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Variational wave function is proposed to describe electronic properties of an array of one-dimensional
conductors coupled by transverse hopping and interaction. For weak or intermediate in-chain interaction the
wave function has the following structure: Tomonaga-Luttinger bosons with momentum higher than some
variational quantityA are in their ground state while other bosdmsth |k|<A) form kinks — fermionlike
excitations of the Tomonaga-Luttinger boson field. The nature of the ground state for these quasiparticles can
be determined by solving a three-dimensional effective Hamiltonian. Since the anisotropy of the effective
Hamiltonian is small the use of mean-field theory is justified. For repulsive interaction possible phases are
density wave ang-wave superconductivity. Our method allows us to calculate the low-energy part of different
electronic Green'’s functions. In order to do this it is sufficient to apply standard perturbation theory technique
to the effective Hamiltonian. When the in-chain interaction is strAnganishes and no fermionic excitation is
present in the system. In this regime the dynamics is described by transversally coupled Tomonaga-Luttinger
bosons.
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I. INTRODUCTION All TL bosons whose energy and momenta are higiki (

o . ' . >/~\) remain _in their ground states. The small momenta
The adequate description of quasi-one-dimensi6@aD)  posons [k|<A) form fermionlike excitations which are de-

conductors remains an unresolved theoretical challenge. Exscalized in a transverse direction. To distinguish between
perimentally, at low temperature such systems either occur ge physical electrons and these fermionic excitations we re-
three-dimensional anisotropic Fermi liquids or they freezegr to the latter as quasiparticles. In other words, the wave

into a three-dimensiondBD) phase with broken symmetty.  fynction can be factorized into two parts. The high-energy

At high temperature their transport properties show many, . ¢ corresponds to the ground state| kif>/~\ TL bosons,
unusual features generally attributed to one-dimension

I . Thi ¢ hree di nd the low-energy part corresponds to the 3D anisotropic
electron anisotropy. This crossover from one to three dimengg i liquid composed of the quasiparticles.

sions is a core problem of Q1D physics. - o e
It is possible to look at the issue of the dimensional cross- The varlatlon_al energy 1s minimized by_ adj_ustmg The .
over from another angle. At high temperature the proper elNEry of (iuasupamcle transverse hopping is a decreasing
ementary excitations of the system are Tomonaga-Luttingeitinction of A. At the same time, the in-chain energy grows
(TL) bosons. When the temperature is low and the interacwhen A grows. The trade off between the transverse kinetic

tion is weak enough the elementary excitations are fermionsnergy and the in-chain potential energy determines the
Therefore, to describe the system at different energy scalgs,| e of & .

one needs to explain how high-energy bosons “cross over” . ~ .
into low-energy fermions. Obviously, this is a nontrivial task. ,If the optimal value ofA is nonzero the '°W'e”ef9¥ excl-

In this paper we develop a variational approach whichtations pf the system are the quasiparticles. Prop(_artle_s of the
accomplishes this goal. To explain the structure of the varial€rmionic quasiparticle state depend on the quasiparticle ef-
tional wave function let us first consider a one-dimensionaféctive Hamiltonian. It arises naturally after high-energy
conductor described by a TL Hamiltonian. The ground statd0sons are “integrated out.” In this effective Hamiltonian
of this system is the ground state of TL bosons with allthe anisotropy is insignificant. Standard many-body tech-
momentak. Let’s turn on the transverse hopping and coupleniques such as perturbation theory and mean-field theory can
N, of these conductors into a 3D array. In this situation thebe used to calculate Green’s functions and map out the qua-
system will attempt to lower its ground-state energy eversiparticle phase diagram. Since the physical electron and the
further by taking advantage of the transverse hopping energguasiparticle have finite overlap there is a direct correspon-
However, in order to participate in hopping the bosons havelence between the broken-symmetry phases of the effective
to form many-body fermionlike excitations which have a fi- Hamiltonian and the physical system. We will show that pos-
nite overlap with the physical fermion. sible phases for spinless Q1D electrons with repulsion are

To accommodate for the possibility of having two types ofthe charge- density waveCDW) and the superconductivity
excitations, bosonic and fermionic, we device our variationalwith the Cooper pairs formed of the electrons on neighboring
state in the following fashion. We introduce an intermediatelD chains.

cutoff A<A, whereA is the cutoff of the 1D Hamiltonian. As the in-chain interaction grows the parameferap-
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proaches zero. When vanishes the fermionic excitations 1D VE _ ).
cease to exist. The system is described by a 3D TL boson H [@,@]:7[_(V®) (V)]
state. In such a regime the ground state is a CDW.

