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We consider the problem of two-coupled Luttinger liquids both at half filling and at low doping levels, to
investigate the problem of competing orders in quasi-one-dimensional strongly correlated systems. We use
bosonization and renormalization group equations to investigate the phase diagrams, to determine the allowed
phases, and to establish approximate boundaries among them. Because of the chiral translation and reflection
symmetries in the charge mode away from half filling, orders of charge-density (@&MY) and spin Peierls
(SP), diagonal currentDC), and d-density wave(DDW) form two doublets and thus can be at most quasi-
long-range ordered. At half filling, Umklapp terms break this symmetry down to a discrete group and thus
Ising-type ordered phases appear as a result of spontaneous breaking of the residual symmetries. Quantum
disordered Haldane phases are also found, with finite amplitudes of pairing orders and triplet counterparts of
CDW, SP, DC, and DDW. Relations with recent numerical results and implications to similar problems in two
dimensions are discussed.
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[. INTRODUCTION symmetry as ad-wave superconductor. In this phase, the
ground state has an ordered pattern of staggered orbital cur-

The problem of the nature of the phase diagram of theents, and this is the order which competes waitwave
cuprate superconductors remains at the center of research saperconductivity. °
the physics of strongly correlated electron systems. A recent However, in spite of a continued effort during the past
work has focused on the possible competing orders respomiecade or so, and largely due to the lack of systematic non-
sible for the known features of the phase diagram as well aperturbative methods in two dimensions, it has been quite
the unusual physical properties of the pseudo-gap regime. Mifficult to establish the phase diagram of reasonable two
number of candidate competing orders have been consideredimensional strongly correlated systems based on the Hub-
including antiferromagnetisna-wave pairing(DSC), incom-  bard model. Much of the work done is based on mean-field-
mensurate charge-ordered states and other liquid crystal-likgpe approximations which favor one type of order over oth-
phases, andl-density wave state€DDW) [also known as ers or privileges the competition among a particular pair of
staggered flux state¢SF or orbital antiferromagnetism order parameters. While it is quite possible that these studies
(OAF)], among others. reveal different aspects of possible phase diagrams of some

SO(5) theory focuses on the competition between anti- generic, possibly short-range models, it is not possible at
ferromagnetism and-wave superconductivity. In this theory, present to determine reliably the phase diagram of many of
the natural SU(2XU(1) symmetry of the spin and charge these models except sometimes at extreme regimes of some
degrees of freedom is regarded as the result of an explicparameter. Thus, different approaches, including I&ge-
symmetry breaking of a larger symmetry, characterized by anethods(and their relatives have been used to construct
global SO(5) group. In this picture, this larger symmetry isspin-liquid states!~*” Hartree-Fock, largel, and largeN
not apparent except close to a quantum critical point whosenethods have been used to study phase separation and
quantum fluctuations suppress both antiferromagnetism arstriped state$®=2! Similarly, Hartree-Fock methods have
d-wave superconductivity, thus leading to a pseudogap realso been used to study the competition between supercon-
gime controlled by this fixed point. ductivity and DDW ordef? There is also an extensive litera-

In contrast, in the stripe mechanigrthe ground state of ture on numerical simulations which work either at moderate
the doped Mott insulator is an inhomogeneous charge orto high temperaturegas in Quantum Monte Carlo simula-
dered state resembling a liquid crystal phésehich breaks tions due to the fermion sign problgror at exact diagonal-
both rotational invariance angbartially) translation invari- izations of systems which are usually too small to resolve
ance, i.e., it is a quantum smectic. In this picture, thethese issues.
pseudogap is the spin gap which develops in these quasi-one- It is largely for these reasons, as well as for the need of
dimensional states, and it is not a signature of some sort afonperturbative results, that some of these questions have
long-range order. In this mechanism, macroscopic phase cteen considered in the framework of quasi-one-dimensional
herence and-wave superconductivity result from interstripe systems such as Hubbard-type modgtsa loose sengeon
Josephson couplingé' chains and ladders. Many of these issues, but not all, can be

