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Variational description of the dimensional crossover in an array of coupled
one-dimensional conductors

A. V. Rozhkov
Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road,

Piscataway, New Jersey 08854, USA
~Received 13 March 2003; published 22 September 2003!

Variational wave function is proposed to describe electronic properties of an array of one-dimensional
conductors coupled by transverse hopping and interaction. For weak or intermediate in-chain interaction the
wave function has the following structure: Tomonaga-Luttinger bosons with momentum higher than some

variational quantityL̃ are in their ground state while other bosons~with uku,L̃) form kinks — fermionlike
excitations of the Tomonaga-Luttinger boson field. The nature of the ground state for these quasiparticles can
be determined by solving a three-dimensional effective Hamiltonian. Since the anisotropy of the effective
Hamiltonian is small the use of mean-field theory is justified. For repulsive interaction possible phases are
density wave andp-wave superconductivity. Our method allows us to calculate the low-energy part of different
electronic Green’s functions. In order to do this it is sufficient to apply standard perturbation theory technique

to the effective Hamiltonian. When the in-chain interaction is strongL̃ vanishes and no fermionic excitation is
present in the system. In this regime the dynamics is described by transversally coupled Tomonaga-Luttinger
bosons.

DOI: 10.1103/PhysRevB.68.115108 PACS number~s!: 71.10.Pm, 74.20.Mn, 71.10.Hf
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I. INTRODUCTION

The adequate description of quasi-one-dimensional~Q1D!
conductors remains an unresolved theoretical challenge.
perimentally, at low temperature such systems either occu
three-dimensional anisotropic Fermi liquids or they free
into a three-dimensional~3D! phase with broken symmetry.1

At high temperature their transport properties show ma
unusual features generally attributed to one-dimensio
electron anisotropy. This crossover from one to three dim
sions is a core problem of Q1D physics.

It is possible to look at the issue of the dimensional cro
over from another angle. At high temperature the proper
ementary excitations of the system are Tomonaga-Luttin
~TL! bosons. When the temperature is low and the inter
tion is weak enough the elementary excitations are fermio
Therefore, to describe the system at different energy sc
one needs to explain how high-energy bosons ‘‘cross ov
into low-energy fermions. Obviously, this is a nontrivial tas

In this paper we develop a variational approach wh
accomplishes this goal. To explain the structure of the va
tional wave function let us first consider a one-dimensio
conductor described by a TL Hamiltonian. The ground st
of this system is the ground state of TL bosons with
momentak. Let’s turn on the transverse hopping and cou
N' of these conductors into a 3D array. In this situation
system will attempt to lower its ground-state energy ev
further by taking advantage of the transverse hopping ene
However, in order to participate in hopping the bosons h
to form many-body fermionlike excitations which have a
nite overlap with the physical fermion.

To accommodate for the possibility of having two types
excitations, bosonic and fermionic, we device our variatio
state in the following fashion. We introduce an intermedi
cutoff L̃,L, whereL is the cutoff of the 1D Hamiltonian
0163-1829/2003/68~11!/115108~9!/$20.00 68 1151
x-
as
e

y
al
n-

-
l-
er
c-
s.
es
r’’
.
h
-
l
e
l
e
e
n
y.
e

f
l

e

All TL bosons whose energy and momenta are high (uku
.L̃) remain in their ground states. The small momen
bosons (uku,L̃) form fermionlike excitations which are de
localized in a transverse direction. To distinguish betwe
the physical electrons and these fermionic excitations we
fer to the latter as quasiparticles. In other words, the w
function can be factorized into two parts. The high-ene
part corresponds to the ground state ofuku.L̃ TL bosons,
and the low-energy part corresponds to the 3D anisotro
Fermi liquid composed of the quasiparticles.

The variational energy is minimized by adjustingL̃. The
energy of quasiparticle transverse hopping is a decrea

function of L̃. At the same time, the in-chain energy grow

whenL̃ grows. The trade off between the transverse kine
energy and the in-chain potential energy determines

value ofL̃.

If the optimal value ofL̃ is nonzero the low-energy exci
tations of the system are the quasiparticles. Properties o
fermionic quasiparticle state depend on the quasiparticle
fective Hamiltonian. It arises naturally after high-ener
bosons are ‘‘integrated out.’’ In this effective Hamiltonia
the anisotropy is insignificant. Standard many-body te
niques such as perturbation theory and mean-field theory
be used to calculate Green’s functions and map out the q
siparticle phase diagram. Since the physical electron and
quasiparticle have finite overlap there is a direct corresp
dence between the broken-symmetry phases of the effec
Hamiltonian and the physical system. We will show that po
sible phases for spinless Q1D electrons with repulsion
the charge- density wave~CDW! and the superconductivity
with the Cooper pairs formed of the electrons on neighbor
1D chains.

