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Inhomogeneity and the metal-insulator transition for disordered systems
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The effect of both macroscopic stress inhomogeneity and doping inhomogeneity on the critical behavior of
the conductivity in the vicinity of the metal-insulator transition are calculated. For the uniaxial stress case the
inhomogeneity is calculated from the bending deflectit{z) of a column under compression. It is the
transverse variation in doping or str&sthat can produce a substantial increase in the scaling expbogtite
T—0 conductivity and change the critical stregsto an apparent critical stres¥ . It is demonstrated the
calculated results can explain the experimental results of uniaxial stress experiments for Si:P and Si:B. In these
cases whew (S, T—0) is sufficiently larges(S, T=0)x=|S/S.— 1| with t~%, but wheno (S, T=0) is suffi-
ciently smallo(S,T=0)«|S/Sf — 1|'f with t.; between 1 and 1.6 dependent on geometrical factors. For the
doping inhomogeneity case both uncorrelated dopant density variations and correlated linear dopant variations
are considered. Correlated cases can either increase or deggedesgending on the geometry of the doping
gradients. An uncorrelated broad distribution can mask scaling behavior with an exper%and change the
exponent ta~1. This suggests that the microscopic physics may be the same for crystalline doped semicon-
ductors Si:P, Ge:Ga, and the amorphous semiconductor-metal cases and that the difference in scaling exponents
of the conductivity results from the breadth and shape of the distribtRigr(r)—n). A large width of
P(n(r)—n) for a-S;_,M, alloys helps explain why the conductivity prefactors are comparable to Si:P; etc.,
even though the electron density is*l@rger.
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[. INTRODUCTION the g-tensor valuegy, and g; for the Sl conduction-band
valleys represent one such case, while the stress-induced
The metal-insulator transitiofMIT) in doped semicon- splittings of the donor-excited states by Aggarwal and
ductors [Si:P, Ge:Ga, et¢. and in amorphous (a) Ramda8 are another example. In the critical regime Sl can
semiconductor-metal alloy§ a-Si; _,Nb,, a-Ge _,Au,, play a dominant role and substantially alter the scaling ex-
etc] has been studied for decades. In the last two decadg®nent, in addition to introducing an apparent critical stress
much attention has focused on the critical behavior of theS; different thanS;. An important issue still actively de-
conductivity in the limit of zero temperature as the critical bated is the breadth of the critical regirt@R). The breadth
point is approached. Several approaches have been employefithe CR and the possible crossover from one critical expo-
to “tune” the MIT and to approach the critical point. The nent to another will be affected by doping inhomogeneity
standard approach has been to study samples with differe(DI) or SI. Inhomogeneity and its effect on the scaling expo-
concentrations of donors for Si:P or the variationxof X, nent of o(n,S,T—0)=oy(n/n.—1)" in the vicinity of the
for the a-S-M alloys. The difficulty with this approach is critical point is the subject of this paper.
that very close to the critical pointn, for Si:P, x. for The subject of the piezoresistance of semiconductors is
a-Si; _,Nb,] small variations in the doping or composition nearly as old as the study of semiconductors themselves.
across the sample can affect the critical behavior and scalingollowing the discovery of the piezoresistance effect in
exponent. An attractive alternative approach to tune througboped Ge and Si by Smith,there were a series of
the critical point and obtain critical exponents has beerstudies®~*of the piezoresistance of doped Ge and Si in the
through the tuning of an external parameter such as uniaxialext decade. The early strain-induced effects in semiconduc-
stres$™ or a magnetic field. The magnetic field case in-tors have been reviewed by Bir and PikdsThe most rel-
volves a change of universality cl4ge unitary and the in- evant of these studies to the present subject are the results on
crease in the scaling exponent toward 1 has been observeégenerate Ge:Sb and Ge:As by Cuevas and FritZche.
for Si:B (Ref. 5 and Si:P(Ref. 6. For the magnetic field These authors were concerned with the possible effect of SI
case the field inhomogeneity is very small and will not befor their transverse piezoresistance experiment because of
discussed herein. However, the uniaxial stress case underlage friction and the possible bulging of their rectangular
compressive stresS also is confronted by an intrinsically bar. Despite the concerns of these experimental groups with
serious problem in the vicinity of a critical point where the SI from sample buckling in compression the data gave no
stress  dependent conductivity o(S,T—0)—0 as evidence of Sl from sample bending. The basic reason for
S—S.—namely, the introduction of stress inhomogeneitythis is that these early studies were not sufficiently close to
(Sl) caused by a small sample bending deflection. It shouldhe critical point ain, (S.) at T=0. These early piezoresis-
be emphasized that there are numerous uniaxial stress expeance studies were d@=1.2 K ando(n,S,T) was not small
mental results where the effect of Sl is small and not suffienough for the SI effect from sample bending to be easily
ciently important to affect the interpretation of the physics.measurable.
The uniaxial stress results of Wilson and Fétagtermining Controversy over the role of inhomgeneity in the MIT

0163-1829/2003/681)/11520112)/$20.00 68 115201-1 ©2003 The American Physical Society



T. G. CASTNER PHYSICAL REVIEW B68, 115201 (2003

field arose nearly three decades ago. Cohen and JrtneNeither BSB nor WPL emphasize that their results for larger
proposed an inhomogeneous regime near the critical pointalues ofo yield an exponent near 3 in good agreement
composed of metallic and insulating regions. They viewedwith the pioneering resuftsof PRTB. This paper demon-
the MIT as the approach to a percolation threshold and thatrates that the crossover to a larger exponent in the tail re-
the conductivity could be treated by effective mediumgime for small values ot-(S, T—0) is explained by SI. A
theory. Their approach as—x. from the metallic side is brief account’ of the effect of SI from simple sample bend-
characterized by conducting “channels” that get smaller ad"d has been given that explains the BSB exponent of 1.6.
the insulating islands grow. Motf,who formulated the idea ~ The SI results have demonstrated that correlated Sl in
of a minimum metallic conductivity, used theoretical argu-COMPression experiments can dramatically alter the scaling

ments to argue that one could not have large insulating re€XPonent for small values af(S,T—0). This suggests fur-

gions in a barely metallic sample. At this time the data tother studies of the role of DI are warranted. These studies

definitively rule out Mott'so i, metWere not yet available. At suggest a different explanation for the scaling exportent

the same time there was extensive work on percolationN 1.0 observed for the-S; My systems based on a broad

. . . : distribution P(n—n). This in turn suggests the possibilit
theory wh|c_h has be_en reviewed by KirkpatrickThe ”.‘“Ch there may be( a co?”nmon origin of thggmicroscop?c behav)i/or
older effective ".‘ed'“m theorszMT_) has been applied to .of the conductivity of systems like Si:P, Ge:Ga, etc., and the
applied to electrical transport of mixtures such as the aIkall—a_Sl M, alloys
tungsten bronzéd (NaWO;). These studies demonstrated T '
that EMT broke down folC<<0.4 when the conductivity ra-
tior=o,/0y (<0.01) is small and the percolation threshold
C* is considerably less than the site percolation threshold The uniaxial stress experiments demonstrate an approxi-
p.. Scher and Zalleéf proposedC* =fp., wheref is the ~ mate linear dependence betweSrand n and S tunes the
packing fraction leading t€* ~0.15 for the continuous per- critical densityn.. This is represented by the relatich
colation problem. Skaét al?! obtainedC* =0.17 from nu- —Sc=k(n—n¢), wherek is a constant determined from ex-
merical studies for a particular random potential with siteperiment. The theoretical situation for Si:P has been treated
correlations up to third nearest neighbors. For,M, sys- in detail by Bhatﬁl who calculates the change im with S
tems withr <0.01 the notion was that(C) should obey the For Si:P stress admixes some of the-B state into the
Kirkpatrick percolation predictiorr(C)o(C—C*)*® for C ground Is-A; state and effectively increases the Bohr radius
<0.5. It is to be noted that the-S;_,M, systems do show a* of the ground state band and, through the Mott criterion,
valuesx, (x.=C*) somewhat less tha@* =0.15, but do decreases.. Thus uniaxial stresS makes Si:P more metal-