In thed-density wave state, and similarly in the physically studied in quasi-one-dimensional systems. However, not all
equivalent staggered flux and orbital antiferromagneticof these questions can be addressed in one dimension as the
states, there is a hidden order which has the sdpe,>.  physics may be quite different. For instance, the two-
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dimensional spin-liquid states in two dimensions have veryor strip@ phase with DDW order. We also find that it is
specific features with no counterpart in one dimengioot  quite hard to reach this phase in a ladder system, at least
even in ladders?®> % Likewise, the description of a doped within a naive derivation of the effective bosonized theory
one-dimensional Mott insulator at weak coupling is a Lut-from Hubbard-like microscopic models, which we summa-
tinger liquid, while at strong coupling it is an incommensu- rize in Appendix A. Recent, unpublished, numerical simula-
rate soliton crystal which is also a Luttinger liquid, albeit tions by Troyer, Chakravarty, and Schollek8? have reached
with strongly renormalized parameters. In contrast, in twosimilar conclusions although in a regime where the couplings
dimensions, at weak coupling one may expect to find Fermiare larger. These authors find exponentially decaying corre-
liquid pockets, while at stronger couplings there is a host ofations and hence only short-range DDW order, which means
possible liquid crystal like phases going from a solid to athat the simulations reflect a quantum disordered pliake
stripe (or smecti¢ to a nematic, whose behavior is markedly the type described belgw(See also the recent work of
different from their one-dimensional counterpaftgien they ~ Stanescu and Phillig¥)
exist. Nevertheless, and in spite of these caveats, studies of The intertwinning of charge order with some other sort of
quasi-one-dimensional systems have yielded a wealth of inerder (with a discrete symmetry grouijs obviously not pe-
formation on the physics of strongly correlated systems. culiar to DDW order. This is a rather generic situation which

The simplest quasi-one-dimensional systems for the studlgads to interesting phases. It also happens for instance, and
of some of the competing orders described ab@rel oth-  this is well known, to the Spin-Peierls or dimerized phase
ers are ladder systems. Away from hallf filling, Hubbard-type Which, upon doping in two dimensions, also becomes either
models on ladder systems can be reduced to the problem @fFermi liquid driven by Fermi-surface pockets at weak cou-
two-coupled Luttinger liquids. There is by now a rather ex-pling or a liquid crystal phase, such as a stripe state, at in-
tensive literature on the properties of coupled Luttinger lig-termediate and strong coupling. One such example is a bond-
uids. These systems have been studied both analyfitzify ~centered stripe state which was considered at some length by
and numerically’~“2 partly for their theoretical simplicity as Vojta, Zhang, and SachdéVor a site-centered stripe of the
well as a laboratory to test ideas intended to work possibly ifyPe considered by Granath and co-worKevhich has a rich
two dimensions, and for their relevance to ladderPhase diagram. In aladder system, these phases are Luttinger
Compoundﬁ?’ As it turns out, systems of two-coupled Lut- liquid which cannot be qualitatively distinguished from their
tinger liquids can support almost all of the local orders pro-weak coupling counterparts.
posed for two-dimensional systems and thus shed some light We also find a number of interesting symmetries relating
on them. It is thus interesting to investigate this setting as th@airs of these phases. We find that, away from half filling, the
competition between different sorts of possible orderecfharge-density wave phas€DW) with the spin-Peirels
states, to investigate their phase diagrams systematically arfitase(SP) (or bond-density waveand a diagonal current
to compare with numerical results. phase(DC) (described beloywith the commensurate DDW

In this paper, we investigate the phase diagrams of twaehase form two doublets under the continuous symmetry of
weakly coupled Luttinger liquids both at low doping levels sliding the charge profile, represented by the uniform chiral
and at half filling, using bosonization and renormalizationshift of the charge Luttinger fieldgc.: ¢cr— s
group (RG) methods. A number of authors have consideredt @ (mod 4/m), ¢ — — be (where the real number is
before many aspects of this problésee, in particular, Refs. an arbitrary phasei.e., a chiral translation on a circle and a
29-33,35,3p Although many of the phases that we will dis- reflection. This continuous symmetry group is non-Abelian
cuss here have been discussed before, we also find a numis#d it may be denoted bg..,, in Schoenflies’ symbols.
of different and interesting phases as well as a number oBince in one-dimensional quantum systems continuous sym-
new symmetry relations between some of these phases. metries cannot be broken spontaneously, they can only