As the in-chain interaction grows the parameterL̃ ap-
©2003 The American Physical Society08-1
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proaches zero. WhenL̃ vanishes the fermionic excitation
cease to exist. The system is described by a 3D TL bo
state. In such a regime the ground state is a CDW.

Our approach allows us to obtain several analytical
sults. With the help of the method it is possible to derive
formula for quasiparticle damping near the Fermi surfa
Also, we evaluate transition temperatures for the CDW a
superconductivity. The knowledge of these temperatures
lows us to map out the phase diagram of our system.
though these quantities have been obtained using diffe
numerical techniques2,3 the analytical expressions have n
been reported to our best knowledge.

The paper is organized as follows. In Sec. II we determ
L̃ and derive the effective Hamiltonian for the fermion
Section III contains the evaluation of the single-partic
Green’s function. Different phases of the effective Ham
tonian~and the physical system! are mapped in Sec. IV. Th
regime whereL̃50 is discussed in Sec. V. We give ou
conclusions in Sec. VI.

II. VARIATIONAL PROCEDURE

We start our analysis by writing down the Hamiltonian f
the array of coupled 1D conductors:

H5E
0

L

dxH, ~1!

H5(
i

H i
1D1(

i , j
H i j

' , ~2!

H i
1D5 ivF~cLi

† ¹cLi2cRi
† ¹cRi!1gcLi

† cLicRi
† cRi , ~3!

H i j
'52t~ i 2 j ! (

p5L,R
~cpi

† cp j1H.c.!

1g2kF
~ i 2 j !~cLi

† cRicR j
† cL j1H.c.!

1g0~ i 2 j !~cLi
† cLi1cRi

† cRi!~cL j
† cL j1cR j

† cR j!,

~4!

with the real-space cutoffa5p/L. The fermionic fieldcpi
†

creates a physical electron with the chiralityp5L(1) or p
5R(2) on chaini. Transverse interaction constantsg0 ~for-
ward scattering! andg2kF

~exchange! are positive. The terms

proportional tog0 andg2kF
account for the Coulomb repul

sion of the electrons on different chains. It is further assum
that

g.g0.g2kF
. ~5!

Now we use the Abelian bosonization prescription4

cp
†~x!5~2pa!21/2hpeiA2pwp(x)

5~2pa!21/2hpeiAp[Q(x)1pF(x)] ~6!

to express the electron Hamiltonian in terms of boso
fields. In the above formulahp are Klein factors,Q is the TL
boson field, andF is the dual field. The bosonized one-cha
Hamiltonian is
11510
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H 1D@Q,F#5
vF

2
@ :~¹Q!2:1:~¹F!2:#

1
g

4p
@ :~¹F!2:2:~¹Q!2:#. ~7!

The symbol :. . . : denotes normal ordering of TL boso
operators with respect to the non-interacting (g50) ground
state.

Let us introduce our main variational paramet
L̃,L. We use it to split TL boson fields into fast (L

.uukiu2kFu.L̃, subscript ‘‘. ’’ ! and slow (uukiu2kFu,L̃,
subscript ‘‘, ’’ !modes:

H 1D@Q,F#5H ,
1D1H .

1D

5H 1D@Q, ,F,#1H 1D@Q. ,F.#. ~8!

We define the fermionic fieldCp
†(x) with the help of Eq.~6!

in which a is substituted byã5p/L̃ and Q, and F, are
placed instead ofQ andF. The fieldC is our quasiparticle
discussed in Introduction. Using this field we refermioni
H ,

1D . The result is the same as that of Eq.~3! with Cp

instead ofcp . The transverse terms~4! can be easily rewrit-
ten if one observes that the physical fermion is simply

cp
†5Aã/aCp

†eiAp(Q.1pF.), ~9!

and that the fermionic and bosonic parts in this definiti
commute with each other. Therefore,

H i j
'52~ ã/a!t~ i 2 j !

3 (
p5L,R

$Cpi
† Cp je

iAp[(Q. i2Q. j )1p(F. i2F. j )]1H.c.%

1~ã/a!2g2kF
~i2j!@CLi

† CRiCRj
† CLje

iA4p(F. i2F. j )1H.c.#

1g0~ i 2 j !F ~CLi
† CLi1CRi

† CRi!~CL j
† CL j1CR j

† CR j!

1
1

p
¹F. i¹F. j G . ~10!

Our variational wave function has the form

uvar&5u$Cpi%&)
j

u0. j&

5u$Cpi%& )
j ,k.L̃

~2uku/pK!1/2exp$2ukuuF jku2/K%.

~11!

