PHYSICAL REVIEW B 68, 115206 (2003

Magnetic properties of GaMnAs from an effective Heisenberg Hamiltonian

L. Brey! and G. Gmnez-Santds
Yinstituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid, Spain
2Departamento de Bica de la Materia Condensada and Instituto Nicol@abrera, Universidad Autmma de Madrid,
28049 Madrid, Spain
(Received 5 June 2003; revised manuscript received 24 July 2003; published 26 Septemper 2003

We introduce a Heisenberg Hamiltonian for describing the magnetic properties of GaMnAs. Electronic
degrees of freedom are integrated, leading to a pairwise interaction between Mn spins. Monte Carlo simula-
tions in large systems are then possible, and reliable values for the Curie temperatures of diluted magnetic
semiconductors can be obtained. Comparison of mean field and Monte Carlo Curie temperatures shows that
fluctuation effects are important for systems with a large hole density and/or increasing locality in the
carriers-Mn coupling. We have also compared the results obtained by using a r&alistitodel with those of
a simplified parabolic two band model. In the two-band model, the existence of a spherical Fermi surface
produces the expected sign oscillations in the coupling between Mn spins, magnifying the effect of fluctuations
and leading to the eventual disappearance of ferromagnetism. In the more r&afistirmodel, warping of the
Fermi surface diminishes the sign oscillations in the effective coupling and, therefore, the effect of fluctuations
on the critical temperature is severely reduced. Finally, by studying the collective magnetic excitations of this
model at zero temperature, we analyze the stability of the fully polarized ferromagnetic ground state.
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I. INTRODUCTION is limited by the tendency of the Mn ions to form clusters of
antiferromagnetically coupled Mn spins, which do not con-
In recent years, one of the most studied diluted magnetitribute mobile holes to the host semiconductor. The latter
semiconductofDMS) has been Ga Mn,As.*®Ideally, the  possibility has been explored experimentally by different
Mn ions substitute Ga atoms, closel ahell acquiring a core  groups>®° They have performed annealing treatments to
spin S=5/2, and give a hole to the system. Due to the ex-molecular-beam epitoxy grown GaMnAs samples. In this
perimental growth conditions, these semiconductors have dgrocess, the number of defects acting as donors is reduced
fects in the positions of Ga and As atorfatisite defects  and, therefore, the number of holes increases. In this way, the
and in the location of Mn ionsinterstitialg. Some of these Curie temperature has been raised from 60 K to 160fdx,
defects act as donors that partially compensate the holes coa-Mn concentration ok=0.08.
tributed by the Mn ions.Therefore, the density of holep, The natural question that arises concerns the possibility of
is generally smaller than the density of Mn iows, further increasing Curie temperatures. Experimental studies
Experimentally, high Curie temperatureSd) are ob-  of the Mn ferromagnetic moment in postannealed samples
served near an optimal doping arouxid 0.05. At these di- show that a large fraction of Mn spirimore than 50%do
lute concentrations, direct interaction between Mn ions camot participate in the ferromagnetishThis result opens up
be neglected. However, Mn spins have a strong antiferrothe possibility of increasing Curie temperatures by a better
magnetic kinetic exchange couplidgy with hole sping' For alignment of the Mn spins in the zero-temperature ground
metallic systems, the motion of holes mediates a ferromagstate of the system. Therefore, it is very important to know
netic interaction between the Mn ions, leading to spontanewhether the observed lack of magnetization saturation is due
ous magnetization with experimentg¢ as high as 160 R.  to an extrinsic effect such as theonglocation of some Mn
A first approach to the problem consists in describing thdons in the host semiconductor, or rather due to intrinsic frus-
electronic system within the virtual-crystal approximation, tration related to the spatial oscillatory behavior of the hole
and the thermal effects in the mean-field approximatibm  mediated interaction between Mn spins. The study of this last
this scheme, the hole spins feel the magnetic field created kyossibility provides the main motivation for this work.
the Mn spins which, in turn, are equally affected by the ef- As already mentioned, usual mean-field calculations like
fective field of hole spins. Therefore, Mn ions and holesthat of Eq.(1) (Ref. 6,7 assume a virtual-crystal approxima-
become coupled by,4, and the low-temperature phase ex-tion (VCA), where the Mn ions are replaced by a uniform

hibits ferromagnetism with Curie temperature: magnetic field acting on the hole spins. This approach does
not describe the individual interactions between the Mn spins
vea ZJf)d and the holes, and always predicts a fully saturated ferromag-

kT ™= 3 xp(q=0)c, (1) netic ground statéGS) for the Mn spins. There have been

several attempts to study the effect that thermal fluctuations
where y,(q=0) is the zero wave-vector paramagnetic sus-and disorder have on the value ot , 1" by means of
ceptibility of the hole ga& This expression indicates that the Monte Carlo(MC) simulations. By disorder we mean the
Curie temperature can be increased by raising the density eédndom location of the Mn ions on the fcc lattice of the host
Mn ions and/or the number of holes. The former possibilitysemiconductor. These calculations have strong finite-size ef-
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fects because, even though the Mn spins are treated classind six-band models. The importance of fluctuati¢iher-
cally, the carriers kinetic energy must be evaluated at eactmal and disorder their dependence on system parameters,
MC step, requiring the diagonalization of the electron Hamil-and their impact on the critical temperature are particularly
tonian. Therefore, MC simulations have been limited toconsidered. In Sec. VI, we study our model in the zero-
simple electronic modelgéone-orbital tight-binding Hamil- temperature limit. We obtain the density of states of collec-
tonian or two-band parabolic modednd to small systems tive magnetic excitations and analyze the stability of the
(less than 600 Mn ions and 60 carriers zero-temperature ferromagnetic ground state. In Sec. VIl we