Il. STRESS INHOMOGENEITY

not exhibit the percolation exponent of 1.6. For,MéD; lic. The experiments start with an insulating sample, which
Lightsey?? reported X.=0.16+0.03 and t=1.8+0.2 in becomes metallic wheB exceedsS,. The mechanism for
agreement with the percolation prediction. Si:B involves the degeneracy of the valence band in the vi-

This was followed by the scaling approach to the MIT cinity of k=0 and has the opposite sign of that for Si:P and
Wegnef® showed theT=0 conductivity to be of the form an order of magnitude smaller proportionality constabe-
ox(Eg—E)@2” where E is the Fermi energyE, the  tweenS andp (hole concentration The treatment of Sl on
mobility edge dividing localized and itinerant statesthe  the scaling behavior ol (S,T—0) given below does not
dimensionality of the system, andthe correlation length depend on the details & versusn or p. The factorS/S
exponent. Several years later, Abrahaetsl?* employed —1 used for Si:P is replaced by-1S5/S; for Si:B.
the B(g)-function approach to obtain a scaling result similar A particularly straight forward case of SI results from
to that of Wegner. These results fbr=3 andv~1 appeared sample bending that occurs in uniaxial stress experiments
to explain experimental resutts?® that followed in the With compression loading. Under compression, columns un-
1980s on thea-S-M alloys. However, comprehensive low- dergo a small deflection. The solution of the column equation
temperature studi®s of Si:P established thatr(n,T—0) Eld?y/dZ?=-M(y)=-Py yields a solution y(2)
scaled toward zero with an exponent . These studies =dmsin(mzL) for free or pinned ends wheteis the length
were the first to clearly demonstrate valuesogi, T— 0) of the columnE is Young’s modulus| is the column cross-
substantially less than Mott's predictigr i, mer~ 20 S/cm  SectionfareaA=ab, a<b, bending is about an axis perpen-
for Si:P]. These experiments were followed by the pioneer-dicular toa] moment of inertiaM (y) is the bending moment
ing studies of Paalanen, Rosenbaum, Thomas, and Bhafiroduced by the axial loaB, and the deflectiory. The de-
(PRTB) on the uniaxial compression experiments that veri-flecton of the column will be designatedd(z)
fied thet~ 1 scaling exponent. These authors made no effort=dy Sin(7z/L). The maximum deflection depends on the
to analyze the tail region of(S,T—0) that occurred for slenderness ratid_(a)?, the eccentricity of the axial load®
o<5S/cm. However, the recent experiment results ofét €ach end of the column, and the quality and rigidity of the
Bogdanovich, Sarachik, and BHattBSB) and Waffen- load bearing surfaces applying the IdddThe bending leads
schmidt, Pfleiderer, and v. hoeysef (WPL) both yield a  to a stress distributio(y,z) of the form
larger exponentt(~1.6 for BSB andt~1.0 for WPL), but
the analysis was of the tail region. WPL claim the critical S(y,z)=P/A[1+12yd(z)/a?], —al2<y<al2. (1)
regime is foro<o.~12 S/cm; however, this is precisely This distribution differs from the correlated DI case dis-
the tail region where the transport is affected by large Slcussed below because tiieandz dependences are coupled.
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The bending will ordinarily be about an axis with the small-
est moment of inertigin this casel ,=ba®12), although

PHYSICAL REVIEW B68, 115201 (2003

7(2) =008l (S./9)/12d(2) ][ SIS, — L+ (6d(2)/a) SIS ] L.
©)

when the cross section is nearly square, the bending may be ) i
more complex. The two-dimensional stress distribution is arf\lthough the integration over between the voltage elec-

excellent approximation sinae< ;b applicable to the PRTB

trodes is yet to be done, it is worth discussing the result in

and BSB experimental results; however, for the WPL experiEd- (6). For =S, corresponding to* =0 with half the

ment, a=0.8 mm andb=0.9 mm and the nearly square

cross section could lead to a three-dimensional stress distrfY=>0),

cross section insulatingy&0) and half the sample metallic
o(z) becomes ¢/2)(6d(z)/a)*2 Here &l(z)/a is

bution. In addition, we ignore any shear stress effects fron® direct measure of the Sl due to bending of the sample.

torsion. Torsion effects could only occur if the axial loBd
applied at each end of the column also applied a torque abo
the column axigz axis). Equation(1) shows the stress varies
from S(1—-6d(z)/a) to S(1+6d(z)/a) where S=P/A. A
rather small deflection of 0.01 mfabout 0.1% of the length
L) leads to a 40% variation i8(y,z) across the cross section

Since S, is the true critical stress in the absence of sample
gending, an independent determination Sf and o (S, , T

—0) provides a direct measure of the deflectitfm) and Sl,

and o(z) =0 for S/S,;=1[1+6d(z)/a]. This is the logical
definition of the apparent critical stre§§ (z). The two re-
sults of the linear stress variation across the cross section are

of the column. This leads to a normalized stress distributiori1) a lowering of the critical stress fro®. to S} and(2) the

f(S) [[f(S)dS=1] of the form

f(S)=1/29\(2), S(1—N)<S<S(1+)\),

N(z)=6d(z)/a, 2

andf(S)=0 outside this range. It is straightforward to show
that the average stress across a cross sectiarisg® inde-
pendent ofz because the second term in Ed) makes no
contribution to the integreﬂt‘lfili,ZS(y,z)dy= S. Thisis a
requirement for static equilibrium of the column.

Ignoring SI and considering a homogeneous stress distr
bution theT=0 conductivity has been shown to be of the
form o(S)=0y|S/S.— 1|' in the PRTB, BSB, and WPL ex-
periments. An integration over a cross section at an arbitrar
z yields the resulto(z) = oof (S/S.—1)'f(S)dS. With Eq.