Our approach allows us to obtain several analytical re- g _ 5 5.
sults. With the help of the method it is possible to derive a T VR —(Ve)R] (@)
formula for quasiparticle damping near the Fermi surface.
Also, we evaluate transition temperatures for the CDW and'he symbol :...: denotes normal ordering of TL boson

superconductivity. The knowledge of these temperatures abperators with respect to the non-interacting=0) ground
lows us to map out the phase diagram of our system. Alstate.

though these quantities have been obtained using different Let us introduce our main variational parameter
numerical techniqués the analytical expressions have not X <A. We use it to split TL boson fields into fastA(

been reported to our best knowledge. —kel>A . sub t s d sl Ki| —ke| <A
The paper is organized as follows. In Sec. Il we determ'nesu|t|)sH(|:r|ptF“|< " )mcs’ge:crlp ) and slow (k| —ke|

A and derive the effective Hamiltonian for the fermions.

Section 1l contains the evaluation of the single-particle HIP[O,0]=HPP+H1P
Green's function. Different phases of the effective Hamil-
tonian(and the physical systenare mapped in Sec. IV. The =HP[O_, d_]+HP[O. ,d.]. (8)

regime whereA=0 is discussed in Sec. V. We give our

conclusions in Sec. VI. We define the fermionic fielclff)(x) with the help of Eq(6)

in which a is substituted bya=7/A and®_ and®_ are
Il. VARIATIONAL PROCEDURE placed instead o® and®. The field¥ is our quasiparticle
discussed in Introduction. Using this field we refermionize
HIP. The result is the same as that of Eg) with ¥,
instead ofys, . The transverse ternid) can be easily rewrit-

We start our analysis by writing down the Hamiltonian for
the array of coupled 1D conductors:

L ten if one observes that the physical fermion is simply
f dxH (1)
= Valaw e o= +p0-), C)
H= E H1D+E H|, ; (2)  and that the fermionic and bosonic parts in this definition

commute with each other. Therefore,

HIP=ive(lV i — iV i) + 901 YL dkitmi, (3 o
=—(ala)t(i—j)

L i t ‘

Hlj_ t(i ])p:ZL‘R(lppin]"'H-C-) % 2 {‘I’T\I’ eIwT[(@>| O5))+p(dsi— ®>1)]+H.C.}

p=L,R

+ Gake (1 = D) (U mithyn + H.c)

+(8/2) G (i~ W] WV E W & F7(P=1~ =D + H.c ]
+0o(i = (WL i+ ditbr) (i + ey,

(4) +90(i—j)[(‘l’zi‘l’u+‘I’TRi‘I’Ri)(‘I’Ij‘I’Lj+‘PTRj‘I’RJ)
with the real-space cutoti=m/A. The fermionic fieldlp;gi
creates a physical electron with the chiralgy=L(+) or p

=R(—) on chaini. Transverse interaction constangts (for-
ward scatteringandgy_ (exchanggare positive. The terms

proportional togy andgs,_ account for the Coulomb repul- Our variational wave function has the form
sion of the electrons on dlfferent chains. It is further assumed

1
+—V¢Nv¢ﬂ} (10
aa

that Jvan=[{wuhI1 l0-;)
9>90> G2k, ©)
Now we use the Abelian bosonization prescription =W T1 (2lkl/mK)Yexp — k|| @ 2/}
i k>A

Yp(x)=(2ma) " el Feat) (11)
= (2ma) My, O TP 00)] ® |t is a product of some many-body stdfel ,;}) composed

to express the electron Hamiltonian in terms of bosonicof the quasiparticlesV,; and the ground state|$)>1) of

fields. In the above formulg, are Klein factors@ is the TL HlD[G)>J Pl

boson field, andp is the dual field. The bosonized one-chain  Variational ground-state energy is found by minimizing