On the other hand, Schliemann and MacDofatflhave  conclude the paper with the conclusions.
studied the effect that disorder and quantum fluctuations
have on the zero-temperature GS, using perturbation theory Il. THE MICROSCOPIC MODEL
and a two-band model. They conclude that long-range fluc-
tuations make the full ferromagnetic phase unstable against a As explained above, we assume that Mn ions, withda 3
noncollinear ferromagnetic state. In the same direction andnd S=5/2 configuration, are randomly located in a fcc lat-
using a four-band model, Zard and Jankld have obtained tice. These ions donate a densjiyof holes to the system
that, due to the large spin-orbit coupling existing in the hosthat, according to photoemission studtéfiave a strong g
semiconductor, the interaction between Mn spins is highlycharacter that should be associated with valence-band states
anisotropic, concluding that the zero temperature GS is inef the host semiconductor. Therefore, we model the motion
trinsically spin disordered. Also recently, using a disorderedf holes in the host semiconductor and their interaction with
Ruderman-Kittel-Kasuya-YosidéRKKY) lattice mean-field the Mn spins with the following Hamiltonian:
theory for a two-band model, Prioet al!® mention that the
presence of direct af coupling between magnetic impurities 3 ~
can lead to unsaturated polarization of the Mn ions. H=Hho|es+2| f d’rS;-s(r) I(r=Ry), 3

In this work we study the effect that disorder and thermal
fluctuations have on the value 3. We also analyze the wheres(r) is the spin density of carriers antiferromagneti-
effect that disorder and quantum quctuations hav_e on theally coupled to the Mn spinS, located at random positions
zero-temperature GS of the system. To this end, we mtroducgI of the fcc lattice. The exchange couplidigr) has a spa-

a He|senbe_rg—l|ke Hamlltor_nan with pairwise interactions be-ial extension that we model as a Gaussian of wiggh
tween Mn ions for describing the magnetic properties of

GaMnAs. This approach just requires the position and spin
orientation of the Mn ions, without explicit consideration of J(r)= Ae#mag ()
the electronic degrees of freedom. To be precise, we propose (2wa§)3/2 '
the following functional:
Joq parametrizes the strength of the coupling, whereas the
parameterg, is a measure of the nonlocal character of this
EIEKE‘% JRHS- S, (2)  interaction.a, should be of the order of the first neighbors
’ distance, which corresponds to the minimum separation be-

where the coupling constad(R, ;) is obtained using a real- tween the Mnd orbitals and the GaAg-orbitals that form
istic six-bandk - p Hamiltonian. The indicesl(J) run on the  the Tg'e bands of the host semiconductor. Experimental
position of the Mn spins, which are randomly located at sitedVork™® estimatesJ,q~60 meV nni. As the Mn ions are
R, of the host semiconductor fcc lattice, witR,;=R, _rather d_lluted, we have neglected any direct supe_rexchange
—R,. We will justify the correctness of this procedure for interaction between them.. The tefiy, s, representing the
the expected range of parameters and, furthermore, show thi&otion of holes in the semiconductor, is described with a
J(Ry;) can be obtained perturbatively. As the electronic de-ealistic six-bandk-p envelope function f0f_ma||5ﬁp-_|n the
grees of freedom are integrated inside these coupling cori¢tual magnetic semiconductors, the carrier density is of the
stants, we can perform large MC simulations for estimatingrder of 16° cm™? and, for these values, it seems justified to
the value ofT . Also, treating Mn spins as quantum objects, negle(it the effect of the carrier-carrier interaction. As we
we will be able to study collective magnetic excitations of know? that the rearrangement of defects considerably weak-
Eq. (2) and analyze the stability of the zero-temperature fernS the interaction petween_ carriers qnd defect;, we also ne-
romagnetic GS. This will be done by means of an explicitgleCt any effect of d|sord9r in the motion of carriers beyond
calculation of coupling constants(R,;) in the spin- he mere magnetic coupling of E®). _
polarized background of carriers at zero temperature. In thek - p model; the hole wave functions are described
The paper is organized as follows. Section Il presents th€Y @ band indexn and a wave vectok, having the form
microscopic model. In Sec. Ill, we deduce the Hamiltonian
of Eq. (2) from the microscopic model and justify its use. In
Sec. 1V, the coupling constants of the pairwise Hamiltonian
are obtained perturbatively, and mean-field treatments are re-
vised. A criterion is introduced to quantitatively assess the 1
effect of fluctuations from the mere analysis of interactions. Uy (1) =—= > ¢y m(r—R)), (6)
Results of MC are shown in Sec. V for both the two-band o JIN 4 o

U1 =€ 2 Uy (1), (5)
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whereuJ,mJ(r) are the sixl',, valence-band wave functions 0 Y

with k=0 and¢;  represent atomiclike orbitals with total . AR

angular momentund, andz component of the angular mo- < // \.\\

mentumm;y. The six higher-energy valence-band states of 22 » LY

GaAs correspond td=3/2 andJ=1/2. In Eq.(6), the index g / \

| runs over all theN) sites of the fcc lattice, ang/N is the % 3 \

normalization factor. The parameters that determine the wave i / ﬁ

functions 7 and the corresponding eigenvalues, are 4l OO Osmecosﬁ)‘

obtained by dlagonallzmg a>66 matrix? for each wave s (1, 10)a/2

vector. The entries of this .matrlx depend on the spin-orbit 0.0 05 10 15 20
couplingA,,, the Kohn-Luttinger parametess, and on the o/1t

wave vectork. We use parameters appropriated for G&As,

with values y;=6.85, 7y,=2.1, v3=2.9, and A, FIG. 1. Energy of a system formed by two Mn ions. One is
=0.34 eV. located at (0,0,0), with its spin pointing in the (0,0,1) direction, the

In the k- p basis, the Hamiltonian of E¢3) has the form other is at (0,1,13/2, with its spin oriented in the (0,sif)cosé)
direction. The calculations have been done for a hole demsity