(1) this can be converted to an integral owerFor large
enough values ofr(z) with all values ofS(y,z)>S, one
obtains the result

0(2)=0o[ S/2SN(2) (t+ D {[S/Sc— 1+ M(2)S/Se]

—[S/S:=1-N(2)S/S]" ) )

For the regimeS/S,— 1>\ S/S; a series expansion of E()
leads to the result

0(2)=0(5/S.—1)'[1+OMSIS/(S/S.— 1))*+-+-].
(4)

The Sl is unimportant in this regime, and the scaling behav
ior is the same as if there were no Sl. For the limit of
o(2)/op<1 and S/S;—1<\S/S; one needs to alter the
lower limit of the integral. Since, fo6<S;, ¢(S)=0, the
lower limit y* is determined by the conditiois.=S(1
+12d(z)y*/a®). Using dS=S(12d(z)dy/a?) and f(S)ds
=dyl/a, the integral fora(z) becomes

o(2)=(oy/a) fyilz{_S/sc—1+[12d(z)y/a2]§/sc}tdy.
)

crossover from a scaling exponenivithout SI to a scaling
exponent +1 in the presence of SI. He& (z) depends on
the deflection @iz); however, the scaling exponent1 is
independent of .zHowever, the actual critical behavior of
(S, T—0) in the vicinity of St is more complex and de-
pends on the details of the integration oxer

A comparison with the experimental data requires an in-
tegration overz between the voltage electrodeszatand z,
(z,—z,=1.0 mm for the BSB Si:B sample, but is 6.0 mm for
the WPL sample The electrodes are not necessarily sym-
metrical about the maximum value dfz)=d,,. In typical
transport experiments with a constant-current source one
measures the resistanRéetween the two electrodes, which
leads toR=(1/A) [%2p(z)dz=(1/A)[%2dZ/o(z). This leads
10 a value(o)eyy Obtained in the experiment is given by
() expi=(za—2)//3dZ(2). One finds

<U(W)>expt= [oo/2(t+1)w]

X(zz—zl)/ Lzlz)\(z)/[w—1+)\(z)w]”1dz,

(7)

wherew=$/S; and\ (z)=6(d,,/a)sin(wz/L). This integral,
although apparently simple, does not lead to a simple ana-
lytical result fort=3% except forw=1. It is readily and ac-
curately evaluated numerically as a function of the parameter
w (for the BSB casev—1 is replaced by +w). The behav-

ior of p(z)=1/0(z) versusz is shown in Fig. 1 for four
values of S/S; approaching the apparent critical stres
appropriate to the WPL results for Si:P. Far fr&h (S/S,
=1.2), p(2) is relatively flat and{o) ey is closely given by
o(z). However, asS—S{, p(z) becomes increasingly
sharply peaked at the “pinchoff” point a;. An increas-
ingly large fraction of the voltage drop is associated with the
peak, and o) iS NO longer given even approximately by
the average ofr(z) betweenz, andz,. In the limit S—S¢

the integral is dominated by the contribution from thee-
gion near the peak and is qualitatively different from the flat
case. Hergpeqaes (S/SE — 1)~ (" and the width of the peak

Only the upper limit contributes since the integrand is zerdS Wpea< (S/S; — 1) (demonstrated from the integratioand

for the lower limit. The final result is

in this regime <U>expt“(22_zl)/PpeaQNpeaI?C(_S/S: -1)% In
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10" £ BSBcase [2]
1000+ I
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S/S =1.474 I data
1- §/Sc*=0.00261

slope=1.5

102 F 0.375<2/L<0.500
1004 ¥

/S =14

104 S/5.1.40, 1-8/S *=0.0527 10° /
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e(2)

0.4375<2z/L<0.5625
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1

FIG. 1. Variation ofp(z) vs z between the two voltage elec-
trodes ag; /L=0.375 andz, /L =0.500 for four different values of
1-3/S; approaching the apparent critical str&s. Far fromS; ,
p(z) is relatively flat with only a small increase aspproacheg; .

As S more closely approacheS}, p(z) becomes more sharply
peaked ag— z,. Approaching the pinchoff 8=S; , the integral
fIp(z)dz is dominated by the peak and the effective scaling expo-
nent reverts to the original value bf 3. <613 bar$ are limited tooe>2 S/cm. This is shown by the
horizontal dashed line in Fig. 2. The BSB data extended to
this extreme limit(not yet reached by experimentalistse 59 mK. If the data were extended to the 3 mK reached by
scaling exponentwould be the same as in the case for largeprTB, the T dependence would redueg S= 613 barsT)
values ofo(S,T=0) where Sl is small. The integral in EQ. by a factor of 4.4 and would permit a more accurate deter-
(7) has been evaluated for parameters appropriate for th@ination of the actual cutoff & . Although BSB obtained
BSB and WPL experimental results. o a good fit to finiteT scaling withS* =613 bars, a more ac-
The BSB Si:B data for compressive uniaxial stress rePréturate determination & would require data to much lower

sent a nearly ideal case of Sl from bending of a slendey "o otes that the calculated valuge)/ o, falls off more
column. The voltage electrode spacing-z,=L/8 is small slowly for the asymmetric cag®.375<z/L<0.500 and de-

enough that the quantity(z) [see Eq.(2)] does not vary viates from the slopé+1=1.5 for much smaller values of
much a_n_d the ratio of t_he a_pparent_critical str?@sto the 1- /St . The asymmetric cése approachestth@®.5 result
true critical stressS; is given reliably by SC/SC,N[l from the “pinchoff” faster than the symmetric case and is
—(\(2))]"*. BSB reportedS; =613 bars and a scaling ex- already in this regime fo&/S! —1~0.003. For the experi-
. %\t . = C

ponent Oof 1.6[usmgo(§,T—*>0)=ao(l—_S/SC) 1. My prior  ental data for Si:B to approach this closely$p would
analysis” demonstrated S{/S;~1.53 corresponding  to require a stress resolution of less than about 2 bars or about
(\(2))~0.346 andS;=400+15bars. The BSB data for one order of magnitude better resolutionSrthan obtained
0($T—0)>20 S/cm yieldt=0.51 for S;=400 bars and py BSB. Nevertheless, the calculated results in Fig. 2 for
09~=52.34 S/cm. Employing Eq(7) for w=1, one finds (;}/45:>0.02 are in excellent agreement with the BSB result
(0(S=S;,T=0)~10.3 S/cm which is 0.86 of the experi- of{+1~1.6. The deflection required to explain the linear Sl
mental value 12 S/cm foB=400 bars. The experimental j, the BSB results i, = (\)a/6=0.017 mm[a=0.3 mm
uncertainty inS.~400 bars is+4%. There is some uncer- for the BSB samplg which is 0.2% of the length. of the
tainty in the analysis dependenF on t_he parameters. If thgample. BBS(Ref. 32 in their response to Ref. 30 have
voltage electrodes are asymmetrical with respect to the poirdrgued it is unlikely that one would get this large a deflection
of maximum deflection[\(2)=\p], then the parameters for their loadsS because they are a small fraction of the
change a small amount. Euler critical stres$,= w2E|/L2. This issue will be consid-

The quantity(o)/ o from Eq. (7) is shown versu$/S;  ered in more detail in the Discussion.
—1 in Fig. 2 for two positions of the voltage electrodes. The  The data from WPL for(S,T—0) versusS are given in
symmetric case (0.4375z/L<0.5625) show a slope Fig. 3. The five largest values of are a reasonable fit to
slightly larger thart+ 1= 1.5 for S/S; —1>0.03. At smaller scaling of the formr=o((S/S,—1)" for >6 S/cm. An op-
values of /St —1 there is a crossover to a slower depen-timized (minimum standard deviatiomumerical fit to these
dence, and foiS/S; —1<0.001 there is a new exponent five points yields t=0.59, S.=1.915kbar, and oq
~0.5: namely, the same scaling exponent as seen in seen20.3 S/cm. The dashed line is the extension of this fit to
in the BSB data for values dfo(S))>20 S/cm. However, o=0 andS=S;. A slightly poorer fit with S;=1.99 can
the experimental data in BSB for metallic samplgS  yield t=3. The WPL data foir (S, T—0)<6 S/cm yield an