Hamiltonian is the expression
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|{\I’pi}>-
(12

ou L
EV=NLLE(A2—A2)+<{\Ppi}|( jo dxH ot

Heﬁ:Zi vp(V 0,0 — Vo Wr) +oW ] W WL W
- X Hi-)(¥L¥,+He)
ij p=L,R

2 G (=D (V[ WrW W+ He)

+0o(i — DWW+ Y EWR) (W] W+ W] W),
13

=0 9a=0""%0a, (=MA. (19

The number of chains N, . The TL liquid parametek’, the
electron anomalous dimensiah) and boson velocity are
defined in the usual way:

2 —
= TUE g’
2mvetg

1
0=5(K+K1-2),

1
u=>—(2mve—0)(270e+9). (15
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We have to remember, however, that value of the numerical
coefficient in Eq.(17) is not accurate. This is due to the fact
that the second term in E¢L6) is calculated under assump-

tion T<A. WhenA gets smaller the coefficient in front of

this term acquires somé& dependence. We neglect the cor-
rections due to this dependence since they are less singular

(at smallA) than the second term of E€L6). These correc-
tions modify the result forf quantitatively, therefore, it is
more appropriate to write

¢ 1/(1- 6)
oo| — , 19
o] .

u=Juve. (20)
Using this formula it is easy to show that

t 0/(1—6)

uA

TocuA ot

This means that fo<<1 the effective transverse hopping
amplitudet of the quasiparticlé is of the same order as the
quasiparticle longitudinal cutoff energy:-A . Therefore, due

to small anisotropy, the Hamiltonian for the quasiparticles
(13) can be treated within the framework of usual mean-field
theory and perturbation theory. Our calculations, in agree-
ment with renormalization-group analysi$,show that for

6<1 there is the crossover energy scalabove which the

The first term of Eq(12) has a purely one-dimensional ori- system is equivalent to a collection of decoupled chains
gin. The second term is the energy of the quasiparticlgvhile below, the transverse hopping becomes important.

ground state.

Depending on the interaction and the anisotropy the re-

_ Observe that the parameters of the effective Hamiltoniajion 6<1 can be further split into two parts. The transverse
t/A and gy, are connected to the corresponding bare pahopping contribution to the variational enerfsecond term

rameters as if they are subject to the renormalization-grouff Ed- (16)] can be rewritten as follows:

(RG) flow in the vicinity of the TL fixed point. The explana-
tion for this fact is quite obvious: our method of deriving the
effective Hamiltonian is equivalent to the tree level RG scal-

ing near the TL fixed point.
If the transversal interactions are smegb(and§2kF both

2 .. 2 20 [uA
—1 2% ——t%expg — ——In| —| |. (22
TUE TUE 1-46 t

If the argument of the exponential function is small the ex-

less ther’t’/?\) they can be neglected. In addition, we neg|ec,[ponential can be replaced by the first few terms of the Taylor

corrections to the energy due to spontaneous symme

breaking. The latter assumption works whes 1. Its valid-

ity away from this point is discussed at the end of Sec. V.

Under these two conditions the expressi@8) becomes

6u 2
EY/(LN)= g (=DA% [T

(16)
This variational energy attains its minimum at
(St_Z/UUFAZ)l/(Z—ZB) if  6<1,
= . 17
0 if 6>1,
=2 (1)) (18
|

t'ﬁfrie& In such a situation the contribution of the in-chain
int

eraction to the total energy, E@l6), can be calculated
perturbatively. One-dimensional effects are virtually unob-
servable. This is the weak-coupling regime.

When the anisotropy and the in-chain interaction are
strong the exponential cannot be approximated accurately by
the low-order Taylor expansion. The system is in the
intermediate-coupling regime now. In order to obtain a reli-
able answer involving such a regime it is not enough to apply
finite-order perturbation theory. Our method converts the
system of physical electrons with intermediate coupling into
the system of quasiparticles with weak coupling. The latter
can be studied by standard perturbation theory.