One of the motivations of this paper was the recent sugexhibit at most quasi-long-range fluctuating order and
gestion that the Ising-like order parameter of fiesymme-  power-law correlations. However, at half-filling, Umklapp
try of the DDW phase could be observed separately from théerms break the continuous symme@y, down to the finite
incommensuration associated with varying the dopinggroupC,,, i.e., ¢C+—>¢C++n\/F (mod 4\/;) and ¢.-—
level.”®22|f this was true, it may be possible to have a stable— ¢... . Hence, at half filling, these symmetries can be bro-
phase on a ladder with spontaneously brokgn Unfortu-  ken spontaneously leading to true long-range ordered Ising-
nately, and in agreement with recent results by Fjarestad artgpe phases. In addition, we also find four quantum disor-
Marston®® we find that while the DDW order parameter doesdered Haldane-like phases whose low-energy physics can be
contain an Ising-like piecéas it should, it always involves described by a suitable O(3) nonlinearmodel. In these
the charge degree of freedom which leads to incommensurafghases, there is a spin gap which remains present away from
behavior. On a ladder, this leads to correlation functionhalf filling. In this regime, these phases are Luther-Emery
which decays like a power of the distance. Although ourliquids. There are considerable numerical and analytic evi-
results were derived at weak coupling we expect that thislences for these spin-gap phases which are in agreement
behavior should extend to strong coupling, as Weith the  with our conclusions’~3*%3We also discuss in detail the
usual large but finite renormalizations of velocities and ex-nature of the quantum phase transitions found at half filling.
ponents. However, in two dimensions, this implies at least  This paper is organized as follows. In Sec. I, we present
two (and possibly more possible and distinct phases: a the effective Hamiltonians and the order parameters used be-
Fermi-liquid-like DDW phase with pockefs and a smectic low to characterize the different phases in their bosonized
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form. In Sec. Ill, we use a renormalization group analysisplaquett¢, as well as the exchange Heisenberg interactions

and the known strong-coupling behaviors of the effectiveJ; (on the chainsandJ, (on the rungs

theory at low doping level to construct a phase diagram. In - We bosonize the effective theory by introducing a charge

Sec. IV, we do the same type of analysis as in Sec. Il but abose field and a spin bose field for both the bonding and

half filling. In Sec. V, we present our conclusions. In Appen-antibonding Fermi fieldse, ;, wherei=1,2 andv=c,s,

dix A, we relate the parameters of the effective bosonizedvhere ¢ and s label charge and spin modes, respectively.

theory with those of the extended Hubbard model on théThese fields are mixed under the effects of various interac-

ladder, and in Appendix B we give explicit expressions fortions, in particular, the backscattering coupling of the respec-

the order parameters of interest in terms of the bosonic fieldsive charge and spin currents and densities. The bosonized
theory is diagonalized in terms of the even and odd combi-

Il. MODEL HAMILTONIANS AND ORDER PARAMETERS nations of bose fields from each band,.=(#,,
* ¢V2)/\/§' avt = (011,1i 0V2)/\/§1 v=C,S.

We begin with two-coupled one-dimensional chains. To a The quadratic parts of the Hamiltonian density have the
large extent, we will follow the approach used by Schulz instandard “universal” form:
Ref. 29. We consider first the noninteracting limit, and diag-
onalize the kinetic part in terms of “bonding” and “anti- Ve +
bonding” bands(denoted by 1 and 2, respectivglyi.e., He,x= 2
symmetric and antisymmetric under the exchange of the
chain labels. Including nearest-neighbor hopping, the nonin- v
teracting dispersion relations are jusf,(k)=—2tcosk Hst:%
+t,(i=1,2), wherd, is the interchain hopping integral. This
approach makes sensetif is large compared to any of the
dynamically generated gaps of the system, i.e.,
interacting limit.

To first order in the doping leves, the Fermi wave vec-

tors of two bands are, respectivelys, ,a=m(1—05)/2 — ¥

+sin"(t, /2t), and the corresponding bare Fermi velocities Kes =\ /M, K= %
arevy, ,/a= J4t>—t* +t, 5m/2, wherea is the lattice con- 27mvi+ Qe 27TVt + Jsx

stant which will serve as the short distance cutoff in the 5 5
bosonized theory. We will consider the regimes of both low _ )2 [Y9ex _ o2 [Ys=

doping and half filling(discussed in Secs. Il and Sec. 1V, Ver ™ N Ut (277) v UsET N U (277) ’
respectively and assume thaf is not necessarily small. At (2.3

half filling where the Umklapp processes dominate, the sys- .
tem has the particle-hole symmetry wherev¢= (v, +v2)/2. The coupling constantg.., Qs+
correspond to forward-scattering nonchiral couplings of the

charge and spin currents, and are already taken into account
in the quadratic terms. Here we have ignored the effects of

Away from half filling, we will assume that the doping level straightforward effects of forward-scattering chiral cou-