FIG. 2. Extension of o)/ oy vs 1-S/S; based on the BSB
parameters to much smaller values of §/S¢ calculated with Eq.
(7). For 1-8/S¥<3x 1072 the slope approaches the original ex-
ponentt=3.
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15 exponent approaches again the original expotenrt just as
Karlsruhe: WPL in Fig. 2, but this regime is well beyond the experimental
Stress Data data.
Si:P
10 - I1l. DOPING INHOMOGENEITY
o(T=0 For a random distribution of donofacceptorsin a host
semiconductor with a concentratidiy(r) we shall employ a

S/emT
o probability distributionP(N,) characterized by a widthy

such that for a homogeneous distributigr 0. In the most
general case there will be correlation between dopant density
Ng(r) andNy(r') characterized by a correlation function as
a function|r—r’|. The general case is more difficult to treat

sy (102 10l ad and the nature of the correlation function is often not known.
0 It would be particularly difficult to treat the case of dopant
16 20 24 28 32 36 . . .
S (kbar) striations found in some thermally doped samples. To obtain

. an idea of the effect of DI on the critical behavior of trans-
FIG. 3. WPLo(S,T—0) vsSresults for Si:RRef. 3. The true  port we shall start with the simple case of totally correlated

S.=1.915kbar (see dashed line while the apparentS; DI analogous to the stress case discussed above.
=1.70 kbar. An optimized forced fit to the data for>6 S/cm
yields S;=1.915 kbar and a scaling exponent0.59. The inset

shows the calculate¢tr(S,T=0) from Eq.(14) vs S/S.—1 as the A. Correlated case

dashed line for the symmetric case,;/L=0.30,z,/L=0.70], A linear variation of the dopingn(y,z) across the cross
yielding tes~1.18. A small asymmetry2%) reduces the exponent section of a rectangular bha<b, —b/2<y<b/2] of length
to thet~ 1.0 reported by WPL. L can be treated exactly. The doping variation in xt@irec-

tion [ —a/l2<x<a/2] will be neglected. When the average
approximate fit to linear scaling with~1. WPL have re- doping ish at the centefx=y=2z=0] of the sample section
ported S.=1.75 kbar; however, this analysis suggests thabetween the two voltage electrodeszatand z, the doping
the stress value 1.72 kbar in WPL's Fig. 1 yiel@éT—0) n(y,z)=n(1+gy+hz), whereg and h are constants, one
~0.27 S/lcm, which in turn from Fig. 2 sugges& finds for o(n) = o(n/n.—1)! that the integral over a cross
=1.70 kbar. This small quantitative difference is not impor-section at fixedz yields
tant to the correct understanding of the tail region. In this .
case the ratio of the true critical streSs to the apparent _ At
critical stressS; is 1.915/1.76-1.126. This is closer to one o(2)=00 y* dyin(y.z)/nc=1]
than the BSB case whe& /S~ 1.53 (S,/S; ~0.65). The _ t+1
WPL sample has a smaﬁzr/a ratio (18.750than the BSB =loo/bg(t+1)]{0/ne(1+gbl2+hz)=1]"7, (8)
case(26.66 and has a smaller value bf, and less thagthe  where the lower limity* is determined by the condition,
S| from sample bending as for the BSB sample. However=n(1+gy* +hz), which guarantees that the lower limit
the other critical difference in the two experiments is thEmakes a zero contribution to the integratiaf(z) varies
much larger voltage electrode spacing for the WPL sampleglong thez axis and has its smallest value fgrandh posi-
With z,—2,=0.4L for the WPL sample compared witty  tive at z;=—A/2. The “pinchoff” point [p(z)=1/o(2)

—2;=3L for the BSB sample the integration yielding(o) ~ _.x] leads to the minimal value ., given by
differs more fromt+1 for the WPL case than for the BSB

case. The integration of E¢r) yields the result shown in the Nmin="Nc/(1+gb/2—hz). 9

inset in Fig. 3 with an effective exponent 1.18 for the sym-

metric case£;=0.3L, z,=0.7L). A small asymmetry of the Ordinarily experiments are performed with a ponstant current

voltage leads with respect ty,, (z,=0.29, z,=0.69.) and the voltage between the two electrodes is measured, thus

leads to an effective exponent near 1.0. This demonstratétetermining the resistance between the two electrodes. This

that the effective exponent observed depends on three fakesistancdR=(1/ab)(1/(z,~z;) [Zp(z)dz and in turn leads

tors: (1) the SI from bending(2) the spacing,—z; of the  to an average conductivityo(z))exp(Z—2)/f2dZ0(2).

voltage leads, and3) the asymmetry of the voltage leads This result differs from a straight averagg¢z) of the form

with respect to the point of maximum deflection of the col-(zz—zl)‘lfﬁa(z)dz, although the difference is small when

umn. Z,—2, is small enough. The “pinchoff” point ab,,;, in EQ.
(o) o for the WPL electrode spacing has been calcu{8) corresponds to the apparent critical densify resulting

lated for four different values of the asymmetry versusfrom DI. Numerical calculations have been made for several

S/S; —1 over a wider range of/S; —1. The resultsnot  values ofg andh of the critical behavior of o(z) ) e Versus

shown are similar to the BSB results in Fig. 2 and demon-(n/n} —1). These results are shown in Fig. 4.

strate the effective exponent varying with b@&¥s; —1 and The case of a pure longitudinalvariation @=0,h+0)

the asymmetry. For very small values@fS¢ —1<0.001 the  of n(z) anda(z) with no variation in the transverse direction
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0.4 alloys one find$~ 1. In the limit thaty is very small and one
is not to close to the critical poifi(n) large], P(n—n) acts
as a & function and (o)=aof|n/n.—1|'8(n—n)dn
=og|n/n.—1|'. The corrections becaus&n—n) is not as

0.3 function are of the form

% (o) =0 X|TL+O(xn/nx)?+O(xn/nex)*+- -],

0.2 (1)

where x=|n/n.—1|. The first correction is proportional to
£=.025,h=.005 x? and is small as long as is not near the critical poin,.
, Whent is an integer an exact result can be obtained when the

0.1 i lower limit is extended to—= since the integraf *=x' exp

/ [—(x—X)%x?] yields a Hermite polynomiaH,(ix/x). Thus,
E/ §=.025, b=.025 for t an integer, one explicitly obtains
| /[ =005, h=.025
2005 1.00 1.05 1.10 (o)y=0o[x*+3x**+3/4x"] for t=4, (129

