
PHYSICAL REVIEW B 68, 115201 ~2003!
Inhomogeneity and the metal-insulator transition for disordered systems

T. G. Castner
Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA

~Received 19 February 2003; published 2 September 2003!

The effect of both macroscopic stress inhomogeneity and doping inhomogeneity on the critical behavior of
the conductivity in the vicinity of the metal-insulator transition are calculated. For the uniaxial stress case the
inhomogeneity is calculated from the bending deflectiond(z) of a column under compression. It is the
transverse variation in doping or stressS that can produce a substantial increase in the scaling exponentt of the
T→0 conductivity and change the critical stressSc to an apparent critical stressSc* . It is demonstrated the
calculated results can explain the experimental results of uniaxial stress experiments for Si:P and Si:B. In these
cases whens(S,T→0) is sufficiently larges(S,T50)}uS/Sc21u t with t; 1

2 , but whens(S,T50) is suffi-
ciently smalls(S,T50)}uS/Sc* 21u teff with teff between 1 and 1.6 dependent on geometrical factors. For the
doping inhomogeneity case both uncorrelated dopant density variations and correlated linear dopant variations
are considered. Correlated cases can either increase or decreasenc depending on the geometry of the doping
gradients. An uncorrelated broad distribution can mask scaling behavior with an exponentt5 1

2 and change the
exponent tot;1. This suggests that the microscopic physics may be the same for crystalline doped semicon-
ductors Si:P, Ge:Ga, and the amorphous semiconductor-metal cases and that the difference in scaling exponents
of the conductivity results from the breadth and shape of the distributionP„n(r )2n…. A large width of
P„n(r )2n… for a-S12xMx alloys helps explain why the conductivity prefactors are comparable to Si:P; etc.,
even though the electron density is 103 larger.

DOI: 10.1103/PhysRevB.68.115201 PACS number~s!: 71.30.1h, 72.15.2v, 72.20.Fr, 72.80.Ng
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I. INTRODUCTION

The metal-insulator transition~MIT ! in doped semicon-
ductors @Si:P, Ge:Ga, etc.# and in amorphous ~a!
semiconductor-metal alloys@a-Si12xNbx , a-Ge12xAux ,
etc.# has been studied for decades. In the last two deca
much attention has focused on the critical behavior of
conductivity in the limit of zero temperature as the critic
point is approached. Several approaches have been emp
to ‘‘tune’’ the MIT and to approach the critical point. Th
standard approach has been to study samples with diffe
concentrations of donors for Si:P or the variation ofx2xc
for the a-S-M alloys. The difficulty with this approach is
that very close to the critical point@nc for Si:P, xc for
a-Si12xNbx] small variations in the doping or compositio
across the sample can affect the critical behavior and sca
exponent. An attractive alternative approach to tune thro
the critical point and obtain critical exponents has be
through the tuning of an external parameter such as unia
stress1–3 or a magnetic field. The magnetic field case
volves a change of universality class4 to unitary and the in-
crease in the scaling exponent toward 1 has been obse
for Si:B ~Ref. 5! and Si:P~Ref. 6!. For the magnetic field
case the field inhomogeneity is very small and will not
discussed herein. However, the uniaxial stress case und
compressive stressS also is confronted by an intrinsicall
serious problem in the vicinity of a critical point where th
stress dependent conductivity s(S,T→0)→0 as
S→Sc—namely, the introduction of stress inhomogene
~SI! caused by a small sample bending deflection. It sho
be emphasized that there are numerous uniaxial stress ex
mental results where the effect of SI is small and not su
ciently important to affect the interpretation of the physic
The uniaxial stress results of Wilson and Feher7 determining
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the g-tensor valuesg, and gt for the SI conduction-band
valleys represent one such case, while the stress-indu
splittings of the donor-excited states by Aggarwal a
Ramdas8 are another example. In the critical regime SI c
play a dominant role and substantially alter the scaling
ponent, in addition to introducing an apparent critical stre
Sc* different thanSc . An important issue still actively de
bated is the breadth of the critical regime~CR!. The breadth
of the CR and the possible crossover from one critical ex
nent to another will be affected by doping inhomogene
~DI! or SI. Inhomogeneity and its effect on the scaling exp
nent of s(n,S,T→0)5s0(n/nc21)t in the vicinity of the
critical point is the subject of this paper.

The subject of the piezoresistance of semiconductor
nearly as old as the study of semiconductors themsel
Following the discovery of the piezoresistance effect
doped Ge and Si by Smith,9 there were a series o
studies10–14of the piezoresistance of doped Ge and Si in
next decade. The early strain-induced effects in semicond
tors have been reviewed by Bir and Pikus.15 The most rel-
evant of these studies to the present subject are the resul
degenerate Ge:Sb and Ge:As by Cuevas and Fritzsc14

These authors were concerned with the possible effect o
for their transverse piezoresistance experiment becaus
large friction and the possible bulging of their rectangu
bar. Despite the concerns of these experimental groups
SI from sample buckling in compression the data gave
evidence of SI from sample bending. The basic reason
this is that these early studies were not sufficiently close
the critical point atnc (Sc) at T50. These early piezoresis
tance studies were atT>1.2 K ands(n,S,T) was not small
enough for the SI effect from sample bending to be ea
measurable.

Controversy over the role of inhomgeneity in the MI
©2003 The American Physical Society01-1
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field arose nearly three decades ago. Cohen and Jort16

proposed an inhomogeneous regime near the critical p
composed of metallic and insulating regions. They view
the MIT as the approach to a percolation threshold and
the conductivity could be treated by effective mediu
theory. Their approach asx→xc from the metallic side is
characterized by conducting ‘‘channels’’ that get smaller
the insulating islands grow. Mott,17 who formulated the idea
of a minimum metallic conductivity, used theoretical arg
ments to argue that one could not have large insulating
gions in a barely metallic sample. At this time the data
definitively rule out Mott’ssmin metwere not yet available. At
the same time there was extensive work on percola
theory which has been reviewed by Kirkpatrick.18 The much
older effective medium theory~EMT! has been applied to
applied to electrical transport of mixtures such as the alk
tungsten bronzes19 (NaxWO3). These studies demonstrate
that EMT broke down forC,0.4 when the conductivity ra
tio r 5s I /sM ~,0.01! is small and the percolation thresho
C* is considerably less than the site percolation thresh
pc . Scher and Zallen20 proposedC* 5 f pc , where f is the
packing fraction leading toC* '0.15 for the continuous per
colation problem. Skalet al.21 obtainedC* 50.17 from nu-
merical studies for a particular random potential with s
correlations up to third nearest neighbors. ForI 12xMx sys-
tems withr !0.01 the notion was thats(C) should obey the
Kirkpatrick percolation predictions(C)}(C2C* )1.6 for C
,0.5. It is to be noted that thea-S12xMx systems do show
valuesxc (xc5C* ) somewhat less thanC* 50.15, but do
not exhibit the percolation exponent of 1.6. For NaxWO3
Lightsey22 reported xc50.1660.03 and t51.860.2 in
agreement with the percolation prediction.

