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Electronic transport in hybrid mesoscopic structures: A nonequilibrium Green function approach
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We present a unified transport theory of hybrid structures, in which a confined normalNta@mple is
sandwiched between two leads each of which can be either a ferrom@jnet a superconductotS via
tunnel barriers. By introducing a four-dimensional Nambu-spinor space, a general current formula is derived
within the Keldysh nonequilibrium Green function formalism, which can be applied to various kinds of hybrid
mesoscopic systems with strong correlations even in the nonequilibrium situation. Such a formula is gauge
invariant. We also demonstrate analytically for some quantities, such as the difference between chemical
potentials, superconductor order parameter phases, and ferromagnetic magnetization orientations, that only
their relative value appears explicitly in the current expression. When applied to specific structures, the formula
becomes of the Meir-Wingreen-type favoring strong correlation effects, and reduces to the Landtiker-Bu
type in noninteracting systems such as the double-barrier resonant structures, which we study in detail beyond
the wide-band approximation. We find that the spin-dependent density of states of the ferromagn(siicslead
reflected in the resonant peak and resonant shoulder structurele¥/tbbaracteristics of/I/N/1/F structures
with large level spacing. The tunnel magnetoresistance that exhibits complex behaviors as a function of the
bias voltage, can be either positive or negative, suppressed or enhanced within the resonant pgak region
depending on the couplings to the leads. The Andreev current spectrbth/df/1/S structures consists of a
series of resonant peaks as a function of the gate voltage, of which the number and amplitude are strongly
dependent on the bias voltage, degree of spin polarization of the ferromagnetic lead, energy gap of the
superconducting lead, and the level configuration of the central regid®lIN/1/S resonant structures with
asymmetric superconducting energy gaps, the Josephson current through a single resonant level is slightly
enhanced in contrast to the significant enhancement of the Josephson cu8@Srjunctions. The current-
phase relation is relevant to the level position and the couplings to the superconducting leads.
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. INTRODUCTION setup (=left, R=right), the Landauer-Btiker formul&
states that the currefftcan be expressed as a convolution of
Electronic transport in mesoscopic systems or nanoscalge transmission probability” and the Fermi distribution
structures has received extensive theoretical and experimefunction f, (a=£L,R), i.e., Z=(2e/h)[T(€)[f (€)
tal attention* In mesoscopic systems the sample size is—fx(e)]de. The conductancg in the linear-response re-
smaller than the phase coherent length, and electrons retajjime is G=(2e/h) [ 7(€)(— df/de)de. Such a formulation
their phase when traveling through the sample. In the ballisseems more appealing since the transport properties are en-
tic limit, i.e., when the dimensions of the sample are smalleccoded in the corresponding transmission probability, which
than the mean free path, electrons can traverse the systeran be calculated by various methods.
without any scattering. In contrast to macroscopic systems, The nonequilibrium Green functiotNEGPF approach°
the conductance of mesoscopic systems is sample specifitas proven to be a powerful technique to investigate trans-
since electron wave functions are strongly dependent on thgort problems in many-body systems and mesoscopic sys-
form of the boundary of the sample and the configuration otems. The equation of motion for the NEGF", the quan-
scatterers located within the sample. tum Boltzmann equatiofQBE),® serves a starting point for
To calculate the conductance of mesoscopic systems, omeany transport calculations in the many-body probléfhs,
should first consider the wave nature of electrons. The claswhere a four-variable distribution function is required to in-
sical Boltzmann transport equatfois obviously inappropri-  corporate the quantum effect due to the uncertainty principle.
ate, since the assumption that electrons can be viewed d$e Keldysh formalism of the NEGHE? due to its integral
classical particles does not hold at a mesoscopic scale due torm, becomes a popular method in the formulation, calcu-
the Heinsenberg uncertainty limitation. Linear-responsdation, and simulation of recent mesoscopic transport prob-
theory’ is restricted to the weak perturbation regime and apiems. Caroliet al. were the first to employ the Keldysh
parently cannot be applied to the nonlinear or nonequilib;NEGF technique to study the tunneling problems of a biased
rium situation. Electronic transport through a mesoscopidnonequilibrium metal-insulator-metal junctiott. Meir and
medium is in effect a wave transmitting process of electronsWingreert? in 1992 derived a useful formula for the current
which can be associated with a scattering matrix. In measuthrough an interacting region with normal leads and applied
ing the conductance one always connects the sample to eleit-to investigate the transport properties of a quantum dot
tron reservoirs through perfect leatisn a two-terminal in  Kondo and fractional quantum Hall regimes.
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Later the Keldysh NEGF formalism was used to analyze the process that produces a set of decoupled forward or back-
-V characteristics of superconductor-superconductor pointvard “Andreev energy levels” carrying positive or negative
contacts and the transport problem in a quantum dot witdosephson curreft:*> An impurity inside the normal region
superconductor leads in Nambu spaté® By introducing  couples the Andreev energy levels, and thus modifies the
Green functions in the spinor space, the Keldysh NEGF apguasiparticle energy spectrum and other quantities. In the
proach has been also employed to study a quantum dot copresence of a ferromagnetic metal, a spin-polarized current
nected to two ferromagnetic electrod@8.herefore, incorpo- may be induced due to the imbalance of the spin populations
rating both Nambu and spinor spaces is a convenient devicg the chemical potentid?. Spin imbalance also introduces a
in order to investigate transport problems in the presence afet magnetic moment—the magnetization of ferromagnets.
both superconductors and ferromagnets within the Keldysiwhen two ferromagnets participate in a transport experi-
NEGF formalism. It is the purpose of this work to present ament, the relative orientation of the magnetizations of these
unified theory of electronic transport through an interactingiwo ferromagnets will play an important role in the transport
region connected to either bulk ferromagnetic or superconproperties, and the spin-valve effect ari$é€ombining fer-
ducting leads. In such a formalism, resonant transmissiofomagnets and superconductors, one may expect some new
due to single particle interference, correlation effects arisingransport features, since there is no complete Andreev reflec-
from strong electron-electron interactions, ferromagnetismion at theF/S interface. The conductance ofFdS junction
and superconductivity proximity effect in the presence ofcan be either smaller or larger than 1S case, depending
ferromagnets and superconductors can be treated in a sysn the degree of spin polarization of the ferromaghet.
tematic way. We noticed that there exists a circuit theory forwhen ferromagnets, superconductors, and confiimeeract-
mesoscopic systems developed by Nazabal'® based on  ing) normal metals are integrated together, the interplay be-
the kinetic equations of quasiclassical Green functi3iS, tween ferromagnetism, superconductivity, and electron-
which provides an alternative way to investigate the transelectron interaction is anticipated to lead to more interesting
port properties of hybrid structures with arbitrary and more complicated transport properties. Despite the basic
connections® However, such a formalism is not favorable to interest in the fundamental theory as mentioned above, hy-
the systems of strong correlation, and apparently inapplibrid mesoscopic systems also boast potential applications in
cable to the cases where the single particle interference effefiiture electronic devices which employ both the charge and
(for example, in resonant-tunneling structyressprominent  spin degree of freedom of electrons.
since the dependence on the relative coordinate of the qua- Starting from a microscopic Hamiltonian, we derive in
siclassical Green functions is integrated out. this paper a general current formula within the Keldysh
Thanks to recent advances in nanofabrication and materi?lEGF formalism for hybrid mesoscopic systems in which a
growth technologies, several kinds of hybrid mesoscopigentral nanoscale interacting normal region is weakly con-
structures have been realized experimentally. These nanogsected to two leads, each of which is either a ferromagnet or
cale structures include mesoscopic junctions such ag superconductor, thus providing a unified theory of electron
normal-metal/superconductdr (N/S) and ferromagnet/ transport in general hybrid structures, which incorporates
superconductdf (F/S) contacts, superconductor/insulator/ resonant tunneling, strong correlation, ferromagnetism, and
superconducté? (S/1/S) and superconductor/ferromagnet/ superconductivity proximity effect. Such a formula can be
superconductdf (S/F/S) junctions, and certain kinds of also applied to the nonequilibrium situation. Rather than
resonant structures such as superconductor/quantum-dditébm the original mean-field Stoner ferromagiieaind BCS
superconductdr (S-QD-S), normal-metal/superconducting superconductor Hamiltoniall,we calculate the current from
quantum-dot/normal-mefdl (N-SQD-N), normal-metal/ their diagonalized forms after appropriate Bogoliubov trans-
ferromagnetic-quantum-dot/normal-méfal  (N-FQD-N) formations, with which the ferromagnetism and supercon-
transistors. In a normal-metal/superconducttV/S) junc-  ducting proximity as well as the chemical potentials of the
tion, Andreev reflectiof??° dominates the transport process system are embodied in the tunneling parts of the system
at low bias voltages, in which an electron in the normalHamiltonian. Such a procedure is found to be a crucial step
metal slightly above the chemical potential of the superconin the analysis of our transport problem, and facilitates the
ductor is reflected as a hole slightly below the chemical poapplications of the general formula to the specific forms for
tential at the interface between the normal metal and supegiven structures, which are Meir-Wingreen-type formdfas.
conductor with an electron pair moving into the Employing such a procedure it is easy to check whether such
superconductor, and vice versa. When two superconductar theory satisfies the condition of gauge invariance, a re-
components are coupled together through an insulator or quirement of all transport theories. Moreover, the energy de-
normal metal, electron pairs can move coherently from ongendence and bias-voltage dependence of the level-width
superconductor to the other, yielding a nonzero current evefunctions and the distribution functions in the current for-
in the zero bias limit—the well known dc Josephson effectmula are derived in a strict and natural way, while this has
and an oscillating current at finite bias—the ac Josephsobeen done somewhat phenomenologically in the other
effect®® The S/N/S Josephson junction must be a mesos-formalisms>'2'5-1"This merit allows us to investigate the
copic system, with the length smaller than the phase coherehtV characteristics of hybrid mesoscopic systems with a
length of electrons in the normal region, to ensure electromuch more broad bias region. In addition we demonstrate
(hole)'s coherent motion inside the normal part. Then a re-that only their relative value for some physical quantities
flected electrorthole) can interfere constructively with itself, appears in the current formula after some unitary transforma-
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netization orientation of ferromagnet and the phase of the
superconductor order parameter. Physically only their rela-
tive value can be measured in a transport experiment for
these physical quantities, thus justifying thé hocassump-
tion that one of them can be always set to Zerd® Such a
formalism can be directly extended to the cases with more
than two external leads, which can be either ferromagnetic or
superconducting. A shorter paper which summarizes the for-
mulation has been reported elsewh&re.

In order to illustrate the validity and versatility of our
formulation, we apply the derived formulas to a noninteract- FIG. 1. A schematic diagram of a two-terminal hybrid mesos-
ing double-barrier resonant structuf®BRS) beyond the copic structgre. A mesoscopic.normal region is at.tached to .either
wide-band approximation which is usually used in theferromagnetic or superconducting Ieads_ W|_th chemical poteptial
Keldysh NEGF formalism&12-14-16\\/e neglect the interac- and,L_LR. In the former ca_se the magnetlz_atlbrnnakes an anglé;
tion effects, since in a regime where these interactions ar[f'at've to the normat axis. The current is assumed to flow along
not important, we can then see more clearly how ferromag! e longitudinalx axis from the higher-chemical-potential lead to

netism and superconductivity influence the transport propert-he lower-chemical-potential one.

ties of tf.i nor(rjr/]al metal res(;maf[nt sltru%turi\c%upled t(t) ftergox'/vell. Section 11l is devoted to the applications of the current
magnetc anadjor superconaucting leads. As aemonstrated gy, a5 derived in Sec. Il to noninteracting double-barrier

Sec. ”I’.We derive the final current formula based on Ourstructures, with a detailed analysis based on the analytical

tions. These quantities include the chemical potential, mag- z 1,
i h

Ferromagnetic / Mesoscopic Ferromagnetic /
Superconducting Normal Superconducting