(0)=0o[x3+3/2¢*x] for t=3,

FIG. 4. Effect of a linear DI on the critical behavior 6f)/ o
vs n/n; for three different linear dopant variatiomgy,z)=n(1 (0)=0o[x?+1/2x?] for t=2, (12b
+gy+hz) [A, g=0.025,h=0.005; ®, g=0.025,h=0.025; A,
g=0.005,h=0.025]. The apparent? can be shifted either up or
down depending on the ratio 6fg. When the linear DI is mostly

and(o)=aox for t=1. The last result fot=1 is significant
because it demonstrates that an uncorrelated DI of the Gauss-

transverself/g<1), n* is pushed below, and the exponerit is ian form has no effect on the scg!lng expo_nent, even though

increased above the restrlvt% for zero DI. The inset showsr)/ oy there _rr_1ay be a _Chafge in the critical densityto an appar-

vs n/n* —1 very close ton* . The results show the scaling ap- €Nt critical densitync . For odd values of>1, (0)—0 as

proaching the exponent 0.54 close to the originals. Very close ~ X—0, while for even values of, (o0)—consi y'. For non-

ton* the integralf p(z)dz is dominated by the peak at-z, asin  integer values oft>1, (o)—const asx—0. This result

the case in Fig. 1. qualitatively explains the density dependence of the prefactor
oo(n) n dependence for Mott VRH as—n._ as discussed

deserves special mention. In this ca¢p)=[1lloo(z, Previously™

—2z.)1/dZ/[(n/n)(1+hz)—1]¥2 Unlike the case with a A particularly important case for the metallic side of the

transverse variation{p) does not diverge a®i—ny,/(1  MIT is the caset=3. Here the integration yieldfusing

—hz). Although it is unlikely to have such a case with a pure Gradsteyn and Rhyzik'63.462]

z variation, the result is similar to an extreme case of one - B

result observed by Rosenbaumtal®® in their high-  {(0)= 00l VX122 expf — (x?12x)}D _g(V2(1—ning)/x),

resolution uniaxial stress experiment in which for this case (139

o(S,T) appears to remain above 5 S/cm &S.—1 ap-  where

proaches—0.4. However, it would be difficult to convinc-

ingly claim that there was no transverse variationSah a D _30(2)=(1/2%exd — (z%/4)]

compressive uniaxial stress experiment. )
X{[ 7T (5/4)1®(3/4,1/27212)

B. Uncorrelated doping inhomogeneity _[\/;/r(3/4)]q)(5/4,3/222/2)}, (13b)

Consider  a nor2rT1aIized distribution P_(lNd(r)) where z=v2(1—n/n.)/x. The cylinder functionD _3(2)
=Cexp[~[(Ng—No/xnc?}  where C=(ymxno)™*. As inyolves the difference of two hypergeometric functions. Do-
x—0, P(Ng) approaches a function. It is straightforward jng the series expansion of thepe®(3/4,1/2x) =1+ 3/2x

to demonstrate that +7/8x2, d(5/4,3/2x) =1+ 5/6x+3/8x?] and keeping only
= (213 V([ (Ng— Ng)/n J2) 12 (10 the first terms in the expanside) becomes
— 5/2 _ 2
For a homogeneous case the critical behavior of the conduc- (0= oo/ exd = (x/x) 2L (Jw/T (514)
tivity can be represented byr(n,T—0)=o/n/n.—1|* +2\/;/F(3/4)(>_</X)+0(>_<2/X2)+'"]- (14)

where for uncompensated systems Ny andn. is the criti-

cal density. The scaling exponenwill depend on the system This result is only valid with the first few terms for small
involved and the type of transport process. For variablevalues ofx such thatx/y<1. For large values ot and{o)
range hoppingVRH) the theoretical prediction yields=3  very largeP(n—n) behaves like & function and the scaling
for the Mott VRH prefactor. Fon>n, the scaling of metal- behavior is characterized Hy=3. Forx=0, Eq. (5) yields
lic samples such as crystalline Si:P or Ge:Ga yidlds;, (o) = oo(NmxI2%T' (5/4))~ 0o\/x/3. The conductivity at
while for a wide range of amorphous,;SiM, and Gg_,M, the true critical point is proportional tgy and is therefore a
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direct measure of the DI. Keeping only the first two terms inimpurity scattering is like that for Si:P, etc., it is removed by

Eq. (5) for the regimex/x<1, one obtains
()= (mx) YA (3/4) 12T (5/4)[ 2T (5/4)
—T'(3/4)]}(n/n¥ —1), (153

where

¥ ~n{1—(x/2)[T(3/4)/T (5/4)]}~ne(1—0.67).
(15b)

From Eq.(6) the effect of DI for the important= 3 case is

to shift the observed critical density down an amount propor
tional to the DI. However, the scaling behavior measure

with respect to the apparent critical densify is linear with

an apparent scaling exponefit- 1. The DI leads to a cross-

over between the true scaling exponenttef; for larger
values ofx to the apparent scaling exponefit=1 when

x/ x<1. The smaller the value ¢f, the smaller the value of
(o) where the crossover takes place. However, it is not

good approximation to keep only two terms in HG4).

When a large number of terms is kept there is not a sharp.

cutoff of (o) at some particular value of and there is a
long tail. Nevertheless, a broad distributignof order unity
destroys any semblance of scaling{e$ with a scaling ex-
ponents.

a broad distributionP(n—n). Whether this distribution
P(n—n), given by

P(n—n)=(1720){1-[1/(2.8= w)J[(n—n)/nc]}, (18)

is a realistic distribution is a difficult question to answer and
will be discussed more in the Discussion. It becomes small
for (n—n)/n. larger than 2, but becomes negative for (
—n)/n.>(2.8— w). Physically,P(n—n) must be positive:
however the negative portion represents only a few percent
of the normalized distribution and will not change the fact

that this broad, linear distribution can explain the scaling

xponent 1, when the intrinsic exponent for the homoge-
neous system ig. If t=1 for the homogeneous case, the
above analysis changes slightly and still yields(n))

o (n/n¥ —1) with n¥ = un.. A constant distribution, such as
that for Sl in Eq.(2), can be treated for the=1 case and
leads to results analagous to those in Sec. Il, but is not able

%o explain the scaling exponent.

An effort has been made to fit the conductivity(n,T
0) employing an asymmetrical Gaussian of the form

P(n—n)=Cexp-[(n—n)/xnc]?[1+b(n—n)/xn.],
(19

The symmetrical Gaussian distribution is not a good apwhere the normalization coefficie®@= (1/\/zn.x) for the

proximation for thea-Si:M and a-Ge:M alloys. In these

symmetrical Gaussian distribution and the correction term

cases the conductivity prefactoy, is the same order of mag- introducing the asymmetry can be varied by varylmgn-

nitude as for Si:P and Si:As despite the fact thatdbeing

troducing the quantitiex=(n/n.—1), x=(n/n,—1), y

density itinerant carrier density is three orders of magnitude=v2x/y, and z=(v2/x)(1—n/n;), one has i—n)/n.x

larger than for Si:P and Si:AsA simple explanation for this
is that there is a broad distributidd((n—n)/n.)) for these

a-semiconductor-metal alloys. A particularly simple broad

distribution linear in 6—n)/n. is of the formP(n—n)=a
+b(n—n)/n, such thatf*{P(n—n)dn/n,=1=2af. This
leads to a conductivitya(n)=aof8x1’2[a+ b(x—x)]dx
wherex=n/n.—1 and the upper limit of 3 is fok.=0.25.
The integral leads to the result

(a(n)y=2v3oa+2.80—b(n/ny)]. (16

The experimental results for varioassemiconductor-metal
alloys suggestr(n) at T=0 scales to zero fan/n,= u with

0.4<u<0.56, which is close to but slightly smaller than

the Zallen-Scher criterion.
b=-a/(2.8—u) and

Equatiorf16) then yields

(o(m)=[2V3uog/20(2.8- )]0/} —1), (17

where
ny/n.=pw.

For u=1 the effective prefactor is 0.75/2¢, demonstrat-

=(y+2)/v2. Here(o(n)) becomes

YC
(a(n))= oo xl4m) 2 exp(—2%12) f y2exp(—y?/2)exp
0

(=y2[1+b'(y+2)].