This was followed by the scaling approach to the M
Wegner23 showed theT50 conductivity to be of the form
s}(EF2Ec)

(d22)n where EF is the Fermi energy,Ec the
mobility edge dividing localized and itinerant states,d the
dimensionality of the system, andn the correlation length
exponent. Several years later, Abrahamset al.24 employed
theb(g)-function approach to obtain a scaling result simi
to that of Wegner. These results ford53 andn;1 appeared
to explain experimental results25–28 that followed in the
1980s on thea-S-M alloys. However, comprehensive low
temperature studies29 of Si:P established thats(n,T→0)
scaled toward zero with an exponentt; 1

2 . These studies
were the first to clearly demonstrate values ofs(n,T→0)
substantially less than Mott’s prediction@smin met;20 S/cm
for Si:P#. These experiments were followed by the pione
ing studies of Paalanen, Rosenbaum, Thomas, and B2

~PRTB! on the uniaxial compression experiments that ve
fied thet; 1

2 scaling exponent. These authors made no ef
to analyze the tail region ofs(S,T→0) that occurred for
s,5 S/cm. However, the recent experiment results
Bogdanovich, Sarachik, and Bhatt2 ~BSB! and Waffen-
schmidt, Pfleiderer, and v. Lo¨hneysen3 ~WPL! both yield a
larger exponent (t;1.6 for BSB andt;1.0 for WPL!, but
the analysis was of the tail region. WPL claim the critic
regime is fors,scr'12 S/cm; however, this is precisel
the tail region where the transport is affected by large
11520
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I.

Neither BSB nor WPL emphasize that their results for larg
values ofs yield an exponentt near 1

2 in good agreemen
with the pioneering results1 of PRTB. This paper demon
strates that the crossover to a larger exponent in the tai
gime for small values ofs(S,T→0) is explained by SI. A
brief account30 of the effect of SI from simple sample bend
ing has been given that explains the BSB exponent of 1.

The SI results have demonstrated that correlated S
compression experiments can dramatically alter the sca
exponent for small values ofs(S,T→0). This suggests fur-
ther studies of the role of DI are warranted. These stud
suggest a different explanation for the scaling exponent
;1.0 observed for thea-S12xMx systems based on a broa
distribution P(n2nI ). This in turn suggests the possibilit
there may be a common origin of the microscopic behav
of the conductivity of systems like Si:P, Ge:Ga, etc., and
a-S12xMx alloys.

II. STRESS INHOMOGENEITY

The uniaxial stress experiments demonstrate an appr
mate linear dependence betweenS and n and S tunes the
critical density nc . This is represented by the relationS
2Sc5k(n2nc), wherek is a constant determined from ex
periment. The theoretical situation for Si:P has been trea
in detail by Bhatt,31 who calculates the change innc with S.
For Si:P stress admixes some of the 1s-E state into the
ground 1s-A1 state and effectively increases the Bohr rad
a* of the ground state band and, through the Mott criteri
decreasesnc . Thus uniaxial stressSmakes Si:P more metal
lic. The experiments start with an insulating sample, wh
becomes metallic whenS exceedsSc . The mechanism for
Si:B involves the degeneracy of the valence band in the
cinity of k50 and has the opposite sign of that for Si:P a
an order of magnitude smaller proportionality constantk be-
tweenS and p ~hole concentration!. The treatment of SI on
the scaling behavior ons(S,T→0) given below does no
depend on the details ofS versusn or p. The factorS/Sc
21 used for Si:P is replaced by 12S/Sc for Si:B.

A particularly straight forward case of SI results fro
sample bending that occurs in uniaxial stress experime
with compression loading. Under compression, columns
dergo a small deflection. The solution of the column equat
EId2y/dz252M (y)52Py yields a solution y(z)
5dm sin(pz/L) for free or pinned ends whereL is the length
of the column,E is Young’s modulus,I is the column cross-
section@areaA5ab, a,b, bending is about an axis perpen
dicular toa# moment of inertia,M (y) is the bending momen
produced by the axial loadP, and the deflectiony. The de-
flection of the column will be designatedd(z)
5dm sin(pz/L). The maximum deflection depends on th
slenderness ratio (L/a)2, the eccentricity of the axial loadsP
at each end of the column, and the quality and rigidity of t
load bearing surfaces applying the loadP. The bending leads
to a stress distributionS(y,z) of the form

S~y,z!5P/A@1112yd~z!/a2#, 2a/2,y,a/2. ~1!

This distribution differs from the correlated DI case di
cussed below because they andz dependences are couple
1-2
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The bending will ordinarily be about an axis with the sma
est moment of inertia~in this caseI a5ba3/12), although
when the cross section is nearly square, the bending ma
more complex. The two-dimensional stress distribution is
excellent approximation sincea, 1

2 b applicable to the PRTB
and BSB experimental results; however, for the WPL exp
ment, a50.8 mm andb50.9 mm and the nearly squar
cross section could lead to a three-dimensional stress d
bution. In addition, we ignore any shear stress effects fr
torsion. Torsion effects could only occur if the axial loadP
applied at each end of the column also applied a torque a
the column axis~z axis!. Equation~1! shows the stress varie
from SI „126d(z)/a… to SI „116d(z)/a… where SI 5P/A. A
rather small deflection of 0.01 mm~about 0.1% of the length
L! leads to a 40% variation inS(y,z) across the cross sectio
of the column. This leads to a normalized stress distribut
f (S) @* f (S)dS51# of the form

f ~S!51/2SI l~z!, SI ~12l!,S,SI ~11l!,

l~z!56d~z!/a, ~2!

and f (S)50 outside this range. It is straightforward to sho
that the average stress across a cross section atz is SI inde-
pendent ofz because the second term in Eq.~1! makes no
contribution to the integrala21*2a/2

a/2 S(y,z)dy5SI . This is a
requirement for static equilibrium of the column.

Ignoring SI and considering a homogeneous stress di
bution theT50 conductivity has been shown to be of th
form s(S)5s0uS/Sc21u t in the PRTB, BSB, and WPL ex
periments. An integration over a cross section at an arbit
z yields the results(z)5s0*(S/Sc21)t f (S)dS. With Eq.
~1! this can be converted to an integral overy. For large
enough values ofs(z) with all values ofS(y,z).Sc one
obtains the result

s~z!5s0@Sc/2SI l~z!~ t11!#$@SI /Sc211l~z!SI /Sc#
t11

2@SI /Sc212l~z!SI /Sc#
t11%. ~3!

For the regimeSI /Sc21@lSI /Sc a series expansion of Eq.~3!
leads to the result

s~z!5s0~SI /Sc21! t@11O„lSI /Sc /~SI /Sc21!…21¯#.
~4!

The SI is unimportant in this regime, and the scaling beh
ior is the same as if there were no SI. For the limit
s(z)/s0!1 and SI /Sc21!lSI /Sc one needs to alter th
lower limit of the integral. Since, forS,Sc , s(S)50, the
lower limit y* is determined by the conditionSc5SI „1
112d(z)y* /a2

…. Using dS5SI „12d(z)dy/a2
… and f (S)ds

5dy/a, the integral fors(z) becomes

s~z!5~s0 /a!E
y*

a/2

$SI /Sc211@12d~z!y/a2#SI /Sc%
tdy.

~5!

Only the upper limit contributes since the integrand is z
for the lower limit. The final result is
11520
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s~z!5s0a@~Sc /SI !/12d~z!#@SI /Sc211~6d~z!/a!SI /Sc#
t11.

~6!

