+ayy)— 0 w—o—ay)

82+ (w—w)?

nm

Pam( @)= A(I)_

PHYSICAL REVIEW B8, 115322 (2003

N A CaDN
"N (-

e Lorentzian flip-flop rate is

(49)

n 1-6(|A,— Al —2any)
Tom(éom>10)= 4,4(|)ﬂ |An—Anl —2anm
Shm 1+[ (A, Am)/(25nm)]

(50)

Therefore T, will be suppressed unlesgA,—A,|

=knm»Om- This effect stems from energy conservation: For
a flip flop to happen, an amouf,—A,|/2 of energy must
be absorbed by the dipolar term Hfy. To see this consider
two states with =1/2, |a)=|+1/2,—-1/2mg, ..., my), |b)
my). Their energy difference is

1
Ea—Ep=5(A1—A)—4 >, (by—by)m,. (51
2 i#1,2

If we calculate the average square of this expression using
(m?)=1/4, (m)=0 we get

1~ A2

A 2

((Ea— Eb)2>:( ) +4_2 (b1i—by)? (52
i#1,2

showing that an adjustment of the spin system can supply
energies up toe- k,, to compensate for the central spin field.
We believe that the above expressionsTqp: are consider-
ably more precise than the phenomenological rates used in
the earlier literature without any derivatioh$’2*

Ill. APPLICATIONS
A. Electron spin of a phosphorus donor in silicon

We now turn to applications of our theory for systems of
interest to quantum computation in spin-qubit-based semi-
conductor architectures. We start by considering the electron
spin of a shallow donor in silicon. In natural samples,
95.33% of silicon atoms have no nuclear magnetic
moment?® Those are thé®Si isotopes. Spectral diffusion is
then caused by the remaining fractiég,=0.0467 of 2°Sj
isotopes which are spin 1/2 nuclei with gyromagnetic ratio
yls'= 5.31x 10° (s G) *. These nuclei will produce a hyper-
fine field on the electron donor impurity given by E&),
which is proportional to the electron’s probability density at
the nuclear sit®R,, |¥(R,)|?. For this state we assume the
Kohn-Luttinger wave functiofi-?

0(w+5+anm)—6’(w+5—anm)l 1 &
+ — : (47) V(r)=— Pu(ryei, 53
2 +(at) (=5 & Filnuy(n) (59
with 6 being the step function. It is important to note that 2m. .
this Lorentzian must have a cutoff so that its second and kj=0.85—k;, kje{X,—%9,-9,2,-2}, (54)
higher moments do not diverge. The parametgrgandd,,n, Asi
can be easily related to EqgL0) and (42):
X2 y?+z?
— exg — +
5 T {((w—w)?)® 49 FLAr) (nb)?  (na)? 55
~ , r)= ’
" 203 Y ((0—0)Y . Jm(na)%(nb)
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with the appropriate corresponding envelope functiéis 1Oy . ,

[Eq. (55)] with anisotropies in they and z directions. Here \\ """" Ca'w':’"ed Vel
n=(0.029 eVE;)2 with E; being the ionization energy of 0.8f ——Fit.e e ™™ 4
the impurity (E;=0.044 eV for the phosphorus impurity, & osl A=12.7ms, B=0.65ms |
hencen=0.81 in our casg agi=5.43 A the lattice parameter ~
for Si,a=25.09 A ando=14.43 A characteristic lengths for > 04l
Si hydrogenic impuritie$® Moreover, we will use experi- *’:,:J
mentally measured values for the charge density on each Si > 0.2}
lattice site®2’
5 005z 04 06 08 1.0
luj(Rp)[“= 7~186. (56) Time [ms]
Hence the hyperfine interaction is given by FIG. 1. Calculated echo peakg(t) and echo envelopes(27)
160 . as a function of_ timt_a for a single donor electron_spin in Si:P. We
An="——y3yS [F1(Ry) cogKoX,) assumed the Si lattice had natural abundané®b{(f=0.0467)
9 andB|[111]. We also show a fit for our echo envelope that com-

ares well with the experimental fit of Ref. 13ee Eq.(60)].
+F(R)COs koY) + F(Ry)cokoZy) 2 P P Hee Eq(50]
Figure 1 shows the echo sigri&qg. (18)] as a function of
6(|R,| —na), (57)  time for natural Si andB|[[111]. Clearly the echoes occur at
IRq® t=2r. The echo envelope, defined by the maximum of each

with ko= (0.85) 27/ ag;, andy§i= 1.76x10 (s G)"* the gy- peak, should be compared with the empirical experimental fit