The upper limity.= (v2/x)X., wherex.= nma/n.—1. For a
percolation threshold of 0.25 for continuous percolation one
expectsx,=3 andy, is determined by the breadphof the
Gaussian. EquatiofR0) is evaluated as a power serieszn
by employing a Taylor series expansion @f¥Y? and a nu-
merical evaluation of the integraKley”Z*”exp(—y2/2)dy

for n=0-12 for a series of different cutoffg, from 2 to 6
and forb’ values from—0.8 to +0.8. Figure 5 shows(z)
versusz [z« —(n/n,—1)] for y.u =6 for a range ofb
values. All of the curves show a linear regiomithin 7%), as
large as a factor of 6. The bendover at large values(aj is
well beyond the experimental data*2ng), but the tail at
small values ofo(z) is inconsistent with the experimental
data fora-Si; _,Nb,, etc. Typical experimental data show a
linear behavior over a factor of 10-20. There is a relation-

(20)

ing that it is inversely proportional to the width of the distri- Ship between the parametbrand the cutoffz,, and also
bution P(n—n). This broad linear distribution converts the Ng/N¢ is given by 1—(x./y;)z.. Based on the data, the
scaling exponent from in the absence of DI to 1 and yields continuous percolation limip.~0.25, and the Zallen-Scher
a much smaller effective prefactor. For this case there is neriterion, one expects/n.~0.5, which is given fory.=6

remnant of the scaling exponest left in (o(n)). Even
though the intrinsic exponent of resulting from ionized

by z.~1, leads tob~0.26. If one reduceg. (equivalent to
increasingy and broadening the distributiptio 4, this re-
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b=0.8 complex guantity given by (a(ST))=(z,
=04 —2z1)/fdz/o(z,S,T). Evaluation of this integral depends on
-6 detailed knowledge of th8 dependence of the prefactors and
Youoft™ exponentials in Eg21) and is well beyond the scope of this
discussion. BSB have argued that their dgter)=TY?exp
—(TYT)¥?] supported the dominance of ES VRH f&
>S; =613 bars. However, no theoretical prediction for ES
VRH supports an exponemt=— . Efros and ShklovskiP
obtainr =+ 3, and the same result has recently be obtained
by Castnef* Furthermore, in the absence of both Sl and DI
the prefactoroy(n) scales to zero as—n, as 1£°, where
E=¢&0(1—n/ny)" is the localization length andis the local-
ization length exponent. An alternative explanation for the
TY2 prefactor reported by BSB is that it arises from the pref-
actor of the activated conduction term. This saft& pref-
actor dependence has been demonstrated to be associated
with the activated term in Eq21) for Si:As for insulating
e — ] samples in the zero-stress case for 6:86n.<0.98. The DI
30 -25-20-1.5-10-0500 05 10 15 20 25 for the Si:As samples is small and is estimated at less than
z=(2"*I)(1-n/n ) 2%, but even this small a DI can have a dramatic effect upon
the prefactors of both the Mott and ES VRH prefactors as
FIG. 5. (0(2)) vs z for an asymmetrical Gaussidwhen the n—n_. There is also a new independent theoretical
scaling exponent is= 3 in the absence of Diwith an upper cutoff predictior?® o(n=n.,T)x=(e*/h)(2m*kT/#?)Y? based on
Yeuo for values ofb” equal to—0.8, -0.4,-0.2, 0, 0.2, 0.4, 0.8.  classical ionized impurity scattering. This n@? contribu-
The linear regior(within 7%) varies between 4.5 and 6 as a func- tjgn is in addition to them(n)Tl/Z contribution of Altshuler
tion of b. The cutoffzq,, is determined from the extrapolation of 34 Aronov in the diffusion channel due to electron-electron
the linear region td o(Zayor))=0. The asymmetrical Gaussian is jneractions. This new classical contribution has the right
not able to explain scaling with~1 with a factor of 10-20 irv. magn\i/tljde to explain the BSB resul{c(S=S*,T)

. =7.6yT S/cm. However, any numerical comparison needs
duces_zC to 0.7 and reducgls to near 0. Reducm_g reduces to take account of the large $-60%) in the BSB experi-
the tail of o(z), but the tail cannot be totally eliminated.  ment because of sample bending. This large SI could readily

The asymmetrical Gaussian distribution with a cutaff  account for a reduction in the magnitude of Mott VRH for
(andy,) totally removes evidence of tie=; scaling behav- g~ S', but one has to carefully account for the activated
ior for (o(n)) when the distribution is broad enough, but is orm resulting from carriers thermally excited above the mo-
not able to produce a linear region over the factor of 10-2Q,jjity edge before concluding the dominant contribution to

required to explain the scaling exponett-1 for the Ry results from the ES contribution. In the zero stress

4.0-5
3.5-3 b=()
3.0—5 B=-04
2,5-f =-0.8
2.0-:

1.5

o(zZ) - relative units

1.0
0.5

0.0 S,

a-semiconductor-metal alloys. results the Mott VRH contribution is usually only dominant
for 0.90<n/n.<0.99 for the doped Si resul{Si:P, Si:As,
IV. DISCUSSION and Si:B. However, it should be noted that for the NTD

Ge:Ga samples Watanatet al3’ have demonstrated ES

VRH is dominant for 0.96:n/n.<0.99. The NTD-prepared

samples are acknowledged to be the most homogeneous of
This is particularly complicated on the insulating side of gll samplesdoped Si and Gestudied to date.

the transition §<S; for Si:P,S>S; for Si:B) because there

are three possible contributions ¢¢S, T) from Mott VRH, B. Deflection from bending for nonideal compressive

Efros-Shklovskii(ES) VRH, and activated conduction from loaded columns

carriers thermally excited above the mobility edge. For no

SI, o(S,T) takes the form

A. Temperature-dependent conductivity o (S, T)
in the presence of stress inhomogeneity

Ideal columns under compressive loads are unstable for
pivoted or round ends against bending. Flat ends provide

(S, T) =002 S)(T/ T ac)® €XP{ — [Eacl S,n)/KT]} some stability, but when the ends are mounted in sbfder
’ ’ on cigarette papérthe stabilizing effect of flat surfaces is
+ oo mot(N,S)[ To(S,n)/T]%exp dissipated. From the principle of virtual work one can calcu-

, late the deflection from the equationA(PJ6)
X{=[To(SMITIY+ 00 ed SMITo(S,M)/TT' = A(strain energy) where the stored strain energy consists of
X expl—[TH(S,n)/TIY2, (21 thatdueto bendingubending_z(EI/2)f5(d2y/dzz)2dz] anda
smaller shear componerR.is the pressure load anilis the
where each of the prefactors and exponentials can depend displacement in the direction of the applied fo& In any
the stressS and on the dopant density. The experimentallyexperimental situation the loading is not ideal beca(ise
measured quantityo) in the presence of Sl is an extremely there is an eccentricity of the forces at the two ends of the
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sample(2) the two sample end flats are not flat and perfectlyexperiment rather than compression. Although most uniaxial
parallel, (3) the load bearing surfaces are not rigid enoughstress experiments have been done in compression, there are
compared with the sample being compressed, @dhe  at least two cases where tension has been successfully em-
sample ends can displace small amounts in the solder. Thstoyed. The first by Watkins and Héfhstudied the removal
deflectiond,,, at the midsectiong=L/2) of a column with an  of the orbital degeneracy of the Li donor in Si by uniaxial
eccentricitye (of the parallel forcesis giver’® by stress. The second is a piezocapacitance $tunfydoped
Si:P and Si:Sh. Neither of these studies were near the critical