=0.44 nm 3, a couplingJ,4=0.06 eV nm, and a spatial exten-
H= 2 Eﬂkcnkcﬂk+ E (nk|V|n'k’ >ancﬂ s () sion of the interactiorano=4llJ A.
nk,n’"k’
wherec,, creates a hole with quantum numbarandk. The its spin pointing in the (0,0,1) direction and the other placed
second term of this equation is the interaction between that one of the first neighbor positions &0a)/2 of the fcc

holes and the Mn spins: lattice (@=5.66 A for GaA3 with its spin pointing in the
3 (0,siné,cosd) direction. In Fig. 1 we plot this energy for
kIVIn'k’y= —Pd ~i(k=kRig . (n' k' K different relatlve orientationsé for a hole densityp
(nk|V[nk") Q Z © S+ (n".Klsin.k) =0.44 nm 3, an exchange- couplindy,4=0.06 eVnm, and

L2 a spatial extensmn of the couplimg=4 A. We see that the
x @~ (k=k)"agl2, (8) interaction energy can be fitted very well by @bsSince we
expect spin anisotropies to show up predominantly at short

where distances, its absence for nearest neighbors makes us con-
- clude that a spin isotropic interaction is appropriate for arbi-
(n" k'lsgn,ky= > ( ﬂfj) ai,'r:f Sym. ,3'm’s trarily separated Mn spins. Therefore, we write the energy of
Jmy 3" m) ' S a pair of Mn spinsS; and S,, separated by an arbitrary

the index! runs over Mn Iocationssij arm) is the matrix vector (.,k)al2, in the form

element of the hole spin operator in the local angular mo- S-S,

mentum basié® and () is the system volume. The eigenen- AE=22+AU; jx——, (10

ergies of this Hamiltonian can be written in the form S
with

E=Exg+AE, 9)

Exe being the energy of the carriers in absence of exchange AUij= %[A,(fk)(T,T)—A,(fk)(T,l)],

coupling with the Mn ions and E the variation of the sys- @1 2)

tem energy due to the hole-Mn spin interaction. We take 4[A|Jk AT DL 1D

as our zero of energy. where the expressmm‘s( (1.7) andAl(]Zk)(T,l) represent the
energies of a pair of Mn spins separated by a vector

ll. PAIRWISE INTERACTIONS BETWEEN MANGANESE (i,j,k)a/2, with parallel and antiparallel spins in taelirec-

SPINS tion. 3 is a self-interaction energy that neither depends on

(i,j,k) nor affects the spin coupling.

Recently, Zarad and Jankt derived that the Mn-Mn in-
teraction in GaMnAs is highly anisotropic, using a four-band
model?® This anisotropy is due to the character of the top
valence bands and the large spin-orbit coupling existing in
GaAs. In patrticular, they found that the interaction between
two parallel spins separated by a vecRris different de-
pending on whether the spins point along the ve&oor

Our first result is that the interaction between two Mn perpendicular to it. This large anisotropy predicted in Ref. 17
spinsS; andS, is very well described by their scalar prod- seems to be in contradiction with the results presented in Fig.
uct. To show this, we have calculated the energy of a systerh, where a simple cosine fits the interaction very well. In
containing just two Mn ions: one located at the origin with order to study the spin anisotropy more carefully, we have

In this section we will justify the validity of the
Heisenberg-like model of Eq2) for the experimentally rel-
evant range of parameters, with coupling constal{t, ;)
obtained perturbatively.

A. Interaction energy of a pair of Mn spins: Spin and spatial
anisotropies
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g-g-zggg [ B. Virial expansion and perturbation theory

§-3,9634. Previous MC simulatiod$ have shown that the Curie

> -3.9686 | temperature of DMS increases linearly withfor low Mn

o gzggg. LTt ' concentration. This linearity strongly suggests that a virial-

W o0 , (0,sinf,cos6) , like approach, where the Mn interaction is expressed as a

00 02 04 o/n 06 08 1.0 _sum_of pairwise terms, shoulq provide a good approximation

S s in this low-concentration regime.

£ 330] ©® o In order to test the validity of this approach, we have
§-3,355. . o computed the energy of a three Mn ions system, comparing
£ -3.360 1 ° . the result with the energy of three systems containing only
:2232 o o two Mn ions. We place three Mn ions at close positions
2 * (0,0,0), (1,0,0%, and (0,1,0%, and callA® the exact en-

< 0.0 0.1 0.2 o 0.3 0.4 0.5 ergy of this three-body system. Assuming only pairwise in-

teractions, the energy to be associated to this system can be

FIG. 2. Top panel: Energy of a system formed by two Mn ions Written as[see Eq(11)]
located at (0,0,0) and at (0z), Mn spins are parallel and point in
the (0,sing,cosd) direction. The calculations have been done for Agim: 3E+AU020+AU200+AU220. (12
p=0.44 nm 3, J,4=0.06 eV nni, and ap=4 A. Bottom panel: ) o )
Interaction energy of a system formed by two Mn ions located at! € comparison between the exact and pairwise approxi-
(0,0,0) and at (cagsina,0)a, for the same parameters. Mn spins Mated energies for the parameteps=0.44 nm 3, J,q

point in thez direction. =0.06 eV nmi, and a,=4 A, provides the following re-
sults:

calculated the energy of a pair of parallel Mn spins pointing

in the (0,sing,cosd) direction and separated by a vector A®)=_—5043 meV, Affgi,:—s.OBl meV. (13

(0,0a). In Fig. 2 (top panel, we plot the energy of this
configuration as a function of. We obtain, in agreement From these numbers we conclude that writing the energy of
with Ref. 17, that the interaction energy depends on the anglhe system as a sum of pair interactions is indeed a very good
formed by the spins and the vector joining them. Quantita@pproximation for DMS.