Although the integration overz between the voltage elec
trodes is yet to be done, it is worth discussing the resul
Eq. ~6!. For SI 5Sc , corresponding toy* 50 with half the
cross section insulating (y,0) and half the sample metalli
(y.0), s(z) becomes (s0/2)(6d(z)/a)1/2. Here 6d(z)/a is
a direct measure of the SI due to bending of the sam
SinceSc is the true critical stress in the absence of sam
bending, an independent determination ofSc and s(Sc ,T
→0) provides a direct measure of the deflectiond(z) and SI,
ands(z)50 for SI /Sc51/@116d(z)/a#. This is the logical
definition of the apparent critical stressSc* (z). The two re-
sults of the linear stress variation across the cross section
~1! a lowering of the critical stress fromSc to Sc* and~2! the
crossover from a scaling exponentt without SI to a scaling
exponentt11 in the presence of SI. HereSc* (z) depends on
the deflection d(z); however, the scaling exponent t11 is
independent of z. However, the actual critical behavior o
s(SI ,T→0) in the vicinity of Sc* is more complex and de
pends on the details of the integration overz.

A comparison with the experimental data requires an
tegration overz between the voltage electrodes atz1 andz2
(z22z151.0 mm for the BSB Si:B sample, but is 6.0 mm fo
the WPL sample!. The electrodes are not necessarily sy
metrical about the maximum value ofd(z)5dm . In typical
transport experiments with a constant-current source
measures the resistanceR between the two electrodes, whic
leads toR5(1/A)*z1

z2r(z)dz5(1/A)*z1
z2dz/s(z). This leads

to a value^s&expt obtained in the experiment is given b
^s&expt5(z22z1)/*z1

z1dz/s(z). One finds

^s~w!&expt5@s0/2~ t11!w#

3~z22z1!Y E
z1

z2

l~z!/@w211l~z!w# t11dz,

~7!

wherew5SI /Sc andl(z)56(dm /a)sin(pz/L). This integral,
although apparently simple, does not lead to a simple a
lytical result for t5 1

2 except forw51. It is readily and ac-
curately evaluated numerically as a function of the param
w ~for the BSB casew21 is replaced by 12w). The behav-
ior of r(z)51/s(z) versusz is shown in Fig. 1 for four
values ofSI /Sc approaching the apparent critical stressSc*
appropriate to the WPL results for Si:P. Far fromSc* (SI /Sc

51.2), r(z) is relatively flat and̂ s&expt is closely given by
s(z). However, asSI →Sc* , r(z) becomes increasingly
sharply peaked at the ‘‘pinchoff’’ point atz1 . An increas-
ingly large fraction of the voltage drop is associated with t
peak, and̂ s&expt is no longer given even approximately b
the average ofs(z) betweenz1 andz2 . In the limit SI →Sc*
the integral is dominated by the contribution from thez re-
gion near the peak and is qualitatively different from the fl
case. Hererpeak}(SI /Sc* 21)2(t11) and the width of the peak
is wpeak}(SI /Sc* 21) ~demonstrated from the integration! and
in this regime ^s&expt}(z22z1)/rpeakwpeak}(SI /Sc* 21)t. In
1-3
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this extreme limit~not yet reached by experimentalists! the
scaling exponentt would be the same as in the case for lar
values ofs(SI ,T50) where SI is small. The integral in Eq
~7! has been evaluated for parameters appropriate for
BSB and WPL experimental results.

The BSB Si:B data for compressive uniaxial stress rep
sent a nearly ideal case of SI from bending of a slen
column. The voltage electrode spacingz22z15L/8 is small
enough that the quantityl(z) @see Eq.~2!# does not vary
much and the ratio of the apparent critical stressSc* to the
true critical stressSc is given reliably by Sc* /Sc;@1
2^l(z)&#21. BSB reportedSc* 5613 bars and a scaling ex
ponent of 1.6@usings(SI ,T→0)5s0(12SI /Sc* ) t]. My prior
analysis30 demonstrated Sc* /Sc;1.53 corresponding to
^l(z)&;0.346 andSc5400615 bars. The BSB data fo
s(SI ,T→0).20 S/cm yield t50.51 for Sc5400 bars and
s0'52.34 S/cm. Employing Eq.~7! for w51, one finds
^s(SI 5Sc ,T50)'10.3 S/cm which is 0.86 of the exper
mental value 12 S/cm forSI 5400 bars. The experimenta
uncertainty inSc;400 bars is64%. There is some uncer
tainty in the analysis dependent on the parameters. If
voltage electrodes are asymmetrical with respect to the p
of maximum deflection@l(z)5lm#, then the parameter
change a small amount.

The quantity^s&/s0 from Eq. ~7! is shown versusSI /Sc*
21 in Fig. 2 for two positions of the voltage electrodes. T
symmetric case (0.4375,z/L,0.5625) show a slope
slightly larger thant1151.5 for SI /Sc* 21.0.03. At smaller
values ofSI /Sc* 21 there is a crossover to a slower depe
dence, and forSI /Sc* 21,0.001 there is a new exponentt
;0.5: namely, the same scaling exponent as seen in
in the BSB data for values of̂s(SI )&.20 S/cm. However,
the experimental data in BSB for metallic samples@SI

FIG. 1. Variation ofr(z) vs z between the two voltage elec
trodes asz1 /L50.375 andz2 /L50.500 for four different values of
12SI /Sc* approaching the apparent critical stressSc* . Far fromSc* ,
r(z) is relatively flat with only a small increase asz approachesz1 .
As SI more closely approachesSc* , r(z) becomes more sharpl
peaked asz→z1 . Approaching the pinchoff atSI 5Sc* , the integral
*r(z)dz is dominated by the peak and the effective scaling ex
nent reverts to the original value oft5 1

2 .
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,613 bars# are limited tos.2 S/cm. This is shown by the
horizontal dashed line in Fig. 2. The BSB data extended
59 mK. If the data were extended to the 3 mK reached
PRTB, theAT dependence would reduces(SI 5613 bars,T)
by a factor of 4.4 and would permit a more accurate de
mination of the actual cutoff atSc* . Although BSB obtained
a good fit to finite-T scaling withSc* 5613 bars, a more ac
curate determination ofSc* would require data to much lowe
T. One notes that the calculated value^s&/s0 falls off more
slowly for the asymmetric case@0.375,z/L,0.500# and de-
viates from the slopet1151.5 for much smaller values o
12SI /Sc* . The asymmetric case approaches thet;0.5 result
from the ‘‘pinchoff’’ faster than the symmetric case and
already in this regime forSI /Sc* 21;0.003. For the experi-
mental data for Si:B to approach this closely toSc* would
require a stress resolution of less than about 2 bars or a
one order of magnitude better resolution inSI than obtained
by BSB. Nevertheless, the calculated results in Fig. 2
^s&/s0.0.02 are in excellent agreement with the BSB res
of t11;1.6. The deflection required to explain the linear
in the BSB results isdm5^l&a/650.017 mm@a50.3 mm
for the BSB sample#, which is 0.2% of the lengthL of the
sample. BBS~Ref. 32! in their response to Ref. 30 hav
argued it is unlikely that one would get this large a deflect
for their loadsSI because they are a small fraction of th
Euler critical stressSc5p2EI/L2. This issue will be consid-
ered in more detail in the Discussion.