As a function of the bare transverse hopping amplitude
the crossover from weak coupling to intermediate coupling
occurs at
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— 1-0 a) b)
t* ocuAex;{ - T) . (23 L R
For the weak in-chain interactiof< 1. When this is the case Q @
it is necessary to have exponentially small transverse hop- o S g(>
ping amplitudet in order to observe nontrivial Q1D effects. 5 L 0 “ L 0

When6>1 the effective cutoff momenturh is zero. The
guasiparticles are not formed. The system can be viewed as a
collection of TL bosons weakly coupled by the transverse
exchange interaction. The possibility of such a state was first <)
pointed out by Wer.It is natural to call such a regime strong
coupling. Section V is reserved for discussion of strong cou-

pling.

lll. SINGLE-ELECTRON GREEN'S FUNCTION FIG. 1. Lowest-order contribution to the self-energy of the qua-

The calculation of different propagators for a Q1D systemsiparticle.
is open for question. Our approach allows for easy evalua-
tion of the low-energy part of Green’s functions in the done with the help of a standard diagrammatic technique. If
intermediate-coupling regime. The high-energy parts of Q1DBve neglect interactions between the quasiparticles the single-
Green’s functions are believed to coincide with the Green'slectron Green’s function is
functions of the TL model. The latter have been discussed
extensively in the literature.

The Matsubara propagator of the physical electronic field ’

. jw,p,p)=—""7, 2
¢L IS gL(Iw pH p) |w+U|:pH_8é ( 7)
1
GL(X,R,,7)= Z<T{‘I’Li(X,T)‘I’[j(0,0)}>qf where the renormalized transverse kinetic energy is given by
X(T{exp(—iNT[O=(x, 1)+ Pi(x,7)]) B
ep=—20"2 t(i)cogp Ry). (28)

X explia[0-(0,0)+P-(0,0)D})-,
(24)
This result coincides with the Green’s function derived by
R, =R—R;. (250  the RG5?

Our method allows to improve the above formula for the
single-electron propagator by taking interaction between the
quasiparticles into account. Neglecting) symmetry-
breaking which becomes important for very small frequen-

cies only and(ii) the transverse couplingg and§2kF [see

Eqg. (5)] one can identify three second-order diagrams con-
1 ) tributing to the single-quasiparticle self-enefgyg. 1). They
Z<T{exp(—l\/;(@>i(X,T)+¢>i(X’T)) are [Fig. 1(a)] scattering on the polarization bubble of the
same chirality as the incoming quasiparti¢leig. 1(b)] scat-
><exp(i\/7_-r(®>j(0,0)+<D>j(0,0)))}>> tering on the polarization bubble of the opposite chirality,
and[Fig. 1(c)] the vertex correction. Figuregd and Xc)
1D , are identical in magnitude and opposite in sign. Thus, Fig.
“\go 5ij+{7(1= &) (26)  1(b) is the only one that needs to be evaluated.
L First, we calculate the quasiparticle polarization bubble
Here Gi° (G'P) is the Matsubara Green's function of the Pr.

Tomonaga-Luttinger model with the cutoff (A).
Our variational wave function does not take into account
correlations betweer.;(0-;) and ®_;(0-;) if i#]. Pr(iQ),k| ,k)=J' 5(qu”+e~afi)_
However, the above formula is correct at least for large qa !
>1/uA or small frequencyw<UA where those correlations
are not important. In such a limit the boson part of E2f) ) .
is a constant equa' tOH. where the notatlonfq”q PR :(27T)73b2quHd2q ... IS
Once the bosonic propagator is found it is necessary tosed. The symbab denotes the transverse lattice constant.
calculate the quasiparticle Green’s function. This can bélhe self-energy is

The notation( . . . )y stands for averaging with respect to the
quasiparticle ground stat8y). Likewise,( . .. )~ stands for
the expectation value with respect to i) state.

The bosonic part of this formula can be immediately cal-
culated:

~1 =1
U|:|(||+ Eq+k £q

~ =
Q—vekj—egite

1
q

(29
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S (iow,pp,p)= —T% ) kg,_(i o+iQ,p+k),p+K)Pr(iQ k| k). (30)
[
After summing ovel), the following expression for the self-energy is derived:

(VK| + 8y gt 8g) — NE(UE(K+ P+ 2 )