Lead p, Sample Lead pg

trices due to the elastic couplings to the leads.
thel-V curves show resonant peaks plus resonant shoulders, Ping

reflecting directly the profile of the density of stat&0S)
of the Stoner ferromagnet. This observation provides an al-

ternative way to measure the degree of spin polarization of e consider electron motion along the longitudinal direc-
the system. The tunnel magnetoresistafidéR) decreases tjon x in a hybrid sandwich structure schematically shown in
nonmonotonically, as well as oscillates, as a function of therig. 1. The central part is assumed to be in the normal state,
applied bias voltage between the ferromagnetic leads. It igonnected via tunnel barriefinsulators or point contacts,
enhanced or suppressed within the resonant regions depenstc) to two bulk materials acting as leads, each of which can
ing on the couplings to the two sides. We also find negativeye either a ferromagnet, or a conventional BCS supercon-
TMR at some bias voltages in the strong coupling limit. ductor. We adopt the Stoner motfel” for the ferromagnet
These features tell us that there is richer phySiCS in the TMRInd the BCS Hami|toni§ﬂ for the Superconductor_ The

of a resonant structure. In the presence of ferromagnetic angtoner model Hamiltonian is characterized by a mean-field

superconducting leads, a series of peaks emerges in the Agxchange magnetizatidn and can be written as
dreev current whenever the resonant Andreev reflection con-

dition at theN/S interface is satisfied as the gate voltage K2 R

applied to the central part varies. The number and height of HF:f dX‘I’T(X)( ——Vi-o-h—pu|¥(), @
these Andreev current peaks are strongly dependent on the 2m

bias voltage and the degree of spin polarization of the ferrognerem* is the electron effective masé,z(&x,& ’(}Z) is
magngt. |e"’r‘]‘:|' \I?ter:esting step anﬂ' pheak stgucturej ar((aj Ofe Pauli spin operatoy is the chemical potentigl, andl’
served in thd -V characteristics, which may be used to de-_ ,,t+ 1y ; ; ;

termine the DOS of both ferromagnetic and superconductin%;’/j tThgj %;Z;Zﬁzzﬁgnhormfﬁgé va;rr:gtl;fcﬂrlglvavzv\évioatshsegme

leads. Finally we investigate the dc Josephson current iﬁxis, while we ignore the orientation with respect to the
S/I/N/I/S structures. It is shown that the dc Josephson curs

lane perpendicular to the transport direction being not rel-
rent is slightly enhanced if the energy gaps of superconducﬁ perp P g

L Svant to the transport propertigs.

ors becomes asymmetric, in contrast to 8i&l/S systems. Within the mean-field approximation, the BCS Hamil-
The current-phase relation is also weakly dependent on thg ian takes the form
asymmetry of the superconductor energy gaps.

The rest of this paper is organized as follows. In Sec. Il 52
the full Hamiltonian of an interacting normal metal placed in HS=2 f dx\l’f,(x)( - —Vf(—,u
between either ferromagnetic or superconducting bulk leads o 2m*
is given. We first express the current in terms of the nonequi-
librium Green functions in the Nambu-spinor space in gen- +f dX[A(X)‘I’%‘(X)‘IfI(X)—A*(x)\Pl(x)\PT(x)].
eral cases, and then present current expressions for the spe-
cific structures. The gauge invariance is proven to hold as 2

IIl. FORMULATION OF THE PROBLEM

W (x)
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In Eq. (2) ¥, is the field operator of electrons with spin no#mo’
=1,1, AX)=U(¥(x)¥ (x)) is the off-diagonal pair po- HEE= D Ungumor WinoWena¥e g bemar s (6)
tential, with U a negative constant characterizing the nm,o,o’

electron-electron attraction. In general the pair potential

needs to be determined self-consistently, and in this worler the electron-phonon interaction
will be assumed to be position and energy independent for

simplicity.

Since we are concerning about transport properties of M= hwglilqt 2 Uno,qtneWeno( 4+ {—q)-
electrons rather than their motion in real space it is more d Mo @
convenient to deal with the lead Hamiltonian knspace.
Expanding the electron field operator in terms of the eigen
functions of the momentum operator in the longitudiiah-
neling direction as¥ ,(x)==f,,e'**(s.,e'**) we cast the
ferromagnet and superconductor Hamiltonjahand(2) into . .
the following forms ink space(subscripty=L and R are (destruction operator in mode)

. ! The couplings between the leads and the central region
added to denote Wh'Ch side of the structure the ferromagn%tan be modr:aleg by tunneling Hamiltonian, no matter howqche
or superconductor is located) at '

leads are coupled to the central region, provided the cou-
plings are not strong enough. Certainly the coupling
strengths depend on the detailed configuration of the setup

Here the first term is the free-phonon Hamiltonian, while the
second represents the electron-phonon interaction, with inter-
action matrix element,,, q . gg(gq) is the phonon creation

HE,F)ZKZ [e,x—sgr(a)h,cosb,— u, 1T, ke and should be determined in a self-consistent manner. How-
7 ever, for simplicity they are assumed known and can be writ-
ten as
+ % h,sin 6,1, f o, (3)

H%/’(F): E [Vermrf;kuwcntr—f_vlz/rf:(flthnUf)’kU]’ (8)

kn;o

H (78) = Z (8 Yk M y) S.;ko'syktr

ko
S

H'}/'( )= knE [Vlzrs‘l;a'S;ka'wcna'_F Vlzrﬁ?‘o’l//znasyka] . (9)

o

+§k: [AVS;kTSI/fki+A;SV*leykT]’ (4)

To see tunneling processes more clearly, and, more impor-
tantly, to facilitate the analysis of gauge invariance and the
simplification of the general current formul@l) to the
forms of specific systems, we first diagonalize the Hamil-
tonian of the leads by Bogoliubov transformations. For the
ferromagnetic lead one has

wheree ,=#%k?/2m* and o stands for the opposite af.
Here the order parametér, is characterized by its magni-
tude and phasi\ ,|e'¢» and, as we will show,A | opens an
energy gap in the excitation spectrum of the superconducto
foko(Flo) @Nd s, (s,) are the electron destruction and
creation operators of spin in statek in the ferromagnet and . _
superconductor, respectively. Henceforth, the notations f ko= COL6,6/2) th,1ko— SYM ) SIN(0,1/2) 1, (10)
=1,| ando==* are used interchangeably. In what follows
physical quantities such as the particle operatomparticle
energye, and the chemical potential of the different parts .
are labeled by subscripi= £,R,C whenever convenient. In e"¢v’2sykg=cosaysk¢yskg+ sgr(o)sin 9ysk7’¢;k;-
addition, ferromagnetic or superconducting characteristics of (12)
the leads is stressed by adding a subscript or a super$cript
or s to some quantities. In Egs. (10), (11), PT(P) is the pair creatior(destruction
The Hamiltonian of the central regioH, in momentum  operator guaranteeing particle conservation, which trans-
space can be modeled by forms a givenN-particle state into anN+ 2)-particle[ (N
—2)—particle] state, i.e.PT/P|N)=|N+2)/|[N—2) and

and for the superconducting lead

He= nE (&no— mc) '/’Zna'r//cno"' Hint({wzno}v{’#cna})r €t \/Sik"‘ |Ay|2 vz
4 6,s1= arcta y > (12
(5 e Vel
Wheredflm(dfcn,,) createqdestroy$ an electron of spifr in Substituting the Bogoliubov transformatio¢i€) and(11)

staten and;,; represents the interaction terms in the centralinto the lead Hamiltoniart3) and (4), we get the following
region. It may include the electron-electron Coulomb inter-diagonalized forms for the ferromagnetic and superconduct-
action ing leads, respectively,
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- . whereT is the time-ordering operator along the closed time
HY =k2 Leyk—sgrio)h, = w, ¢ ket ytke path® The usual retarded/advanced and lesser/greater Green
7 functions then take the form

= kE syfkoi//.;fka'wyfko' ' (13)

Gr/ﬁ(tlv 2)= E IBJ(tlrtz

HP =2 (et 18,12 1) sk thyeier cONSE

=1iﬁ(it1:tz)i2j ([W,i(t) @ WL ()

)
=k2 & yskil ko ¥ysko+ CONSL. (14) TWL (1) @W,i(ty)]),

Now the particle number operator commutes with the corre-
sponding lead Hamiltonian. After the Bogoliubov transfor-
mations, the diagonalized lead Hamiltonian describe the ex-
citation (quasiparticl¢ properties. The minimum energy of
the excitations in a superconductor|i,|, implying an en-
ergy gap in the excitation spectrum.

With the Bogoliubov transformation&l0) and (11) we

G</>(t1,tz) E G;I/;j(tlth)

=2 (W ()W i(t)

QW (1) Whi(t)),

turn the tunneling Hamiltonian into

H?’(F)— 2 {an U[COS (9yf/2) w;fko

= sgr(a)sin( 0,/2) 1) Wons

wherea, 8= vf,ys,c andi,j=k,n.
In this four-dimensional Nambu-spinor space the total
Hamiltonian can be rewritten in the following compact form:

H=He+H+Hp+HE+HE, (18

where

Izrf1*0'lrllcn0'[ COE{ gyf/Z) lzbyf ko

— g 0)SiN 0,1/2) i1} (15) He= E Wl EcoWent Hin({WL, Weod), (19

HYS = VIS [COSO.sith! <y
2 { kn; [ yskl/jysk H(yF/S):zk lIII/f/skE'yf/SklI"yf/Ski (20
+ sgr( U)Sin Bysk(//ysk(_rPT]ei ‘Pylzdfcn(r
+ Vgﬁfowznoe_ ! (py/2[ Coseyskwyska
. T
+gn( o) SiN( 65l P g 1} - (16)

The associated physical processes are more obvious aftd
clear in the semiconductor mod®*® an electron of spinr
in the central regime can tunnel into either the spiband or

HUFO = Z (W VIS ()We+He]. (2D

In writing down Eqs.(19)—(21), we have introduced the en-
y matrices

o band of the ferromagnetic lead, or tunnel into a spin 0 —e O 0
state or condensate into an electron pair with a hole state of E,=| ¢ 0 e 0 |+ a=cn yfisk
opposite spin being created, and vice versa.

0 0 0 —ey

In superconductors, correlation between two creation or
annihilation quasipa_rticle operators with opp_osit.e spins are (22)
very important, relating to the Andreev reflection in transport _ .
processes. When ferromagnets are introduced, the correlatiGfd the tunneling matrices
between a creation and an annihilation quasiparticle operator

with opposite spins needs to be considered. To incorporate i Oyt
these REIJO kindspof correlations in a unified way and conpsider Via(=R ( 2 )V nP(Kyct), 23
the ferromagnet and superconductor on the same footing, we
here introduce a generalized Nambu-spin representation ®
spanning a four-dimensional spin-orientated particle-hole V.Zﬁ(t)IRS(GySQVZ§P(M7Ct+ ?7) (24)
spaceW, = (i, iy, ¥}, )", Within the Keldysh NEGF
formalism, Green functions are defined as
M’yC:M’y_ Mc

Guy(t1,t) =i(Tc[ Wy(t) @ Wi(t,)]), (A7) in which
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vis o 0 0 Glirsken(tit)
0 -vi* o o r (1G5
V|er1/S: 0 0 VIZ;/S 0 , :% Jdtl[gyf/sk,yf/sk(tvtl)vlzlm (tl)Gcm,cn(tl’t’)
_\yYfls% 4
0 0 0 an +g;f/sk,yf/sk(titl)vlzlrfés(tl)Ggm,cn(tl*t )]’ (26)

Gen, sk tit")
COSX 0 sinx 0

f 0 cosx 0 —sinx =2 f dtal Gep,om(£,2) Vi (1) yprsiptrsid ta.1)
RI(X)=| —sinx 0 cosx 0 ’ et 3
0 sinx 0 COSX +Genem(t ) Vim®™ (1) Gy sk yis et (27)
in which the unperturbed retarded/advanced Green function
g’y’fa,s'yf,S of lead y can be readily obtained from the Hamil-
cosx  —Psinx 0 0 tonian(13), (14) as diagonal matrices
. P*sinx  cosx 0 0 gry’ﬁ}sk’yf,sk(t,t’)=1i0(it1t’),
Ro(x)= 0 0 coX  Psinx | .
0 0 —P*sinx  cosx Yytisk LO 0 0
0 g O 0
e , (28)
i 0 0 9ytisk O
eIX/h 0 0 0 Y .
0 e i g 0 0 0 0 9yt/sk
P(X): 0 0 eix/h 0 gt;/'f-T}Sk(t,t/):eiisyflskg(t—t')/h’ (29)
0 0 0 e ™ and the lességreatey Green functions are related to the re-

tardedadvancel Green functions by g5/, rsdtit’)

=[f, (2,150 — 2 1% 3110 t/skHtrsk(Bt )= trskparsi(tit ) 1.

are the coupling, rotation, and phase matrices, respectivel el ¢
pang P P he Fermi distribution matrixX, (e t/s1) reads

Note that we have performed a gauge transformatitmget
the above Hamiltonian. Chemical potential is now incorpo- (&1/0)

rated in the phase operat®(u,t) in the tunneling matrices s

Egs. (23), (24), which along with the rotation operators is f(&/skr) 0 0 0
very useful to demonstrate gauge invariance for our system yiisk

as shown below. _ 0 f(—&,0sk) 0 0
The current flowing from leady=L,R to the central 0 0 f(&,1/sk) 0 '
region can be defined as the rate of change of the elec- 0 0 0 f—
(=& yt/skt)

tron number N-y: Eka’f ‘)r/ko"f yka(sgkasyka) = Eko“//;fkawyfko )
(¥ sko¥ysks) i the lead. Within the Keldysh NEGF formal- where f(x)=(1+e**e")~* and we have used the relation
ism, the current is expressed as f(=x)=1—f(x).