. 47
romagnetic ratio for the electron donor. It is instructive tomc Chiba and Hira,

check the experimental validity of E¢57) by calculating the 2, 27 \3
inhomogeneous linewidth~1/y2T%). A simple statistical vexp(27)=ex;{—<0 5 ms) _(O 7} ms) )
theory applied to Eq(7) leads t&° ’ '

vy

(60

Clearly our theory is able to explain quite successfully the
) exp(—7°) decay, but our exponential tail is twenty times
(2432 st&o An- (58) smaller than the measured value. Therefore our theory sug-
s’ gests this extra exponential decay is coming from other de-
For f=0.0467 our calculated root mean square linewidth iscoherence mechanisms, perhaps related to imperfections of
equal to 0.89 G. On the other hand, an ESR scan leads tbe ESR pulsegRecent experimental défssuggest dipolar
2.5 G/2/2 In2=1.06 G2 Therefore our model is able to ex- Scattering between donor electrons is responsible for the ex-
plain 84% of the experimental hyperfine linewidithe re- tra exponential decay seen in E®0).] Nevertheless, our
sidual dipolar term in Eq(57) only contributes~0.1% to  Tw=0.64 ms is~2 times larger than the measured value of
this linewidthl. 0.3 ms, a quite good agreement in view of former spin re-
Before discussing our spin echo decay results we shoult@xation calculation$? Including the residual dipolar term in
mention how the?Si fractionf enters our calculations. For A, [see Eq(57)] changesT), by less than 1%, showing that
example, Eq(14) becomes here SD is dominated by flipflopping nuclei inside the elec-
tron’s wave functior{if we set the hyperfine term to zero in
2 Eq. (57), we getTy=1.7-1.9 ms for 6<ry=<na]. It is in-
U(ZT):nHm [vam(20)]", (59 teresting to note that former SD estimat&sneglected the
hyperfine contribution, arguing that nuclei inside the elec-
since the probability of a pain,m to be ?°Si is f2. Also  tron’s wave function could not flip flop due to the larde,,
single and double sums in Eq40) and(42) are proportional  they would induce. Surprisingly, our calculation shows that
to f andf? (these sums are calculated assuming thepair  this coupling is very important, although estimates using
is already occupied; hence the question is whether or not sitenly the dipolar term would still lead to reasonable results.
i #n,m contains &Si). To perform our numerical calcula- The hyperfine term becomes more and more important as the
tions we take the natural logarithm of E&9). Then we take wave function size increases. Figure 2 shows the behavior of
advantage of the fact that, =R, > [Eq. (6)] decays fast as —Inuvg(27) for B|[111] and a few values of. As 27 is
a function of the inter-nuclear distan€®,,,. Therefore we increased, the echo envelope changes from a “Gaussian
achieve faster convergence by summing over lattice sites spectral diffusion” regim& [~ 7°, well described by Eq.
together with some of its close neighbans Both the range (22)] to —Inv~7[see Eq(19) and(21) for A,,,,>1]. The
of sitesn and the number of neighbors included in the sum“experimental window” 0.1 —Inv=<3 falls within this
were increased systematically to ensure proper convergencerossover for many values df including natural isotopic
From the convergence check we concluded that summingbundance. The exponential behavior obtained for loag 2
within eight characteristic lengths of the wave function can be understood by looking at the correlation funcfieq.
(~40ag; for the Si:P caseplus including up to six nearest (24)] which also appears in Fig. @ight scale. Notice that
neighbor shells gave excellent convergence. this correlation function decays smoothly over 3 time de-