U= (4/m)e(P/Pc)/(1=P/Pc), (22 regime for the onset of metallic behavioriat 0. A carefully
where P, the critical stress, is given byr?El/L? for a  executed tension study in the critical regimecd(fS, T—0)
column of lengthL when the slenderness ratio is sufficiently should resolve any doubts about the role of SI.
large. However, it is also known for steel that for slenderness
ratiosL/r (r?A=1, r=radius of gyratioh less than 10(P,
stops increasing with decreasingr and saturates at the D. Doping Inhomogeneity results
yield point of the material. For the BSB sample/r =92. . . .
The yield points for B-doped and P-doped Si at low tempera- The uncorrelated case with a Gaussian d!str|buB()Nd)
tures are not well characterized but might be expected to b8_f d(_Jnors ab_o_ut an average valbig alwalys yields a reduc-
lower than the Euler value. BB&Ref. 31) have suggested a ton in the critical density given byr.—n¢)/n.=0.63¢ and
P. of 24 kbar based on an Euler expression udifgas the 1S 0.51 times the rms dopant Qe_\/latlon from the average
effective length of the column. The correct Euler result forValueNg. A 4% rms dopant deviation leads to a 2% reduc-
the BSB geometry ig of this amount. It is worth noting that tloln inn.. For metallic samples with a scaling exponént
Rosenbauri? broke Si:P samples at 7 kbar. The result in Eq.=z in the absence of DI there can be a crossover to an

(22) either suggests that fai,,~e that one require®/P,  effective exponent* =1 whenNy is sufficiently close tog

~1 or for P/IP.<1 requirese>d,,, or that there other from compensation. On the other handt4f1, there will be
sources of the bending. The presence of microcracks near ti@ change in the exponent even thourghis reduced below
surface from sawing or grinding that were not totally re-n. by the DI. For amorphous semiconductor-metal alloys the
moved by etching could also lead to a reduced valuBaf  true X, will be reduced tax} by DI.

Without more detailed knowledge of the yield point for The effects of correlated linear doping variations of the
doped Si and more detailed knowledge of the defects assdorm n(y,z)=n(1+gy+hz), wheren is the average dopant
ciated with the loadinddistortion of the Be membrapé is  density at the center of the sample region between the volt-
not possible to resolve this issue. However, the main point ohge electrodes at andz,, are demonstrated in Fig. 4 show-
Eqg. (22) is that the deflection can increase linearly wRh ing (o)/ o versusn/n, whent=3 (see dashed line for zero
and, unlike the ideal case, is not negligible umilis very  DI) for three different values ofg,h). When to DI is pre-
close toP;. It is common laboratory experience that slenderdominantly transversegE 0.025,h=0.005, symbolA) the
steel rules and wooden yard sticks can bend substantially asults show a reduction of; to ny of 0.75%. The scaling
loadsP<P_ under compressiorthe Sl due to bending un- exponent increases whein,<1.01 and is in the vicinity of
der compression can be removed by performing careful ext.18 forn/n* —1~0.01. However, as shown in the inset for

periments under tension even smaller values af/n* —1<10 2 the effective expo-
nentt* reverts toward a smaller value. When the DI in the
C. Uniaxial stress experiments in tension and z directions is equal d=0.025,h=0.025, symbol®)

Although the above analysis in Secs. Il and Il separatelyfnere a very smaiincrease in p of 0.25% and only a small
considers the role of SI and DI, the reality is that both ardncrease in the exponetit. The inset shows the exponent
present simultaneously. In all three uniaxial stress experit* ~0.54 forn/ng —1<3x10 . In the third case for the DI
ments under compressibii the Sl is much larger than the 5 times greater in the direction than in they direction (g
DI ordinarily accounted for in high-quality doped Si ingots. =0.005,h=0.025, symbolA) the increase im. is 1.06%
The only possible exception to this is the one case reportednd the effective exponent increases only a small amount
in Ref. 33 wherer(S, T—0) remains above 5 S/cm for small that would be observable nean? —1~0.01, but is close to
values ofS. All the other results yield a reasonably sharp0.54 forn/nf —1<10"3. Unlike the uncorrelated case}
value of the cutoffS; wherea(S— S, T=0)—0. Eventhe can be either less or greater thandependent on the geom-
WPL experiment with the smallest slenderness rafimand  etry of the DI. Likewise, the effective exponent does not
the smallest bending deflection still sho®§ 12.6% less show a universal change, but depends on the geometry of the
thanS,, which is a much larger change in the critical point DI. A transverse DI favors an increase tih, but only in a
than would be expected from DI, which is normally expectedlimited range ofn/ng — 1. A surprising case result for a pure
to be less than 2% and in the best quality samples may be d#ngitudinal DI (g=0,h+0) for thet=1/2 case is the ab-
order or less than 0.5%. One would have to decrease the Sence of a true critical point where(n—n} ,T=0)—0.
by a factor of 10 or more to make it less than the DI. ThisThis is readily demonstrated by the integrationpdk) be-
can be accomplished by decreasingd)? by more than a tween the voltage electrodes at and z,. However, the
factor of 10. This may be possible, but an alternative experiprobability of the pure longitudinal case occuring wigh
mental solution is the use of tension in the uniaxial stress=0 is negligible.
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TABLE I. Room temperature resistivity angular variation of wave packets with wave vectors ndar, as determined by

Si:As the Heisenberg uncertainty principle, is given hyAk>1
N 12 where AKns~Bke=27B/\gg and AX,n>Nge/2m. The
sample (x 13?5% om) (% 101870 ) (<>(<p10,<§’ >()2 ém) rmsip) cha_lracterlstlc volum¥/; associated W_lth awave packet near
ke is of order (\ 4g/2B87)3. Although 3 is not reliably known
B'2 8.15 7.75 0.166 0.021 for the random potentiaV/,,(r), we will assume as a worst
E1l4 7.09 9.40 0.139 0.020 case that it is of order unity, although it might be as small as
D14 6.99 9.50 0.039 0.0056 0.1. Suppose we consider the Si:As case witl+ 8.6
A2 3.24 22.0 0.038 0.0116 X 10%¥cm?. Forn=2n., kp=4.4x10° cm !, and 3=0.5,

one finds, using }=n.V /10 andy= 12 corresponding to a
rather broad distribution, probably too broad. However, for
There are several ways to experimentally determine they=1.01n,, ke decreases by 10 and, increases by 1000,
macroscopic DI. Experimentalists ordinarily profile semicon-jeading to y=0.012. Even though the magnitude of these
ductor wafers cut from ingots. This yields a resistivity profile nympers is uncertain, the results shguwdecreasing by a
at room temperaturéRT) across a typical 5-cm-diam wafer. ¢actor of 1000 from 2, to 1.01n,. It is this dramatic appar-