tively, however, this anisotropy is very small: less that40 ~ The interaction energies presented in the preceding sec-
times smaller than the interaction energy and, therefore, itions were obtained by solving the Hamiltonig8). From

can be safely neglected. We have found that this spin anisothese calculations we have justified the use of a Heisenberg-
ropy becomes larger for smaller values of the spatial extenlike Hamiltonian for describing the magnetic properties of
sion of the interactiora,, but always remains smaller than GaMnAs. In this approach, the coupling constad(®,;)

5% of the interaction energy, even for the extreme case of have been obtained by solving Eg) for different distances
purely local couplinga,=0. We have checked that the dis- between Mn ions, and for parallel and antiparallel orientation
crepancy between the results of Zagaand Jankand ours ~ Of their spins. The exact solution of the Hamiltonié),
originates in the different models used for the band structuregven for only two Mn ions as in the preceding sections,
The four-band chiral spherical model used in Ref. 17 considrequires the diagonalization of very large complex matrices
ers an infinite spin-orbit coupling and, therefore, overesti{larger than 3008 3000), posing a severe computational
mates considerably the spin anisotropy of the interaction. problem.

Due to thep character of the higher-energy valence-band To bypass this difficulty, we have resorted to perturbation
states of GaAs, the symmetry of thep Hamiltonian is theory for the calculation of coupling constants. We know
cubic. Therefore, spatial directions not related by the symthat, for small values of the exchange coupling, a second-
metry operations of the cubic group are not equivalent. Irorder perturbation theory treatment 8f{Eq. (8)] should be
order to estimate this spatial anisotropy, we have calculatedalid, leading to interaction energies proportionallfg. In
the exchange interaction energy, Efj1), for two Mn ions  order to check the validity of a perturbative treatment, we
located at (0,0,0) and at (ceSina,0)a, and with spins ori- have calculated the interaction energy of a system formed by
ented in thez direction. Using this geometry, we avoid the two Mn spins located at positions (0,0,0) and (1,8/2) for
effects associated with the spin anisotropy discussed beforthe parameterg=0.44 nm 3 and a,=4 A. The results,
leaving alone the spatial anisotropy. In Fig(lddttom panel  plotted in Fig. 3, confirm that the interaction energy remains
we plot the interaction energy as a function of the angle quadratic until values of the exchange coupling of the order
We observe that the interaction energy depends very weakl,q~100 meV nm. It is worth mentioning here that al-
on the orientation of the vector that joins the Mn spins. As inthough previous MC simulatiofs™® have found deviations
the case of spin anisotropy, the effect of the spatial anisotform the quadratic dependence of the Curie temperature on
ropy is also larger for smaller values af, but always re- J,q, these deviations appear at valuesJgf; larger than
mains smaller than 5%. In conclusion, an expression such &1 eV nn 3. Therefore, we conclude that the use of pertur-
Eq. (2), with a coupling constant dependent on distance bubation theory for computing the interaction energies is appro-
not on orientation, provides an adequate description for theriated for the expected range of parameters, enormously
interaction between two Mn spins. simplifying the computational effort.
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1.0 proaches. We believe this is interesting for, given the usual
p=0.44nm™ » computer limitations of MC calculations, this comparison al-
< 0.8 a,=0.4nm J lows us to gauge the merits and shortcoming of standard
o) // mean-field techniques. In addition, we will show that simple
£ 06 - considerations concerning the effect of fluctuations allow us
o // to estimate how far the mean-field temperature is from the
041 v real one. Therefore, we devote the rest of this section to this
2 | e analysis. _ N
02 s In the standard mean-field approach, the critical tempera-
0.0 e ture can be read-off from the effective field experienced by a
0 0_-02 0.64 0.66 0_'08 0_'10 mgtgt]netic i;n;l)lurity.. In our site disordered system, this can be
de (eV nm ) written as T0llowsS:
s? s?
; i f
FIG. 3. Interaction energy as function &f, of a system formed kTE =§< > xiJ(R,)> =§x2 J(Ry), (18
by two Mn ions located at (0,0,0) and at (1,1a09. 1#0 10

o ) ) ) _where the sum runs over all sites of the fcc lattice and the
_Itis interesting to note that the perturbative regime, withayerage is taken over disorder configuration. The latter is
its associated small values of coupling constants, fits nicelgnaracterized by the random variable, which marks the
within the virial expansion approach. Three-body interac-presence X,=1) or absence X =0) of impurity at sitei,
tions. will on]y appear to or.deﬂf;d, making US expect our yjith average(x;)=x.
pair interaction approximation to be valid even for not so  The sum can be evaluated in Fourier space as follows:
low impurity concentrations, provided the coupling constant

. 2
remains small.

S
kBTszgx(E J(R|)—J(R=O))
|
IV. HEISENBERG HAMILTONIAN: MEAN-FIELD

2
TREATMENTS AND FLUCTUATIONS S N 1 .
= ?X(Jédﬁ)(p(q—’o)_ N > J(Q))
The calculations presented in the preceding section justify q
the description of magnetic properties of GaMnAs in terms 1 X (q)e_qzag
of a two-body, spin isotropic, Heisenberg-like Hamiltonian: —kaTl 1— = P—) 19
B'C N % Xp(q_>0) ( )
H:—E JR»)S:-S;, (14 Notice that the self-interaction must be explicitly re-
' moved. If it is not, one ends up with a different mean-field
with exchange coupling given by approximation which we have previously termed the virtual-

crystal approximationT&"®. Looking at the Heisenberg

1 . iR Hamiltonian of Eq.(14), it is clear from a conceptual point
JR=g % J(@e . 19 of view that thegenuinemean-field approximation requires
) o o this removal of the self-interaction term, even if both tem-
The Fourier-transformed couplingq) is given by peratures turn out to be similar in the physical region of
N - parameters . It is this_ suppression of self_-interaction that ac-
J(Q):JédﬁXp(Q) g 97, (16) counts for the reduction, and even the disappearance, of the

critical temperature with increasing carrier concentration,

with the paramagnetic susceptibility obtained in the standar@Wing t?nfthe oscillatory nature of the exchange coupling.
perturbative manner form the original Hamiltonian of Eq. While Tc™ accounts for this effect, the VCA approach is