(0l yZ-B)?)=
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] FIG. 3. Decoherence timeT(,) of the Si:P electron spin as a
FIG. 2. The left scale shows the logarithm of thé&2—m echo  fynction of 2Si contentf. The straight line resembles a simple

envelope as a function ofz2for electron spins of Si:P. For &bi theory derived previousfywheref only altered the flip-flop pair
isotopic fractiond this function undergoes a crossover from GaUSS'probabiIity. Our theory deviates from this behavior sifi@so en-
ian spectral diffusion behavigo ~ exp(—k7°)] to motional narrow- ters the momentEEqs. (40) and (42)]. The change in slope seen in

ing [v~exp(~k)]. The correlation functionx.(27) is shown on T is explained by the transition from Gaussian to Lorentzian flip
the right scale; motional narrowing behavior corresponds to smalo; expressions foT - ! [see Eqs(46) and (50)].

values ofy.. This correlation function shows non-exponential de-
cay, quite distinct from former theor@¥'*(see also Fig. 9 below

Here we haves|[ 111]. =90° B||[110] (unfortunately Ref. 17 measurdg, only for

B|[[111]). Preliminary experimental data shows excellent
cades, but its behavior is clearly nonexponer(sae Fig. 9,  qualitative agreement with Fig. #.Incidentally, our theory
making evident the difference between our current completdoes not depend on thifield intensity, except foB=10 T:
theory and former heuristic ones based on the two parametdihen kgT>7%vy,B does not hold, and also the magnetic
Gaussian conditional probability:>** The small correlation length Iz=(%c/eB)¥?<20 A, and B is already deforming
between Zeeman frequencies before and after the applicatidhe electron’s wave function. The latter effect does in fact
of the 7 pulse explains this motional narrowing behavior for appear in the quantum dot case, since its radius depends
v(27) (see discussion at the end of Sec. ]l Note that Fig.  crucially onlg [see Eq(64)].
2 suggests it might be more appropriate to-fiin v(27) to a
function which approaches at long times and-® at short
time scales. Such a fit could possibly yield a better descrip-
tion for experimental data as long as other contributing >'P nuclear spingyE=1.08< 10* (s G) 1] are promising
mechanisms(electron-electron dipolar scatterfhgor ex-  qubit candidates when implanted in a Si mafrits interac-
ample are properly subtracted. tion with the lattice is rather weak, leading to a measured
It is interesting to see if the Si sixfold degeneracy embedT;~5 h atB=0.8 T andT=1.25 K.'* Here we calculate the
ded into the Kohn-Luttinger statgEq. (53)] has a strong contribution of 29Sj spectral diffusion on the decoherence
effect onTy,. We obtainT,,~0.3 ms at natural abundance time Ty, of an isolated®*'P nucleus. There is an important
using a hydrogenic state with Bohr raditi20 A. Therefore  difference between this calculation and the one related to the
we can conclude that the strong oscillationsAgf reduce  Si:P electron spin above. Even though the flip-flop rate of a
T-! by a small amount, hence increasiiig, (as A,, is  Pairn,m of?°Si (T, 1) is determined in exactly the same way
larger the energy cost for nuclear flip flops is highdiis  as abovéEqgs.(46) and(50) with A, given by Eq.(57)], the
gives an idea about the effect of the electron’s field on thecorresponding phase change on tHe spin is given by
29Sj nuclei. Figure 3 shows$), as a function of. Only one

B. Nuclear spin of a phosphorus donor in silicon

purified sample with f=(0.12-0.08)% was studied 1.8 prmmrrrerre e
experimentally® leading to Ty,=0.52 ms. Note that this 1660 £20.0467 -
value is significantly different than what we have in Fig. 3 A \.\ ’

(~0.1 s) simply because at such low valueg tife concen- g )

tration of donors (410 cm™3) lead to strong electron- g 1-2r %

electron dipolar scatteringee Fig. 2 of Ref. 6 It would be 7, 1.0t .

quite interesting to see spin echo measurements for different = 0.8L[100] \0\. [111] [011]]
values off, but as the isotopic purity increases one will have "Eo.e ] / \'\.\.~.,1.,.<.,.-.»o7\1

to decrease donor concentration significantly to ensure that
dipolar scattering is not prevailingfor that purposeT,,
should be independent of donor concentration, showing satu-
ration for low P concentratior). FIG. 4. Behavior of Si:P electron spify, as a function ofB

An interesting confirmation of our theory would be to field tilting angle with respect to the crystal lattice for samples with
measureT,, as a function of theB field tilting angle 6. natural abundance dSi. To our knowledge, this dependence has
Figure 4 shows this angular dependence in samples withever been probed experimentally, and would be an interesting test
natural isotopic abundancé=0° meansB||[001], while §  for the accuracy of our theory.