~ ~ ~, N
EL:_QZJ' (Vek+ & q— &q) S(vEd)+eg) - == =
ka q|d | q d q Iw+ZUFkH+UFp||_8$+8t+q_8f<_+p

g2 f f (k| + ic g~ 5g) OvEQ) + &) -
kik J ayq Sinl‘l{(vpk“+gt+q+'§$)/T}(iw+2v,:kH+v,:p”—'§$+Et+q—:§ﬁ+p)'
|
When T=0 the first term can be further simplified. The 2 92
Fermi distributionn: becomes the step function. In such a v= EVL(—quF ) (pj—Pe) % =(p—pe)? (35
t

situation it is possible to perform integration ougrandp;

exactly. The second integral in the above equation appears ) ) ) )

due to the relation between the Fermi distributignand the ~ Where @;—pg) is the distance from a given poinp(,p) of
Bose distributiomg : ng(w) +ng(w)=1/sinh@/T). At zero  the Brillouin zone to the Fermi surfacgpe= &, along thex
temperature this integral vanishes. In the resulfaa) ex-  direction.

pression fo, the transverse kinetic energy always enter We need to issue a warning in connection 0 the accuracy

) === o of 3, . Itis incorrect to think of Eq(33) as aO(g“) expres-

in the combinatiorey, + ¢, ,— &y . Therefore, it is conve- _ . .

nient to introd tﬁ ntﬁ q sion forthe physical electroself-energy. Indeed, the physi-
entto oduce the quantity cal electron Green’s functiof27) already contains all orders

of g entering though the quasiparticle renormalizatérand

" b*s(et —Eé+k—§¢+p+§é)_ renormalized transverse hoppiaglt is necessary to remem-
(2m) ber that our variational approach is uncontrollable approxi-
(32 mation. It lacks a small parameter controlling the quality of

With this definition the self-energy can be compactly writtenthe results. Therefore, it is not clear how accurate expression

d?qd?k

vi(si.p)=f

as follows: (33 is. .

In Ref. 2 the self-energy was evaluated numerically for

5 2 the system with infinite transverse dimensions. However,
> )= __9 those calculations are more complicated technically and do

LU w,p,p 870 Py > i :
F 16mvE not give an analytical answer for the self-energy.
Xf det v (e',p)(io—vep—&") IV. PHASE DIAGRAM

4%2 In Sec. Il we derived the low-energy effective Hamil-

xIn _ (33 tonian for the quasiparticles. Now we apply mean-field

w?+ (vep +et)? theory to obtain the phase diagram of the effective Hamil-

, ) ) ] tonian. The experimentally observable phase diagram for the
The Green's function of the physical electron §&(iw physical electrons coincides exactly with that of the quasi-

+vepj—&-—3%) "% Note that the logarithmic divergence particles. To prove this let us calculates! yr;) for T
of the self-energy, a hallmark of the Fermi-liquid picture .

breakdown in the TL model, is capped in the presence of the

transverse hopping. This justifies the use of perturbation 1

theory. f e =— (W), (@ T(Osi+P=) g iV (O~ D)
By analytically continuing Eq(33) it is possible to calcu- (Wivro §< LR )>

late the retarded self-enerdy® whose imaginary part is the

— AK—1yypt
quasiparticle damping: = Y Wri)w - (36)
2 The physical CDW order parameter is proportional to
y=—Im Eret:g_,,L(_va” p)w?. (34) the CDW expectation value of the quasiparticles. Similar
8v2 formulas can be obtained for other order parameters.

For example, (¢ )y = KW [ Whhy and (yf vk

- AR e =W Wwl)y. Therefore, we can determine the phase
1/t. This gives usy=(g/ve)“w?/t. On the mass shetb  diagram of Eq(1) by mapping the phases of the Hamiltonian
=—vgp|+ e, the expression fory becomes: (13).

The transverse density of states can be estimated*as
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We consider four order parameters. One is the charge- 1 IN(20 AT) if T>T,=C%,
density wave o F ’

X - - (46)
2mE | In(2ueAlty) if  T<t,=%,.

