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Conductance modulation of spin interferometers
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We study the conductance modulation of gate controlled electron spin interferometers~also known as spin
field effect transistors! based on the Rashba spin–orbit coupling effect. It is found that the modulation is
dominated by Ramsauer~or Fabry-Perot! type transmission resonances rather than the Rashba effect in typical
structures. These transmission resonances are due to reflections at the interferometer’s contacts caused by large
interface potential barriers and effective mass mismatch between the contact material and the semiconductor.
They are particularly strong in quasi-one-dimensional structures which, in fact, are preferred for spin interfer-
ometers because of the energy independence of the spin precession angle. Thus, unless particular care is taken
to eliminate Ramsauer resonances by proper contact engineering, any observed conductance modulation of
spin interferometers maynot have its origin in the Rashba effect.

DOI: 10.1103/PhysRevB.68.115316 PACS number~s!: 72.25.Dc, 72.25.Mk, 73.21.Hb, 85.35.Ds
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I. INTRODUCTION

In a seminal paper, Datta and Das1 proposed a gate con
trolled electron spin interferometer consisting of a quasi o
dimensional semiconductor channel with ferromagne
source and drain contacts~Fig. 1!. Electrons are injected with
a definite spin from the source, which is controllably pr
cessed in the channel with a gate-controlled Ras
interaction,2 and finally sensed at the drain. At the drain en
the electron’s transmission probability depends on the r
tive alignment of its spin with the drain’s~fixed! magnetiza-
tion. By controlling the angle of spin precession in the cha
nel with a gate voltage, one can control the relative s
alignment at the drain end, and hence control the source
drain current~or conductance!.

Despite the immense influence of this device on the fi
of spintronics, there has never been a complete calculatio
the spin interferometer’s conductance as a function of
gate voltage in realistic structures. In this paper, we rep
this calculation and show that there are unsuspected
stacles to the realization of such a device.

II. RAMSAUER EFFECT

In a spin interferometer, varying the gate voltage to p
cess the spin will also inevitably move the Fermi level up
down relative to the conduction band edge in the interfero
eter’s channel. This causes a different type of conducta
modulation. Referring to Fig. 2~which shows the energy
diagram for a spin interferometer!, if we neglect the Rashba
effect momentarily, then the transmission through the se
conducting channel of the interferometer~barrier region!
should peak each time the Fermi level lines up with
resonant energy levels above the barrier between the
contacts.3 As the gate voltage is varied, the Fermi lev
sweeps through the resonant levels causing the conduct
to oscillate. This is the Ramsauer effect which can beco
0163-1829/2003/68~11!/115316~5!/$20.00 68 1153
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the major source of the conductance modulation of a s
interferometer.

Recently, Matsuyamaet al.4 found these oscillations in a
two-dimensional~2D! spin interferometer. In the 2D case
the oscillations are somewhat muted by ensemble avera
over the transverse wave vector of the electron~and therefore
do not completely mask the conductance modulation du

FIG. 1. A schematic of the electron spin interferometer fro
Ref. 1. The horizontal dashed line represents the quasi-o
dimensional electron gas formed at the semiconductor interface
tween materials I and II. The magnetization of the ferromagne
contacts is assumed to be along the1x-direction which results in a
magnetic field along thex-direction. Also shown is a qualitative
representation of the energy dispersion of the two perturbed~solid
line! and unperturbed~broken line! bands under the gate. The un
perturbed bands are given by Eq.~3! and the perturbed ones ar
given by Eqs.~4! and ~5! in the text.
©2003 The American Physical Society16-1
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the gate controlled spin precession!, but in the 1D case which
is considered here, the oscillations are much more p
nounced because of the lack of ensemble averaging ove
transverse wave vector. This presents a quandary for the
vice designer since a 1D interferometer is preferred ove
2D counterpart from the point of view of energy-independ
spin precession.1 Yet it turns out that the advantage of on
dimensionality may be lost because of the pronounced R
sauer oscillations.