The data from WPL fors(SI ,T→0) versusSI are given in
Fig. 3. The five largest values ofs are a reasonable fit to
scaling of the forms5s0(SI /Sc21)t for s.6 S/cm. An op-
timized ~minimum standard deviation! numerical fit to these
five points yields t50.59, Sc51.915 kbar, and s0
520.3 S/cm. The dashed line is the extension of this fit
s50 and SI 5Sc . A slightly poorer fit with Sc51.99 can
yield t5 1

2 . The WPL data fors(SI ,T→0),6 S/cm yield an

-

FIG. 2. Extension of̂ s&/s0 vs 12SI /Sc* based on the BSB
parameters to much smaller values of 12SI /Sc* calculated with Eq.
~7!. For 12SI /Sc* ,331023 the slope approaches the original e
ponentt5 1

2 .
1-4
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INHOMOGENEITY AND THE METAL-INSULATOR . . . PHYSICAL REVIEW B68, 115201 ~2003!
approximate fit to linear scaling witht;1. WPL have re-
ported Sc51.75 kbar; however, this analysis suggests t
the stress value 1.72 kbar in WPL’s Fig. 1 yieldss(T→0)
;0.27 S/cm, which in turn from Fig. 2 suggestsSc*
51.70 kbar. This small quantitative difference is not impo
tant to the correct understanding of the tail region. In t
case the ratio of the true critical stressSc to the apparent
critical stressSc* is 1.915/1.70;1.126. This is closer to one
than the BSB case whereSc* /Sc;1.53 (Sc /Sc* ;0.65). The
WPL sample has a smallerL/a ratio ~18.75! than the BSB
case~26.66! and has a smaller value oflm and less than12 the
SI from sample bending as for the BSB sample. Howev
the other critical difference in the two experiments is t
much larger voltage electrode spacing for the WPL sam
With z22z150.4L for the WPL sample compared withz2
2z15 1

8 L for the BSB sample thez integration yieldinĝ s&
differs more fromt11 for the WPL case than for the BS
case. The integration of Eq.~7! yields the result shown in the
inset in Fig. 3 with an effective exponent 1.18 for the sy
metric case (z150.3L, z250.7L). A small asymmetry of the
voltage leads with respect tolm (z150.29L, z250.69L)
leads to an effective exponent near 1.0. This demonstr
that the effective exponent observed depends on three
tors: ~1! the SI from bending,~2! the spacingz22z1 of the
voltage leads, and~3! the asymmetry of the voltage lead
with respect to the point of maximum deflection of the c
umn.

^s&/s0 for the WPL electrode spacing has been cal
lated for four different values of the asymmetry vers
SI /Sc* 21 over a wider range ofSI /Sc* 21. The results~not
shown! are similar to the BSB results in Fig. 2 and demo
strate the effective exponent varying with bothSI /Sc* 21 and
the asymmetry. For very small values ofSI /Sc* 21,0.001 the

FIG. 3. WPLs(SI ,T→0) vsSI results for Si:P~Ref. 3!. The true
Sc51.915 kbar ~see dashed line! while the apparent Sc*
51.70 kbar. An optimized forced fit to the data fors.6 S/cm
yields Sc51.915 kbar and a scaling exponentt50.59. The inset
shows the calculated̂s(SI ,T50) from Eq.~14! vs SI /Sc21 as the
dashed line for the symmetric case@z1 /L50.30,z2 /L50.70#,
yielding teff;1.18. A small asymmetry~2%! reduces the exponen
to the t;1.0 reported by WPL.
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exponent approaches again the original exponentt5 1
2 just as

in Fig. 2, but this regime is well beyond the experimen
data.

III. DOPING INHOMOGENEITY

For a random distribution of donors~acceptors! in a host
semiconductor with a concentrationNd(r ) we shall employ a
probability distributionP(Nd) characterized by a widthx
such that for a homogeneous distributionx50. In the most
general case there will be correlation between dopant den
Nd(r ) andNd(r 8) characterized by a correlation function a
a functionur2r 8u. The general case is more difficult to tre
and the nature of the correlation function is often not know
It would be particularly difficult to treat the case of dopa
striations found in some thermally doped samples. To ob
an idea of the effect of DI on the critical behavior of tran
port we shall start with the simple case of totally correlat
DI analogous to the stress case discussed above.

A. Correlated case

A linear variation of the dopingn(y,z) across the cross
section of a rectangular bar@a,b,2b/2,y,b/2# of length
L can be treated exactly. The doping variation in thex direc-
tion @2a/2,x,a/2# will be neglected. When the averag
doping isnI at the center@x5y5z50# of the sample section
between the two voltage electrodes atz1 andz2 the doping
n(y,z)5nI (11gy1hz), whereg and h are constants, one
finds for s(n)5s0(n/nc21)t that the integral over a cros
section at fixedz yields

s~z!5s0E
y*

b/2

dy@n~y,z!/nc21# t

5@s0 /bg~ t11!#@nI /nc~11gb/21hz!21# t11, ~8!

where the lower limity* is determined by the conditionnc
5nI (11gy* 1hz), which guarantees that the lower lim
makes a zero contribution to the integration.s(z) varies
along thez axis and has its smallest value forg andh posi-
tive at z152D/2. The ‘‘pinchoff’’ point @r(z)51/s(z)
→`# leads to the minimal value ofnI min given by

nI min5nc /~11gb/22hz1!. ~9!

Ordinarily experiments are performed with a constant curr
and the voltage between the two electrodes is measured,
determining the resistance between the two electrodes.
resistanceR5(1/ab)(1/(z22z1)*z1

z2r(z)dz and in turn leads
to an average conductivitŷs(z)&expt5(z22z1)/*z1

z2dz/s(z).
This result differs from a straight averages(z) of the form
(z22z1)21*z1

z2s(z)dz, although the difference is small whe
z22z1 is small enough. The ‘‘pinchoff’’ point atnI min in Eq.
~8! corresponds to the apparent critical densitync* resulting
from DI. Numerical calculations have been made for seve
values ofg andh of the critical behavior of̂s(z)&expt versus
(n/nc* 21). These results are shown in Fig. 4.

The case of a pure longitudinalz variation (g50, hÞ0)
of n(z) ands(z) with no variation in the transverse directio
1-5
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deserves special mention. In this case^r&5@1/s0(z2
2z1)#*dz/@(nI /nc)(11hz)21#1/2. Unlike the case with a
transverse variation,̂r& does not diverge asn→nmin /(1
2hz1). Although it is unlikely to have such a case with a pu
z variation, the result is similar to an extreme case of o
result observed by Rosenbaumet al.33 in their high-
resolution uniaxial stress experiment in which for this ca
s(SI ,T) appears to remain above 5 S/cm asSI /Sc21 ap-
proaches20.4. However, it would be difficult to convinc
ingly claim that there was no transverse variation ofS in a
compressive uniaxial stress experiment.

B. Uncorrelated doping inhomogeneity

Consider a normalized distribution P„Nd(r )…
5C exp$2@(Nd2NI d)/xnc#

2% where C5(Apxnc)
21. As

x→0, P(Nd) approaches ad function. It is straightforward
to demonstrate that

x5~2/3!1/2$^@~Nd2NI d!/nc#
2&%1/2. ~10!