~ .t
paii =V Vri 37 The cDW transition temperature is derived by equatigg (

and there are three types of the superconducting order: ~ +Z.92k.)x and unity. Fort,=0 it is
A“'I] (\I’ R]— T'\I’Ei) (38) Té:O[%W“UFAeXF{_27TUF/(g+ZL92kF)]- (47)
If T,>0 the transition temperaturEcpy, becomes smaller
Ry=w] Wk (39  than T(CO,%W.~It vanishes whert,=T{),,. That is, exponen-
. tially small t, is enough to destroy the CDW.
The in-chain potential energy can be rewritten in termg of  \what happens after the CDW is destroyed depends on the
andA, in the following manner: sign of gg.. If gs>0 the ground state is superconducting.
Otherwise, it is the Fermi liquid. We can perform the same
gW VLWV ri= —gpaiphi=9A5Ag . (40  type of analysis as above for the CDW. The superconduc-
tivity is rather insensitive to the nesting properties of the
Fermi surface. The susceptibility foA, is equal to

(1/2mavg)In(2ueA/T), where « is a constant of order of
unity. The critical temperature is found to be

The exchange interaction can be expressed as

asz(q’Ii‘I’Ri‘I’TR,-\I’LJ—+H.C.)

_= ~ ~t ~
=2k (PakgiPar+H-C) ToxvpAexp —2mave 1gs), (48)

:2§2kF(5_ijA’[”_AHJ.A‘LH)_ (41)  if gsc>0. Even whengy <g, the effective couplinggs.
may be positive provided that the in-chain interaction is re-

Fina”y, a part of the transverse forward Scattering, WhiChpu|Sive (/C< 1) and the electron hopp|ng anisotropy param-
describes the interaction between the fermions of differenf, . UA/t) is large:

chiralities, is

>=2>1. (49

uA
go(q’zi‘l’u‘l’gej‘l’m*"I’Ei‘PRi\I’L\I’Lj) §2K‘2>£®(
2ke

(2-2K)/(1- )
Ok, t )

=2go(A ;AT +A ;AT ). 42
Go(A+ijA % i) 42 For the system in the intermediate-coupling regime this con-

The part of the forward scattering which accounts for thedition is likely to be satisfied.
interaction between the fermions of the same chirality cannot It is interesting to note that the external pressure under-
be expressed in terms of these four order parameters. mines not only the CDW but the superconductivity as well.

The effective coupling for the CDW is always larger than under growing pressure the anisotropy paramatev/() de-
the effective coupling for the superconducting order paramcays. The superconducting transition temperature decreases

eterA, : as the anisotropy decreases. At pressure higher than some
critical value the conditiort49) is no longer satisfied. In this
9cow= Isc: (43)  region the superconductivity is unstable and the ground state
where is the Fermi liquid.

The qualitative phase diagram is presented in Fig. 2. It
shares two remarkable features with the phase diagram of the

Yeow=9+ 21 G2k (44) organic Q1D superconductotsi) the density wave phase
and superconductivity have a common bounddii); the
gsc:§2kF_gO:§2K_292k,:_90a (450  superconducting transition temperature vanishes at high
pressure.
andz, is the coordination number for a chain. Thus,Tat Our order parametek , deviates from the more common

=0 the system with perfect nesting is always in the CDerrsmn R,. The order parameteh . was proposed quite

phase with thed , order-parameter phase being metastabl&some time agd.Recently, this suggestion found further sup-
(gs=>0) or unstable §.<0). Other order parameterd,, port in the renormalization-group calculations of Ref. 3. The

andA _, are unstable. advantage ofA. stems from the fact that by having two
When external pressure is applied the amplitagldor  electrons of a Cooper pair on different chains we avoid in-

hopping to the next-to-nearest chain begins to grow andreasing in-chain potential energy.

spoils the Fermi-surface nesting. This undermines stability of The origin of the superconducting phase in our system is

the CDW and drives the transition temperature to Zdio.  an interesting question worth discussing in more detail. In a

deed, in the latter reference the following simple estimate foconventional BCS model the superconductivity is stable be-

the density wave susceptibility was obtained: cause it minimizes the potential energy of the electron-
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ﬂT (S’COC w%M1/2m3/2qu _ aM—l/Zm—3/29—l)' (58)

where wp is Debye frequency and>0 is a constant of
order unity. The inequalitie€s3) and (54) immediately fol-

low from the expressions above. These inequalities mean
that it is the electron-electron attraction which triggers BCS
superconductivity. This fact is very well known in supercon-
ductivity mean-field theory.