0 10 20 30 40 50 60 70 80 90
0 [degrees]
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FIG. 5. Logarithm ofm#/2— 7 echo envelope as a function of FIG. 6. DepictsT,, versus?°Si contentf for>¥P nuclear spins.
echo time 2 for 3P nuclear spins in Si:P. This function undergoes Similar to Fig. 3, the change in slope arouid0.01 occurs due to
an abrupt crossover from Gaussian spectral diffusion behavior téhe crossover to Lorentzia'ﬁ:nl] [Eg. (50)].
motional narrowing, quite different from the smooth transition seen

on Fig. 2. On the right scale we plotted the correlation funcjign when B points in the[110] direction, and displays a sharp
which shows a sharper transition to motional narrowing as comya5i in the[111] direction, while Fig. 4 showd,, mini-
pared to Fig. 2herey. changes over one time decade, as oppose ized whenB points in both directions.

to three in Fig. 2

Apm= |Ar,1_Ar,n|/21 (61) C. Electron spin in a gallium arsenide quantum dot
Recent interest in the spin properties of a single electron
1-3cod0 GaAs QD is motivated by its potential use as a qiBftOne
Al=yEyPh 3 i} (62  advantage over Si:P is the nondegenerate conduction band,
Ryl with the minimum at thel™ point. Therefore the exchange

interaction of a double dot is a smooth function of the inter-
dot barrier and distance, quite different from two Si:P do-
_ _ ; X nors, where this exchange may oscillate dramatically as a

should include the effect of th&'P dipolar field on the flip- function of donor separatiof.
flop ratesT, ., but we determined it to be negligible on the The GaAs lattice has a zinc-blende structure with 50%
Tw calculation both in this section and the preceding)ote  of 7575, 30.2% 0f®9Ga, and 19.8% of'‘Ga.2® These nuclei
is easy to see that this phase chargg, is in most cases have spinl =3/2, but here we present calculations using the
~10° smaller than the corresponding one for the electronspin 1/2 stochastic theory together with spin 3/2 flip-flop
Therefore the motional narrowing conditidi, ;> A, Wil rates. Since the correlation function is very close to 1 in the
be satisfied for many more pairs than in the last sectionneighborhood of our calculatel}, , the electron is well into
Hence we should expeet~exp(—k7) for a wide range of the slow SD regime, making this approximation very accu-
parametergsee Eq(19)]. rate for our purpose. The electron hyperfine interaction with

Figure 5 shows the calculated shape of the echo envelopfiese nuclei will lead to an inhomogeneous linewidth of
as a function of 2. The qualitative behavior is similar to about 50 G for small dotgwith Fock-Darwin radius¢
Fig. 2 above, except for the rather abrupt crossover from-20 nm; donor impurities in bulk GaAs have even higher
Gaussian SD to motional narrowing behavior. Fbr  proadenind’. If one has an ensemble of these dots, the de-
<0.0467 the observed decay is indeedexp(—kr) as pre-  coherence timeT,, can be measured by using a2—
dicted above. This behavior can be understood by looking gbulse. However, ensembles of dots always contain size dis-

the correlation functiory (right scale on Fig. bwhich goes  tribution. SinceT,, will be quite sensitive to the radiué
to zero in only one time decade, evidencing the abrupt ap-

pearance of the motional narrowing regime. Unfortunately
there are no experimental data available to verify this quali-
tative result. Figure 6 depicts the dependencelgf as a
function off.