For a homogeneous case the critical behavior of the con
tivity can be represented bys(n,T→0)5s0un/nc21u t

where for uncompensated systemsn5Nd andnc is the criti-
cal density. The scaling exponentt will depend on the system
involved and the type of transport process. For variab
range hopping~VRH! the theoretical prediction yieldst53
for the Mott VRH prefactor. Forn.nc the scaling of metal-
lic samples such as crystalline Si:P or Ge:Ga yieldst5 1

2 ,
while for a wide range of amorphous Si12xMx and Ge12xMx

FIG. 4. Effect of a linear DI on the critical behavior of^s&/s0

vs nI /nc for three different linear dopant variationsn(y,z)5nI (1
1gy1hz) @n, g50.025, h50.005; d, g50.025, h50.025; m,
g50.005,h50.025]. The apparentnc* can be shifted either up o
down depending on the ratio ofh/g. When the linear DI is mostly
transverse (h/g!1), nc* is pushed belownc and the exponentteff is
increased above the resultt5 1

2 for zero DI. The inset showŝs&/s0

vs nI /nc* 21 very close tonc* . The results show the scaling ap
proaching the exponent 0.54 close to the originalt5 1

2 . Very close
to nc* the integral*r(z)dz is dominated by the peak atz5z1 as in
the case in Fig. 1.
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alloys one findst;1. In the limit thatx is very small and one
is not to close to the critical point@s(n) large#, P(n2nI ) acts
as a d function and ^s&5s0* un/nc21u td(n2nI )dn
5s0unI /nc21u t. The corrections becauseP(n2nI ) is not ad
function are of the form

^s&5s0uxI u t@11O~xnI /ncxI !21O~xnI /ncxI !41¯#,
~11!

wherexI 5unI /nc21u. The first correction is proportional to
x2 and is small as long asnI is not near the critical pointnc .
Whent is an integer an exact result can be obtained when
lower limit is extended to2` since the integral*2`

1`xt exp
@2(x2xI)2/x2# yields a Hermite polynomialHt( ixI /x). Thus,
for t an integer, one explicitly obtains

^s&5s0@xI 413x2xI 213/4x4# for t54, ~12a!

^s&5s0@xI 313/2x2xI # for t53,

^s&5s0@xI 211/2x2# for t52, ~12b!

and^s&5s0xI for t51. The last result fort51 is significant
because it demonstrates that an uncorrelated DI of the Ga
ian form has no effect on the scaling exponent, even tho
there may be a change in the critical densitync to an appar-
ent critical densitync* . For odd values oft.1, ^s&→0 as
xI→0, while for even values oft, ^s&→const3xt. For non-
integer values oft.1, ^s&→const asxI→0. This result
qualitatively explains the density dependence of the prefa
s0(n) n dependence for Mott VRH asn→nc2 as discussed
previously.34

A particularly important case for the metallic side of th
MIT is the caset5 1

2 . Here the integration yields@using
Gradsteyn and Rhyzik’s~3.462!#

^s&5s0~Ax/27/4!exp$2~xI 2/2x2!%D23/2„&~12nI /nc!/x…,
~13a!

where

D23/2~z!5~1/23/4!exp@2~z2/4!#

3$@Ap/G~5/4!#F~3/4,1/2,z2/2!

2@Ap/G~3/4!#F~5/4,3/2,z2/2!%, ~13b!

where z5&(12nI /nc)/x. The cylinder functionD23/2(z)
involves the difference of two hypergeometric functions. D
ing the series expansion of these@F(3/4,1/2,x)5113/2x
17/8x2, F(5/4,3/2,x)5115/6x13/8x2# and keeping only
the first terms in the expansion^s& becomes

^s&5s0~Ax/25/2!exp@2~xI /x!2#@~Ap/G~5/4!

12Ap/G~3/4!~xI /x!1O~xI 2/x2!1¯#. ~14!

This result is only valid with the first few terms for sma
values ofxI such thatxI /x,1. For large values ofxI and ^s&
very largeP(n2nI ) behaves like ad function and the scaling
behavior is characterized byt5 1

2 . For xI 50, Eq. ~5! yields
^s&5s0„ApAx/25/2G(5/4)…;s0Ax/3. The conductivity at
the true critical point is proportional toAx and is therefore a
1-6
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direct measure of the DI. Keeping only the first two terms
Eq. ~5! for the regimexI /x,1, one obtains

^s&'s0$~px!1/2G~3/4!/27/4G~5/4!@2G~5/4!

2G~3/4!#%~nI /nc* 21!, ~15a!

where

nc* 'nc$12~x/2!@G~3/4!/G~5/4!#%;nc~120.67x!.
~15b!

From Eq.~6! the effect of DI for the importantt5 1
2 case is

to shift the observed critical density down an amount prop
tional to the DI. However, the scaling behavior measu
with respect to the apparent critical densitync* is linear with
an apparent scaling exponentt* ;1. The DI leads to a cross
over between the true scaling exponent oft5 1

2 for larger
values ofxI to the apparent scaling exponentt* 51 when
xI /x,1. The smaller the value ofx, the smaller the value o
^s& where the crossover takes place. However, it is no
good approximation to keep only two terms in Eq.~14!.
When a large number of terms is kept there is not a sh
cutoff of ^s& at some particular value ofnc* and there is a
long tail. Nevertheless, a broad distribution~x of order unity!
destroys any semblance of scaling of^s& with a scaling ex-
ponent1

2.
The symmetrical Gaussian distribution is not a good

proximation for thea-Si:M and a-Ge:M alloys. In these
cases the conductivity prefactors0 is the same order of mag
nitude as for Si:P and Si:As despite the fact that thedoping
density itinerant carrier density is three orders of magnitu
larger than for Si:P and Si:As. A simple explanation for this
is that there is a broad distributionP„(n2nI )/nc…) for these
a-semiconductor-metal alloys. A particularly simple bro
distribution linear in (n2nI )/nc is of the formP(n2nI )5a
1b(n2nI )/nc such that*2,

1,P(n2nI )dn/nc5152a,. This
leads to a conductivitys(nI )5s0*0

3x1/2@a1b(x2xI )#dx
wherexI 5nI /nc21 and the upper limit of 3 is forxc50.25.
The integral leads to the result

^s~nI !&52)s0@a12.8b2b~nI /nc!#. ~16!

The experimental results for variousa-semiconductor-meta
alloys suggests(nI ) at T50 scales to zero fornI /nc5m with
0.4,m,0.56, which is close to but slightly smaller tha
the Zallen-Scher criterion. Equation~16! then yields
b52a/(2.82m) and

^s~nI !&5@2)ms0/2,~2.82m!#~nI /nc* 21!, ~17!

where

nc* /nc5m.

For m5 1
2 the effective prefactor is 0.75s0/2,, demonstrat-

ing that it is inversely proportional to the width of the distr
bution P(n2nI ). This broad linear distribution converts th
scaling exponent from1

2 in the absence of DI to 1 and yield
a much smaller effective prefactor. For this case there is
remnant of the scaling exponent1

2 left in ^s(nI )&. Even
though the intrinsic exponent of12 resulting from ionized
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impurity scattering is like that for Si:P, etc., it is removed b
a broad distributionP(n2nI ). Whether this distribution
P(n2nI ), given by

P~n2nI !5~1/2, !$12@1/~2.82m!#@~n2nI !/nc#%, ~18!

is a realistic distribution is a difficult question to answer a
will be discussed more in the Discussion. It becomes sm
for (n2nI )/nc larger than 2, but becomes negative forn
2nI )/nc.(2.82m). Physically,P(n2nI ) must be positive:
however the negative portion represents only a few perc
of the normalized distribution and will not change the fa
that this broad, linear distribution can explain the scali
exponent 1, when the intrinsic exponent for the homo
neous system is12. If t51 for the homogeneous case, th
above analysis changes slightly and still yields^s(nI )&
}(nI /nc* 21) with nc* 5mnc . A constant distribution, such a
that for SI in Eq.~2!, can be treated for thet51 case and
leads to results analagous to those in Sec. II, but is not
to explain the scaling exponent.