It is a product of some many-body stateu$Cpi%& composed
of the quasiparticlesCpi and the ground statesu0. j& of
H 1D@Q. j ,F. j #.

Variational ground-state energy is found by minimizin
the expression
8-2
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VARIATIONAL DESCRIPTION OF THE DIMENSIONAL . . . PHYSICAL REVIEW B 68, 115108 ~2003!
EV5N'L
uu

4p
~L̃22L2!1^$Cpi%uS E

0

L

dxH effD u$Cpi%&,

~12!

H eff5(
i

ivF~CLi
† ]xCLi2CRi

† ]xCRi!1gCLi
† CLiCRi

† CRi

2(
i j

(
p5L,R

t̃ ~ i 2 j !~Cpi
† Cp j1H.c.!

1(
i j

g̃2kF
~ i 2 j !~CLi

† CRiCR j
† CL j1H.c.!

1g0~ i 2 j !~CLi
† CLi1CRi

† CRi!~CL j
† CL j1CR j

† CR j!,

~13!

t̃ 5zut, g̃2kF
5z2K22g2kF

, z5L̃/L. ~14!

The number of chains isN' . The TL liquid parameterK, the
electron anomalous dimensionu, and boson velocityu are
defined in the usual way:

K5A2pvF2g

2pvF1g
,

u5
1

2
~K1K 2122!,

u5
1

2p
A~2pvF2g!~2pvF1g!. ~15!

The first term of Eq.~12! has a purely one-dimensional or
gin. The second term is the energy of the quasipart
ground state.

Observe that the parameters of the effective Hamilton
t̃ /L̃ and g̃2kF

are connected to the corresponding bare
rameters as if they are subject to the renormalization-gr
~RG! flow in the vicinity of the TL fixed point. The explana
tion for this fact is quite obvious: our method of deriving th
effective Hamiltonian is equivalent to the tree level RG sc
ing near the TL fixed point.

If the transversal interactions are small (g0 andg̃2kF
both

less thent̃/L̃) they can be neglected. In addition, we negle
corrections to the energy due to spontaneous symm
breaking. The latter assumption works whenu!1. Its valid-
ity away from this point is discussed at the end of Sec.
Under these two conditions the expression~12! becomes

EV/~LN'!'
uu

4p
~z221!L22

2

pvF
z2u(

i
@ t~ i !#2.

~16!

This variational energy attains its minimum at

z5H ~8 t̄ 2/uvFL2!1/(222u) if u,1,

0 if u.1,
~17!

t̄ 25(
i

@ t~ i !#2. ~18!
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We have to remember, however, that value of the numer
coefficient in Eq.~17! is not accurate. This is due to the fa
that the second term in Eq.~16! is calculated under assump
tion t̃ ,L̃. When L̃ gets smaller the coefficient in front o
this term acquires someL̃ dependence. We neglect the co
rections due to this dependence since they are less sing
~at smallL̃) than the second term of Eq.~16!. These correc-
tions modify the result forz quantitatively, therefore, it is
more appropriate to write

z}S t

ūL
D 1/(12u)

, ~19!

ū5AuvF. ~20!

Using this formula it is easy to show that

t̃}ūL̃}tS t

ūL
D u/(12u)

. ~21!

This means that foru,1 the effective transverse hoppin
amplitudet̃ of the quasiparticleC is of the same order as th
quasiparticle longitudinal cutoff energyvFL̃. Therefore, due
to small anisotropy, the Hamiltonian for the quasipartic
~13! can be treated within the framework of usual mean-fi
theory and perturbation theory. Our calculations, in agr
ment with renormalization-group analysis,5,6 show that for
u,1 there is the crossover energy scalet̃ above which the
system is equivalent to a collection of decoupled cha
while below, the transverse hopping becomes important.

Depending on the interaction and the anisotropy the
gion u,1 can be further split into two parts. The transver
hopping contribution to the variational energy@second term
of Eq. ~16!# can be rewritten as follows:

2

pvF
t̃ 2}

2

pvF
t2expF2

2u

12u
lnS ūL

t
D G . ~22!

If the argument of the exponential function is small the e
ponential can be replaced by the first few terms of the Tay
series. In such a situation the contribution of the in-ch
interaction to the total energy, Eq.~16!, can be calculated
perturbatively. One-dimensional effects are virtually uno
servable. This is the weak-coupling regime.

When the anisotropy and the in-chain interaction a
strong the exponential cannot be approximated accuratel
the low-order Taylor expansion. The system is in t
intermediate-coupling regime now. In order to obtain a re
able answer involving such a regime it is not enough to ap
finite-order perturbation theory. Our method converts
system of physical electrons with intermediate coupling in
the system of quasiparticles with weak coupling. The lat
can be studied by standard perturbation theory.