Substituting Eq(26) into (25), we obtain

- ie 26 i=13
)= —&N,)= ([N, ,Hd) ()=~ ;ﬂ f_wdthe{[Eryf,s;nm(t,tl)Gfmvcn(tl,t)
= - E ‘213 zk {[Gsn’yf/sk(t,t)vzrf]ls(t) +2§f/s;nm(tltl)Ggm,cn(tl1t)]ii}! (30)

f/st < where
—Vin (DG sken(tLD 1}

& X fam () = 2 Vin " (G sd b ) Vim'(t)
=5 2 RV (UG sken( LD} (29)
is the self-energy matriXsee the Appendixarising from

electron tunneling between the central region and kead

Since the Hamiltonian of leady is of the form For steady transport, no charge piles up in the central
¥ tiske¥ytiske » the equations of motion foB ¢, ., along  normal region. One then ha&:(t) = —Z(t).* After sym-
with the Langreth analytic continuatityield the following ~ metrizing the current formul&30), we finally get by setting
Dyson equations: () =[Z.(t)—Zx(1)]/2
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i=1,3 = Ps Ps
e t Lils; .\ _ pt| TS| yLils ¥s
-7 3 [ duReT([3yuitty Fre (2) P(:z)rw “”P(z)'
< < ~ H ’
— 2nps(6 )]G ot ) +[ 2zt 1) GE’,‘E‘K(S):I d(t—t/)elet-t )/hp< ot + %
— 205Ut 1GE c(t1, )i}y (31)
¢
where the trace is over the level indices of the central region. X GL;?}K(t,t’)PT( oct’ + TR ,

Equation(31) along with the self-energy matrices given in
Appendix is the central result of this work. The current iswith = ¢,— ¢ . From the fluctuation-dissipation theorem
expressed in terms of the local propertie8”€) and the é§é>:[feq(8)_%li 11)(G2 .~ GL ) (fr=fr=feg), oOnNe
occupation G='7) of the central interacting region and the ¢an readily verify that the current is zero except in the pres-
equilibrium properties X ~') of the leads. It is emphasized ence of two superconductor leads with different supercon-
that the current is usually mdependent_ of time except th%iucting order parameter phases. In this case, there still exists
presence of two superconductor leads with nonzero bias voliy ¢ Josephson current in the zero bias limit due to the co-
age. Formula31) can be employed to investigate both equi- nerent tunneling ofguasiparticle pairs This can be seen
librium and nonequilibrium electronic transport in various mgre clearly in the expressions of the current in the specific
kinds of hybrid mesoscopic systems, includiRgl/N/1/F, systems(33)—(35).
F/UIN/IIS,  FIHN/UN, - SIHNATS, - S/TIN/IN, - and Up to now we have obtained the expression for the cur-
F-QD-F, F-QD-S, F-QD-N, S-QD-S, S-QD-N structures  rent in a general case in which each of the two leads can be
as well, in which arbitrary interactions are allowed in the gjther a ferromagnet or a superconductor. Next we apply this
central part of the structure. general result31) to the specific structures we are interested
Itis not difficult to check that Eq(31) is gauge invariant, in. we first consider the case in which two leads are ferro-
i.e., the currentZ(t) remains unchanged under a global en-magnetic. Inserting the expressions of the self-energy matri-
ergy shift in the whole region. This can be achieved through;eszyf(tl,tz) [Appendix into Eq.(31), we get the current
a gauge transformation for the Hamiltonian of the system iy a3 F/I/N/I/F or F-QD-F structure after aotation trans-
formation and gphasetransformation

. i
f(e t):eXp[_f t(E ‘ﬂZna'ﬂcno L

0 7 €ot| 2 e |§3 de o o
Tint=55 JETr{([F (e+eV)—I'""(e)]G; ()

y=LR:k

+ E w;f/skawyflskzr)]' .
ko +[I(eFeVi(eFeV)

where g is just the energy shift. Such a gauge transforma- R - -
tion gives rise, in turn, to thphasetransformations of all the ~ T (e)fr(2)][Ge o(2) ~ Gecle) D} (33

terms in the right-hand side of E(1) wheref = RI(0,/2)TERI(6,12), 6= 05— O, and

30t t) = P(egt) 2151, 1) PT(eqty),

él(':,,i/<(8):J’ d(t_t/)eis(t—t/)/hP(MRCt)Rf % G(r:,’z::1/<
G5 (t1,1) =P (eoty) GYS (t1,H)P(eot).
The apove procedures, equivalent to applyirnghasetrans- X(t,t/)RfT(@) P (ret’),
formation to the current operat® (e,t)Z(t) P(eot), ensure 2
that the current remains the same under such a transforma-
tion. Therefore, the current formul®1) is gauge invariant. f(e—c) 0 0 0
Now we check whether the current becomes zero if we 0 f(e+c) 0 0
take the zero bias limi,=ur=wue. We first perform a f(exc)=
phaseoperationP( ot + ¢/2) corresponding to the gauge 0 0 f(e—c) 0
transformatiorf (ueot), poe= po— e to Eq.(31), obtaining 0 0 0 f(e+c)
13 The expression of tunneling curref®3) resembles formally
_ e E ds. 1 s the current formula derived by Meir and Wingrééfior a
= 4 o ImTr Z[F/e (e) confined region coupled to two normal electrodes. The dif-
ference lies in that the coupling matrices and Green functions
_Fgf/s(s)]égc(g)_(f/ﬁé‘/s(s)fﬁ(s) in Eq. (33) are spanned in the Nambu-spinor space, which
’ reflects the dependence of the current on the spin polariza-
~ tion of the ferromagnetic leads and the relative orientation of
— T (e)fr(£) G o(e) “}’ 32 the magnetic moments. When we set to zero the magnetic

moments of the two leads, E(B3) reduces to Eq(5) in the
where paper of Meir and Wingreett, since in this case the ferro-
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magnetic leads become normal metals. As seen from Eq. - et Or
(33), current is only dependent on the relative orientation of ~ G¢¢ (8:'[)=J d(t—t")e (=P ppct+ >
the magnetizations of two leads, although there is an appar-
ent 6; dependence in the expression f8F®~. Neverthe-

less, this dependence of the Green functi®<’< on the
orientation of the ferromagnet magnetization comes from the

self-energy matrice’ " andS ' after therotation operation  with o= ¢~ ¢ . One may wonder why we use the nota-

R(6:/2), hence they only depend on the relative orientation GL'%<(e;t) with the additional variable other than

tion as can be seen more clearly in the noninteracting modek.r,a/ . - opal
it one lead () is ferromagnyetic and the otherRog is EL;‘ =(&). The reason is that the full Green functicB52' =

superconducting it is expected that Andreev reflection ro_should be calculated in the presence of tunneling between the
P g P PrO%entral part and the two sides, as well as the interactions in

cess, dependent on the spin polarization of the ferromagnet e central region. In the present case, tthependence can-
will dominate the current at low bias voltages. Applying 4 not be avoided iﬁ the self-energy mat,rices while it can be
phasegnd grotation transformations to Eq.31), simple in- removed by a unitarphaseoperation when o1nIy one super-
tegration gives conductor is involved. The current through a confined inter-
acting region connected to two superconductor leads is gen-
ie de o Rs v < erally time dependent, as in the case of biased weak
Ifns:ﬁ 2 f ET"{([F (e+eV)—I'"(e)]Gcc(e) Josephson link&? However, in the limiting case of zero bias,
the current is a time-independent nonzero quantity, as can be

><G£1"é"<(t.t’)P*<uRct’+ o

i=13

+HI (e FeV)f(eTeV)— TN (e)fr(e)] seen from Eq.35). In other theoretical treatment$?! a
o, “a double-time Fourier transformation is usually taken as
X[Gc,c(s)_Gc,c(s)])ii}y (34 X(t,t') = (1/277)Enfdwe’“"tei(‘””“’olz)"x(w,w +Nnwyl2),
in which the full Green functions are wherewy=2eV/#, and the current yields a harmonic expan-
sion of the fundamental frequendyt) ==,1,e"“0. In fact,
. . 0 the Green function§&¥~ in Eq. (35 can be expanded in
nal<, . \_ e aie(t—t)h PR| | YLt d.d =
Gl (e) Id(t t)e Pl rct+ R( 2 ) powers of the fundamental frequenay, i.e., Gy% ~(e,t)
o =363 " (e,6 + Mwy/2)e™*0"2 which with the expres-

. sion for the Green functiofsy% ~ below Eq.(35) is exactly
of the form of the double-energy transformatfrdowever,

In Eq. (34) the current does not depend on the orientation ofve show here that one can obtamprinciple the time de-
the magnetization of the ferromagnetic lead and the phase @endence of the current, as long as one can derive the full
the order parameter of the superconductor lead. This can dereen functions of the central part, which need further inves-
clearly demonstrated by expanding the full Green functiondigation.
of the central part perturbatively, as we will show below in ~ So far we have presented a general formulation to calcu-
the non-interacting case. In addition, one can divide the curate the current through a confined normal region connected
rent into several parts implying the contributions from differ- to two leads being either ferromagnetic or superconducting,
ent physical processes such as normal particle tunneling arthd the Meir-Wingreen-type formulas in the specific cases.
Andreev reflection, after expanding the right hand side of EqAlthough the formalism can not applied to the strong cou-
(34). We will show it later in the noninteraction case. pling of the central normal part to the outer world as the
When two leads are superconducting, the situation becircuit theory of the hybrid mesoscopic transp@iit, permits
comes much more complicated. As did in the previous exus to investigate the effects of the single particle interference
amples, we derive the following current formula for and strong electron-electron interaction on the transport
S/I/N/I/S or S-QD-S systems properties of hybrid mesoscopic systems, which is ignored in
the circuit theory. Compared to the other formalisms based
i—13 on the similar Keldysh NEGF techniqdé?*>-1"%€ur for-
T dt)=— € 2 f d—SImTr (E[T‘S(g:ev;t) malism is more systematic and more general.. [n the present
s h 21 2-°¢ formalism, one does not need to make additioadl hoc
~ _ assumptions as mentioned in the introduction. One can also
—I'%(e)1Gg(e;) —[T5(eFeVif (e FeV) judge what quantities can be measured in experiment in a
much more complicated structure, by observing simply the
}, (35) energy-independent arguments in the exponential functions
or the triangle functions in the unitary matrices of the tun-
neling parts of the Hamiltonian after the Bogoliubov trans-
where formations. As we will demonstrate, we obtain the final cur-
rent formula after simple matrix algebra rather than difficult
mathematical techniqués:=*”%® This kind of mathematical
simplicity makes our formalism more appearing than others.