(3): blind to this oscillation, always predicting a finite transition
temperature.
1 NE(€n k) —NE(€nr kot q) It is well known that mean-field approximations tend to
x(a)= ) 2 _ overestimate the transition temperature due to the neglect of
nhnk €n’k+a” €nk fluctuations. Nevertheless, the effect of the neglected fluctua-
X |(n’ k+q|s,|n,k)|2. (17)  tions, and their influence on the transition temperature, can

be estimated by means of a consistency criterion, similar in

As explained in the previous section, we will consider aspirit to the well-known Ginsburg criteriofsee any text on
space-isotropic susceptibility(q) obtained by angular aver- critical phenomena, for instance, Ref.)24s we now ex-
aging the true susceptibility. This leads to a functidiq) plain. The mean-field approach assumes independent spins
depending only on the modulus qf from which real-space under the influence of a molecular field determined self-
couplings are easily extracted. consistently. AtT=TQf, the average molecular field is zero,

Our main concern will be obtaining critical temperaturesand so is the magnetization. Yet, even within this mean-field
from MC simulations. Nevertheless, we will also comparescenario, there are fluctuations around the zero average field.
MC calculations with the predictions of mean-field ap-In the present case, where the interaction can extend over
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large distances for small carrier concentration, this molecular 35
field will be the sum of many random variables, therefore a 30
Gaussian distribution is expected for it. At the critical tem- < 25
perature, we can write the following expression for the dis- GEJ 20

tribution of molecular fields along the z axis: = 15 -
T 10 - .
h2 | -~ 5
PNmol) = 1,Zexp( - 2), (20) ] ~ e
0 : — =
(2 Ahmo) 2(Ahmo) 0.0 0.2 04 06 08
with a dispersion in local fields given by q /(2n/a)
, X§ ) 2] . > i
(Ahpop?=—= 2 [I(R)T% (2) o oqef \ T 004m =
70 o oo a0=0.160m —~ ©
where the lattice sum can be evaluated in Fourier space as—= gj L = o
1 1 2 %0:2_‘\ - 'o1zr;.az156
0.0 T
> PR)P=5 2 PlP-{ 52 @] . (22
1#0 N q N q
0 1 2 3 4 5 6
Notice that both thermal and positional disorder contribute to r/a

the expression of Ed21). FIG. 4. Top panel: Fourier transform of the interaction energy as
i ggipontaneoys T : .
This means that even though the aver Y function of g for a two-band model with m*=0.5 p

magnetization is zero at the nominal critical temperature_ " "3 3 —6 06 evnm. Bottom panel: Real-space ex

mf . . . . . . =VU. y pd= Y- . . - -
T. ' th?re WI.” be.a distribution of local magnetizations, change coupling as function offor a two-band model with the
with a dispersion given by same parameters.

m2 mf:f dh.. P(h smh 2 23 fluctuations and, therefore, of the corrections to the mean-
(Mg moP(Nmo)l SM(Nmop)} @3 field temperatures. We will term thi$* the fluctuations-

where corrected critical temperature.

1 1 ) V. RESULTS: EXCHANGE INTERACTIONS, CURIE

A”A(F\mm):( =z (24) TEMPERATURES, AND MAGNETIZATION
tan
(hma) mol _ o A. Two-band model
is the normalized magneﬂzghon of an |solated- |mEur|ty N As 2 first example, we apply our method to the simplest
the presence of thédimensionless molecular fieldhmoi  case of a two-band model. In this model, the wave functions
=Shno/(KTc). _ . o are plane waves of momentuknwith a dispersion relation
This provides us with a natural consistency criterion forz 2i2/(2m*), m* being the average effective mass of the
the validity of mean-field results. We can say, for instancepgjes. In Fig. 4top panel we show the Fourier transform of
that we will trust the mean-field results for temperatufes the exchange interaction fal,q=0.06 eV n, m*=0.5,
$T*<T@f such that the average, spontaneous, mean fielgind different values od,. Fora,=0, j(q) is proportional to
magnetizatiorm(T*) is meCh larger than the “incertitude” the paramagnetic susceptibility, which coincides with the
of the magnetization &' due to fluctuationgseveral vari-  Lindhard functiod® and exhibits the well-known anomaly in
ants of this criterion can be envisagedo be specific, we the second derivative atk2. For a,=0, the paramagnetic

will define a temperaturg@™* such that susceptibility of the carriers decays very slowly as a function
5 5 of g, and the value of the couplingq) is significant even
[m(T*)]*=G(m*)ymr, (25 for values ofq near the zone boundarys2a. This result is