6 is large enough to suppress the effects of all Umklapd:’“ngs’ tsr:nce _thely gn:y re_no:jmalllze Fefrrm Vﬁlotf[:_'t'es and
processe$See Sec. I). However, if § is relatively small, the modify the naively determined values of the Luttinger pa-

relation Eq.(2.1) still holds approximately. In this regime the ramletersl. Altso nolze thatl_thespt\et g)(tpress(qunts cand b? taken seri-
difference in their Fermi velocities does not play a very im-olqSy Otnhy a yve? COl]J(.p .'Pgb t n er_fme '? €an sl(on{c_] couf—
portant role(see, however, the discussion in Ref).490w- plings, thereé IS also a finite but signincant renormaization 0

ever, as the filling factor of one of the bands approaches zer(g’,Ot[‘ E[he Luttmg;r pararrt}?ters and tge tv elqc![tles. tion t
the respective Fermi velocity becomes very small and the‘_h € L;]S rlow |§I(|:uss Me_nonqu% ra '?' Itn eractz)loq e;hms.
physics is somewhat changed. In this limit, there is an en- rougnout we will use iajorana Kiein factors obeying the

hancement of the processes leading to the formation of a spffPventions;(1)»,(1)#,(2)7,(2)=1. The backscattering

gap>% Since we will also find spin-gap phases, we will and pair tunneling terms yield the bosonized expressions

ignore here this special regime since it leads to the same

physics(albeit with very different parameters ” :COS\/E bs+
The effective theory then consists of two-coupled Lut- int 2(ma)?

tinger liquids, for the bonding and antibonding bands, and a

2 1 2
Kc,iHc,i+ K (axqsc,t) ’
c,*

. (22

2 1 2
Ks,tHs,t+ K (ax(bs,t)
S, *=

, wherell, . are the momenta canonically conjugate to the
in the weaklose fieldsp, . . The effective Luttinger parameters and ve-
locitiesv - andvs . are given by

Vi1= U2 and kfl+kf2=’77. (21)

(g1c08V4m s —g,cos/4ms )

set of perturbations, which we describe below, each associ- cosy4mo._

ated with a particular coupling constant. In Appendix A, we + W(93005V4779sf +g4cosyA T
will relate these coupling constants with the interaction pa- &

rameters of an extended Hubbard model on a ladder with +gscosy4mds. ), (2.4)

hopping amplitudes andt, , on-site Hubbard repulsiou,
and Coulomb interaction¥ (on the chaing V, (on the wheref. . andés .. are the dual fields of the charge bosons
rungs, and Vy (along the diagonals of the elementary ¢. . and spin bosongs ., respectively. Terms labeled by
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the effective coupling constangs andg, originate fromthe & —%—¢—9%
intraband and inter-band backscattering interactions J L
—0:(JRIY+1-2) and —g,(J[gI5Y+1-2), respec- SO € —o—— o
tively. The terms labeled by the couplings, 94, andgs A CDW B. SP
represent singlet and triplet pair-tunneling processes ’ '
A(AJA,+H.c) and \(ATA,+H.c) with g3=2\;, g4
=\stA{, andgs=As—A\;. Three conditions, required by P,
the SU(2) spin rotation invariance, relate the spin current
and triplet tunneling couplingsgy.+ =(g;*+g,)/2 [see also
Eq. (2.3] andgs=9g4—0s-
Near half filling, the following additional Umklapp terms e b- bbW
appear as FIG. 1. Four Ising type phases. A. charge-density w&@&BW),
B. spin-PeierlsSP); C. diagonal currentDC), D. d-density wave
_ (DDW). Their triplet analogs are denoted as SDW; $¥C!, DDW!
um= cog VAmpe, —20mX) (GucCOSVAT 0, respectively.
2(ma)?
— §y3COSVAT O — §4COSVAT b i.e., uniform displacements of the charge profile. This depen-
dence means that the discrete symmetries, broken spontane-
—0QusCoOSV4 T ). (2.5  ously in these phases with long-range order, are intertwinned