III. THEORY

The quasi-one-dimensional spin interferometer is
scribed by the single particle effective-mass Hamiltonian6

H5
1

2m* ~p1eA!21V1~y!1V2~z!2~g* /2!mBB•s

1
aR

\
ŷ•@s3~p1eA!#, ~1!

where ŷ is the unit vector normal to the heterostructure
terface in Fig. 1 andA is the vector potential due to the axi
magnetic fieldB along the channel caused by the ferroma
netic contacts~this magnetic field was summarily ignored
all previous work,4,7,8 but has important consequences!. This
field, which is directed along the channel, can be quite str
when the ferromagnetic contacts are magnetized in the s
direction. Based on recent work by Wrobelet al.,5 we esti-
mate that this field will be as high as 1 Tesla if the chan
length is of the order of 100 nm. The quantityaR in Eq. ~1!
is the Rashba coupling strength which varies with the app
potential on the gate. We will assume that the confining
tentials along they- and z-directions areV1(y) and V2(z)
with the latter being parabolic and the former could be tria
gular, parabolic or any other kind. This is synergistic w

FIG. 2. Energy band diagram across the electron spin inter
ometer. We use a Stoner-Wohlfarth model for the ferromagn
contacts.D is the exchange splitting energy in the contacts.DEc is
the height of the potential barrier between the energy band bott
of the semiconductor and the ferromagnetic contacts.DEc takes
into account the effects of the quantum confinement in they- and
z-directions. Also shown as dashed lines are the resonant en
states aboveDEc . Peaks in the conductance of the electron s
interferometer are expected when the Fermi level in the cont
lines up with the resonant states.
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realistic 1D structures grown by most techniques~V-groove,
film growth followed by lithography, etc.!.

The choice of the Landau gaugeA5(0,2Bz,0) allows us
to decouple they-component of the Hamiltonian in~2! from
the x–z component. Accordingly, the two-dimension
Hamiltonian in the plane of the channel (x–z plane! is

Hxz5
pz

2

2m*
1DEc1

1

2
m* ~v0

21vc
2!z21

\2kx
2

2m*
1

\2kRkx

m*
sz

2~g* /2!mBBsx2
\kRpz

m*
sx , ~2!

wherev0 is the curvature of the confining potential in th
z-direction,vc5eB/m* , mB is the Bohr magneton,g* is the
magnitude of the Lande´ factor in the channel,kR
5m* aR /\2, and DEc is the potential barrier between th
ferromagnet and semiconductor. We assume thatDEc in-
cludes the effects of the quantum confinement in
y-direction.

A. Energy dispersion relations

We now derive the energy dispersion relations in the s
interferometer’s channel from Eq.~2!. The first five terms of
the Hamiltonian in Eq.~2! yield shifted parabolic subband
with dispersion relations,

En,↑5~n11/2!\v1DEc1
\2kx

2

2m*
1

\2kRkx

m*
,

En,↓5~n11/2!\v1DEc1
\2kx

2

2m*
2

\2kRkx

m*
, ~3!

wherev5Av0
21vc

2. In Eq. ~3!, the↑ and↓ arrows indicate
1z and2z polarized spins~eigenstates of thesz operator!
which are split by the Rashba effect@fifth term in Eq. ~2!#.
These subbands have definite spin quantizations axes a
1z and2z directions. Their dispersion relations~two hori-
zontally displaced parabolas! are shown as dashed lines
Fig. 1.

The sixth and seventh terms in Eq.~2! induce a mixing
between the1z- and 2z-polarized spins. The sixth term
originates from the magnetic field due to the ferromagne
contacts and the seventh originates from the Rashba e
itself. The sixth term was ignored and the seventh was
sumed to be negligibly small in Ref. 1. The ratio of the six
and seventh term can be shown to be of the order of 104–106

for typical values of the relevant parameters. Therefore,
can neglect the seventh term in comparison with the s
term.