The dependence on the tilting angle(Fig. 7) is signifi-
cantly different than the one in Fig. 4. This can be explained
by the fact that while in the former case first nearest- ]
neighbor flip-flop dominatedabout 92% ofT,,), here first RS [1111 [011]
nearest neighbor amounts only to 3% of the rate, which is ot \
dominated by second nearest neighbots90% of T,\‘,,l). 0 1020 309 [‘;2 rseoesfo 70 80 90
This is why we see more oscillations in Fig. 6 than in Fig. 3: 9
Second nearest neighbors are 12 in number, and have a moreFIG. 7. Spectral diffusion decay tinEy versusB field tilting
intricate lattice configuration than the four first nearestangle for3!P nuclei. This calculation assumes natural abundance of
neighbors. Quite interestingly, in Fig. T,, is maximized  2°Si, f=0.0467.

where A, is the dipolar interaction betweerf°8i nucleus
located aR,, and thé'P located at the origifin principle we

-
o
T

f=0.0467

T, [seconds]
o o
o ®

©
I
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(see below, it might be more appropriate to measure deco- 40
herence by applying an ESR field to a single dot and then

measuring the signal using transport experiments, even

PHYSICAL REVIEW B8, 115322 (2003

7

Quantum Well

though such experiments would only lead to a lower bound —30! y _
32 o thickness, z,
on TM . = —e—5 nm
The energy eigenstates of a quantum dot in the presence = —m—10nm
|_

of spin-orbit coupling are a mixture of spin states up and

down. Therefore if the electron spin is up, it will flip within
a time T, with the corresponding emission of a phonon.
However, for the spin to flip a virtual transition to an excited

orbital state has to happen, since spins do not couple directly
to the phonon strain field. The result is a strong sensitivity on

dot size and applied field, T; '« ¢%B%. ForB~1 T and¢
~30 nm a recent theory leadsTg~1 ms, showing that for

20t

—a&—20 nm 8|
\.\.\.+.4 /./

0 50 100 150
Fock-Darwin radius [nm]

200

FIG. 8. T, versus Fock-Darwin radiué for various quantum
well thicknesseszy=5, 10, 20 nm. Decoherence achieves a maxi-
mum as a function of. HereB|/[111].

the small dots in a quantum computer architecture spin-flip

scattering is strongly suppress€dRecently we showed that

Figure 8 shows the behavior @f, as a function of Fock-

the dominant decoherence mechanism in these small doiarwin radiust for three different quantum well thicknesses

(£=50 nm) is nuclear spectral diffusirHere, our detailed

z,. For eactey, Ty, displays a minimum as a function éf

calculation of this effect confirms the accuracy of the simpleThis arises from two competing effects: If we decrease the

theory presented earli®ijustified by Eq.(22) and the fact
that the correlation functiofEqg. (24)] is still quite close to 1
in the neighborhood ofy, . For|z|<zy/2, the quantum dot
wave function can be simply approximated as

v Vil e
(ry= ZOco ZOz \/;€(B)ex

and we assum®& =0 for z>2z,/2. This state is a reasonable
description for the lowest orbital of a quantum well of thick-
nessz,, with electrostatic lateral parabolic confinement with
radius{,. The Fock-Darwin radiug (B) includes the addi-
tional B field confinement

x2+y?
2€2(B)

(63

lelo

RRRTEEZE !
s

Then the hyperfine coupling,, for a nucleus located at a
coordinate X, ,Y,,Z,) from the center of the dot becomes

16 ysy fia X2+ Y2
_167ysrhacans, |\ 0@ zL,)ex;{— ntYn

3 ¢%B)z, Zy €?(B)

X 0(2o/2—|Z,|) (66)

1-3 cog4),

Rq[®
Here agaas—=5.65 A, ys=—3.86x1° (sG) ! (assuming
g=—0.44 independent oft for the dot electrol?), ¥,
=458, 8.16, 6.4 10° (s G) !, and charge densities(l)
=9.8,5.8,5.&107 cm > for "®As,"'Ga, and °%Ga,

—ysyfi oIX2+Y2—¢%(B)].  (67)

wave function size, fewer nuclei contribute to SD, hence
Ty— as{—0. However when we increasé the wave
function flattens, making two close painsm produce simi-
lar hyperfine fields. Since it is the differenjg®,— A,,| which
causes phase fluctuatiomy,—~ as €—ow. ThereforeT),
must have a minimum as a function of the Fock-Darwin
radius?. At this minimum,Ty,~10 us for all z,. For all QD
sizes considered here the SD decay is found to~Bxp
(—7), the correlation function being close to 1 in the neigh-
borhood ofTy, (Fig. 9. The dependence with is similar to
Fig. 4.