0
><GE:Z"<<t,t’)R”(7“) P*(mt’+ 5

—FES(s)fR(s)]égc(s;t))

Iy (eveVvity=P' Iy (eFeV)P

eVit+ "is),

Ps
eVi+ > >
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More importantly, an explicit energy- and bias-voltage de-usuaf'?'*-1®wide-band approximation of the level-width
pendence of the level-width functions and distribution func-functions which is reasonable in the low-voltage transport,
tions allows us to investigate theV characteristics in a since in this paper we also deal with high bias voltage situ-

much more wider range of bias voltage. ation. As we will show, this permits us to investigate the
current within a much wider region of bias voltage and find
Il. APPLICATIONS TO THE NONINTERACTING MODEL interesting transport features of the same resonant structures
IN THE CENTRAL REGION which can not be found in the other formalisms based on the

Keldysh NEGF techniqu&™’

In this section we use the formulas developed above to |n the absence of interactions within the intermediate nor-
study transport properties of various kinds of hybrid mesosmal metal, the full retarded/advanced Green function can be
copic systems in which, for simplicity and convenience ofsolved from Dyson equation
comparison with other theories, the interaction effects in the
central confined region are not considered. The absence & a(t,t')=GY3(t,t")
the interactions permits an analysis of the genuine physical

influence of ferromagnetism and superconductor proximity +f dtlf dtng,'c/a(t,tl)E”a(tl,tz) L’,?(tz,t’)
on the transport properties in hybrid structures. One of the

best candidates for a non-interaction confined region is =Ga(,t")

double-barrier resonant structurBBRS's) with quantized ee

discrete energy levefs.Therefore we adopt the double- ‘a a or/a )
barrier model with the emitter and collector replaced by ei- +f dtlf dt;Ge o(t,t)Z74(t,t2) Ge (o, 1),

ther a ferromagnet or a superconductor. Throughout the fol-
lowing calculations we use the following approximatiofis: (36)

the level shift is omitted(ii) the coupling coefficients are in which Ggréa is the decoupled Green function, which be-
real constants, independent of spin and energy such thgbmes when the central region is isolated from the outside
vyl =vfls=yrtiss - However, we will abandon the world

e ilen—u(ti—t)/h 0 0
/ ei(anl*,uc)(tlftz)/h 0 0
r'a N — — 3 —_
gc,c(t't )_+Iﬁ(itl+t2); 0 0 e ilen—radti—t)/h
0 0 0 ei(smf,u,c)(tlftzlﬁ)
(37
|
The lesser/greater Green function of the central region is A. F/I/N/I/F structures
calculated via Keldysh equation When two ferromagnets are separated by a thin nonmag-
netic barrier, two kinds of physical effects arise. The first is
the spin valveeffect®*3” showing a (& & cosé) dependence
fo(tvt’):f dtlf dtzf dtsf dt, of the tunnel conductance on the relative orientatfobe-
’ tween the involved two magnetizations. The other is tunnel
; 34 ] —
X[1+ G c(t,tl)Er(tl,tz)]G8§/>(tz,t3) magnetoresistance (TMR), defined .by AR/R=(R,
' ' —Ry)/Ra, whereR,, and R, are the resistances when two
X[1+ Ea(tg,t“)ch(t‘l,t’)] magnetizations are parallel and antiparallel, respectively. The

spin valveand TMR are due to the spin polarization induced
+f dt1f dt,GL C(t,t1)2<’>(t1,t2)G§ (1), by an exchanging coupling between electron spins and the
’ ’ internal magnetizatiorf*” and the relative orientation of the
(39) magnetizations can be adjusted by applying a magnetic field.
A TMR up to 11.8% at room temperatures, and 24% at 4.2
K, was reported in CoFe/AD;/Co planar magnetic
Once the full Green functions in the central region arejunctions*? It is observed that the TMR decreases with in-
known, we then have the complete knowledge to investigatereasing bias voltad.
tunneling processes in the specific structures. In the follow- Recently, double-barrier magnetic resonant structures
ing we study electron tunneling in three typical hybrid struc-have attracted much experimefitand theoreticaf**~*%at-
tures: (@ F/I/N/I/F magnetic DBRS’s,(b) F/I/N/I/S  tention. The theoretical results show that the TMR of reso-
DBRS'’s, and(c) S/I/N/I/S DBRS's. nant magnetic structures is enhanced compared to the single
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Gr/g(t t ) gr/a(t t )

fdtlf dt,Gr3(t,t1) 372(ty, 1) GYa(t, ),

(39

r/a(t t ) gr/a(t t )

f dtlf dtzgr/a(t tl)zr/a(tla 2)gr/a(tzyt ),

p(e)

p(e) (40

FIG. 2. A schematic potential profile for a biased magnetic
double-barrier structure with two ferromagnetic electrodes characV
terized by their respective magnetizatidnsandhy . The hatched
regions denote the states occupied by electrons.

where Q( Gr al< gr a/< r al< andzr al<)

N 0 Ors
X(t,t")=P(prct) R 22 X (1,1 )RIT| 2L

> PT(MRCt ).

magnetic junctions due to resonant tunnefifit® However,
there appears a controversial issue related to the TMR en-
hancement, on whether it is for péélor valley current® In Substituting the self-energy ma’[ncﬁaa (Appendi® into
addition, Shenget al*® found both positive and negative the Dyson equatioi40), one has
TMR in F/1/F/1/F double junctions. To clarify these issues,
we reexamine this problem using our formy&8) in terms
of the two-band free-electron spin-polarization md@éor
the ferromagnetic leads. A typical double-barrier magnetic r,a B -t
structure is schematically plotted in Fig. 2. S(Lt)= f

We take two steps to calculate the full retarded/advanced

Green functlorGrc’C(t t’) of the central region. First we de- J de

is(tt’)/ﬁ[ rla— 1(8)+_FRf(8)

couple the system from the left ferromagnet, denoting the =
corresponding retarded/advanced Green function by

r’a(t t’), then we couple the central region to the left fer-
romagnet and calculate the full Green functi@Gnfrom G. where the retarded/advanced Green function for the isolated

S NG e), (4D

From the Dyson equatio(86) we have central region is
1 -1
0 0 0
n g—e€ TiiOJr
-1
1
0 ) — 0 0
~r/a n 8+6n1—|0
Qe cle)= 4 ,
1
0 0 0
noe—ep*i0”
1 -1
0 0 0
n (s‘-i-csm_lo+
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with €, =&,,— e+ ur - The full retarded/advanced Green 0 . L Bs.
function is obtained in the same way: + coé?l“ffl“?%sngl“ffl“?f

|é(r:,c;33|2}-
7 Notice that we have dropped the argumestseV in I'%f
-t ande in T*" for brevity. The full retarded Green function in
Eq. (46) is determined by the matrix inversid} .= [gf '
+({i/2)T + (i/2)T*171, and we have

= d_sefis(tft’)/ﬁ
2 1 -1

-1 G(r:,c;llzéf_fl(s)[(E

n e—ey +i0"

r/a 1(8) —I‘”(s+e\/)

x|ola Me)* FRf(s) 2Fﬁf(8+ev)
i O O
cog 1 (' +sir S+ T

de . AN 5
ZJEe—ls(t—t )/ﬁGL/’g(g)_ (43) 2

i (DLE P
The lesser Green function is associated with the retarded _ar —(i/4)sing(I'y —T'")
c c;137 “c,c; 317 2 ’

and advanced Green functions via the Keldysh equd88n Ge(e)
whereg=(t,t’)=0

1 -1

Grutt)= [ at [ LGt ISE () coias= Gt (8)[(2 ST

+3517 (11,1168 (1o, 1)

| Orerr, 2 0tart i
+3 c:o§El“T +sm271“i +T7

& . ’ ~ A~
=f—277e—'8<t—t MAGE (e)[ T (e FeV)
fo(s) CCllGCC33 G001360031

Xfr(eTeV) =T (e)fr(e)]GE (2) To obtain the last equality of E¢46), we have used
de
_ —Is(t t)/ﬁG< 44
27 ° o) 44 (gtrzlg 1%— T G(rzlﬁ 13_+ r 362{21;33,

Substituting the advanced and lesser Green functié®)s .
and (44) into Eq. (33) or (31), one gets the following (gr/a 1+|_1—~f )Gr/a F Grla
Landauer-Bitiker-type formula for the current through a c.c38= 2" 33) Peci3lT 31-c.c1ls

noninteracting=/1/N/I/F magnetic structure
whereI'" =41+ %",

2e One sees from Eqg45) and (46) that the current has a
Lini(05) = FJ de[f (e —eV)—Tfr(e)]Zmni(e, 0), generic dependence on the relative orientatiprbetween
(45)  the two magnetizations. By observing the current expression
and scrutinizing the structure of the Green functions, it is not
difficult to find that the tunneling current through the mag-
netic structure is generally maximized 8t=0 (parallel
magnetizationand minimized a¥; = 7 (antiparallel magne-
Tfnf(s,ef)— 5. 2 [T (e FeV)GL ()T ()G (&)1 tization), a typicalspin valveeffect also in magnetic resonant
tunneling devicegdata not shown heyeThe ferromagnetism
is reflected in thed; and F?,f dependence of the full Green

(0052 FUFRfJFS'nz Fmrm) [k functions of the central paG, ., as well the transmission
function 7. When at least one lead is nonmagnetic, the
dependence can be removed with the help oftation op-
erationR’. If we setI'f'=T" and'?'=TT", the current
formula (45) will recover the usual Landauer-Biker for-
mula and the transmission is finally simplified to the Breit-
Wigner type in the single level case. We notice that the cur-
rent formula(45) is formally similar to the results of Wang
et all® and Zhuet al.” however, the discrepancy is non-

trivial. The current formula45) allows us to calculate the

where the transmission coefficiefff, is cast into the fol-
lowing compact form:

1

2

O ~
REpPRE fecfpRE
—(21’T I +C°52_2F1 I

: 0f"£f Rf
+sm2§l"T I

~ f f
|G::,c;13|2_ ZF? F?

af“ﬁf Rf | o af"Lf Rf
+C052?FT r} +sm2§1“l r

|Gt el
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0.04 of ferromagnets, the structure of resonant shoulders neigh-
N boring to resonant peaks is celebrated in Ithé plots. The
ratio of the peak width to the shoulder width is aboM{ (
—h,)/2h,. Moreover, the valley current in a normal reso-
nant tunneling structure is lifted when the leads become fer-
romagnetic. These surprising results, unexpected within the
(0 W (0)W=0.01 wide-band approximation, can be understood from the poten-
h/W=0.3, h./W=0.7 tial profile of this kind of magnetic double junction structure,
777 h/W=07, hW=03 shown in Fig. 2. It is well known that the current through a
usual double-barrier structure is resonantly enhanced when
one of the well levels falls into the region of a Fermi sea, i.e.,
eV<eg,+eVI2<W+eV.*! In the ferromagnetic situation,
the Fermi sea is distorted and comprises two distinct parts:
one with both spin-up and spin-down bands, and the other
with only a spin-up or spin-down band, as displayed in Fig.
: 2. We thus have two types of Fermi sea for ferromagnets, one
_ Yy hL/W::ﬂ;i;;\jVAf;f:;,wﬂ o is represented blg, +eV<eg,+eV/2<W+eV and the other
"""""" i ----G:f(o)/W:1OG'::(0)/W;0.1 is —h,+eV<e,+eVi2<h,+eV. It is obvious that the
i I & (OVW=10e(0yW=0.1 resonant current through one of the well levels being within
of0 b— L L T T T the sea of the first type is larger than that of the second type,
6 -4 2 0 2 4 6 which is clearly reflected in thé-V characteristics in Fig.
Bias voltage eV/W 3(a).