As a function of the bare transverse hopping amplitudt
the crossover from weak coupling to intermediate coupl
occurs at
8-3
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A. V. ROZHKOV PHYSICAL REVIEW B 68, 115108 ~2003!
t* }ūLexpS 2
12u

u D . ~23!

For the weak in-chain interactionu!1. When this is the case
it is necessary to have exponentially small transverse h
ping amplitudet in order to observe nontrivial Q1D effects

Whenu.1 the effective cutoff momentumL̃ is zero. The
quasiparticles are not formed. The system can be viewed
collection of TL bosons weakly coupled by the transve
exchange interaction. The possibility of such a state was
pointed out by Wen.7 It is natural to call such a regime stron
coupling. Section V is reserved for discussion of strong c
pling.

III. SINGLE-ELECTRON GREEN’S FUNCTION

The calculation of different propagators for a Q1D syst
is open for question. Our approach allows for easy eva
tion of the low-energy part of Green’s functions in th
intermediate-coupling regime. The high-energy parts of Q
Green’s functions are believed to coincide with the Gree
functions of the TL model. The latter have been discus
extensively in the literature.

The Matsubara propagator of the physical electronic fi
cL is

GL~x,R' ,t!5
1

z
^T $CLi~x,t!CL j

† ~0,0!%&C

3^T $exp~2 iAp[Q. i(x,t)1F. i(x,t)] !

3exp~ iAp[Q. j (0,0)1F. j (0,0)]!%&. ,

~24!

R'5Ri2Rj . ~25!

The notation̂ . . . &C stands for averaging with respect to th
quasiparticle ground stateu0C&. Likewise,^ . . . &. stands for
the expectation value with respect to theu0.& state.

The bosonic part of this formula can be immediately c
culated:

1

z K T $exp~2 iAp(Q. i(x,t)1F. i(x,t))

3exp~ iAp(Q. j (0,0)1F. j (0,0))!%&.

5S G L
1D

G̃L
1D D d i j 1zu~12d i j !. ~26!

Here G L
1D (G̃L

1D) is the Matsubara Green’s function of th

Tomonaga-Luttinger model with the cutoffL (L̃).
Our variational wave function does not take into acco

correlations betweenF. i(Q. i) and F. j (Q. j ) if iÞ j .
However, the above formula is correct at least for larget

.1/ūL̃ or small frequencyv,ūL̃ where those correlation
are not important. In such a limit the boson part of Eq.~24!
is a constant equal tozu.

Once the bosonic propagator is found it is necessary
calculate the quasiparticle Green’s function. This can
11510
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done with the help of a standard diagrammatic technique
we neglect interactions between the quasiparticles the sin
electron Green’s function is

GL~ iv,pi ,p!5
z u

iv1vFpi2 «̃p
'

, ~27!

where the renormalized transverse kinetic energy is given

«̃p
'522zu(

i
t~ i !cos~p•Ri !. ~28!

This result coincides with the Green’s function derived
the RG.6,2

Our method allows to improve the above formula for t
single-electron propagator by taking interaction between
quasiparticles into account. Neglecting~i! symmetry-
breaking which becomes important for very small freque
cies only and~ii ! the transverse couplingsg0 and g̃2kF

@see
Eq. ~5!# one can identify three second-order diagrams c
tributing to the single-quasiparticle self-energy~Fig. 1!. They
are @Fig. 1~a!# scattering on the polarization bubble of th
same chirality as the incoming quasiparticle,@Fig. 1~b!# scat-
tering on the polarization bubble of the opposite chirali
and @Fig. 1~c!# the vertex correction. Figures 1~a! and 1~c!
are identical in magnitude and opposite in sign. Thus, F
1~b! is the only one that needs to be evaluated.

First, we calculate the quasiparticle polarization bub
PR ,

PR~ iV,ki ,k!5E
qiq

d~vFqi1 «̃q
'!

vFki1 «̃q1k
' 2 «̃q

'

iV2vFki2 «̃q1k
' 1 «̃q

'
,

~29!

where the notation*qiq
. . . 5(2p)23b2*dqid

2q . . . is
used. The symbolb denotes the transverse lattice consta
The self-energy is

FIG. 1. Lowest-order contribution to the self-energy of the qu
siparticle.
8-4
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SL~ iv,pi ,p!52T(
V

E
kik

GL~ iv1 iV,pi1ki ,p1k!PR~ iV,ki ,k!. ~30!