CDW However, in the system with strong repulsion, such as
Q1D or highT. materials, it is difficult to construct a mean-
field superconducting phase which lowers the interaction en-
ergy. Our model for which we develop the consistent many-

SC body approach can be used to discuss this issue beyond the
— mean-field approximation.
p For our model it is easy to determine that the transverse
FIG. 2. Qualitative phase diagram of our model. Solid ”nesforwa_rd-scattering energy is increased 9“_" the _exchange_ en-
show second-order phase transitions into the CDW and the supe?—rgy is decreased by the superconductivity. This result is a

conducting phase. Dashed line shows the first-order transtion b&lirect consequence of Eqsl2) and (41). .
tween the CDW and the superconductivity. Contributions of other terms can be found with the help of

the Feynman formula. The condensation energy density is of
electron interaction. We can make this claim rigorous bythe order of—TZ/vg. Thus, differentiating the critical tem-
considering the following derivation. BCS Hamiltonian perature(48) with respect to some coupling constant of Eq.
density (1) we can determine how a ground-state energy contribution

of a given term is modified by the presence of the supercon-

’7 .. . . e .
p ductivity. A derivative of the critical temperature with respect
HBCS=T+ V= El;, 1/;’[,( om M| Yo~ aulwly to a parametex is equal to
(50 d ~ Ug 0 Vg
consists of two terms: kinetic-energy densffiand potential- e~ Te &InA + g_scgmgsc %Tcg_scgmgsc’
energy density). At zero temperature the superconducting (59)

state energy densit§s.=(H)s. is smaller than the normal

energy density,=(H),. This condensation energy density Provided thatgs.<ve. Combining this result with Eq45)
we conclude that in the superconducting state the transverse

E=En—Es VT2, (51)  hopping energy is higher:
22 _
v=m "MuE, ve=y2u/m (52 <—t > (wgi¢pj+H.c.)> —< -ty (z/;giij+H.c.)>
is entirely due to depletion of interaction in the supercon- p(.1) n p(i.D) sc
ducting state, 2 (2K-2)I(1-6)
-2 g L —go| <0 (60)
<V>n_<v>sc>o- (53 Osc 9t 2 UA 0

Atstfor the kinetic energy it grows in the superconductingang the in-chain potential energy is lower than in the normal
state:

state:
- <0. 54

(Dn=(Dise 64 QUL kirn— QUL L i) s
To prove this we use the Feynman formula which allows to o~
calculate the ground-state expectation value of any ®fm Te92x, t) o[2K-2 0 61

H i Ha D os = | — | Y/

of the Hamiltonian density: 9 o Morn a9l 1-0 (62)

C<O>:Cﬁfgs' (55  since both InfuA) and the derivative with respect tpare

Jc negative.

where& is the ground-state energy density. Therefore We have proven that in our case the superconductivity is

triggered by the electron-electron repulsion. This result is
9 quite unexpected. It has a many-body nature and cannot be
<V>n_<v>sc:g£‘€m (56)  obtained within a mean-field theory for Hamiltonidm).
This mechanism of superconductivity is very similar to the
Kohn-Luttinger proposal. The classical Kohn-Luttinger
&, (57) ~ mechanism predicts an extremely low critical temperature. In

J
<T>n_<7>sc:m ! . . .
d our case, however, the effective coupling constgytis a

mfl
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nonanalytical function of the bare parameters. As a conseFhe quantityA cpy has the meaning of the excitation gap due
guence, our transition temperatu#8) does not have to be to CDW order. This gap, together with the transition tem-
small. perature, can be found by solving the last equation:

V. STRONG-COUPLING REGIME (gsz> e
- Teow*Acpw*UA (68)
We have seen above that £>1 then A is zero. This
means that quasiparticles are not formed and it is more CON: . \ariational enerav is
venient to treat the system in terms of the TL boson only. 9y
The bosonized Hamiltoniafll) has the form v )
EY/(LN, ) A&pn/u. (69
u
H i1D=§[IC(V®i)2+ K-Y(Vd;)?], (62 These results are correct wheft couples only those chains

which are nearest neighbors. The next-to-nearest-neighbor
coupling frustrates the CDW phase. We do not discuss the
Gk, e effect of the frustration in this paper.
(277)2003 4m(i—dj). (63) Finally, let us discuss the crossover from a strong-to
intermediate-coupling regime. Such a crossover occurs when
In this formula both the transverse hopping term which isthe intermediate-coupling Fermi-liquid energy, Efj6), be-
irrelevant in the RG sense and the forward-scattering ternsomes equal to the strong-coupling CDW energy, @&4):
which is marginal are omitted. Their effect is small as com-