Next we investigate the influence of coupling asymmetry
on the tunneling current. The results are presented in Fig.
3(b). The magnitude of resonant current is significantly en-
hanced when one of the couplings becomes 10 times as
large. The coupling asymmetry induces a more significant
enhancement of the tunneling current if it is the coupling to
[-V curves in a much wider region of bias voltage yielding the higher-voltage leatemitte) that is stronger, consistent
rich physics, while according to the theoretical treatments ofvith the tight-binding numerical result in the usual DBES.
Wang et al'® and Zhuet al,'” the current formula is re- The ferromagneti¢-V characteristicgpeaks plus shoulders
stricted to the low bias voltage case where the level-widthin the reverse-bias case is blurred, also due to the same cou-
functions can be viewed as energy-independent constantgling asymmetry effect. These features can be understood in
and thus may result in even wrong consequences in the largesimilar way. The resonant current is roughly proportional to
bias voltage limit. the ratio I'7(0)p“ TR (0)p ™ /[T£1(0)p“ + TR (0)p*7?,

Of particular interest is the current-voltage characteristicsvhich becomes larger when one of the couplifig$(0) or
of double-barrier structures. In subsequent calculations, Wg®(0) is enhanced. However, the magnitude of this en-
approximate the density of states of the ferromagnetic leadsancement also depends on the DOS of the ferromagnet lead
by that of the two-band free-electron spin-polarization,?f, If one strengthens the coupling to the lower-voltage lead
modef”*> and take into consideration the finite width of (collectop, the tunneling current is slightly enhanced since
these two bands. In this model the dimensionless DOS of thghe DOS of the collector is comparatively large.
spin bands isp)'(e)<\(e+oh,+W)/W, whereW is the Following Shenget al.*® we define the tunnel mag-
bandwidth measured from the band bottom to the Fermnetoresistance (TMR) as AR/R=[Zi,i(7)—Z¢n1(0)]/
level. For some ferromagnetic metals, this is quite an appromax Z;,+(7),Z:n+(0)]. In Fig. 4 we give the TMR as a func-
priate approximatiod’®*° In the absence of a magnetic tion of the bias voltage for some typical couplings, and the
field in the central regior,, =&, =¢,. To model the bias |-V curves in the cases of parallel and antiparallel alignments
voltage drop inside the well we take.= ur,—eV/2, since  of magnetizations for the convenience of comparison and
the bias potential is assumed distributing uniformly acrossanalysis. In contrary to the monotonous decay with the bias
the double-barrier structure. Without any loss of generalityoltage?? the TMR in magnetic DBRS's displays complex
we consider two quasistationary levels in the well, of whichdependence on the bias voltage no matter what the values of
the energy of the lowest one is OM5whenV=0 and the couplings are, which arises from the resonant tunneling of
level spacing is chosen as W5 larger than the bandwidth of electrons. This feature reveals that there is richer physics in
the ferromagnets. This assumption is, in practice, quite reag¢he TMR of magnetic resonant structures. We notice also that
sonable for the narrow-band ferromagnetic metals and quarthe bias voltage dependence of the TMR can be compara-
tum wells with very large level spacing or small quantumtively simple if the collector ferromagnet is of low degree of
dots with very large charging energy. TheV curves are spin polarizationh, /W, as shown in the negative bias do-
shown in Fig. 3. The dotted line in Fig(a, the well-known mains of Fig. 4. This phenomenon can be ascribed to the
I-V characteristics of usual double-barrier structures, is givemveak perturbation of the spin-up and spin-down DOS of the
for comparison with the ferromagnetic case. In the presencterromagnet with smak., /W by an external magnetic field.

0.02

0.00 |~

-0.02

0.10

Current (arb. units)

0.05

0.00

FIG. 3. |-V characteristics of a magnetic double-barrier struc-
ture for (a) different magnetization&, and h; and (b) different
couplingsT"#f(0) andT'*7(0) at temperaturgT=0.1W. The level
spacing is 1.9V, larger than the bandwidtiV.
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12 | T¥(0)W=0.01

r(0)/W=0.05
(0)/W=0.01

FIG. 4. TMR versus bias voltage of a mag-
netic double-barrier structure for different cou-
plings at temperaturkg T=0.1W. The thick lines
are the results for TMR, and the thin solid and
dashed lines represent the tunneling current with
parallel and antiparallel magnetizations, respec-
tively. The other parameters are the same as in
Fig. 3.

(0)/W=0.001 |
(0)/W=0.001

TMR AR / R (%)

Current (arb. units)

6 4 2 0 2 4 6 6 4 2 0 2 4 6
Bias voltage eV/W

In addition, the peculiar behavior of the TMR also dependderromagnet. The TMR of resonant structures exhibits com-
on the strengths and symmetry of the elastic couplings. In thplex dependence on the bias voltage. It is either enhanced or
strong coupling casfFig. 4(d)], the TMR shows a resonant suppressed, depending on the strengths and symmetry of the
behavior similar to that in the tunneling curréft®and can elastic couplings of the central region to the magnetic leads.
even be negative at some bias voltalfesn other cases
[Figs. 4a—4(c)], the TMR drops within the resonant peak
region and then develops peaks at the boundaries between B. F/I/N/I/S structures
the current peaks and shoulders, similar to the result of a At an N/S interface a dissipative current in the normal
noninteracting quantum dot coupled to two magnetic I€ads. metal can be converted into a dissipationless supercurrent in
The different oscillatory behaviors of the TMR with the bias the superconductor via the Andreev reflection proééss.
voltage for different couplings imply that the analysis on theOwing to the spin imbalance in the ferromagnet, the Andreev
TMR in the resonant structfemay not stand. It is worth current may be suppressed or enhanced F @ contact®
noticing that the TMR will eventually decay to zero in the Blonder, Tinkham, and Klapwijk presented a one-
large bias voltage limit, due to the trivial dependence on thelimensional model based on the Bogoliubov—de Gennes
interchange of the spin-up and spin-down DOS of the lead aéquation to analyze the transport processes at/inter-
lower voltage. It is interesting to notice that the TMR reachesface in terms of normal electron transmission and Andreev
a maximum of 18% for asymmetric couplings. The maxi-reflection probability, known as the BTK thea#.Cuevas
mum would increase further as the couplings become moret al.in 1996 also uncovered some kinds of electron tunnel-
asymmetric. The TMR ratio given by our simple model is ing processes in thR/S quantum point contacts within the
consistent with the estimation for a resonant structure withkeldysh NEGF formalism starting from a microscopic
Fe electrode® and that of the Coulomb-blockade-free Hamiltonian!® The scattering matrix theoty >’ and
double junction model® In magnetic resonant structures, Keldysh NEGF formalistf'® of electronic transport in
TMR depends not only on the DOS of two electrodes as ilN-QD-S systems were also presented. Quite recently Zhu
the single junction case, but also on the spectral density adt al” investigated a B-QD-S structure using the Keldysh
the central well associated Wifhgc, and thus exhibits com- NEGF method, obtaining some interesting results. However,
plicated dependence on the bias voltage. As for the couplinign the Keldysh NEGF treatment to tiheQD-S (Refs. 14,15
dependence of peaks and valleys in the TMR curve, it ior 2F-QD-S,'" they always made some assumptions that the
associated with the sensitivity to the distortion in the spin-ugferromagnetic magnetization is along thexis and the su-
and spin-down DOS of the leads. Such a sensitivity stronglyerconductor order parameter is a real quantity, and take the
depends on the coupling strengths and which type of thavide-band limit. Here we use the current formy&4) for
Fermi sea the well levels fall into. In general, electrons in aF/1/N/I/S systems to investigate the resonant Andreev cur-
one-band Fermi sea in the weak coupling case can detepgnt andl-V characteristics of a genuine noninteracting hy-
much better the change in the DOS of the other ferromagbrid structure(see Fig. % beyond the wide-band limit.
netic lead, and so the TMR develops a peak at the boundary Following similar procedures as in the last subsection, we
between the two distinct types of Fermi sea. derive the various kinds of full Green functions of the nor-

To summarize this subsection, we have studiedIthe  mal region for a noninteracting/1/N/1/S resonant structure
characteristics and TMR behavior in a double-barrier magas
netic structure. It is found that both a peak and a shoulder
emerge within the resonant region, manifesting directly the
DOS profile of the ferromagnets. This finding may provide a Sral< g opry d_e —ie(t—t')/hr,al<

. I Gee (Lt )—f e Gee (&), 47

new way to measure the degree of spin polarization of a 2
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€

Gso(e)=CL (e)[T* (e TeV)i (e FeV)
—TR(e)fr(e) G2 (e).

Substituting the above Green functions into E84), we
obtain

_7TA N
7:fns_Ifns_’_Ifns

2
= [ delt e —eV) =l eV Thle)

2
+ 22 delf e —eV)— oo Thte), @9

p(e) where
p(e 1 .
) TfAnszz,713[Fﬁf(SIe\/)GI:,C(S)]ii+1
FIG. 5. A schematic potential profile for a biased DBRS con- =
nected to a ferromagnetic and a superconducting leads. The magne- % [FLf(S TeV) éa (£)]i11
C 1+11

tization of the ferromagnetic lead Is. and the energy gap of the
superconductor i$A%|. The hatched regions represent occupied

electron states. A typical Andreev reflection process is shown: a ZE[T'TU(S—e\/)Fff(e+e\/)|éEYc;12|2
spin-up electron above the chemical potential of the superconductor
is reflected as a spin-down hole below the chemical potential at the o V. Lf AT 2
NS interface, and finally into the ferromagnetic lead. +I(e—eVIy (e +eV)[G gad] (50
1 o o
where X=G"¥< ¢"¥< and3"¥<) Tans:§ 24 [T (e FeV)GL (e)T(2)Ge (&) i
l
Lf =
X(t,t')=P ,uRCt+7 R 2R et Rs(8)TRS[T (e=eV)||GE ¢1al*+GE c.21/?
| =l 5 2 ST
and +|G c43|2+2_ Re{Gcc 33 ,c;43} ] (51)
. 1 rla
I The elements of the Green function maté Gra
rla Arla—1 RS _rLfi.— c 11 “c,c;12»
Gla(e)=| gl (8)+ Io'(e)x5T (s+eV)} ’ Gla,,, G2, GYa,,, andGY2,, are derived from Eq.

(48) (48) as

-1 .
|
+ 5[ (e+eV)+ TR (e)]

»d 1
s _\ D et+ey +i0"

é‘fsl(s)

i |Ag]
__ T Rs,Rs
§ S0 (e) —

r _r _
c,c;12™ Gc,c;21_

éfsl(s)

-1 .
I
+ 5[ (e+eV)+ TR0 (e)]

»d 1
or_\h eten+i0"

ést(S)

i |Ag|
_ TRs,Rs
§ 2F 0™ (&) -

~Tr _ T _
Gc,c;34_ Gc,c;43_

Grsa(e)
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in which process in the BTK theorf, a spin-up/down electron/hole in
the ferromagnetic lead is converted into a spin-down/up

-1 hole/electron in the superconductor side, with particle pairs
of opposite spins created in the normal region

|GL .2 Y|GL ¢.4d? The terms left correspond to the net
i transfgr_ of electrons/holes, along with the creation/
+§[Fff(s—e\/)+FngRs(a)]} annihilation of particle pairs inside the well and the
annihilation/creation of pairs into the superconductor lead

with  probability proportional to  RES .11G2 .1}/

-1 .
x> ; +I—[F”(s+e\/) Re{ég,c;%égc;%}. At absolute zero temperature, the only
’ + 201
n ete, ti0

éfsl<s>=|(2 -

noe—epti0"

contribution to the current i&%,,. for e V<|Az|, since in this
casep™S(e) in Th , becomes zero and théil,.=0. When
eV>|Ay| all processes contribute to the current. If one sets
h,=0 and assumes the wide-band approximation, the cur-
rent formula will reduce to the result obtained by Sairal1°

1 in the N-QD-S case.

2

|Ag] 52

&

I‘RSQRS(S)

+FR59RS(8)]] +£—11

Gon(e) = 2 1 Assuming a single active level, in the well, we get the
fs2 7 e—e€ +i0" following linear-response conductance of #g/N/1/S sys-
n| .
tem:
i
+§[Fff(s—e\/)+FRSQRS(s)]] 4€? I (IRe)2)4
gfnS(so): T Fﬁfrl:f+(1"RS)2 2 SZ(FLf—FLf)z '
. 2, tT L o\t 1 l
D 1 T e tev) eot 4 * 4
X —| +z['f'(e+e
~ renrior) 201! (5
) For the completely polarized ferromagnetic lead, ig./W
L TRSQRS(6)] +} FRSQRS(8)|AR| 53 = 1, andl'['=0, the linear conductance turns out to be zero,
4 € since there is no state available for the Andreev reflected

spin-down holes. If the magnetizatidry. is zero,I'f=Tf'
Compared to the work for th8-QD-S system from the =1“(0), the ferromagnetic lead becomes a normal metal,
similar Keldysh formalisnt® the derivation of the final cur- and the conductance is reduced to
rent formulas(49), (50), and (51) from the formalism we 462 2I£(0)TRs
developed is more direct, simple and systematic. What we Grnd £0) = —— ’
h | 482+ [T4(0)]2+ (TR9)2

need to do is just some simple matrix algebra, while compli-
cated mathematical techniques are needed in the derlvatlcwhiCh is the same as the result obtained by Beenakker from
the scattering matrix approachin contrast to a singl&/S

of the Green functions in the formalism of Senal!® Also
the current formula permits us to investigate thé charac- junction® the conductance of aN/I/N/I/S resonant struc-
ture is always not less than that of thél/N/1/S structure,

teristics within a much wider bias voltage region in
F/I/N/1/S DBRS's. X

The ferromagnetism and superconductor proximity are{ﬁgardledss tOf the .Vatlrl:; /(IJ/fl\me;Sma{gnettlzatbp. At.so_l?
manifested in the dependence on the magnetizdijpand sy?n(r;r?entriléccitzlair:g $L0)=TRS Z;ﬁ‘;lli‘r:g ,'[Z Zza/)r(:nt]vtic:r
the magnitude of the superconducting order pararjetgf that in theN/I/N/I/N case. Moreover the line shapes of the
linear-response conductancés!) and (55) which decay as