After summing overV, the following expression for the self-energy is derived:

SL52g2E
kik
E

qiq
~vFki1 «̃k1q

' 2 «̃q
'!d~vFqi1 «̃q

'!
nF~vFki1 «̃k1q

' 1 «̃q
'!2nF~vF~ki1pi!1 «̃k1p

' !

iv12vFki1vFpi2 «̃q
'1 «̃k1q

' 2 «̃k1p
'

1g2E
kik
E

qiq

~vFki1 «̃k1q
' 2 «̃q

'!d~vFqi1 «̃q
'!

sinh$~vFki1 «̃k1q
' 1 «̃q

'!/T%~ iv12vFki1vFpi2 «̃q
'1 «̃k1q

' 2 «̃k1p
' !

. ~31!
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When T50 the first term can be further simplified. Th
Fermi distributionnF becomes the step function. In such
situation it is possible to perform integration overki andpi
exactly. The second integral in the above equation app
due to the relation between the Fermi distributionnF and the
Bose distributionnB : nB(v)1nF(v)51/sinh(v/T). At zero
temperature this integral vanishes. In the resultantT50 ex-
pression forSL the transverse kinetic energy«̃' always enter
in the combination«̃q1k

' 1 «̃k1p
' 2 «̃q

' . Therefore, it is conve-
nient to introduce the quantity

n'~«',p!5E d2qd2k

~2p!4
b4d~«'2 «̃q1k

' 2 «̃k1p
' 1 «̃q

'!.

~32!

With this definition the self-energy can be compactly writt
as follows:

SL~ iv,pi ,p!5
g2

8pvF
pi2

g2

16pvF
2

3E d«'n'~«',p!~ iv2vFpi2«'!

3 ln
4L̃2

v21~vFpi1«'!2
. ~33!

The Green’s function of the physical electron iszu( iv
1vFpi2 «̃'2SL)21. Note that the logarithmic divergenc
of the self-energy, a hallmark of the Fermi-liquid pictu
breakdown in the TL model, is capped in the presence of
transverse hopping. This justifies the use of perturba
theory.

By analytically continuing Eq.~33! it is possible to calcu-
late the retarded self-energyS ret whose imaginary part is the
quasiparticle damping:

g52Im S ret5
g2

8vF
2

n'~2vFpi ,p!v2. ~34!

The transverse density of states can be estimated asn'

}1/t̃ . This gives usg}(g/vF)2v2/ t̃ . On the mass shellv
52vFpi1 «̃p the expression forg becomes:
11510
rs

e
n

g5
g2

8
n'~2vFpF ,p!~pi2pF!2}

g2

t̃
~pi2pF!2 ~35!

where (pi2pF) is the distance from a given point (pi ,p) of
the Brillouin zone to the Fermi surfacevFpF5 «̃p along thex
direction.

We need to issue a warning in connection to the accur
of SL . It is incorrect to think of Eq.~33! as aO(g2) expres-
sion for the physical electronself-energy. Indeed, the phys
cal electron Green’s function~27! already contains all order
of g entering though the quasiparticle renormalizationzu and
renormalized transverse hopping«̃. It is necessary to remem
ber that our variational approach is uncontrollable appro
mation. It lacks a small parameter controlling the quality
the results. Therefore, it is not clear how accurate expres
~33! is.

In Ref. 2 the self-energy was evaluated numerically
the system with infinite transverse dimensions. Howev
those calculations are more complicated technically and
not give an analytical answer for the self-energy.

IV. PHASE DIAGRAM

In Sec. II we derived the low-energy effective Ham
tonian for the quasiparticles. Now we apply mean-fie
theory to obtain the phase diagram of the effective Ham
tonian. The experimentally observable phase diagram for
physical electrons coincides exactly with that of the qua
particles. To prove this let us calculatêcLi

† cRi& for T

!ūL̃:

^cLi
† cRi&5

1

z
^CLi

† CRi&C^eiAp(Q. i1F. i )e2 iAp(Q. i2F. i )&.

5zK21^CLi
† CRi&C . ~36!

The physical CDW order parameter is proportional
the CDW expectation value of the quasiparticles. Simi
formulas can be obtained for other order paramete
For example,^cLi

† cRi
† &5z1/K21^CLi

† CRi
† &C and ^cLi

† cR j
† &

5zu^CLi
† CR j

† &C . Therefore, we can determine the pha
diagram of Eq.~1! by mapping the phases of the Hamiltonia
~13!.
8-5
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A. V. ROZHKOV PHYSICAL REVIEW B 68, 115108 ~2003!
We consider four order parameters. One is the cha
density wave

r̂2kFi5CLi
† CRi ~37!

and there are three types of the superconducting order:

D̂6 i j 5
1

2
~CLi

† CR j
† 6CL j

† CRi
† !, ~38!

D̂0i5CLi
† CRi

† . ~39!