To obtain an analytical expression for the dispersion re
tion corresponding to the first six terms in the Hamiltonian
Eq. ~2!, we derive a two-band dispersion relation in a tru
cated Hilbert space considering mixing between the two lo
est unperturbed subband states~namely the1z and2z spin
states!. Straightforward diagonalization of the Hamiltonia
in Eq. ~2! ~minus the seventh term! in the basis of these two
unperturbed states gives the following dispersion relati
for the two bands,

r-
ic

s

rgy

ts
6-2



o

r

ro

-
o

er-
as-
-

x-

nt
om

he
ro-

co-
od
ro-
the

n-
e
s

-

CONDUCTANCE MODULATION OF SPIN INTERFEROMETERS PHYSICAL REVIEW B68, 115316 ~2003!
E1~kx!5
1

2
\v1DEc1

\2kx
2

2m*

2AS \2kRkx

m* D 2

1S g* mBB

2
D 2

, ~4!

E2~kx!5
1

2
\v1DEc1

\2kx
2

2m*

1AS \2kRkx

m* D 2

1S g* mBB

2
D 2

. ~5!

These dispersion relations are plotted schematically as s
lines in Fig. 1.

From equations~4! and~5!, we find that an electron with
energyE has wave vectors in the two bands given by

kx,15
1

\
A2m* S B1AB224C

2
D ,

kx,25
1

\
A2m* S B2AB224C

2
D , ~6!

where

B52S E2
\v

2
2DEcD14dR ,

C5S E2
\v

2
2DEcD 2

2b2, b5g* mBB/2. ~7!

The eigenspinors for these wave vector states are

FC1~kx,1!

C18~kx,1!
G5F2a~kx,1!/g~kx,1!

b/g~kx,1!
G ,

FC2~kx,2!

C28~kx,2!
G5F b/g~kx,2!

a~kx,2!/g~kx,2!
G , ~8!

where the quantitiesa andg are given by

a~kx!5
\2kRkx

m*
1AS \2kRkx

m* D 2

1b2, g~kx!5Aa21b2.

~9!

Note that the eigenspinors in Eq.~8! are not1z-polarized
state@1 0 #†, or 2z-polarized state@0 1 #† if the magnetic
field BÞ0 ~which makes~bÞ0!. Thus, the magnetic field
mixes spins and the1z or 2z polarized states are no longe
eigenstates in the channel. Equations~8! also show that the
spin quantization~eigenspinor! in any subband is not fixed
and strongly depends on the wave vectorkx . Thus, an elec-
tron entering the semiconductor channel from the left fer
magnetic contact with1x-polarized spin, will not couple
equally to 1z and2z states. The relative coupling will de
pend on the electron’s energy. This has a harmful effect
spin interferometers which will be discussed elsewhere.
11531
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B. Ferromagnetic contacts

We model the ferromagnetic contacts by the Ston
Wohlfarth model. The magnetization of the contacts are
sumed to be along thex-direction so that the majority carri
ers are1x-polarized electrons~as in Ref. 1! and minority
carriers are2x-polarized. Their bands are offset by an e
change splitting energyD ~Fig. 2!.

IV. TRANSMISSION THROUGH THE INTERFEROMETER

Next, we calculate the total transmission coefficie
through the spin interferometer for an electron entering fr
the left ferromagnetic contact~region I! and exiting at the
right ferromagnetic contact~region III!. A rigorous treatment
of this problem would require an accurate modeling of t
three- to one-dimensional transition between the bulk fer
magnetic contacts~regions I and III! and the quantum wire
semiconductor channel~region II!.9,10 However, a one-
dimensional transport model to calculate the transmission
efficient through the structure is known to be a very go
approximation when the Fermi wave number in the fer
magnetic contacts is much larger than the inverse of
transverse dimensions of the quantum wire.11,12 This is al-
ways the case with metallic contacts.