2

(59

of the full Green functions through self-energy matrices.
From expression$49)—(51), one observes that the current " . . R 2 r
through aF/1/N/1/S resonant structure results from different SOFRar27 not of the simple Lorentzian forif¥I"™/[ 25+ (T
contributionsi*** 72 _is the Andreev reflection current: a 1 )74l

spin-up/down electron/hole associated with spectral weigh& Let tusr anarllyzne furtE%r tfher Sdp||frf] fo:]a;rlzan:?ndepegd?tinnce of
I'f'(e—eW/T'(e—eV) incident from the ferromagnetic anngzirﬁef‘z’g)aE%eigz) evglves iﬁtg couplings. >€tling
lead is reflected as a spin-down/up hole/electron with spec- o
tral weight I'{"(e+eV)/T'{'(e+eV) backward into the

.. . . 2 2
original lead, and at the same time two electrons in the nor- 4e” 4k

mal region are removed into the superconductor as an elec- gf”S:T (k+22)?’
tron pair with probability| G, ¢.15/%/|GE .34 ZHhs cOMes

from three kinds of physical processes. The first and fourthyhere k= \/1—h%/W? is a quantity characterizing the de-
terms in Eq.(51) represent the contribution from normal gree of spin polarization of the ferromagnetic lea: 1 for
electron transmission, a spin-up/down electron/hole tunnel§ormal metals anat=0 for completely polarized ferromag-

into the superconductor with probabili|t¢’cvc;11| 2/|é2yc;33|2; nets. When\=1, the conductance increases with increasing
the second and fifth terms describe the “branch-crossing’s, implying that the conductance decreases when the degree

(56)
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of spin polarization rises. Ik<1, the conductance first in- 009 [Jlevi=0-t,|  (at)flevico-1io]]  (b1)[levizotin]  (c1)
creases with increasing the spin polarization and then de 006 [YW=0 h/W=0.75 h/W=0.9
creases rapidly after it reaches its maximum val@é/H. " s - s - s

The critical value ofx is given by x=\2. This interesting °'°3__A | | | [ N
AR S A A A A

result is also obtained by Zhet al,!” shown in Fig. 2 of

their paper. -0.03 —
Next we explore the dependence of the Andreev currentg -0.0s -

spectrum on the degree of spin polarization of the ferromag-'g 009
| T NI T N N E T NI N

netic lead. From the schematic view of the resonant Andree\ 4 i R i i - T
reflection processes iff/I/N/I/S structures, one immedi- & 009 |V=03kd) - (a2) 097, (b2)jfleVi-03ke - (c2)
ately becomes aware that the resonant Andreev current iz 006 — — '

curre

determined mainly by the applied bias voltagethe ratio of s D

the strength of ferromagnetic magnetization to the bandwidth

0.03
0.00

h./W, and the level separatiofie,. We choose a special g | i T

level separatiome,=0.501A%|, a case in which at most g gt ? LS t - s { i :

three levels are allowed to fall into the energy gap of the £ 008 - b N D N
superconductor lead. For simplicity we assume identical -~ %%*¢¢ ¢~ ¢
level separations and do not consider the influence of the o fleviosio|T| (g3} levioin,| (b3)]levi-06in,] (3)
bias voltage on the level shift for convenience of compari- 005 1NW=0 nw=0.75 - h/w=0.9

son. At fixed bias voltage smaller than the energy ggg),
resonant Andreev reflection takes place whenever the chemi
cal potential of the superconductor lies just in between two 900
levels and there are states available for the reflectec -0.03
electrons/holes. The energy levels-eV, can be shifted up -0.06
and down by tuning continuously the gate voltayg. 008
Therefore, one can expect a series of peaks in the Andree L TR S I
current as a function df/g- 05 10 15 20 05 10 15 20 05 10 15 20
In Fig. 6 we present numerical results of the Andreev Gate voltage eV /|p|
current as a function of the gate voltag®, for different ¢
spin polarization$ /W and different bias voltagesV. The FIG. 6. The Andreev current spectra at zero temperature and
cases of positive and negative bias voltage are considered f@ed bias voltage for different spin polarizatiota® h,/W=0, (b)
compare the Andreev current contributed from electron anth,./W=0.75, andc) h,/W=0.9, whereW=2|A|. The full lines
hole transmission. Let us first inspect the Andreev currentorrespond to the results whesWV>0 and the dashed whesV
spectra in theN/I/N/I1/S case[Figs. Gal)—(6a3].> At a  <0. LabelsS, D, andT are used to denote the current peaks arising
small positive bias voltageV=0.1/A | [Fig. 6@l)], a series from the resonant Andreev reflections involving single, double or
of peaks labeled b with the same separation as the level triple levels, respectively. Here we assume 20 levels with identical
spacing is observed. These peaks come from the resondfvel separation 0|8/, and the first level aligns with the chemical
Andreev reflection processes by electron tunneling through Botential of the superconductor lead whégr=0. The other param-
single level aligned with the chemical potential of the super-eters ard™“(0)=I"*=0.0JA].
conductor. When the bias voltage is small, there is no possi-_

- ) >2=0.6A%|, two additional levels near the middle one in
bility .f(.)r two levels .to s_atlsfy the resonant Andre_ev reflection alignment with the chemical potential also contribute to the
condition. As the bias increasesa®/=0.3A | [Fig. 6@2],

. s ) i i Andreev current, so there are three neighboring levels taking
there is possibility for two neighboring levels to lie equally yart in resonant Andreev reflections, making the height of the
above and below the chemical potential of the superconT series three times as that of tBeones. When the bias is
ductor. The Condition Of the resonant Andreev reﬂection in'reversed, the Andreev current becomes negative, |mp|y|ng
volving two levels can be satisfied and two-level Andreevthat the Andreev reflection is induced by hole transmission.
reflection also contributes to the Andreev current. As a I’eSU|Ho\Never, the Andreev current spectra remains unchanged.
another series of resonant Andreev current peaks labeled Isince in normal metals the DOS is spin degenerate, complete
D is observed neighboring to the original series from singleresonant Andreev reflections are guaranteed for electrons as
level contributions. ThesB peaks, with the same spacing as well as their hole counterparts. Therefore, except for the sign
the S series and 0.2 ;| away from it, stand out for their the Andreev current spectra are the same for electkon (
double height compared to ti8ones. This is because for the >0) and hole transmissiorvV(<0). The above phenomena

D peaks two neighboring levels are involved in the corre-can also be understood from the intuitive diagrams in Fig. 7,
sponding resonant Andreev reflection processes, so the protyth different spin-up and spin-down bands of the ferromag-
ability is doubled as compared to the single level situationnets replaced by identical ones of the normal metals.

0.03

|

H
LT
i

g

At a still higher bias voltageeV=0.6A%| [Fig. 6@3] the In aF/1/N/1/S resonant structure the Andreev current de-
Andreev current spectrum can be understood similarly, th@ends not only on the position of the quantum well levels as
Stype peaks are now replaced Bynes with tripled ampli- in the normal case, but also on whether there are available

tudes, resulting from three-level contributions. Sincee®t  states for the backward reflecting holes. The Andreev spectra
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the levels 0.RA;| below the chemical potential. Thus the

@) V=0 (B) ¥=0 Andreev current spectrufirig. 6(c3)] only consists of a se-
P ries of peaks at the positions of tietype peaks in the nor-

N N L mal case. Whereas in the small polarization cég&g.
< 6(b3)], the Andreev reflections involving two neighboring

-------- D I levels and two of three levels contributing to tfAetype

peaks in the normal case can happen, and a series of resonant
peaks with equal separation 0|25 is observed.

Schematic views of the above resonant Andreev reflection
processes for electron transmission are given in Fig). 7
When the bias voltage is reversed, the current is contributed
from hole transmissions, and the situation is now very simi-
lar to the normal case. The only difference is that the ampli-
| — tudes of the peaks in the ferromagnetic case are suppressed
¢—+ glectron due to the reduced DOS for the reflected electrons. The re-
lation among thes., D-, and T-type current amplitudes still

FIG. 7. Schematic views of the resonant Andreev reflection prol10ld, for which a heuristic physical picture is given in Fig.
cesses arising from the electré@ and hole(b) transmission from  /(0). When the level spacings are not identical, more inter-
the ferromagnetic lead. The hatched region represents states that £8ing and complicated resonant Andreev current patterns
occupied by electrons. The Andreev current peaks labele§ iny ~ Can be expected. However, we can still analyze them from
Fig. 6 is originated from the Andreev reflection process involving athe intuitive pictures of Fig. 7 whatever the Andreev current
singlelevel represented by the solid lin@,doublelevels by dashed ~SPECtra may be. . o _ _
lines, andT triple levels by dotted lines. The block arrows stand for  1he |-V characteristics of this kind of generic hybrid
the process at the edges of the superconducting band involving\trUCture is also interesting. It is known that the resonant
electron tunneling through the level located eat=|A x|, which ndreev reflection process also contributes to the current

results in sharp peaks in theV characteristics. when the bias voltageV is greater tharjA x|, the energy
gap of the superconducting lead. For this reason we consider

for electron and hole transmission appear to be different ifaS€s I which the level spacidg:, can be either smaller or

the ferromagnetic lead is of large spin polarization. For thedreater than the energy gafiz|, as well as when the first

completely polarized ferromagnetic lead, no Andreev currenteVel &o is either below or above the chemical potential of

is expected due to the absence of empty states for the returi{l€ superconductor whevi=0. Figures &) and 8b) give

ing holes. We therefore choose the spin polarizatiopgy ~ theI-V curves for small level spacine,=0.5A | when

=0.75 andh,/W=0.9 for our purpose, wher&/=2|A |, the first leveley= —(_).3E1AR| lies below[Fig. 8@&] andeq

and the results are given in Figs(bé)—6(b3) and Gcl)— =0.29A%| above[Fig. 8b)] the chemical potential of the

6(c3. At a low bias voltageeV=0.1A| there are still superconductor lead. As usual we approximate the variation

available states for the reflecting holes and the Andreev cu 'fhgr]g is?\?)r%ﬁl::g;/aer:?ia\fvgir;férgngleat?e}[/v(\)/gzgih?ggr.it\ér-
rent exhibits the same resonant spectrum as in the norm

. . . . ?sltics of the F/I/N/1/S and N/I/N/1/S systems when the
case, W.'th slightly suppressgd peak amplitude. If _the_ bla%evel separation is small, as shown by the full and dashed
voltage iseV=0.3Ar|, the spin-down band of polarization |iya in Fig. 8. However, the current as a function of the bias

h./W=0.9 moves above the chemical potential of the superyqiage is strongly dependent on the symmetry between the
conducting lead, Iea\_/mg only the possibility for a SPIN-UP couplings and the level configuration, especially when the
electron to be transmitted through a level below the chemlcaépp”ed bias is positive. The peaks in th&/ curves are
potential and then reflected backwards through the neighbogyriginated from the resonant Andreev reflections, which
ing level above the chemical potential to the spin-downemerge at some specific bias voltages when the resonant An-
band. Hence we can only observe tbetype peaks with dreev reflection condition is satisfied. The irregular current
amplitude half that in the normal case in the spectiliig.  plateaus come from the normal particle transmission. There
6(c2)]. As h./W=0.75, theD-type Andreev current peaks are two types of current plateaus with different heights.
with half the amplitude of the normal case are originatedThose with higher height are determined by particle tunnel-
from the same resonant Andreev reflection processes hyg through the level aligned with one of the edges of the
spin-up electrons going through the states below the chemsuperconducting energy gap at which the DOS is divergent,
cal potential as in the cade./W=0.9. This is the reason represented by a block arrow in Fig. 7, while the others are
why we observe the amplitudes of tBandD-type peaks to contributed from the levels away from the edges. Such an
be nearly the samg~ig. 6(b2)]. As the bias voltageV is  analysis can be confirmed by the following simple estima-
further increased to O.fiz|, the spin-down bands for tion: If £;=—0.33A%|, then at bias—0.33A|+0.5eV
h,/W=0.75 anch /W= 0.9 shift above the chemical poten- =0 and 0.1JA|+0.5eV=0, the resonant Andreev reflec-
tial of the superconductor, and one can no longer observe th@n condition is satisfied and current peaks emerge \at
series ofStype peaks from the contribution of the levels just =0.66A ;| andeV=—0.34A|. For the first plateau to ap-

at the chemical potential. For ferromagnets with high spinpear, we neec,+0.5eV=*|Ay| and eV==*|Ag|, i.e.,
polarization, the current arises only from the resonant AneV=1.66A%| and eV=—1.34A|. The numerical results
dreev reflections by the spin-up electrons tunneling througlare consistent with this simple arguméFRtg. 8a)].
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FIG. 8. -V characteristics of &/1/N/1/S resonant structure at
temperature 0JAA%| for small level spacinghe,= (a) 0.33A%| FIG. 9. Same as Fig. 8, but for level spacidg,=2.5Az|
below and(b) 0.25A 7| above the chemical potential of the super- >W=2|A | when the first levek, lies (a) 0.33A | below and(b)
conducting lead whel'=0. The solid curves are the results for the 0.2§A ;| above the chemical potential of the superconducting lead
N/I/N/1/S case with symmetric coupling T“f(0)=T"®  whenV=0.