The in-chain potential energy can be rewritten in terms or̂

and D̂0 in the following manner:

gCLi
† CLiCRi

† CRi52gr̂2kFi r̂2kFi
† 5gD̂0i

† D̂0i . ~40!

The exchange interaction can be expressed as

g̃2kF
~CLi

† CRiCR j
† CL j1H.c.!

5g̃2kF
~ r̂2kFi r̂2kF j

† 1H.c.!

52g̃2kF
~D̂2 i j D̂2 i j

† 2D̂1 i j D̂1 i j
† !. ~41!

Finally, a part of the transverse forward scattering, wh
describes the interaction between the fermions of differ
chiralities, is

g0~CLi
† CLiCR j

† CR j1CRi
† CRiCL j

† CL j !

52g0~D̂1 i j D̂1 i j
† 1D̂2 i j D̂2 i j

† !. ~42!

The part of the forward scattering which accounts for
interaction between the fermions of the same chirality can
be expressed in terms of these four order parameters.

The effective coupling for the CDW is always larger th
the effective coupling for the superconducting order para
eter D̂1 :

gCDW.gsc, ~43!

where

gCDW5g1z'g̃2kF
, ~44!

gsc5g̃2kF
2g05z2K22g2kF

2g0 , ~45!

and z' is the coordination number for a chain. Thus, atT
50 the system with perfect nesting is always in the CD
phase with theD̂1 order-parameter phase being metasta
(gsc.0) or unstable (gsc,0). Other order parameters,D̂0

and D̂2 , are unstable.
When external pressure is applied the amplitudet2 for

hopping to the next-to-nearest chain begins to grow
spoils the Fermi-surface nesting. This undermines stabilit
the CDW and drives the transition temperature to zero.8 In-
deed, in the latter reference the following simple estimate
the density wave susceptibility was obtained:
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x}
1

2pvF
3H ln~2vFL̃/T! if T. t̃ 25zut2 ,

ln~2vFL̃/ t̃ 2! if T, t̃ 25zut2 .
~46!

The CDW transition temperature is derived by equatingg

1z'g̃2kF
)x and unity. Fort̃ 250 it is

TCDW
(0) }vFL̃exp@22pvF /~g1z'g̃2kF

!#. ~47!

If t̃ 2.0 the transition temperatureTCDW becomes smaller
than TCDW

(0) . It vanishes whent̃ 2}TCDW
(0) . That is, exponen-

tially small t̃ 2 is enough to destroy the CDW.
What happens after the CDW is destroyed depends on

sign of gsc. If gsc.0 the ground state is superconductin
Otherwise, it is the Fermi liquid. We can perform the sam
type of analysis as above for the CDW. The supercond
tivity is rather insensitive to the nesting properties of t
Fermi surface. The susceptibility forD̂1 is equal to
(1/2pavF)ln(2vFL̃/T), where a is a constant of order o
unity. The critical temperature is found to be

Tc}vFL̃exp~22pavF /gsc!, ~48!

if gsc.0. Even wheng2kF
,g0 the effective couplinggsc

may be positive provided that the in-chain interaction is
pulsive (K,1) and the electron hopping anisotropy para
eter (ūL/t) is large:

z2K22.
g0

g2kF

⇔S ūL

t
D (222K)/(12u)

.
g0

g2kF

.1. ~49!

For the system in the intermediate-coupling regime this c
dition is likely to be satisfied.

It is interesting to note that the external pressure und
mines not only the CDW but the superconductivity as we
Under growing pressure the anisotropy parameter (ūL/t) de-
cays. The superconducting transition temperature decre
as the anisotropy decreases. At pressure higher than s
critical value the condition~49! is no longer satisfied. In this
region the superconductivity is unstable and the ground s
is the Fermi liquid.

The qualitative phase diagram is presented in Fig. 2
shares two remarkable features with the phase diagram o
organic Q1D superconductors:1 ~i! the density wave phas
and superconductivity have a common boundary;~ii ! the
superconducting transition temperature vanishes at h
pressure.

Our order parameterD̂1 deviates from the more commo
version D̂0. The order parameterD̂1 was proposed quite
some time ago.9 Recently, this suggestion found further su
port in the renormalization-group calculations of Ref. 3. T
advantage ofD̂1 stems from the fact that by having tw
electrons of a Cooper pair on different chains we avoid
creasing in-chain potential energy.