IV. CONCLUSION

We have developed a detailed quantitative theory for
nuclear spectral diffusion of localized spins in semiconduc-
tors. By treating each nuclear pair independently, we are able
to show that the echo signal arises from the interplay be-
tween fast and slow nuclear flip flops. The echo envelope
undergoes a smooth transition from a Gaussian SD decay to
an exponential motional narrowing when the nuclear bath
loses correlation over time, this transition being well de-
scribed by an appropriate correlation function. The Lorentz-
ian approximation gives a good description of the intermedi-
ate crossover regime, and our theory gives a microscopic
justification for the use of these phenomenological condi-
tional probabilities. This behavior is quite general and should
be observed in any decoherence mechanism where qubit
phase fluctuation takes place. We apply our theory to three
physical systems proposed as QC architectures, showing that
SD should not be a decisive constraint in their development
(Tw>10 us; thereforeT,,/7;>10° for all architectures,
where 7, is the time scale for the exchange Jat®©ur cal-
culated Si:P electron donor spin results agree well with ex-
isting experimental data for natural abundancé%, while
T\ increases very fast as these isotopes are removed from
the lattice. In addition our calculation shows that the most
important contribution to SD comes from nuclei inside the
electron’s wave function spread, as opposed to electrons far

respectively’® The residual dipolar coupling again leads to aaway as was suggested befdfeThe 3P nuclear spin is

very small correction€1% of Ty,).

found to be in the motional narrowing regime, weakly af-
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This happens because the prod{ieg. (14)] will be zero
away from 2r as long as a single pair undergoes slow SD. A
global treatment of all pairs such as the one achieved in the

' ———»zD'=10 nm, I'=30 nm

------ z,=10 nm, |=60 nm

z,=10 nm, I=200 nm

107 NN e, two parameter Gaussian theory leads to an echo peak formed
= Yo betweenr and 2r.'! Nevertheless to our knowledge this ef-
> N T S electron fect does not seem to be present m/2—m echo
10° T experiment$;}” our approximation being appropriate in this
Lo respect. Another approximation that seems reasonable is to

neglect back action. We assume that the nuclei evolve under
103.0 53 97 o s " To a static central spin fielfEq. (8)], unchanged by its effect on
Time [seconds] this spin. o
Finally, we comment on the relationship between our cur-
FIG. 9. Nonexponential decay of the correlation functigras a  rent work and a number of other recent publications in the
function of time[see Eq{(23)]. Initially x. shows strong exponen- literature dealing with spin relaxation in the context of semi-
tial decay, dominated by the fastest rate. Then slower processes takenductor quantum computer architectu?®®3" We em-
over. For Si:P we assume naturdsi abundance, whilB||[[111].  phasize that our theory deals exclusively with electron spin
GaAs-QD's show a clear tendency to motional narrowingfas decoherencen the absence of any phonon effec@sir work
(Fock-Darwin radiusincreases. provides a theory for nuclear-induced spectral diffusion of
(localized electron spin in semiconductors, and as such we
fected by 2°Si. Our GaAs quantum dot calculations confirm deal with electronic spin decoherence arising from the fluc-
our earlier estimates based on a simpler th8dkjthough  tuations induced by electron-nucleus hyperfine interactions
there are no Ga or Als=0 isotopes, one way to reduce SD is caused by nuclear spin dipolar flip flops. Since the flip flops
to suppress flip-flop events by nuclear polarization. The maigonserve nuclear energy, no phonons are required for the
difference betweerm; and T, samples is the presence of decoherence studied in this work.
several relaxation rates. This feature is evident in Fig. 9, Our work is a comprehensive theory for nuclear induced
where we show correlation functions for many cases treategpectral diffusion in the spin decoherence of localized elec-
here. Increasing QD radiu¢ increasesTy and reduces trons in semiconductors—we do not invoke the empirical
x<(Tm), pushing large QD’s to the motional narrowing re- approximations and the heuristic arguments which were used
gime. This result is clear evidence that SD does not affecto obtain earlier expressions for spectral diffusion existing in
delocalized stategsuch as conduction electropsince all  the literature*"?*As such our results are applicable and
nuclear pairs will be in the motional narrowing regiffieg.  relevant not only to considerations involving solid state spin-
(19)]. qubit-based quantum computer architectures but also to all
We now briefly discuss the approximations assumed irproblems involving spin decoherence due to electron-nucleus
our work. Certainly the most important one is that we treathyperfine coupling where phonon effects are negligibke,
nuclear pairs as independent Markovian processes, makir@j low temperaturgsin particular, our results apply to spin
random flip flops with a Poisson distribution. We believe thisecho measurements in semiconductors at low temperatures,
approximation is reasonable for a nuclear bath at temperand it is therefore gratifying that we have been able to quan-
tures much higher than its dipolar ordering critical temperaditatively explain hitherto unexplained Si spectral diffusion
ture (~%b,m/kg~10° K), since in this case the spin cor- results of Ref. 17 dating back thirty years. We emphasize that
relation length can be assumed of the order of one lattic@ur theory is still approximate since we are forced to make a
parameter. Of course this condition will always hold for di- number of approximations, the most important one being the
lution refrigeratorgwhich operate at mK temperatujeand  assumption of uncorrelated flip flops among spin pairs. Al-
specially for the experiment discussed in this pap@&r ( though we believe this assumption of uncorrelated flip flops
=1.6 K).1" At high spin temperature the nuclear system un-to be valid at “high” nuclear spin temperature>(K), it is
dergoes frequent transitions through itd ¢21)N available  still worthwhile to consider further improvement of our
states. An important assumption implicit in our model is thattheory by taking into account the full non-Markovian nature
only a subset of these transitions, namely, flip flops betweegf the spin flip-flop processes in future work.
close nuclear pairgdescribed byo,,, Eg. (9)] are respon-