=0.01A%|, and the other curves for tHe/I/N/I/S structure with o )
h,/W=0.5. level separation is greater than the band width of the ferro-

magnets. In Fig. 9 we present the resultd of relation of

In the case of negative biasV< —|Ax|, the levels are this case for different couplings and different level arrange-
pushed down gradually inside the energy gap and the ressnents. As expected, the degree of spin polarization of the
nant Andreev reflection condition is eventually satisfied aferromagnetic lead is reflected in the/ curves. In the nor-
some bias voltages. Since both the normal particle tunnelingi@l case and wheaV>0, the current first develops a reso-
and the resonant Andreev reflection contribute to the currenflant Andreev peak at0.33A|+0.5eV=0 and exhibits
one observes a series of equally spaced resonant peaks sigual resonant peaks in the double-barrier structure after a
perimposed onto the plateaus with identical widths. Wher@rmow peak with width determined from-0.33A|
the couplings become asymmetfione of the couplings is T 0-52V=[Az| and—0.33Ar|+0.5eV=eV—W. When the
weakeney both the Andreev current peaks and current pla-Pias is reversed, the current displays a plateau from the po-
teaus are suppressed. This is because the normal and AFtion —0.33Az|+0.5eV=—|Ag|, superimposed by some
dreev current is proportional to the product of the couplingsfvlveak Andreev peaks arising from the resonant Andreev re-
T'~f(0)I'®s, as can be found in the formul&49), (50), and
(51). It has already been found analytically by Seinall®
that the Andreev reflection probability is maximized for sym-
metric couplings irN-QD-S structures and decreases rapidly
with the increasing coupling asymmetry. In the special asym-_q 334 | For F/I/N/I/S structures, the current develops
metric coupling case wherE™I"*(0), thesharp DOS at  poth a resonant peak as well as a shoulder which are more
the edges of the supgrconductor energy gap can be .d|scern thminent in the high bias case fel>0, while they keep
clearly whenever particles transmit through a level aligned tgearly the same as in tHé¢/I/N/1/S structure when the bias
the edge(see the dotted lines in Fig).8This can be easily s negative. This picture is violated when the couplings
understood from the Breit-Wigner formula for resonant nor-pecome asymmetric. As in the case of small level spacing,
mal  electron  transmission at  resonance7  the sharp DOS at the edges of the energy gap is also promi-
= ATEH(0)I RepLT pRSI[TE1(0)p~T+ T Rp"S]2. The trans- nent in thel-V characteristics when the coupling to the su-
mission probability7 depends on the ratio between the level perconductor sidé' s is much smaller than that to the fer-
widths Tf(0)p“f andI'*sp™s. At the edges of the gap*®  romagnetic sideI’*'(0). The spin polarization of the
is divergent and thus the coupling constant should be smaferromagnet can thus be measured when the couplings to the
enough to balance these two level widths to guarantee higferromagnetic and superconducting leads are symmetric, as
transmission. Notice that the ferromagnetic feature can naduggested from the comparison of the dashed, dotted and
be observed in thé-V curves ofF/I/N/I/S structures when dashed-dotted lines in Fig. 9. It is noted that theé charac-
the level spacing is small. It can only be displayed when theeristics of F/I/N/I/S resonant structures are qualita-

ections for|e|>|A%|. If £g=0.25A%| whenV=0, one
observed -V characteristics similar to those of a usual mag-
netic DBRS in the case of positive bids>0, and in the
negative bias case a resonant Andreev peak att{i02ZeV
=0 and a plateau-peak structure similar to the cage
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tively right, because the idea about the band-width of the €
superconductor is somewhat vague within its semiconductol e
model*°

In summary, we have investigated in this subsection the N
Andreev current spectra andV relations of aF/I/N/1/S
resonant structure in detail. Interesting dependence on th
ferromagnetic spin polarization of the linear conductance is AL
discussed in terms of analytic expressions, given by EqseV AL
(54) and(56). Our results demonstrate that the peak structure
of the Andreev current as a function of the gate voltage is
determined by the applied bi&soth the value and sigrand
the degree of spin polarization, which differs substantially
from the results under the wide-band approximation. [Hve

characteristics, closely associated with the level arrangemen \

coupling symmetry, bias sign and spin polarization, can be BiE)

employed to characterize the density of std@®S) of both p(e)
fsirr;%rgfr‘gnets and superconductors by tuning the coupling FIG. 10. A schematic potential profile for a biased DBRS at-

tached to two superconducting leads with order parameétgrand

A . Here the hatched region represent occupied electron states.
C. S/I/N/1/S structures

and the asymmetry between the two energy gaps can also
modify the Josephson currefitGlazman and Matreei,and
(shizakaet al® have studied the influence of the Coulomb
interactions on the Josephson currentSiQD-S systems.

years>®® When the width of the normal region is smaller Hes h o b ducted on the do Joseoh
than the coherence length, electron pairs can coherently tuﬁ{esearc_ s have also been conducted on the dc Josephson
urrent in noninteracting symmetris-QD-S structures by

nel from one superconductor to the other, inducing a phasc—.p ! ) 5
dependent dc current even when the bias is zero. Early if€enakker from the scattering matrix approdattand by

1963, Ambergaokar and Barat¥tfderived a useful formula Lin's Group from the Keldysh NEGF methdd.However,

for the supercurrent i5/1/S junctions with the help of the these investigations are restricted to the symmetric case-the
Gor’kov Green functions. In the 1990's investigations on thesame couplings and energy gaps. Motivated by this limita-
mesoscopicS/N/S junctions became timely due to the ad- tion, we investigate in this subsection the dc Josephson cur-
vances in experimental techniques. In most of these workient through a gener&/1/N/1/S resonant structure, in order
the scattering matrix method based on the Bogoliuboiv—déo reveal the dependence of the Josephson current on the
Gennes(BdG) equatiofi* is commonly used. In &/N/S  energy gaps. Results for the ac Josephson current will be
junction, the Andreev reflections at tihe'S boundaries con- reported elsewhere.

fined the quasiparticle inside the normal region, resulting in Neglecting the interaction effects in the central region
the bound states sensitive to the superconducting phase difte obtain an unexpectedly simple form of the dc Josephson
ference of the two superconductdtsimpurities inside the current formula for a genera®/1/N/1/S system shown in
normal region altering the quasi-particle wave interferefice, Fig. 10 from Eq.(35)

The discovery of the Josephson effédtas provoked a
lasting research interest in the properties of the dc- and a
Josephson current in mesoscof@tN/S junctions in thirty

=13

meo=§;§lfdmm«wxﬁfmw4f%wﬁﬂxw+Hﬁuw—rﬁmﬂéam»o

2e Foo Ls A Rs
=— %sin gosj dsFESFRS|AEAR|]Lj)Im ¢ e ]
&

=r

— 00
A

(8_8P)F£SFRS|A£AR|

e
=——sing, >, tanh(g,/2ksT) lim

b o<, 2 eme, WA 7= D) (AR —eD)Gi(e)
2 3
2e oAl (ARl [-lAgl e ¢ L5 g Rs
— —sin ¢, j +j +j +j FESFRS|AEAR|]L2)Im 0 ﬁ de
h ~Agl Al J-w Agl P G
— T+ T+,

(57)
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where we assume in genefdl ;|<|A|, ande,, the ener- superconductor DOS singularities at the edges of the energy
gies of the discrete Andreev bound states, are the poles of tlgap(s), and the exact cancellation of these side peaks in the
spectral functiorG(«) total Josephson current is due to the fact that both electron-

like and holelike excitations can escape through the active

3 1 1 level from the superconductor to the central normal region.
Gi(e)= E — +§[F£SQES(8) This is equivalent, mathematically, to the vanishing residues
"o &ti0 of the spectral functiorG5.°® In contrast to the symmetric

-1 case|A;|=|A%|, the dc Josephson current is slightly en-
hanced in the asymmetric calsk,|<|Ax|, as demonstrated
in Fig. 11(b). This result differs from the usu&/N/S struc-
ture, where the current is greatly enhanfe@he reason is
that the energy levels lie withilz|<|A /|, and then resonant
Josephson tunneling dominates the dc current, as can be seen
more clearly in the current-phase relation in Fig. 12. The
(T A L)% (TRs|AR])2 significant enhancement of the dc Josephson current may be
62— A2 &2~ |Ag? observed in a resona®|/N/1/S system with many levels
£ R located inside the regiofe|<|A,|, since in this case so
many levels are active to contribute to the Josephson current.
. (59 Figure 12 shows the resonant dc Josephson current at zero
temperature as a function of the superconducting phase dif-
ferencegp for general asymmetri§/1/N/1/S systems. When
eg0=0, i.e., the single level is exactly located at the position

a general5/1/N/1/S system has contributions from three dif- . . .
. ) of the superconducting chemical potential, the dc Josephson
ferent scattering processes; results from the resonant Jo- .
currentZg,{ @) and its componenrt; vs the superconduct-

sephson tunneling through the discrete Andreev bound stattleﬁ;g phase difference, is of the sawtooth shagf€igs. 12a)

given by Gy(s) =0 within |[¢[<|A [; 7, from the quasipar-  anq'12h)], no matter how big the difference between the two
tlg:le escaping through broadened Ievels_from_the normal résuperconducting energy gaps is. The physical origin of the
gion to the weaker superconductor side, i.;|<[e|  sharp discontinuity atps= is the same as in the usual
<|Az|; andZ; from quasiparticle tunneling from the normal g/N/g junction2% the Andreev levels:, and — ,, deter-

. = 62 i} ) o .
region to both superconductofs|=[A|.>” One can con mined from the spectral functioB;(¢)=0 at ;=0 inter-

sider Eq.(57) as an extension to the asymmetric case of the . " . . L
Beenakker's result for symmetri8-QD-S system£>% In change their position ag;= 7r, producing a discontinuity in

addition one can check after simple algebra that the dc Jot-he dc Josephson current. Unlike the usBall/S structure,

sephson current formulés7) for the general asymmetric
S/I/N/1/S system reduces to the known result for the sym- 02 (a) a=ala ]
metric casé>~%’

Now we consider the simplest situation in which there is
only a single active leved in the central normal region. Itis
expected that the resonant Josephson scattering via the An-
dreev bound states;, will dominate the dc Josephson cur-
rent. In Fig. 11 we plot this quantity at zero temperature,
calculated from Eq(57) as a function of the single level
energy e, for symmetric couplingsl'*>=T"*=0.01A .
However, the superconducting energy gaps are allowed to be
asymmetric. The superconducting phase difference is chosen
asp,= /2. The total current labeled Hyin Fig. 11(a) has a
resonant peak when the single level is aligned with the
chemical potential of the superconductor, i&,=0, result-
ing from the constructive interference between the forward
Andreev statet e, and backward Andreev statee. In-
specting the current components for three different scattering P NN
regions |e|<|A.|, |A <|e|<|Az| and |e|=|Ag],?? la- e H B s
beled, respectively, by 1, 2, and 3, one finds that the current "0 05 0.0 0.5 10
component 1 contributed by discrete Andreev levels makes e /A |
the major contribution to the dc Josephson current. It pos- ot
sesses one peak a4=0 plus two side peaks pinned a§ FIG. 11. The dc Josephson currentssfor (a) different scat-
=*|A,| which are offset by two peaks in the current com- tering processes, ar(tl) different energy gaps, where we take sym-
ponentZ,, in which two additional wider side peaks can- metric couplings as'*>=T'*%=0.01A.|. The superconducting
celled exactly byZ;. The side peaks come from the abnormalphase difference ig = 7/2.