1 _
ij—

pared with that of the strongly relevant exchange interaction, t \ VA9 g, \ V@20
T2 2 F
Eq (63) t /UFOCACDWIU or (| — oc T .
The relevance of the exchange interaction indicates that at uA
low temperature the system freezes into a state with the finite (70

expectation valué®d;)# 0. This phase is the CDW. It can be _, . . ) .
easily proven by bosonizing the CDW order parameter:ThIS equation def|ne9C(t,g2kF)<1 at which the crossover

l//Ll//Ri“(ZWa)fleXpG\/E@i)- The finite expectation value takes_ plaqe. At smalb< 061 the system beha_wes like the
of the field® is inherited by the CDW order parameter. Fermi liquid whose properties we discussed in the previous

We describe this regime with the help of our variational SECtions. Whem= 6. the expressiofi16) is no longer appli-

function. Sincét =0 ite th funci cable: the necessary requirement for smallness of the energy
wave function. Sincel =U one can write the wave function 5 s ciated with symmetry breaking is violated. The expres-
in terms of the TL bosonic field only:

sion (69) has to be used instead.
Figure 3 shows how the strong-coupling regime at big
D[22 64 is replace(_:i.by the intermediate-coupling regime at smaller
oxQ = | Di| 4o} ©4 The transition temperature of the the CDW HE§8) drops

van= T ——;
van =
a > k>0, 2770'5

This expression is a slight generalization of Efl): in the . e e o ey O B
latter equation the parametesg=K/4/k|. Here we do not
fix oﬁ. Instead, they are determined variationally. The varia-
tional energy is

Adk( K 2k205>

EV/(LN,)=u f —|—+
( J') 0 2 80'5 K
E‘
A
— Qo Aexp —8 fo dkoZ}. (65
Minimizing this energy with respect taﬁ we find L : 4
I | N i
2 ’Cu (66) —’// I e —
(Tk: 20,2 ] e e b b b e b
4.\u“k +AC7DW 5 1
]
uA de ~
AéDW:87ngkFICuA2eX _2/Cf —— FIG. 3. The energy scale associated with transverse hopping
0 Ve“+AGpw decreases whe#f grows. The CDW transition temperatuligpw
A 2K increases a® grows. At 6. where both energy scales are of the
% oy uA2 cow (67) same order the crossover from intermediate to strong coupling oc-
F uA curs.
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sharply and becomes exponentially small, &), asf gets  Green’s functions beyond the RG using a standard diagram-
smaller tharg, . This diagram was discussed in Ref. 10 for amatic technique. As an example we calculated the lowest-
similar model. order self-energy for the one-particle propagator.

Depending on the strength of the in-chain interaction and
the anisotropy the system may be in one of three regimes:
strong, intermediate, or weak coupling. In the strong-

We propose in this paper the variational wave function forcoupling regime quasiparticles are not formed and the sys-
a Q1D system. The key ingredient of our procedure is theem is better described in terms of TL bosons. In weak- and
splitting of TL bosons into high-momentum and low- intermediate-coupling regimes the low-lying degrees of free-
momentum modes. While high-momentum modes are irdom are quasiparticles. The ground state of these fermions
their ground state the low-momentum modes form quasipamay be either a Fermi liquid, the superconductivity, or a
ticles which delocalize in the transverse directions. CDW. The phase diagram of our Q1D model looks very

Our method can be viewed as a variational implementasimilar to that of organic Q1D superconductors.
tion of the lowest-order RG scaling near a TL liquid fixed  Unlike the classical BCS superconducting phase, the one
point. When the transverse hopping amplitude becomes ah our model is stabilized without any attraction between the
the order ofuA the scaling must be stopped. The renormal-electrons. It is similar to Kohn-Luttinger superconductivity.
ized Hamiltonian should be treated as the Hamiltonian foHowever, our effective coupling constant is larger than that
the quasiparticles. of Kohn-Luttinger. This guarantees that the critical tempera-

Our method gives us the possibility to compute differentture in our model is not unacceptably small.

VI. CONCLUSIONS
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