sible for the SIZ_) effect at external magnetic fields ACKNOWLEDGMENT
>100 G. Four spin processes stem from higher order pertur-
bations in Eq.(29), and can be neglected whép,,<A, ., The authors acknowledge discussions with S.E. Barrett,

which is the case for the relevant nuclear pdintherwise, A. Kaminski, S.A. Lyon, J. Fabian, and P. Zoller. This work
the conditionb,, > A, immediately implies motional nar- is supported by ARDA, LPS, US-ONR, and NSF.

rowing [see Eq(19)] and this pair gives a negligible contri-
bution to the SD rafe Preliminary experimental resuttson

the orientation dependence ©f; show excellent qualitative
agreement with Fig. 4, suggesting the pair flip-flop picture is
quite appropriate. One limitation of the uncorrelated pair ap- The problem is to evaluate the averdds. (15)] for a
proximation is that the echo peaks always occut=apr. single nuclear pain,m

APPENDIX A: STOCHASTIC THEORY FOR A SINGLE
FLIP-FLOPPING PAIR
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_ pta2rt
p(p+2T 1 +A2

with N(t) a Poisson random variable with paramet@r (for  The inverse transform of this expression can be obtained by
simplicity we dropped the subscriptm from v,,, Apm,  expanding in partial fractio$
Tam) - Expanding the cosine and rearranging the product of
t
ve(t)= exr{ -7

v(t):<C°{AJ;S<t’><—1>“<”dt’ (A9)

> ' (A1) Ue(p)

. 1
integrals we get ——sinh(Rt)+cosiRt)|, (A10)

RT
o) t ¢
v(t)=, (_1)kA2kf dIZkS(tzk)f detzkfls(tzkfl)' - where RZ_ZTTZ—AZ._ We now turn to thew/2—77_ echo
k=0 0 0 ve(t), which is obtained by setting the echo function to
ty . B
X fo dt; S(t)((—1)%), (A2) S(t)y=1-26(t—1). (A11)

Then Eq.(A6) becomes
with €=N(ty)+ - - +N(ty). Using the inequalityt=t,,
=t 1=---=t,;=0 together with the fact that a sum of
two Poisson variables with parameteysT andt; /T equals
another Poisson witht{+t;)/T, we get

Vo(p)= Vok—2(P)—2 exXg—p7)

p(p+2T71)