with the continuous symmetry of the incommensurate doped

The term with coupling constard,. is the so-called %  state. Consequently, these order parameters do not truly ac-
pair” tunneling processes, i.e., tunneling of Cooper pairsquire an expectation value but instead only display power-
with momentum X&;, which has the formlemL2+(1 law correlations. Also, while it is possible to write down
—2)+H.c., wheremg | = ¢g | 1#¥g | . The terms with cou- bosonic expressions for operators which transform only un-
pling constantsg,s, 9.4, andgys represent the couplings der the discrete symmetries broken by these phases, their
between the respective CDW and spin density wé@&BW)  fermionic versions are strongly nonlocal. Hence, we con-
couplings on each chain:ngu(NT(1)NT(2)+H.c.), clude that these orders are always incommensurate.
Meaw(NT(1)NT(2)+H.c.), whereN(i) is the %z CDW or- We also find that these o.rd(.ar parameters also form two
der parameter of chain=1,2, andN(i) is the g (Néel) doublets of ther,Ut group. Similarly, the|r-tr|plet counter-
SDW order parameter of chain=1,2. The coupling con- .parts.SDW, sk DC, ?nd E)DW are pmp?”'oﬂa' to real and
stants, which aregus=—\egw» Guas=(2NcawFAsgw/2).  IMmaginary parts ofiy ,(0/2)pthors™ Y21 o(012)aptirg
Due to the SU(2) spin symmetry, conditi@s=gus—Jus respectively(where the label means triplet In the particle-
also holds. particle (p-p) channel, thes-and d-wave pairing order pa-

For the two-leg ladder, we only consider where repulsiverameters aré\s == ,(—) (11 s¥1rs~ ¥2Ls¥2rs) - IN the
interactions dominate, which implies that the bare values ofollowing section, we identify the stable fixed points of the
the effective Luttinger parameters are in the regimerénormalization grougRG) flows for the these phases asso-

Ke.(0)<1, K._(0),Ks_(0)~1. Compared with Ref. 29, ciated with these order parameters.
K._(0),Kc_(0) are not necessarily 1, for here they are de- Some of the order parameters discussed above have been

termined by off-site interactionsee Appendix A investigated before in Ref. 29,30, although under different
Bosonic expressions for various order parameters arBames. For example, our CDW, DDW, SDW, SSC, and DSC

given in Appendix B. In the particle-holep¢h) channel, the —order parameters are called COWOAF, SDW', SC, and

possible singlet fermionic bilinear forms, which break the SC’ there. We note that in a recent paper Ref. 46, the phases

translational symmetry, are the order parameters for théhat we label as DDW, SP, and DC are called Biglensity

CDW and SP, DC, and DDW operators as shown in Fig. 1Wave andF-density wave, respectively.

The CDW and SP order parameters are proportional to the Finally, in Eq.(2.1), we ignored the effects of the follow-

real and imaginary parts of the symmetric bilinear/nNg terms:

Wl ooret US| o1rs » Whereas the DC and DDW order pa-

rameters are the real and imaginary parts of the antisymmet-

ric version of this bilinear. AH =(A + _C) J P + ( Av,— _C)H 1
From their bosonic representations, we find that all four  ° vit | IxPordxPe- O T ) e e
order parameters transform nontrivially under the symme- (2.6)

tries broken in their associated phages ground states

Thus, for instance, the SP and DDW order parameters are

odd under theZ, symmetries broken spontaneously by the Ags

SP and DDW phases. However, in all four cases, these orde?HS: ( Ave— aT )ax¢5+’9x¢s—+
parameters also involve a phase fadtorvertex operatgrof

the charge bosoi, , . Hence, these order parameters also _Ags o — o
transform nontrivially under shifts of the charge bosfn, , 2(7Ta)ZSIn AT hs-SINAT s 27

Ags

T

Al)f+ )HS+HS— y
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TABLE |. Stable fixed points and corresponding quasi-long-range orders away from half filling, with
(6.-)=0 andgs=g,—0gs [required by SU(2) invariange

91,92 03,94.95 bs+ bs- Os- Order Dimension

1 0,—0° +00,0,—0 0 / V2 CDW+SP K. /4

2 0~ —,0,4% Jml2 / 0 DC+DDW K. /4

3 —o,0 0,+00,+00 Va2 NET / DSC U(&K.,)

4 —o0,0 0,~00,—0 0 0 / SSC U(K.)

sin( /_47T¢>c+ —28mX) eters such as the velocities, coupling constants, and Lutti'nger
um= 5 (Ag,ccosy4mo,_ parameters of the low-energy effective theory. The contribu-