) ) ) unlikely as the effective-mass approximation and ke
where G is a “large,” dimensionless parameter, and the method are just applicable for describing the semiconductor
mean-field magnetization is the well-known implicit solution y5nd structure near the center of the Brillouin zone. Fortu-
of m=SM@B(T/T2"(m/S)). We have chosen the value of nately, this problem is solved when we introduce a finite
G by looking at the simplest Heisenberg model: classicakpatial extent, for the coupling between Mn and carriers.
spins in a cubic lattice with nearest-neighbor couplings. Inin this paper we perform calculations fag=1.6 A and 4 A.
this simplerreferencemodel, the value ofj is obtained by Fora,=1.6 A, the interaction decays rather slowly in recip-
demanding that if the previous scheme is applied,Ttheso  rocal space, although its value at the zone boundary is prac-
obtained coincides with the MC determined temperature fotically zero, Fig. 4. Forap=4 A, the interaction decays
that modeP® The actual value is arour@=8.3. Irrespective  rather fast in reciprocal space, being nearly zero at half the
of the precise numerical value of the coefficigitit is clear  Brillouin zone. The valueay=4 A corresponds to the first
that theT* so obtained is a direct measure of the effect ofneighbors distance in the fcc lattice wigh=5.66 A.
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In Fig. 4 (bottom panelwe show the real-space coupling 50 50
constant as a function af/a for the same parameters. For
ay=0, this is nothing but the RKKY interaction: 40
<
2Kkgrcog 2Ker) —sin(2Kker) 0 4
J ry~ . (26) S ]
twobanc( (2k,:l’)4 _,é
Q 20
This function decays as® and oscillates in sign with the &
distance. This oscillatory behavior is a signature of the 2 At

anomaly that occurs in the paramagnetic susceptibility. For 10
finite values ofa,, the &g anomaly inj(q) is softened, and

the oscillatory behavior of the real-space coupliig) is 0 . ; .
damped, although faai,=1.6 A it remains notable. It is im- 00 02 04 06
portant to remark the rather long-range character of the in- p (nm'3)

teraction between Mn spins. Even for the casagf 4 A,

the coupling is significant up to distances three times larger FIG. 5. Curie temperatured/onte Carlo, mean field, and fluc-

than the fcc lattice parameter. Note that in the fcc lattice, théuations correctedor the two-band model witm* =0.5 as a func-

number of neighbors for a distance cutoff oi 3 around  tion of the hole density fok=0.05, for two values ofy.

500. Therefore, in the Heisenberg Hamiltonigieqg. (14)],

the number of neighbors to be taken into account is of theare damped and a low-temperature ferromagnetic GS appears

order ofxx 500, at least. in MC calculations. In Fig. &), we plot the MC Curie tem-
Once the real-space exchange-coupling constants aperatures for different hole densities, along with the

known, we perform classical MC simulations on the orienta-fluctuations-corrected™® and the mean-field results, both

tion of the Mn spins. We use a fcc supercell of volumewith and without self-interaction corrections. The observed

N3(a%/4) with N=30, including more than 1200 Mn ions. MC temperatures are consistent with the fluctuations-

For this system size, we have checked that the results are freerrectedT*. From this analysis, it is clear that Curie tem-

of size effects, and that the disorder in the Mn ion positionsperatures approach the mean-field results with increasing

is self-averaged. Due to the long-range character of the immonlocality (larger values ofag) in the coupling between

teraction, we have to include the interaction of each Mn spirimpurities and carriers.

with its first 150 neighbors in the MC simulation. This cor-

responds to a real-space cutoff bigger than Bor distances

larger than &, the interaction can be neglected, as shown in B. k-p model

Fig. 4. The k- p model describes the valence band of the semi-
The most notable result is the absence of a finite Curionductors in a realistic way. The most characteristic features
temperature in the MC simulations for small valuesighind  of the GaAs valence bands are the anisotropy in reciprocal
large values of the hole density. We have checked the abspace and the strong coupling between the heavy- and light-
sence of spontaneous magnetizationdg+ 1.6, and carrier hole bands. These effects substantially alter the constant en-
densities above p=0.44 nm 3. For a density p  ergy surfaces of the holes states, which become nonspherical,
=0.22 nm 3, we obtain a Curie temperature of 14 K, con- with a warped shape. The lack of a well-defined modulus of
siderably smaller than the mean-field value. It is interestinghe Fermi wave vector softens th&=2anomaly in the aver-
to realize that the fluctuation analysis described previousl;age paramagnetic susceptibility as a functionqofThis is
fits nicely with these MC results. In Fig.(&, we plot the  clear in Fig. 6(top pane), where we plot the Fourier trans-
predictions of the mean-field treatments, along with the exform of the interaction energy for the same parameters as in
pected corrections from the neglect of fluctuations. We segig. 4, fora,=1.6 A anday=4 A. In the bottom panel of
that, for p~0.44 nm 3, the fluctuations have grown to the Fig. 6, we plot the real-space energy coupli{g). It decays
point that no finite temperature exists, meeting the consisalmost continuously to zero with a very weak oscillation, as
tency criterion described in E@25), in agreement with the expected from the absence of strong anomalig$di). As in
absence of magnetization observed in MC simulations. Nothe two-band model, we obtain that the interaction between
tice that for lower carrier concentration, a finite magnetiza-Mn ions extends several lattice sites, and the quantity of
tion reemerges. In fact, the mean-field temperatt]?@é, merit, J(r)r? (see inset of Fig. 6 has a maximum near
T¢S*, and the fluctuations-corrected temperatlitemerge = 2a, for both values of,=1.6 A anday,=4 A.
in the very low density limit, as shown in Fig. 5. Thisis not We have performed MC simulation with the coupling
surprising, for a vanishindse implies long-ranged interac- constants shown in Fig. 6 and a concentration of 5% for Mn
tions where the neglect of fluctuations becomes increasinglions. The details of the simulation are the same as in the
irrelevant, leading to the asymptotic correctness of meantwo-band case. Representative results for the Mn spin polar-
field results. ization as a function of temperature are shown in Fig. 7. In
Increasing the spatial extension of the coupling betweerrig. 8, we exhibit the MC Curie temperatures along with the
impurities and carriers tag=4 A, the RKKY oscillations mean-field and fluctuation-corrected results. Comparing with