Home\éek the voltage _electrode Tfliaclngh of simples _W'ﬂ%nt sharpening oP(n—n) seen by the itinerant electrons as
welded At geShy o, Wire is comparable to the probe spacing n—n., that explains why the short-range disorder is unim-

of a four-point probe. As a result, it is not possible to accu'portant as one approaches the critical point. The large wave

rately determine the DI for a length scalg-z,. A determi- : o
natio):w of the transverse DI forga slender lbar sample empackets of ordeX (1) are simply not sensitive to the strong

ployed in typical studies is not possible with conventionalShort'r"’mge fluctuations iWw(r) and P(n—n) acts like a

resistivity probes. With the van der Pauw geometry samplegglta functt;]oné(nl_— n). For g_z Sf[':P and ?el:Gfa c;lstisthone
it is possible to obtain information of the asymmetry resis-20>€fVes e scaling exponenjuite accurately for bo <

tance ratioR;/R,, whereR; and R, are the resistances at furnace-grown samples and the NTD Ge:Ga samples. Even

; . _ though Ge:Ga may obey a random distributi®visson sta-
right angles to each other. The Hall restilfor Si:As dem tistic better than Si:P, the difference in the scaling expo-

onstratedR, /R, ratios near unity, but in the worse cases as, . " "o hecanse the itinerant electrons just abgve
large as 2 and as small as 0.4. This asymmetry leads to X " : ) ctrons | bg
are not sensitive to differences in the distributiBgn—n)

well-known correction to the resistivity for a disk given by | b th

the asymmetry correction factorf(x)=1—(In2/2)x? on a scalé much ess t ane(n). .
—0O(x* wherex=(R;—R,)/(R;+R3). The ratiosR; /R, How does this notion apply t@'&*XMX f”‘”o_ys like

do not permit reliable quantitative estimates of the inho-a's'l—be.X? The d|str|but|o_n funcU_orP_(n—_g) IS "k‘?'y to
mogenity for bar-shaped samples, even though they tell u e very different than a Poisson distribution for Si:P where
which samples have larger DI. Another approach for disk-t_ ebFrOb;b”'% Ofc}WO P 3to|mt? on at_nltj:c(e)nltg( aiom<sz|s neg-
shaped samples is the measurement with the four-point proﬂ'@' . ror he diamond iatce wi L EH = X=X

at RT of p as a function of the angle with respect to a fixed (a-Si;_xNb,) there is a significant probability pf adjacemt
reference line in the disk. Typical results for three metallic20Ms and' one expects t\{vo to threkatoms in the next- :
and one insulating Si:As samples are shown in Tal¥g) nearest-neighbor shell. This suggests the band structure will

was measured at=n(/4) with n=0—7. The results show differ significantly from crystalline Si. The six valleys of the

fractional rms deviations ranging from 0.5% to 2%. All the cpnduction band for the crystalline case probably do not sur-

Si:As disk-shaped samples show angular variations in thig!ve- Alloy theory for disordered alloys involves _the bond
range. None of the samples from this ingot gave indication€"€91€SUss, Umm, and Usy and an energy difference

of striations in the resistivity, although disk-shaped sample%USM_”LéSIS_U'\?]M . Here the defposited Ifilms are Iik;ly tg
from another supplier did give evidence of striations. The2€ Well below the temperature for any long-range disorder

results in Table | were used as an estimate of possible linedfansition and will be in a metastable state. However, the
variations of DI and the calculated results of DI presented irport-range order will still be important. For a sm%!e-valley
Fig. 4. Trappmanret al** employed scanning tunneling mi- conduction band(FNS_'SX 10" at 2, and Ngg~11A. As
croscopy to study Si:P samples withy up to 7x 10-/cn compared with the Si:P case the characteristic volirge

3 . .
and found no evidence of clustering and obtained a good fit” (*ae/257)" containing less than onkl atom and for3
to a Poisson distribution of donors. =5 leads to ay~ 72, which suggests a very much broader

distribution than for Si:P. This is consistent with the small
prefactor of (c(n)) in Eg. (17). If one tries to explain
the magnitude with the Wegner scaling expression

It is important to understand why the scaling exponent =(e?/2h &o) (xIx,— 1) for a-Si;_,Nb, (prefactor 300 S/cin
~1/2 for Si:P is observed very close to the critical densityleads to&,~42 A. This is not a sensible magnitude for a
(n/n,—1)<10 2 when the donor distribution obeys Poisson correlation length form-Si; ,Nb, . If one attempts to apply
statistics. Poisson statistics features large short-range disdiie Boltzmann expression ak2, one finds a small mobility
der. From the vantage point of itinerant electrons the Poissop~ 0.3 cnf/V/sec, which leads to a mean free path
distribution (approximated by a Gaussiaappears sharper ~2.3 A, which is less than th-M atom spacing, but the
and sharper as—n., . The size of the itinerant electron same order as the Si-Si bond length. If one uses the expres-

E. Uncorrelated doping inhomogeneity
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sion o~ (€2/2h)kg(2x.) for the prefactor based on the ion- results from small sample bending. Performing uniaxial
ized impurity scattering, one will obtain a result a factor of stress experiments in tension should remove the Sl. Far
10 too large. If one uses E@Ll7), one can account for the enough from the critical point the PRTB, BSB, and WPL
prefactor with aP(n—n) width 2¢ ~6. Although this expla- experimental results all support the scaling exporien,
nation is speculative, there is every reason to believe thawhich can be explained by ionized impurity scattering.
ionized-impurity-scatteringllS) at low T will be the domi- Correlated DI behaves in much the same manner as Sl.
nant scattering mechanism for tleeS;_,M, alloys. This Linear correlated DI can either increase or decreasand
situation provides evidence for a broad distributi®n can increase the scaling exponénabovet=31 when the
—n) for these systems, but the shape of the distribution canlinear DI has a significant transverse component. Some RT
not be convincingly established from the transport dataesistivity results for Si:As disks show fractional rms devia-
alone. Since tha-S,_,M, alloys do not exhibit the perco- tions of 0.5%-2.0%. Just as in the correlated Sl case, a broad
lation exponent 1.6, unlike N#/O;; one needs to under- distributionP(n—n) can mask the scaling exponert 5 (of
stand the microscopic differences between these two MIThe homogeneous syste¢mnd lead to an exponett-1 for
systems. In NAVO,; the Na atoms are in interstitial sites of the correct shape d?(n—n). This provides the plausible,
the WGQ; lattice and form metallic clusters. THé atoms in  but speculative notion that the physics of the transport at the
thea-S,;_,M, alloys are assumed to be substitutional and themicroscopic level can be the same for both crystalline-doped
distribution in Eq.(18) suggests an anticlustering tendency, semiconductors and the S; _,M, alloys and the scattering
but this has not been established from experimental evifor both cases is dominated by ionized impurity scattering.
dence. There is evidence that ttee S, _,M, cases are characterized
by a broad distributiorP(n—n). The size of the itinerant
V. CONCLUSIONS electron wave packet increases as the de Broglie wavelength
o ) . \g4g(N) asn—n;, and the effective Poisson distribution ap-
S| from sample bending is basically a perfectily correlatedpears sharper approaching. As n—n., the itinerant elec-

case with the transverse variation $hdominant. Far from  rons hecome increasingly insensitive to the short-range dis-
Sc. Sl provides only a small correction (S, T=0); how-  ;qer.

ever, close to the critical point there can be a significant tail

with an apparen§; and an increase in the exponent from

to t+1 when @,—z;)/L is small. The detailed integration ACKNOWLEDGMENTS

[Eq. (7)] allows a satisfactory explanation of the tail behav-
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