_ -1 T ’ r7—1 ’
E=N(to—to—1) FN(to o=ty 3)+ - +N(t—ty) exp—2rT )fodt eXH2UT vzt
+2[N(ty-1) +N(ty—3)+ - +N(ty)], (A3) (A12)
and after summing the series we get

2
—_1\é\ — _ _
((=1)% exp{ T[(tzk tox—1) p+2T 1 . 2A2exp — pr)

7(p)= f(7),
(P) A%+p(p+2T° 1Y) A?+p(p+2T Y (0
T (ko= ty3)+ - +(ta—t)], (A4) (A13)
since the number of flip flop®l(t,—t,_1) are assumed _ _ -1 jT , r-1 /
independent random variables for nonoverlapping time inter- f(m)=exp(—27T7) 0 drexp2t'T Due(t).
valsty—to 1 (Markovian approximation Using Eqs(A2) (A14)

and(A4) we rewrite the echo decay in the form Using Eq.(A10), the inverse transform becomes

— . 2A2
v(t)—kgO (— 1) A%v (1) (A5) v(t)=ve(t) + O(t— T)?exp(—tT—l)
with v, (t) satisfying the integral recurrence relation X sin(R7)sinfR(t—7)] (A15)
t t K ok = — —
v2k(t)=f dtZKeXp(—Z% S(tZK)f dtyq O(T—t)ve(t) + 6(t— T)ve(t), (A16)
0 0 which after rearrangement leads to Ef8) for t> 7,
tor— .
X exp( 2%) St 1)vaka(to_1), (AB) ve(t) =R 2exp(—tT~H{T 2cosiRt)+ RT" sinhRt)

, _ —A2coshR(t—27)]}. (A17)
andvg(t)=1. We can transform EqA6) into an algebraic

recurrence relation by using the properties of Laplace

transforma4 APPENDIX B: EQUIVALENCE OF ENSEMBLE #/2—
ECHO ENVELOPE AND AVERAGE SINGLE SPIN
o DYNAMICS
b = e Py (t)dt. A7 . . :
2(P) fo 2t (A7) Equation (15) was derived by averagingr,,(t=0),

] ] ] ) . which clearly applies only to an ensemble of spins. Therefore
The free induction signabg(t) [Eq. (17)] is obtained by  ap interesting question is how the single spin off diagonal
settingS(t) =1 for all times. Then Eq(A6) becomes density matrix elementS, ) [analogous to Eq(12), the in-
plane magnetization in th§, basis but withoutr,,,(0) av-
~ eragé behaves under nuclear dynamics average only. The
—1,02k-2(P), (A8) result is that the modulus squared of this quantity is exactly
p(p+2T7%)
equal to then/2— 7 echo envelope, as we show below. The
and the Laplace transform of(t) is easily calculated to be evolution under Eq(9) is given by

Uo(p)=
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(scmy=11 <ex+AnmJt(—1)Nnm(t’)dt/
n<m 0

> . (B1)

whereN,(t) are independent Poisson random variables rep- ﬁm

. . . . 38 2_ 2
resenting the nuclear dynamics, on which the average is |Sam(DI*=[vam(t)] +R2 exp —
taken. Using the same methods of Appendix A, it is easy to

show that the argument of the prodyBtl) is given by

t
Sam(t) = < COS{AnmL(— 1)N"m“/)dt’}>

t
+<sin AnmJ (—1)Nnm<t’>dt’}>
0

A
o0+ e -
nm

wherev (7)(t) is the free induction decay derived abd\.

sinR,t), (B2)

Tnm
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which leads to strong interference effects when the product
over pairs is taken. To see this, we calculate

(F)

t)
Tnm) sinkP(Rymt)

nm

=vE(21). (B3)
Therefore the effect of this complex part is to enhance the
coherence of the single spin, making it exactly equal to the
7/2— 7 echo envelope

|<SL(T)>|2=UE(27').

Notice that if we performed the product over pairs without
this complex partS, would decay similarly to free induction
ve(t). Many authors define a coherence timeequal to the
1/e decay of the modulus of the off diagonal density matrix.

(B4)

(17)]. Clearly the difference between a single spin and arlf the echo is dominated by Gaussian SD, we simply have
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