2(ma) tions from the Umklapp terms in the RG equations away

from half filling*” are given in terms of Bessel functions,
—Agu3cos\/ﬂas_—Agu4cos\/E¢s_ which oscillate when an energy scale lower than that of the
_AguSCOS\/E(,bSJr)v (2.9) Umklapp process is reached. At this scale, the effects of
these terms can be neglected. Below, we begin directly at the
whereAv¢= 6mt, /2 and all other residue coupling constantslow-energy scale with all the coupling constants and Lut-
varnish linearly with doping near half filling as given in Ap- tinger parameters already renormalized by the Umklapp
pendix A. The quadratic residual terms in E(&6) and(2.7)  terms.
are marginal perturbations, and they slightly change the scal- We will investigate the role of the remaining interactions
ing dimensions of various operators in E¢®.4) and (2.5. by means of a one-loop renormalization grd&®) analysis
Because they are small, we do not expect that they cagombined with semiclassical arguments. In this regime, the
change the stable RG fixed points associated with variousharge bosonp. . essentially decouples and remains gap-
phases qualitatively. For the term Afy, in Eq. (2.7), . is  less. Thus, to one-loop order, the Luttinger paramitgr,
fixed around 0 or/7/2 at all the stable fixed pointssee  does not flow.(This argument is not completely correct:
Tables | and Il below. The residual Umklapp terms in Eq. there are always irrelevant couplings which do lead to finite
(2.8) are irrelevant away from half filling. At half fillingg,,. ~ renormalizations oK. . ; these effects do not show up at
is fixed at\/7/2 (see Table ). Thus, we conclude that all ©ne-loop orde.
the nonquadratic operators are irrelevant at all the stable
fixed points. Balents and Fisi8used a perturbative RG of TABLE lIl. Fixed points at half filling: Stable fixed points and
the fermionic theory and found that a spin-gap phase devekorresponding gapped phases. We have (ggt, )= \m/2. The
ops near half filling, which is consistent with the argumentSuU(2) condition requiregf =g} —g% . Phases 1,2,5,6 have true
given above. On the other hand, the continu@ys symme-  Ising-type long-range order, while 3,4,7,8 are quantum disordered
try is preserved away from half filling where the Umklapp Haldane-like phases.
terms are irrelevant. Thus the conclusion that the CDW and
SP, DDW, and DC order parameters are incommensurate and 9uc 91,92 93.94.95 6c— ¢s+ (¢s—.6s-)  phase
thus exhibit that quasi-long-range order is not affected by
these terms. However, these residual terms do affect the +« 0o +x0-» 0 0 (/ﬁ) S=
boundaries among phases. ’

4+ Q0,— —0,0,4+® 0 (/,0) DDW

Ill. PHASE DIAGRAM IN THE INCOMMENSURATE
REGIME

3 be w0 Ofwin O (ﬁ,) DSCHSDW

We will now investigate the phase diagram in the incom-
mensurate regime, but only at low doping. In this regime, the

NI Ry R ey

g +o0o —»,0 0,~%,— 0 0 SSC+DC
Umklapp processes are cut off at a high-energy scale o T T ©)
2mv¢éla, and can only yield renormalization of the param-5 o, . 1w Jm (1.0) CDW
2
TABLE IlI. Critical phase boundaries and unstable fixed points \/—
away from half filling, also with 6,_)=0 andgs=g,— 9s. 6 —» 0~ +0,0—0% T 0 (/ ﬁ) DC
2 12
Os+:9s— 03.94.05 b Transition iy
1 0,0 +420 unfxed CDWrSR-DsC |~ %0 07— 00 (0D DSC+sP
2 0,0 —,—»,0 unfixed DDWH+DC«+~SSC N
3 —,0 —%,+o, 4 [7/2  DDW+DC—DSC 8 — —»0 Ot o VT (ﬁ /) SSCG+DDW!
4 —,0 +00,—00,—0 0 CDW+SP—~DSC 2 2 2’
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The one-loop RG equations for the coupling constgnts These equations are

throughgs and Luttinger parameteis, _ andK . are

dKe- 1 o 2
di :ﬁ(gs"'gzt"'gs),

dKS+ K§+ 2 2 2
dl :_8W2(91+92+95)1

dKs- Ke- 2, 2, 1 5 o
TZ—Q(91+94)+ﬁ(92+93),

dg; 0495
W:(Z_Ks+_ Ks—)gl_ ﬁ!

dg, 1 U39s
W_(Z_KSJr_K_S_)gZ—’_ oo

%:(2_ 1 1 )g 9205

dl Kee Ko /7% 27’
da, 1 9105
W—(Z‘KC‘KS—)W?’

dgs 1 9194 | 9293

- 2_K_C__KS+>95__277 27

wherel =In(L/a) with the length scalé.

(3.2

PHYSICAL REVIEW B68, 115104 (2003

invariant under transformations
(91,92,93,94)— (91,92, —93,—94) —(92,91,94,93). This
means that phase boundaries must also have such symme-
tries.

For “bare values” of the Luttinger parametédf¢,. (0)
~1, the marginally relevant RG flow of E@3.2) is such
that a gap develops in the— sector, which scales like
m._~exd —1/g(0)], where g is the most relevant one
among the marginally relevant perturbatians g4, andgs.