The origin of the superconducting phase in our system
an interesting question worth discussing in more detail. I
conventional BCS model the superconductivity is stable
cause it minimizes the potential energy of the electro
8-6
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electron interaction. We can make this claim rigorous
considering the following derivation. BCS Hamiltonia
density

H BCS5T1V5(
s

cs
† S p2̂

2m
2m Dcs2gc↑

†c↓
†c↓c↑

~50!

consists of two terms: kinetic-energy densityT and potential-
energy densityV. At zero temperature the superconducti
state energy densityEsc5^H&sc is smaller than the norma
energy densityEn5^H&n . This condensation energy densi

Ec5En2Esc}nTc
2 , ~51!

n5p22m2vF , vF5A2m/m ~52!

is entirely due to depletion of interaction in the superco
ducting state,

^V&n2^V&sc.0. ~53!

As for the kinetic energy it grows in the superconducti
state:

^T&n2^T&sc,0. ~54!

To prove this we use the Feynman formula which allows
calculate the ground-state expectation value of any termcO
of the Hamiltonian density:

c^O&5c
]Egs

]c
, ~55!

whereEgs is the ground-state energy density. Therefore

^V&n2^V&sc5g
]

]g
Ec , ~56!

^T &n2^T &sc5m21
]

]m21
Ec , ~57!

FIG. 2. Qualitative phase diagram of our model. Solid lin
show second-order phase transitions into the CDW and the su
conducting phase. Dashed line shows the first-order transtion
tween the CDW and the superconductivity.
11510
y

-

o

Ec}vD
2 m1/2m3/2exp~2am21/2m23/2g21!, ~58!

where vD is Debye frequency anda.0 is a constant of
order unity. The inequalities~53! and ~54! immediately fol-
low from the expressions above. These inequalities m
that it is the electron-electron attraction which triggers BC
superconductivity. This fact is very well known in superco
ductivity mean-field theory.

However, in the system with strong repulsion, such
Q1D or high-Tc materials, it is difficult to construct a mean
field superconducting phase which lowers the interaction
ergy. Our model for which we develop the consistent ma
body approach can be used to discuss this issue beyon
mean-field approximation.

For our model it is easy to determine that the transve
forward-scattering energy is increased and the exchange
ergy is decreased by the superconductivity. This result
direct consequence of Eqs.~42! and ~41!.

Contributions of other terms can be found with the help
the Feynman formula. The condensation energy density i
the order of2Tc

2/vF . Thus, differentiating the critical tem
perature~48! with respect to some coupling constant of E
~1! we can determine how a ground-state energy contribu
of a given term is modified by the presence of the superc
ductivity. A derivative of the critical temperature with respe
to a parameterx is equal to

]

]x
Tc5TcS ]

]x
lnL̃1

vF

gsc

]

]x
lngscD'Tc

vF

gsc

]

]x
lngsc,

~59!

provided thatgsc!vF . Combining this result with Eq.~45!
we conclude that in the superconducting state the transv
hopping energy is higher:

K 2t (
p^ i , j &

~cpi
† cp j1H.c.!L

n

2K 2t (
p^ i , j &

~cpi
† cp j1H.c.!L

sc

}t
Tc

2

gsc

]

]t
lnS g2kFS t

ūL
D ~2K22!/~12u!

2g0D ,0 ~60!

and the in-chain potential energy is lower than in the norm
state:

^gcLi
† cLicRi

† cRi&n2^gcLi
† cLicRi

† cRi&sc

}g
Tc

2g̃2kF

gsc
2

lnS t

ūL
D ]

]g S 2K22

12u D.0, ~61!

since both ln(t/ūL) and the derivative with respect tog are
negative.

We have proven that in our case the superconductivit
triggered by the electron-electron repulsion. This result
quite unexpected. It has a many-body nature and canno
obtained within a mean-field theory for Hamiltonian~1!.
This mechanism of superconductivity is very similar to t
Kohn-Luttinger proposal. The classical Kohn-Lutting
mechanism predicts an extremely low critical temperature
our case, however, the effective coupling constantgsc is a

er-
e-
8-7
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nonanalytical function of the bare parameters. As a con
quence, our transition temperature~48! does not have to be
small.

V. STRONG-COUPLING REGIME

We have seen above that ifu.1 then L̃ is zero. This
means that quasiparticles are not formed and it is more c
venient to treat the system in terms of the TL boson on
The bosonized Hamiltonian~1! has the form

H i
1D5

u

2
@K~¹Q i !

21K 21~¹F i !
2#, ~62!

H i j
'5

g2kF

~2p!2
cosA4p~F i2F j !. ~63!

In this formula both the transverse hopping term which
irrelevant in the RG sense and the forward-scattering t
which is marginal are omitted. Their effect is small as co
pared with that of the strongly relevant exchange interact
Eq. ~63!.

The relevance of the exchange interaction indicates tha
low temperature the system freezes into a state with the fi
expectation valuêF i&Þ0. This phase is the CDW. It can b
easily proven by bosonizing the CDW order parame
cLi

† cRi}(2pa)21exp(iA4pF i). The finite expectation value
of the fieldF is inherited by the CDW order parameter.