An effort has been made to fit the conductivitys(nI ,T
50) employing an asymmetrical Gaussian of the form

P~n2nI !5C exp2@~n2nI !/xnc#
2@11b~n2nI !/xnc#,

~19!

where the normalization coefficientC5(1/Apncx) for the
symmetrical Gaussian distribution and the correction te
introducing the asymmetry can be varied by varyingb. In-
troducing the quantitiesx5(n/nc21), xI 5(nI /nc21), y
5&x/x, and z5(&/x)(12nI /nc), one has (n2nI )/ncx
5(y1z)/&. Here^s(nI )& becomes

^s~nI !&5s0~x/4p!1/2exp~2z2/2!E
0

Yc
y1/2exp~2y2/2!exp

~2yz!@11b8~y1z!#. ~20!

The upper limityc5(&/x)xc , wherexc5nmax/nc21. For a
percolation threshold of 0.25 for continuous percolation o
expectsxc53 andyc is determined by the breadthx of the
Gaussian. Equation~20! is evaluated as a power series inz
by employing a Taylor series expansion ofe2yz and a nu-
merical evaluation of the integrals*0

Ycy1/21n exp(2y2/2)dy
for n50 – 12 for a series of different cutoffsyc from 2 to 6
and forb8 values from20.8 to 10.8. Figure 5 showss(z)
versusz @z}2(nI /nc21)# for ycutoff56 for a range ofb
values. All of the curves show a linear region~within 7%!, as
large as a factor of 6. The bendover at large values ofs(z) is
well beyond the experimental data (n.2nc* ), but the tail at
small values ofs(z) is inconsistent with the experimenta
data fora-Si12xNbx , etc. Typical experimental data show
linear behavior over a factor of 10–20. There is a relatio
ship between the parameterb and the cutoffzc , and also
nc* /nc is given by 12(xc /yc)zc . Based on the data, th
continuous percolation limitpc'0.25, and the Zallen-Sche
criterion, one expectsnc* /nc;0.5, which is given foryc56
by zc;1, leads tob;0.26. If one reducesyc ~equivalent to
increasingx and broadening the distribution! to 4, this re-
1-7
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T. G. CASTNER PHYSICAL REVIEW B68, 115201 ~2003!
duceszc to 0.7 and reducesb to near 0. Reducingb reduces
the tail of s(z), but the tail cannot be totally eliminated.

The asymmetrical Gaussian distribution with a cutoffxc
~andyc) totally removes evidence of thet5 1

2 scaling behav-
ior for ^s(nI )& when the distribution is broad enough, but
not able to produce a linear region over the factor of 10–
required to explain the scaling exponentt;1 for the
a-semiconductor-metal alloys.

IV. DISCUSSION

A. Temperature-dependent conductivitys„SO ,T…
in the presence of stress inhomogeneity

This is particularly complicated on the insulating side
the transition (SI ,Sc* for Si:P,SI .Sc* for Si:B! because there
are three possible contributions tos(SI ,T) from Mott VRH,
Efros-Shklovskii~ES! VRH, and activated conduction from
carriers thermally excited above the mobility edge. For
SI, s(S,T) takes the form

s~S,T!5s0,act~S!~T/T0,act!
p exp$2@Eact~S,n!/kT#%

1s0,Mott~n,S!@T0~S,n!/T#q exp

3$2@T0~S,n!/T#1/4%1s0,ES~S,n!@T08~S,n!/T# r

3exp$2@T08~S,n!/T#1/2%, ~21!

where each of the prefactors and exponentials can depen
the stressS and on the dopant density. The experimenta
measured quantitŷs& in the presence of SI is an extreme

FIG. 5. ^s(z)& vs z for an asymmetrical Gaussian~when the
scaling exponent ist5 1

2 in the absence of DI! with an upper cutoff
ycutoff for values ofb8 equal to20.8, 20.4, 20.2, 0, 0.2, 0.4, 0.8.
The linear region~within 7%! varies between 4.5 and 6 as a fun
tion of b. The cutoffzcutoff is determined from the extrapolation o
the linear region tô s(zcutoff)&50. The asymmetrical Gaussian
not able to explain scaling witht;1 with a factor of 10–20 ins.
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complex quantity given by ^s(SI ,T)&5(z2
2z1)/*dz/s(z,SI ,T). Evaluation of this integral depends o
detailed knowledge of theSdependence of the prefactors an
exponentials in Eq.~21! and is well beyond the scope of th
discussion. BSB have argued that their data@^s&}T1/2exp
2(T08/T)1/2# supported the dominance of ES VRH forSI
.Sc* 5613 bars. However, no theoretical prediction for E
VRH supports an exponentr 52 1

2 . Efros and Shklovskii35

obtain r 51 1
2 , and the same result has recently be obtain

by Castner.34 Furthermore, in the absence of both SI and
the prefactors0(n) scales to zero asn→nc as 1/j3, where
j5j0(12n/nc)

n is the localization length andn is the local-
ization length exponent. An alternative explanation for t
T1/2 prefactor reported by BSB is that it arises from the pr
actor of the activated conduction term. This sameT1/2 pref-
actor dependence has been demonstrated to be asso
with the activated term in Eq.~21! for Si:As for insulating
samples in the zero-stress case for 0.86,n/nc,0.98. The DI
for the Si:As samples is small and is estimated at less t
2%, but even this small a DI can have a dramatic effect up
the prefactors of both the Mott and ES VRH prefactors
n→nc . There is also a new independent theoreti
prediction36 s(n5nc ,T)}(e2/h)(2m* kT/\2)1/2 based on
classical ionized impurity scattering. This newT1/2 contribu-
tion is in addition to them(n)T1/2 contribution of Altshuler
and Aronov in the diffusion channel due to electron-electr
interactions. This new classical contribution has the rig
magnitude to explain the BSB result̂s(SI 5Sc* ,T&
57.6AT S/cm. However, any numerical comparison nee
to take account of the large SI~.60%! in the BSB experi-
ment because of sample bending. This large SI could rea
account for a reduction in the magnitude of Mott VRH f
SI .Sc* , but one has to carefully account for the activat
term resulting from carriers thermally excited above the m
bility edge before concluding the dominant contribution
VRH results from the ES contribution. In the zero stre
results the Mott VRH contribution is usually only domina
for 0.90,n/nc,0.99 for the doped Si results~Si:P, Si:As,
and Si:B!. However, it should be noted that for the NT
Ge:Ga samples Watanabeet al.37 have demonstrated ES
VRH is dominant for 0.90,n/nc,0.99. The NTD-prepared
samples are acknowledged to be the most homogeneou
all samples~doped Si and Ge! studied to date.