115206-7



L. BREY AND G. GOMEZ-SANTOS PHYSICAL REVIEW B68, 115206 (2003

80 | 150—1—1 71 T 150—T—71 71
- MC MC
—_ \\ — = 8,704nm 6-band k-p model * TC * TC
%60 1 \ ap=0.16nm p:0.44nm'3 F—- T* ) N % ]
£ _ 3 A e ™ *
40 A Jpd=60meVnm C o “, P
E 9100_ —T vca o - 100|__ T vea // —
=20 - b c - c | g«
‘5‘ /// //
= — .‘. - -
0 10 g 7 //
. . & £ 7 . 4
5 4 /*
& 50 A - 50+ /4 —
l4
09 /' a,=16A a,=4A
S -/ 1T -
©0.4 1
S
~ 0 | | | | | | 0 | | | | | |
0.2 1 0 0.1 02 03 04 0.5 06 0 0.1 02 03 04 05 06
S -3 -3
0.0 p (nm ) p(m”)
0 1 2 3 4 5 6 FIG. 8. k- p model Curie temperatures from MC calculations as
rla a function of hole density, compared with results of mean-field tem-

FIG. 6. Top panel: Fourier transform of the interaction energy a@eraturesl"é"a, Te', and the f luctuations-corrected critical tem-
function ofq for thek- p model. Bottom panel: Real-space coupling peratureT®, for Mn concentration=0.05.
as function offr.

fact that interactions in this six-band case, while extending

the corresponding results for the two-band case, the Six_ba,ﬂaveral Iattice_ sites, do not manifest t_he violgnt sign oscilla-
model shows an overall increase of transition temperaturedions present in the two-band calculation. As in the two-band
In addition, the MC temperatures are closer to the mean-fiel§alculation, mean-field and exa@¥C) temperatures tend to
results than in the two-band case, for the same parameters.Merge at low carrier density, as expected from the increasing
is interesting to note that, again, the fluctuation-correctedange of the exchange coupling between Mn ions. Similarly,
temperatureT* offers a fair estimation of the MC tempera- ncreasing thg spatial extent of the interaction petween Mn
ture. In any case, the combined effect of thermal and disorddPns and carriersg) softens the effect of fluctuations, lead-
fluctuations is much less severe than in the two-band cas#)d t0 a better agreement between mean-field and MC tem-
This is evident, for instance, in the curves fag=4 A,  Peratures.
where the VCA transition temperatufé°® already provides

a good estimation of the MC . This is consistent with the v/|. COLLECTIVE EXCITATIONS OF THE T=0 GROUND
STATE

In this section, we study the low-energy collective mag-
netic excitations of DMS at zero temperature. We assume
that atT=0, Mn spins are fully polarized, and the spin po-
larization of the carrierss, is obtained by solving the carri-
ers Schrodinger equation in the presence of the uniform mag-
netic field created by the Mn ion§J,4c. The low-energy
collective magnetic excitations of the system are obtained
from the Heisenberg Hamiltonian

a,=0.16nm TCmfl lTCVCJ

e
o
.

(=]
~
.

o
N

Manganese Spin Polarization
o
(=]

0.8 -
05 | 6-band k.p model He=Exe(6) =2 (RS S, 27)
p=0.44nm'3

04 1J=0.06eVnm® whereEyg(€) is the kinetic energy of the carriers evaluated
02 | x=0.05 at the hole spin polarizatiod. This Hamiltonian describes
' small oscillations of the Mn spins from the fully polarized
0.0 MWM , , state, which we choose to point in tkalirection. The Fou-

0 20 40 60 80 100 120 rier transform of the coupling constanig(R,;) is propor-

T(K) tional to the transverse response function of the polarized

hole gasy(q,£):
FIG. 7. Closed dots represent the temperature dependence of the

Mn spin polarization as obtained from MC simulations for the N
k-p model. Open dots correspond to Mn spin polarization fluctua- ; =32 L e—qzag 28
tions, which help to estimate the value of the Curie temperature. @) pd ) X (a,8) ‘ (28)
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1] e X=0.05 5 ! } \
’>\ s 2-band model, m*=0.5 Lo 10 1 /3 Q:\“
2 s /] e
E 0 " 0
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FIG. 10. Density of states for low-energy excitations in the two-
FIG. 9. Spin-wave dispersion, obtained in the virtual-crystal ap-band model and in th&-p model, obtained from the equation of
proximation, for the two-band modéd) and for thek - p model(b). motion method. The DOS is averaged over different disorder real-
The carriers spin polarization &=0.69 in both figures. izations. The parameters used are the same as in Fig. 9.

In writing Eqgs.(27) and(28) we assume, as we have justified model than in the two-band model. Also, we find that the
in preceding sections, that the Mn interaction energy can bstiffness increases ag, increases. These numerical results
expressed as a sum of Mn spin-pair interactions, which onlyor the stiffness agree with those obtained by Koeigal.
depends on the relative angle formed by the Mn spins and owsing a formalism that treats the Mn spins as noninteracting
the distance separating them. We have also neglected th®sons?’
magnetic anisotropy energy that we know is very sfall.

The low-energy collective excitation are obtained by solv- B. Effect of the disorder

ing the equation of motion of the Mn spins: ) ) ]
In this section we analyze the effect of the disorder on