In region II (0,x,L), the x-component of the wave
function at a positionx along the channel is given by

c II~x!5AIFC1~kx,1!

C18~kx,1!
Geikx,1x1AIIFC1~2kx,1!

C18~2kx,1!
Ge2 ikx,1x

1AIII FC2~kx,2!

C28~kx,2!
Geikx,2x1AIVFC2~2kx,2!

C28~2kx,2!
Ge2 ikx,2x.

~10!

For a1x-polarized electron in the left ferromagnetic co
tact ~region I; x,0), the electron is spin polarized in th
@1,1 #† subband and thex-component of the wave function i
given by

c I~x!5
1

A2
F1

1Geikx
ux1

R1

A2
F1

1Ge2 ikx
ux1

R2

A2
F 1

21Ge2 ikx
dx,

~11!

whereR1 is the reflection amplitude into the1x-polarized
band andR2 is the reflection amplitude in the2x-polarized
band.

In region III (x.L), the x-component of the wave func
tion is given by

c III ~x!5
T1

A2
F1

1Geikx
u(x2L)1

T2

A2
F 1

21Geikx
d(x2L), ~12!

whereT1 andT2 are the transmission amplitudes into the1x
and2x-polarized bands. The wave vectors

kx
u5

1

\
A2m0E, kx

d5
1

\
A2m0~E2D!, ~13!
6-3
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are thex components of the wave vectors in the1x and
2x-polarized energy bands, respectively.

The eight unknowns@R1 ,R2 ,T1 ,T2 ,Ai( i 5I,II,III,IV) #
must be found by enforcing continuity of the wave functi
and the quantity@1/m* (x)#(dc/dx1 ikR(x)szc(x)) at x
50 andx5L. The latter condition insures continuity of th
current density. This leads to a system of 8 coupled equat
for the unknowns which must be solved to extract the tra
mission amplitudesT1 ,T2 in the 1x and 2x-polarized en-
ergy bands in the right ferromagnetic contact.

V. CONDUCTANCE OF THE INTERFEROMETER

For the majority spin carriers in the ferromagnetic cont
(1x-polarized spin!, the linear response source-to-drain co
ductance of the spin interferometer at any temperatureT is
given by the Landauer formula,

G1x-polarized5
e2

4hkTE0

`

dEuTtot~E!u2 sech2S E2EF

2kT D ,

~14!

where

uTtot~E!u25uT1~E!u21~kx
d/kx

u!uT2~E!u2 ~15!

is the total transmission coefficient through the interfero
eter.

Similarly, the conductance of the minority spin carrie
(G2x-polarized) is calculated after repeating the scatteri
problem for electrons incident from the minority spin band
the contacts. Since the1x and2x-polarized spin states ar
orthogonal in the contacts, the total conductance of the s
interferometer is then given byG1x-polarized1G2x-polarized.

VI. NUMERICAL EXAMPLES

We consider a spin interferometer consisting of a qua
one-dimensional InAs channel between two ferromagn
contacts. The electrostatic potential in thez-direction is as-
sumed to be harmonic with\v510 meV in Eq.~3!. We also
assume a Zeeman splitting energy of 0.34 meV,g* 53, and
m* 50.036mo .1 The Fermi levelEf and the exchange split
ting energyD in the ferromagnetic contacts are 4.2 and 3
eV, respectively.14

The Rashba spin–orbit coupling strengthaR is typically
derived from low-temperature magnetoresistan
measurements.13 To date, the largest reported experimen
values of the Rashba spin–orbit coupling strengthaR has
been found in InAs-based semiconductor heterojunctio
For a normal HEMT In0.75Al0.25As/In0.75Ga0.25As heterojunc-
tion, Satoet al.13 have reported variation ofaR from 30- to
15310212 eV m when the external gate voltage is swe
from 0 to 26 V.