B. Deflection from bending for nonideal compressive
loaded columns

Ideal columns under compressive loads are unstable
pivoted or round ends against bending. Flat ends prov
some stability, but when the ends are mounted in solder1,2 or
on cigarette paper,3 the stabilizing effect of flat surfaces i
dissipated. From the principle of virtual work one can calc
late the deflection from the equationD(Pd)
5D(strain energy) where the stored strain energy consist
that due to bending@Ubending5(EI/2)*0

L(d2y/dz2)2dz# and a
smaller shear component.P is the pressure load andd is the
displacement in the direction of the applied forcePA. In any
experimental situation the loading is not ideal because~1!
there is an eccentricity of the forces at the two ends of
1-8
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INHOMOGENEITY AND THE METAL-INSULATOR . . . PHYSICAL REVIEW B68, 115201 ~2003!
sample,~2! the two sample end flats are not flat and perfec
parallel, ~3! the load bearing surfaces are not rigid enou
compared with the sample being compressed, and~4! the
sample ends can displace small amounts in the solder.
deflectiondm at the midsection (z5L/2) of a column with an
eccentricitye ~of the parallel forces! is given38 by

dm5~4/p!e~PI /Pc!/~12PI /Pc!, ~22!

where Pc , the critical stress, is given byp2EI/L2 for a
column of lengthL when the slenderness ratio is sufficien
large. However, it is also known for steel that for slendern
ratiosL/r (r 2A5I , r[radius of gyration! less than 100Pc
stops increasing with decreasingL/r and saturates at th
yield point of the material. For the BSB sample,L/r 592.
The yield points for B-doped and P-doped Si at low tempe
tures are not well characterized but might be expected to
lower than the Euler value. BBS~Ref. 31! have suggested
Pc of 24 kbar based on an Euler expression usingL/2 as the
effective length of the column. The correct Euler result
the BSB geometry is14 of this amount. It is worth noting tha
Rosenbaum39 broke Si:P samples at 7 kbar. The result in E
~22! either suggests that fordm;e that one requiresPI /Pc
; 1

2 or for PI /Pc!1 requirese@dm , or that there other
sources of the bending. The presence of microcracks nea
surface from sawing or grinding that were not totally r
moved by etching could also lead to a reduced value ofPc .
Without more detailed knowledge of the yield point f
doped Si and more detailed knowledge of the defects a
ciated with the loading~distortion of the Be membrane! it is
not possible to resolve this issue. However, the main poin
Eq. ~22! is that the deflection can increase linearly withPI
and, unlike the ideal case, is not negligible untilPI is very
close toPc . It is common laboratory experience that slend
steel rules and wooden yard sticks can bend substantial
loadsPI !Pc under compression.The SI due to bending un
der compression can be removed by performing careful
periments under tension.

C. Uniaxial stress experiments in tension

Although the above analysis in Secs. II and III separat
considers the role of SI and DI, the reality is that both a
present simultaneously. In all three uniaxial stress exp
ments under compression1–3 the SI is much larger than th
DI ordinarily accounted for in high-quality doped Si ingot
The only possible exception to this is the one case repo
in Ref. 33 wheres(SI ,T→0) remains above 5 S/cm for sma
values ofSI . All the other results yield a reasonably sha
value of the cutoffSc* wheres(SI →Sc* , T50)→0. Even the
WPL experiment with the smallest slenderness ratioL/a and
the smallest bending deflection still showsSc* 12.6% less
thanSc , which is a much larger change in the critical poi
than would be expected from DI, which is normally expect
to be less than 2% and in the best quality samples may b
order or less than 0.5%. One would have to decrease th
by a factor of 10 or more to make it less than the DI. Th
can be accomplished by decreasing (L/a)2 by more than a
factor of 10. This may be possible, but an alternative exp
mental solution is the use of tension in the uniaxial str
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experiment rather than compression. Although most unia
stress experiments have been done in compression, ther
at least two cases where tension has been successfully
ployed. The first by Watkins and Ham40 studied the remova
of the orbital degeneracy of the Li donor in Si by uniaxi
stress. The second is a piezocapacitance study41 of doped
Si:P and Si:Sb. Neither of these studies were near the cri
regime for the onset of metallic behavior atT50. A carefully
executed tension study in the critical regime ofs(S,T→0)
should resolve any doubts about the role of SI.

D. Doping Inhomogeneity results

The uncorrelated case with a Gaussian distributionP(Nd)
of donors about an average valueNI d always yields a reduc-
tion in the critical density given by (nc2nc* )/nc50.63x and
is 0.51 times the rms dopant deviation from the avera
valueNI d . A 4% rms dopant deviation leads to a 2% redu
tion in nc . For metallic samples with a scaling exponent
5 1

2 in the absence of DI there can be a crossover to
effective exponentt* 51 whenNI d is sufficiently close tonc*
from compensation. On the other hand, ift51, there will be
no change in the exponent even thoughnc* is reduced below
nc by the DI. For amorphous semiconductor-metal alloys
true xc will be reduced toxc* by DI.

The effects of correlated linear doping variations of t
form n(y,z)5nI (11gy1hz), wherenI is the average dopan
density at the center of the sample region between the v
age electrodes atz1 andz2 , are demonstrated in Fig. 4 show
ing ^s&/s0 versusnI /nc when t5 1

2 ~see dashed line for zer
DI! for three different values of~g,h!. When to DI is pre-
dominantly transverse (g50.025,h50.005, symboln! the
results show a reduction ofnc to nc* of 0.75%. The scaling
exponent increases whennI /nc,1.01 and is in the vicinity of
1.18 fornI /nc* 21;0.01. However, as shown in the inset fo
even smaller values ofnI /nc* 21,1023 the effective expo-
nentt* reverts toward a smaller value. When the DI in they
and z directions is equal (g50.025, h50.025, symbold!
there a very smallincrease in nc of 0.25% and only a smal
increase in the exponentt* . The inset shows the exponen
t* ;0.54 fornI /nc* 21,331024. In the third case for the DI
5 times greater in thez direction than in they direction (g
50.005,h50.025, symbolm! the increase innc is 1.06%
and the effective exponent increases only a small amo
that would be observable nearnI /nc* 21;0.01, but is close to
0.54 for nI /nc* 21,1023. Unlike the uncorrelated case,nc*
can be either less or greater thannc dependent on the geom
etry of the DI. Likewise, the effective exponent does n
show a universal change, but depends on the geometry o
DI. A transverse DI favors an increase int* , but only in a
limited range ofnI /nc* 21. A surprising case result for a pur
longitudinal DI (g50, hÞ0) for the t51/2 case is the ab
sence of a true critical point wheres(nI →nc* ,T50)→0.
This is readily demonstrated by the integration ofr(z) be-
tween the voltage electrodes atz1 and z2 . However, the
probability of the pure longitudinal case occuring withg
50 is negligible.
1-9
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There are several ways to experimentally determine
macroscopic DI. Experimentalists ordinarily profile semico
ductor wafers cut from ingots. This yields a resistivity profi
at room temperature~RT! across a typical 5-cm-diam wafe
However, the voltage electrode spacing of samples w
welded Au0.98Sb0.02 wire is comparable to the probe spacin
of a four-point probe. As a result, it is not possible to acc
rately determine the DI for a length scalez22z1 . A determi-
nation of the transverse DI for a slender bar sample e
ployed in typical studies is not possible with convention
resistivity probes. With the van der Pauw geometry samp
it is possible to obtain information of the asymmetry res
tance ratioR1 /R2 , whereR1 and R2 are the resistances a
right angles to each other. The Hall results42 for Si:As dem-
onstratedR1 /R2 ratios near unity, but in the worse cases
large as 2 and as small as 0.4. This asymmetry leads
well-known correction to the resistivity for a disk given b
the asymmetry correction factorf (x)512(ln 2/2)x2

2O(x4) where x5(R12R2)/(R11R3). The ratiosR1 /R2
do not permit reliable quantitative estimates of the inh
mogenity for bar-shaped samples, even though they tel
which samples have larger DI. Another approach for di
shaped samples is the measurement with the four-point p
at RT ofr as a function of the angleu with respect to a fixed
reference line in the disk. Typical results for three meta
and one insulating Si:As samples are shown in Table Ir~u!
was measured atu5n(p/4) with n50 – 7. The results show
fractional rms deviations ranging from 0.5% to 2%. All th
Si:As disk-shaped samples show angular variations in
range. None of the samples from this ingot gave indicati
of striations in the resistivity, although disk-shaped samp
from another supplier did give evidence of striations. T
results in Table I were used as an estimate of possible lin
variations of DI and the calculated results of DI presented
Fig. 4. Trappmannet al.43 employed scanning tunneling m
croscopy to study Si:P samples withNd up to 731019/cm3

and found no evidence of clustering and obtained a goo
to a Poisson distribution of donors.