We describe this regime with the help of our variation
wave function. SinceL̃50 one can write the wave functio
in terms of the TL bosonic field only:

uvar&5 )
k.0,i

1

A2psk
2

exp$2uF iku2/4sk
2%. ~64!

This expression is a slight generalization of Eq.~11!: in the
latter equation the parameterssk

25K/4uku. Here we do not
fix sk

2 . Instead, they are determined variationally. The var
tional energy is

EV/~LN'!5uE
0

L dk

2p S K
8sk

2
1

2k2sk
2

K D
2g2kF

L2expH 28E
0

L

dksk
2J . ~65!

Minimizing this energy with respect tosk
2 we find

sk
25

Ku

4Au2k21DCDW
2

, ~66!

DCDW
2 58pg2kF

KuL2expH 22KE
0

uL d«

A«21DCDW
2 J

}g2kF
uL2S DCDW

uL D 2K
. ~67!
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The quantityDCDW has the meaning of the excitation gap d
to CDW order. This gap, together with the transition te
perature, can be found by solving the last equation:

TCDW}DCDW}uLS g2kF

u
D 1/(222K)

. ~68!

The variational energy is

EV/~LN'!}DCDW
2 /u. ~69!

These results are correct whenH' couples only those chain
which are nearest neighbors. The next-to-nearest-neigh
coupling frustrates the CDW phase. We do not discuss
effect of the frustration in this paper.

Finally, let us discuss the crossover from a strong
intermediate-coupling regime. Such a crossover occurs w
the intermediate-coupling Fermi-liquid energy, Eq.~16!, be-
comes equal to the strong-coupling CDW energy, Eq.~69!:

t̃ 2/vF}DCDW
2 /u or S t

ūL
D 1/(12u)

}S g2kF

u
D 1/(222K)

.

~70!

This equation definesuc(t,g2kF
),1 at which the crossove

takes place. At smallu,uc the system behaves like th
Fermi liquid whose properties we discussed in the previ
sections. Whenu.uc the expression~16! is no longer appli-
cable: the necessary requirement for smallness of the en
associated with symmetry breaking is violated. The expr
sion ~69! has to be used instead.

Figure 3 shows how the strong-coupling regime at bigu
is replaced by the intermediate-coupling regime at smalleu.
The transition temperature of the the CDW Eq.~68! drops

FIG. 3. The energy scale associated with transverse hoppinL̃
decreases whenu grows. The CDW transition temperatureTCDW

increases asu grows. At uc where both energy scales are of th
same order the crossover from intermediate to strong coupling
curs.
8-8



r a

fo
th
-

a

ta
d

s
al
fo

n

am-
st-

nd
es:
g-
ys-
nd

ee-
ions

a
ry

one
the
y.
hat
ra-

VARIATIONAL DESCRIPTION OF THE DIMENSIONAL . . . PHYSICAL REVIEW B 68, 115108 ~2003!
sharply and becomes exponentially small, Eq.~47!, asu gets
smaller thanuc . This diagram was discussed in Ref. 10 fo
similar model.

VI. CONCLUSIONS

We propose in this paper the variational wave function
a Q1D system. The key ingredient of our procedure is
splitting of TL bosons into high-momentum and low
momentum modes. While high-momentum modes are
their ground state the low-momentum modes form quasip
ticles which delocalize in the transverse directions.

Our method can be viewed as a variational implemen
tion of the lowest-order RG scaling near a TL liquid fixe
point. When the transverse hopping amplitude become
the order ofūL the scaling must be stopped. The renorm
ized Hamiltonian should be treated as the Hamiltonian
the quasiparticles.

Our method gives us the possibility to compute differe
11510
r
e

in
r-

-

of
-
r

t

Green’s functions beyond the RG using a standard diagr
matic technique. As an example we calculated the lowe
order self-energy for the one-particle propagator.

Depending on the strength of the in-chain interaction a
the anisotropy the system may be in one of three regim
strong, intermediate, or weak coupling. In the stron
coupling regime quasiparticles are not formed and the s
tem is better described in terms of TL bosons. In weak- a
intermediate-coupling regimes the low-lying degrees of fr
dom are quasiparticles. The ground state of these ferm
may be either a Fermi liquid, the superconductivity, or
CDW. The phase diagram of our Q1D model looks ve
similar to that of organic Q1D superconductors.

Unlike the classical BCS superconducting phase, the
in our model is stabilized without any attraction between
electrons. It is similar to Kohn-Luttinger superconductivit
However, our effective coupling constant is larger than t
of Kohn-Luttinger. This guarantees that the critical tempe
ture in our model is not unacceptably small.
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