In the numerical results below, we calculated the cond
tance of a spin interferometer with a 0.2mm long channel as
a function of the gate voltage. Tuning the gate voltage va
the potential energy barrierDEc . Therefore, we have effec
tively calculated the interferometer’s conductance as a fu
tion of DEc . In our calculations, we varyDEc over a range
11531
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of 10 meV which allows us to display several peaks of t
Ramsauer oscillations for the selected separation betw
source and drain. The final energyDEc is equal to the Fermi
energyEf . At that point, the Fermi energy lines up with th
top of the potential barrier which corresponds to compl
pinch-off of the channel when the carrier concentration fa
to zero. Over that range ofDEc , we simulated several case
of Rashba spin–orbit coupling strengthaR variation with
increasingDEc ~or increasing gate voltage!: Case 1: aR
stays constant and is equal to the largest experimental v
reported to date (30310212 eV m), Case 2: aR varies lin-
early with DEc from 30310212 eV m down to zero, and
Case 3: aR varies from zero to a maximum of 3
310212 eV m, which is the reverse of the previous case
situation whereaR actually increases with reduction of th
carrier concentration in the channel was reported for inver
InAlAs/InGaAs heterostructures by Schaperset al.15 Finally,
we consider Case 4 where aR is varied from 3
310210 eV m ~a tenfold improvement over the largest r
ported experimental result! down to zero. This last case co
responds to a variation of the spin precession angleu from
about 10p to 0 over the range ofDEc considered.

The results of the conductance modulation are shown
Fig. 3 for the four cases described above atT52 K. This
figure shows that there is very little change between the
ferent curves corresponding to cases 1–3 of theaR depen-
dence onDEc . The gate voltage variation of the Rashba sp
splitting energy modifies slightly the shape and position
the resonant peaks due to electrostatic adjustment of the
tential barrier between the two ferromagnetic contacts. E
for case 4, the amplitude of the conductance oscillations

FIG. 3. Conductance modulation of the electron spin interf
ometer~for T52 K) for different variations of the Rashba spin
orbit coupling strengthaR with the energy barrierDEc . The Fermi
energy Ef is designated in the figure. The differentaR vs DEc

variations are labeled # 1 through #4 corresponding to cases
through 4 in the text. The separation between the two ferromagn
contacts is 0.2mm. The confinement energy\v is 10 meV. We
have indicated the conductance peaks corresponding to diffe
resonant energy levels~indexed by ‘‘n’’ ! lining up with the Fermi
level in the contacts. The curve labeledT510 K represents the
conductance modulation computed at a temperature of 10 K w
aR varies from 30310212 eV m to 0 as the gate voltage is varied
6-4



on
d
ffe

ce
n
tiv
on

ar
tu

on
t
le

ur-
pay
st

e to
scil-
s of
r to
an
re-

net
uc-

ce

l a

ob

t,

.

tt.

i,

jk,

o-

Eu-

nd

CONDUCTANCE MODULATION OF SPIN INTERFEROMETERS PHYSICAL REVIEW B68, 115316 ~2003!
virtually unchanged and merely shifted along theDEc axis
compared to cases 1–3. Therefore, the Rashba effect
causes a weak modulation of the conductance oscillation
to the Ramsauer effect. In other words, the Ramsauer e
completely overshadows the Rashba effect.

The oscillations in conductance are more closely spa
as the quasi 1D channel approaches pinch-off. Conseque
the conductance modulation near pinch-off is more sensi
to temperature averaging. As illustrated in Fig. 3, the c
ductance oscillations are washed out completely forT
510 K. We have shown this only for case 2 but simil
degradation of the conductance modulation with tempera
is found for all other cases considered here.

VII. CONCLUSION

In conclusion, we have shown that Ramsauer oscillati
~or Fabry-Perot-type resonances! may be the dominan
source of conductance modulation in 1D gate control
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