In this regimeK _ flows to large values and, thus from now
on we will set 1K._=0. In this phase the operator
cos(\/ﬂacy,) acquires a nonvanishing expectation value,
which classically is justt1. Hence, in this phase the dual
field takes the value®. =0,Jm/2, which are related to
each other by &, symmetry*® In what follows in this sec-
tion, we will choose the valuéd. )=0.

From now on, we will use the set{,9,,93,94) to rep-
resent the stable fixed points of E§.2), which are summa-
rized in Table I. At the fixed points (6,%,+%,0), the in-
terband backscattering coupling constagyt is relevant,
while the intraband backscattering coupling constgntis
irrelevant. Both\ g and\; are relevant and satisfy the relation
Ns=—A\.. By direct inspection of their scaling dimensions,
we find thath g and\, are more relevant thagy,. The result-
ing phase depends on where the RG flows go. Wixer
—x, the expectation values @fs . and 6 _ asymptotically
take the valueg ¢, )=7/2 and (6s_)=0, respectively.
This is the stable fixed point for either the DDW phase or the
DC phase. However, this is true only for quasi-long-range
order (QLRO) due to the strong fluctuations of the gapless

Along the SU2)-invariant manifold for the spin current charge bosongc . . In this phase, these order parameters
and pair tunneling terms, the RG equations can be simplifieave scaling dimensiorK. /4. Conversely, whengz—

(3.2

to
dK.. 1
a5z 95t git (05907,
dgs, 1, 5 (93-90)7
I T S Ay
d957 —_i +g_§_g_‘21
dl - 71_gs-#gs— A7 4’
dgs 1 —0gs++20s- (9s+—09s—)9a4
W_<l_ Koo * 2 9s 2 '
dgs 1 —0s+—20s- (9s++9s-)03
W_(l_ Ke- - 27 94t 27 '
with

gs+)

d 1
a(ga_g4+95)=(l_ K*’ﬁ (93— 94+9s5)=0.

(3.3

+, (¢ss)=0, and (0s_)=+/m/2. Hence, at this fixed
point, we would havenaively) either a CDW phase or a
spin-Peierlgor dimerized phase. Here too this is issue only
for QLRO, and the associated order parameters also have
scaling dimensiorK, /4.

We conclude, in agreement with the recent results of Ref.
36, that because of the chiral translation symmetry in the
field ¢ . , in other terms due to the charge incommensura-
bility, there is no true long-range order of the DDW order but
only (incommensurajepower-law correlations. We can fur-
ther see that the DDW and DC phageand also the CDW
and SP phase¢dorm doublet representation under te,
group and are thus degenerate. Equivalently, the DDW and
DC order parameters can be regarded as the real and imagi-
nary parts of a single complex order parameter which can
thus be rotated continuously into each other. The same rela-
tionship holds for the CDW and spin-Peierls order param-
eters. Thus, both stable phases CB8P and DDW-DC
have a continuous U(1) symmetry. Naturally, since the lad-
der is a one-dimensional system, this symmetry is not truly
spontaneously broken as there are only power-law correla-
tions for these order parameters. However, we will see in
Sec. IV that at half filling, the Umklapp terms break this
symmetry explicitly from U(1) down td, leading to addi-
tional Ising-like phase transitions.
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Similarly, we also find thak s is more relevant thag; at  (cos(/476._))=1 (the renormalization of its amplitude can
(=,0,0£), while g, and\, are irrelevant. Whem,—  pe absorbed in a redefined coupling constaFtis effective
+2, (s ) and( s ) are fixed at/w/2. DSC is the leading  theory has the same form as E§.4). Hence, this is also a
QLRO and its order parameter has scaling dimensioRheory of two Ising models. However, unlike E€g.4) the
1(4Kc ). Conversely, wherg,——=, (¢s;) and(¢s-)  amplitudes of the two dimension one operators are not equal.
are fixed at 0 swave superconductivitysSQ is the leading  Hence, generically, both Ising models are off-critidak
QLRO and its order parameter also has scaling d'me”S'OBquivaIentIy both species of Majorana fermions are mas-
1(4Kc+).- sive). This corresponds to a finite correlation length and a

Let us consider now the phase boundaries a_nd the natugg;e energy gap at the phase boundary. Hence, in general,
of the phase transitions between these possible states, @t i< o first-order transition. ., )=0, then the term of