A ~ B - collective magnetic excitations of th€=0 ferromagnetic

—ih——=[H:S ]2—2 J«(R, 1)(S[S; —S3S)). ground state. To this end, we diagonalize the equations of
(29 motion, Eq.(29), for different disorder realizations. We place

the Mn ions randomly on a fcc lattice, and consider the in-
NearT=0, the Mn spins are fully polarized, we repla8& teraction of each Mn with all its neighbors within a distance

by Sand the equations may be linearized. shorter than six lattice units. We consider systems with more
than, typically, 500 Mn spins, and use periodic boundary
A. Spin waves in the VCA conditions. In the presence of disorder, the collective excita-

tions cannot be characterized by a wave vector and we,
Fherefore, analyze their density of stat&@09). In Fig. 10
we plot the DOS of the collective excitations for the two-
band model and for the for the six-barkdp model, for
different values ofay. The DOS is obtained by averaging
over different disorder realizations. For every disorder real-
o(A) =xFIq=0)—I(q)]. (30) ization, we always obtain a zero energy m.ode thgt corre-
sponds to a uniform rotation of all the Mn spins. This Gold-
In Fig. 9 we plot the spin-wave dispersion for the two-bandstone mode reflects the symmetry of the Hamiltonian Eq.
model and for the six-bankl- p model with typical values of (27). In Fig. 10@) we see that in the two-band model and for
the parameters and for boty=4 A anday,=1.6 A. The short spatial extension of the spin interaction, there are col-
spin waves are gapless as the model Hamiltor{) is lective excitations wittnegativeenergy. This implies that the
invariant under rotations. At small values of the wave vectorfully polarized GS is unstable. This instability is due to the
the spin waves disperse quadratically and the expressidong-range oscillations of the interaction between the Mn
w(q) =p9%/(27/a) defines the spin stiffness,. The spin spins. Forap=4 A these oscillations are damped and the
waves are harder in the six-bakdp model (ps=242 meV  fully polarized ferromagnetic GS is stable.
and 370 meV, forap=1.6 A anday,=4 A, respectively In Fig. 10b), we plot the DOS for the six-bani-p
than in the two-band modep¢=18 meV and 76 meV, for model. Our results show that the fully polarized ferromag-
a,=1.6 A anday=4 A, respectively. This is consistent netic GS is stable for any value af, at the density of car-
with the fact that the Curie temperature is larger in khe riers studied. This stability is the result of the Fermi surface

In the VCA, all sites are equivalent and, in E§9), the
sum over the Mn positions is replaced by a sum over al
lattice positions times the Mn concentratian In this ap-
proximation the collective excitations are spin waves with
momentumq and dispersion relation
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warping produced by the heavy-hole light-hole mixing in thethe disappearance of the ferromagnetic state from moderate
k-p Hamiltonian. The holes do not have a well-defindg2 to large values of the hole density. We find that fay
anomaly in the response functions. smaller than 1.6 A and hole densities larger than 0.44 hm
This stability analysis obtained from the study of the fer-there is no finite Curie temperature. When the valueagf
romagnetic low-energy excitations is in agreement with thancreases, the interaction oscillations are damped and a finite
results presented in the preceding section. Note, howeveCurie temperature appears.
that only the paramagnetic spin susceptibility enters the in- In the k-p model, the warping of the Fermi surface soft-
teraction between Mn spins for the calculated Curie temperaens the Xz anomaly in the response function and the real-
tures. space interaction oscillations are almost suppressed. There-
Recently Schlienmaet al'*>*® have computed th&=0  fore, the effect of fluctuations is weaker than in the two-band
response function of DMS and have suggested that, in genmodel. We find that fomy=4 A, the fluctuations effect re-
eral, the GS of DMS should be noncollinear. In their calcu-duces the Curie temperature by no more than 10%. For
lations they use a two-band model, and the instability is thesmaller values of,, the effect of fluctuations is more se-
same that we find in Fig. 18). From our calculations we vere, with Curie temperatures reduced by almost 50%, for
conclude that the instabilities found in Refs. 15,16 are jusp=0.66 nm 3. Nevertheless, we believe that a valueagf
due to the model considered, and disappear when a mortose b 4 A is appropriated, as it corresponds to the first

realistic band-structure model is used. neighbors distance in the fcc lattice. This is the minimum
separation between the Mheorbitals and the GaAgp-orbit-
VIl. CONCLUSIONS als that form the hole band of the semiconductor.

. . ) o Finally, we have studied our model in the zero-
We have introduced a Heisenberg-like Hamiltonian, Eqemperature limit. We have computed the low-energy collec-
(14), for describing the magnetic properties of GaMnAS. ;e magnetic excitations of th&=0 ferromagnetic ground

This modell just requires the positions .an.d thg orientati_ons Odtate. In agreement with the Monte Carlo results, we find that
the Mn spins. The use of this model is justified becalise ¢, the two-band model and moderate to large hole densities,

the energy of the system can be written as a sum of paifq forromagnetic ground state is no longer stable. However,
interactions(ii) the interaction between two Mn spins is well when a more realistic six-barid-p model is used, the sta-

described by their scalar product, afiid) the coupling con- i of the fully polarized ferromagnetic ground state is

stants of the Heisenberg model depend basically on the di acovered.

tance between Mn spins and can be evaluated perturbatively. From our calculation, we conclude that the use of a real-

: As the eI.ectronlc proDeF“eS of the host semmondgctor aMfstic electronic structure for describing the properties of the
integrated into the coupling constants of the Heisenberg,  semiconductor produces a hole mediated interaction be-
Hamiltonian, it is possible to perform MC simulations in yyeen Mn spins with virtually no sign oscillations. There-
systems with a large number of Mn spins, and so to obtaif, g \ye pelieve that the observed lack of magnetization satu-

the Curie temperatur_e of the DMS. We. have compareq_ th?ation in DMS should be related with extrinsic effects rather
Monte Carlo, mean-field, and a fluctuation-corrected C”t'calthan with intrinsic frustration in the system.

temperatures for different band-structure models and for dif-
ferent values of the exchange-coupling spatial extenajpn
The fluctuation effects are important for large hole densities,
being more relevant for smaller values &y We are grateful to J. Ferndez Rossier and A. H. Mac-

In the two-band model, the existence of a well-definedDonald for helpful discussions. Financial support is ac-
2kg anomaly produces a long-range interaction between Miknowledged from Grant Nos. MAT2002-04429-C03-01 and
spins that oscillates in sign with the distance. The fluctuaMAT2002-04095-C02-01(MCyT, Spain, and Fundacio
tions are magnified by these oscillations which can lead tdRamm Areces.
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