E. Uncorrelated doping inhomogeneity

It is important to understand why the scaling exponent
'1/2 for Si:P is observed very close to the critical dens
(nI /nc21),1023 when the donor distribution obeys Poiss
statistics. Poisson statistics features large short-range d
der. From the vantage point of itinerant electrons the Pois
distribution ~approximated by a Gaussian! appears sharpe
and sharper asn→nc1 . The size of the itinerant electro

TABLE I. Room temperature resistivity angular variation
Si:As

Sample
^rRT&

(31023 V cm)
Nd

(31018/cm3)
^(r2^r&)2&1/2

(31023 V cm) rms/̂r&

B82 8.15 7.75 0.166 0.021
E14 7.09 9.40 0.139 0.020
D14 6.99 9.50 0.039 0.0056
A2 3.24 22.0 0.038 0.0116
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wave packets with wave vectors nearkF , as determined by
the Heisenberg uncertainty principle, is given byDxDk.1
where Dkrms;bkF52pb/ldB and Dxrms.ldB/2p. The
characteristic volumeVc associated with a wave packet ne
kF is of order (ldB/2bp)3. Althoughb is not reliably known
for the random potentialVrp(r ), we will assume as a wors
case that it is of order unity, although it might be as small
0.1. Suppose we consider the Si:As case withnc58.6
31018/cm3. For nI 52nc , kF54.43106 cm21, andb50.5,
one finds, using 1/x5ncVc/10 andx512 corresponding to a
rather broad distribution, probably too broad. However,
nI 51.01nc , kF decreases by 10 andVc increases by 1000
leading tox50.012. Even though the magnitude of the
numbers is uncertain, the results showx decreasing by a
factor of 1000 from 2nc to 1.01nc . It is this dramatic appar-
ent sharpening ofP(n2nI ) seen by the itinerant electrons a
n→nc1 that explains why the short-range disorder is uni
portant as one approaches the critical point. The large w
packets of orderldB(nI ) are simply not sensitive to the stron
short-range fluctuations inVrp(r ) and P(n2nI ) acts like a
delta functiond(n2nI ). For the Si:P and Ge:Ga cases o
observes the scaling exponent1

2 quite accurately for both the
furnace-grown samples and the NTD Ge:Ga samples. E
though Ge:Ga may obey a random distribution~Poisson sta-
tistics! better than Si:P, the difference in the scaling exp
nents is small because the itinerant electrons just abovnc
are not sensitive to differences in the distributionP(n2nI )
on a scale much less thanldB(nI ).

How does this notion apply toa-S12xMx alloys like
a-Si12xNbx? The distribution functionP(n2nI ) is likely to
be very different than a Poisson distribution for Si:P whe
the probability of two P atoms on adjacent Si atoms is n
ligible. For the diamond lattice with 0.1155xc,x,2xc
(a-Si12xNbx) there is a significant probability of adjacentM
atoms and one expects two to threeM atoms in the next-
nearest-neighbor shell. This suggests the band structure
differ significantly from crystalline Si. The six valleys of th
conduction band for the crystalline case probably do not s
vive. Alloy theory for disordered alloys involves the bon
energiesUSS, UMM , and USM and an energy difference
2USM2USS2UMM . Here the deposited films are likely t
be well below the temperature for any long-range disor
transition and will be in a metastable state. However,
short-range order will still be important. For a single-valle
conduction bandkF;5.53107 at 2xc and ldB;11 Å. As
compared with the Si:P case the characteristic volumeVc
;(ldB/2bp)3 containing less than oneM atom and forb
5 1

2 leads to ax;72, which suggests a very much broad
distribution than for Si:P. This is consistent with the sm
prefactor of ^s(nI )& in Eq. ~17!. If one tries to explain
the magnitude with the Wegner scaling expressions
5(e2/2\j0)(x/xc21) for a-Si12xNbx ~prefactor 300 S/cm!
leads toj0;42 Å. This is not a sensible magnitude for
correlation length fora-Si12xNbx . If one attempts to apply
the Boltzmann expression at 2xc , one finds a small mobility
m;0.3 cm2/V/sec, which leads to a mean free path,
;2.3 Å, which is less than theM-M atom spacing, but the
same order as the Si-Si bond length. If one uses the exp
1-10
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sion s;(e2/2\)kF(2xc) for the prefactor based on the ion
ized impurity scattering, one will obtain a result a factor
10 too large. If one uses Eq.~17!, one can account for the
prefactor with aPI (n2n) width 2,;6. Although this expla-
nation is speculative, there is every reason to believe
ionized-impurity-scattering~IIS! at low T will be the domi-
nant scattering mechanism for thea-S12xMx alloys. This
situation provides evidence for a broad distributionP(n
2nI ) for these systems, but the shape of the distribution c
not be convincingly established from the transport d
alone. Since thea-S12xMx alloys do not exhibit the perco
lation exponent 1.6, unlike NaxWO3; one needs to under
stand the microscopic differences between these two M
systems. In NaxWO3 the Na atoms are in interstitial sites o
the WO3 lattice and form metallic clusters. TheM atoms in
thea-S12xMx alloys are assumed to be substitutional and
distribution in Eq.~18! suggests an anticlustering tendenc
but this has not been established from experimental
dence.

V. CONCLUSIONS

SI from sample bending is basically a perfectily correla
case with the transverse variation inS dominant. Far from
Sc , SI provides only a small correction tos(SI ,T50); how-
ever, close to the critical point there can be a significant
with an apparentSc* and an increase in the exponent fromt
to t11 when (z22z1)/L is small. The detailed integratio
@Eq. ~7!# allows a satisfactory explanation of the tail beha
ior observed by PRTB, BSB, and WPL. The integration ov
z of Eq. ~7! explains the exponent 1.6 obtained by BSB a
the exponent 1.0 obtained by WPL, the difference result
from the different magnitudes ofz22z1 /L. The correlated SI
a

et

.

e

ys
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results from small sample bending. Performing uniax
stress experiments in tension should remove the SI.
enough from the critical point the PRTB, BSB, and WP
experimental results all support the scaling exponentt5 1

2 ,
which can be explained by ionized impurity scattering.

Correlated DI behaves in much the same manner as
Linear correlated DI can either increase or decreasenc and
can increase the scaling exponentt above t5 1

2 when the
linear DI has a significant transverse component. Some
resistivity results for Si:As disks show fractional rms dev
tions of 0.5%–2.0%. Just as in the correlated SI case, a b
distributionP(n2nI ) can mask the scaling exponentt5 1

2 ~of
the homogeneous system! and lead to an exponentt;1 for
the correct shape ofP(n2nI ). This provides the plausible
but speculative notion that the physics of the transport at
microscopic level can be the same for both crystalline-do
semiconductors and thea-S12xMx alloys and the scattering
for both cases is dominated by ionized impurity scatteri
There is evidence that thea-S12xMx cases are characterize
by a broad distributionP(n2nI ). The size of the itinerant
electron wave packet increases as the de Broglie wavele
ldB(nI ) asn→nc1 and the effective Poisson distribution a
pears sharper approachingnc . As n→nc , the itinerant elec-
trons become increasingly insensitive to the short-range
order.
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