+FRSQRS(8)]}{(§ 1

e+e,+i0"

+ %[FESQES(8)+FRSQRS(8)]]

1
4

A A
+2 cospgressl 22wl £2R| 0(e)e™%(e)
&

It is seen from Eq(57) that the dc Josephson curréft,sin
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(@1 o0 [(b) <0 In summary, we have shown in this subsection that the dc
0.2+ =) | o2l [4,1=200(4, Josephson current in an asymmetric-gap reso8drniN/1/S
\1 3 ™12, (=0.1 ™/|a |=0.1 structure with a single level is slightly enhanced in contrast
%, |=0.1 I '*la |=0.1 to the symmetric-gap case. The current-phase relation is
0.0 Vv / _______ SO A closely related to the position of the single level and the

symmetry between the couplings to the two superconducting

. \% 2 - \7\ leads.
0.2 0.2} IV. CONCLUDING REMARKS

0 05 10 15 20 00 05 10 15 20 We have developed a unified theory of electronic trans-
0.2 port in a general two-terminal hybrid nanosystem, in which
< [1e) & /]a|=0.2 (d) £,=0 ;
o) | 02 L 18, =414, each lead can be either a ferromagnet or a superconductor.
0| I J=0.4 Within the Keldysh NEGF formalism, the current is ex-
1]a [=0.1 - (A, [=0.1 pressed in terms of the local properties of the central inter-

s — acting regionG"® </~ and the equilibrium distribution func-
S T tions of the lead$, . The ferromagnetism and superconduct-

i \3/\ - \7\ ing proximity are treated on the same footing, incorporated

DC Josephson current (arb. units)
o

into the tunneling Hamiltonian and the self-energy matrices

02y after introducing a four-dimensional Nambu-spinor space
027 L N LS A and performing appropriate Bogoliubov transformations.
00 05 10 1.5 20 00 05 1.0 1.5 20 With the help of some unitary rotation and phase matrices,

phase difference ¢ /= one can demonstrate analytically the gauge invariance of the

general current formul@31), and simplify it to the Meri-
FIG. 12. The current-phase relation for a reson8itN/I/S  Wingree forms for specific structures. For some quantities,
structure, where the insets are enlargements of the current compguch as the chemical potential, magnetization orientation,
nentZ;. Here the total dc Josephson currdits and its compo-  and the superconducting order parameter phase, only their
nentsZ;, Z,, andZ, are represented by the thick solid, thin solid, re|ative value appears explicitly in the expressions of current.
dashed, and dotted lines, respectively. Moreover, resonant tunneling, strong electron correlations

_ (Coulomb blockade, Kondo resonance, gtierromagnetism
the supercurrent-phase relation has a weak dependence Qag superconductivity proximity effect can be investigated in

the asymmetry between the superconducting energy 9aps i\ nified transport theory without introduction of any ad hoc
rgsonanS/I/N/l/S structures. This is bepause the main CoN-gssumptions. In addition, the energy and bias-voltage depen-
tribution to the dc Josephson current in resonant structurégence of the level-width functions and distribution functions
with a single level is mainly from the Andreev reflection gnters into the current formula in a strict and natural manner,
processes inside the regiga|<|A .|, where the energy of ,jiowing us to explore thd-V characteristics in the large
the Andreev bound states has a trivial dependence on thg,s jimit. However, the disadvantage of applying first the
energy gafjAr|, as can be seen from the spectral functiongoggliubov transformation for the ferromagnetic lead
associated wittG{(e). When the single level moves away Hamiltonian is that we can only obtain the expressions for
from the position of the chemical potentigd=0.2A ;| [Fig.  the sum of the spin-up and spin-down current, while the
12(c)], or the coupling to the superconductors becomesnformation about the spin components of the current is lost.
asymmetricl' *°=4I'*® [Fig. 12d)], the abrupt jump atpg Applying the current formulas to the simplest DBRS
= iS smoothed out and the current-phase approaches thehere the interactions are ignored some interesting transport
sinusoidal relation. The transmission probability becomegproperties are revealed if one takes into consideration the
smaller when the level moves away from the chemical pofinite energy band structure of the ferromagnets. We have
tential or the elastic couplings becomes asymmetric. As aeported on the current flowing through a noninteracting
result the link between these two superconductors becomero-dimensional central region, thus the results obtained are
wicker, and thus the current-phase relatifps)<Singg is  qualitatively right for a 2D quantum well with the attached
expected? As the single level moves away from the chemi- emitter and/or collector being ferromagnetic. In addition, we
cal potential or the couplings become unequal, the dc Jodid not consider the spin-flip process due to the interfacial
sephson current is significantly suppressed, with the compascattering or the existence of paramagnetic impurities inside
nent Z; from the discrete spectra suppressed while thehe barrier. It is known that the spin-flip process may reduce
componentZ, from the continuum spectrid ;| <|e|<|Az|  the magnitude of the tunnel magnetoresistance &/ldF
enhanced. The suppressionZgfis due to the decrease in the junction®® Also, we can expect that the Andreev current
resonant Josephson tunneling probability which is originategpectrum inF/1/N/1/S structures will be modified to a great
from the violation of the constructive interference betweenextent in the presence of the spin-flip process, since the An-
the wave functions of the Andreev levels, while the enhancedreev reflection may be enhanced with the assistance of such
ment of Z, results from the fact that the Andreev levels areprocess.

pushed towards the regiof\ ;|<|e|<|Ax| and thus the In F-QD-F, F-QD-S or S-QD-S systems, electron-
leaky probability is increased. electron interactions inside the QD are important and thus
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one should consider many-body effect. One example is thg/2  (t, t,) arising from the coupling between the central
Kondo effect at low temperaturé$in such a circumstance, normal metal and the ferromagnetic lead

one has to calculate the full Green functions of the QD in the
presence of electron-electron interactions, taking into consid-
eration the couplings between the QD and the leads. We areX)2,n(t1,t2)= 2 V(1) g)f it 1) VIE(to)
aware of three recent preprifitson the Kondo physics in k

F-QD-F systems in which the wide-band approximation is 0.

used!®’* Such a simplification of the ferromagnetic DOS => PT(,uyctl)VZ,ETR”(Ty) g2 i(ty,tp)
may lead to even spurious results iRV characteristics. k

However. interesting and even unexpected Kondo resonances

in these systems may arise with the full consideration of the X Rf
finite energy band structure of the ferromagnetic leads.

0
77) VerfnPT(Myctz)-
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APPENDIX: DERIVATION OF THE SELF-ENERGY _ [ et O
MATRICES 3[&{ 2) 2m 2

In this appendix we derive various kinds of self-energy KT (65 )R % (AD)
matrices for the elastic couplings between the central region nm &+ Myc 2
and the ferromagnetic and superconductor leads. First, we
calculate the retarded/advanced self-energy  matrixn which

Ii(e—c) 0 0 0
0 r’f (e+c) 0 0
I (e7c)= nmit A2
am(€+C) 0 0 Fr?;rf‘n;l(s_c) 0 ) (A2)
0 0 0 I (e+0)
Il(e) =T} (e %0), (A3)
with
D oo(e)=2mp) (e) VI Vi,

Similarly, after transforming the momentum suy into an integralf de,p{(ey), wherep® is the normal state of the
superconductor, we obtain the self-energy matrix due to the coupling of the central region to the superconducting lead

Erylgnm(tl ta)= Ek VzﬁT(tl)gl:}f:k, skt 12) VER(to)

i (de 1 @
_ = —ie(ty—ty)/hpt Y S 4
=¥3 2776 le(ti—t)/hp (M70t1+ 2 l-‘Z/Q*;nm(‘c")P( M70t2+7
(9 _-tympt Py prs T Py
“F2) 278 T TP st G orgrinn(®F 00 P yctat A9

i [(de . @
- - —ie(ty—to)/hpt Y
R R P

_ ¢
[nglsg*;nm]T(s"'MyC)P(/L«/Ct2+ 77 ) (A5)

115319-22



ELECTRONIC TRANSPORT IN HYBRID MESOSCORI. . . PHYSICAL REVIEW B 68, 115319 (2003

where we have defined the complex level-width matrix as

A,
YS( o — _ Yoo ys
07(e—c) o (e+c) 0 0
|A7| S, S,
___CQV(S_C) e”(e+c) 0 0
I oan(e 0 =T Al ,
0 0 YS(e— Y 078
e”(e—c) e-I-CQ (e+c)
0 0 —|A7l 0”(e—c) o"(e+c)
e—C
L m(eF0)=[T5m(sF0)]*, (AB)
[
9(— T)f dek[cog_eyskeil \/siﬂAy‘ZT/ﬁ
L =2mpl(0)VIF VY, +sin2075ke:i\/ei+my|27/ﬁ]
:_if |sr/ﬁf d8k ,
le|o(e]—[ALD)  ed(A,|—]e]) A7) e2— |Ay|2

"(e)= =i :
Q (8) /82_|A7|2 /lAy|2_82

— f dsefisrlﬁ[QyS(S)]*’

Here we have defined a complex superconducting DOS, ex- sin(20 k) - -

tending to the forbidden region in the usual BCS thelery ﬁ(r)f dey— 2 (g iNek 18,271 _ giJeic+ 1A, ol
<|A,/, inside which the Andreev reflection processes arise, 2

as shown in the Blonder-Tinkham-Klapwijk theafWhen . A

le |<|Ay|, the quasiparticle density of states is purely —|f 'sﬂﬁf dey Y

imaginary, indicating evanescent states in the gap which * 82—85— |A7|2
eventually decay into the pair condensate. The quasiparticle ™
density of states of the superconducting lea defined as :f dee e rS(g) —L

&

+=  sin(26 :
) ~Jsl9(s]-1A,) a(_T)f o, V2095 i T P

1
p¥(e)= ;Imgis,ys;ll_ \/m =Rep(e). (A8) 2
Y . 2
e \/sk-%-‘A),‘zT/fL)

In deriving Eq.(A5) we have used the following equali- (de Lt A,
ties: T 25¢ dex——5 2

- A

Y

: A
— f d8€7|£ﬂh[e‘ys(8)]* %

Note that we have chosen different complex half-planes in
the contour integrations, in order to guarantee that the

+ oo )
95 [ defcosn, e T

+Sin20yske:i,/f§+|AY\2ﬁﬁ] reEaErdid/)aFvanced self-energy matrices satisfy(¢)
=[S
f de . /ﬁfﬂc etegy The lesser/greater self-energy matrix defined by
=i| z—e'®" o
et |A)

/ / / f/
3 ety ts) = 2 VI (t) 05 st t) VIRS(t2)

— ietlh Hys . . L
f dee (2), are obtained in a similar way
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1 1
X fan(tte) = f Se TP, t)R”( 02 )F”( )Rf(a ) fe)—51t5 }P(Myctz)

N R f‘r0 ¥f Oyt — 1.1
=i | e TR e ™ o R 57| e 7 o) — 51551, (A9)

ST m(e)

p;nm

(de . 1 1 ¢
Ejs/;ﬁm(tlatz)que ety tz)mPT(M ct1+ 5 fy(s)_iliil}P(Myctz"‘?y

(de . ¢ B B 1 1 @
ZIIEG Is(tl 12)/ﬁPT( /'l’yctl+7 Fg;snm(s_'_lu’y(f) f7(8+/.l/yc)_§1 zl}P(M«thl"‘ ?y)

(de . 1 1 1
:IJ %e e(ta tz)/hPT( M‘yct2+ 7}, y(g_"/*l’yC)_ _1—2 }[ nm(8+ll‘LyC)] P(/LthZ (AlO)
where the real level-width matrix is defined as
p(e—c) —ﬂpys(s—i-c) 0 0
et+cC
135 s e+ 0 0
P (e—c) p”(e+c)
ngnm(s:c)zrgfn |
YS(o — Yo ys
0 0 p”(e—c) 1P (eto)
A
0 0 %p%—c) p”(e+c)
The Fermi distribution matrix in the Numbu-spinor space takes the form
f(e—c) 0 0 0
- 0 f(e+c) 0 0
AeF0=| g 0 f(e—c) 0 |
0 0 0 f(e+c)
f(e)=f,(e+0). (Al11)
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