0s-(0)=0. In this regime, it is more natural to represent , —\ins over that o, andge — + in the next ste
instead the unstable fixed points wittx( ,gs_ ,93,94). The . . - 9s- b
RG flows starting withg ?0)>0 gt@S(EOQ)Js:Oggar?a)g 0) RG transformation. Conversely, {fps.)=m/2, then the
st Ry - 8 term of ¢s_ wins over that of9s_ andgs_— — in the next
=g,(0)=g>0 evolve towards the fixed point at (00 s . S S
+OO4 H the field b f 1 dth step RG transformation. Finally, RG flows evolve to the
resigj.ualeirz?éracetiolr?s (rﬁesaucgigmes reeKs.—1, and the  ~nH\y Sp fixed point in the former case while in the latter it
does towards the DSC fixed point. Thus, fpr=g,>0 and
. 0s+(0)<0, the phase transition at the boundary of CDW
HL =g—<cos\/ﬂa )(cos\/ﬂe +cos\/E¢ ) + SP—~DSC becomes first order as the correlation length is
% 2(wa)? © . *"” now finite. However, a second-order transition is also pos-
(3.9 sible here too. If the spin bosapg, is quantum disordered,
. L then (cos(y4m¢s,))=0 and once again we get an Ising
whereg™ means the renormalized value @fAt this fixed  iscal hoint of the same kind discussed above. Hence, the

point, Ks——1 and both perturbations are operators of scalyganeral conclusion is that this phase boundary may be at a

ing dimensi_on 1. This system Is invariant under the_ dualitygecond-order transitiofwith Ising criticallity) or at a first-
transformationd,_ < s_ - This model has been studied ex- o 4er transition, with an Ising-like tricritical point in be-
tensively in the literaturé“® It is equivalent to a theory of tween. Similarly,gs=g,<0 atg, =0 is the boundary of
two Ising models. If the coupling constant in front of both DDW4.-DC<—>SS'C,3Whi4ch is crit?(;al and leads to the fixed

:)peratorsdlsl the s?rqe, afq’t.'t IIS th? ct:asEe 'U(Efﬂ)’t?ngt()f theb point at (0,0;-%,—) or to a first order whergg, >0 or
sing models is at its critical point. Equivalently, it can er95+<0’ respectively.

regarded as a theory of two Majorana fermions, one of whic Another pair of fixed points € ,0, %, %) controls
is massive. Hence, this fixed point is in the universality clasg, ~ hee

of the two-dimensional classical Isina model. The Ising order e phase boundaries of the DDMDC«— DSC transition at
Wo-dli ! : Ing ' ng 03= —04<0, where( ¢, )=0, and the phase boundaries of

a.nd disorder opgrators are given t.)y i ps— and the CDWHSP—SSC transition atgs=-—g,>0, where

siny 65 , respectively. At this fixed point, both operators o) = 12; Ger— —o0 N0 Matter what its initial value is.
Pave_ts_,callr:g dlme|3|n5|ort1 1t/)8,t.as the}((.Shoild have at<an ISiNhe residual interaction for the— sector is still described
ransition. A smail perturbalion makings=9gs or 9s=9a  py, py (3.5 but now withg3 = — g . Thus, the amplitudes

causes a flow towards the CDWSP or DSC fixed points, —— o ;
respectively. Thusg;=9,>0 is the phase boundary be- Of COS/Am ¢bs_ af‘d co .47“95— are kept equal and th|§
phase boundary is also in the universality class of the Ising
tween the phase CDWSP and al-wave superconductor at ' .. ) : )
critical point. The Ising order and disorder operators can be

0s-(0)=0 andgg, (0)>0. : i o _
However, if the RG flows begin witlyg, (0)<0 along gﬁ:ﬁmﬂfg dailgc_lt_)argllggllly. The critical phase boundaries are

this Qirection, then the. field;%s_ Is no Ionggr critical. Ac- The initial valuegs_(0) has important effects on phase
cording to Eq.(3.2,_|n this regimegs.,. is marginally relevgnt boundaries. In Fig. 2, we present the result of a numerical
and gy, — =%, With 93=0,>0 and 9;=g,<0. At this 0 aiion of Eq.(3.2) for Js.(0)>0; g_>0 favors the
fixed point, the fieldsf._ and ¢, acquire nonvanishing rowth of |gs| but disfavors that ofg,|, and conversely
expectation values, and the residual interactions at this fixeg <0 favori the growth ofg,| but dié‘évors that ofg|
. S— 4 3l
point reduce to Let us begin with the casegs (0)>0. For |g5(0)|
cos/Fmd =|g4(0)|, at firstgs_ decreases, then it reaches a positive
_ TPs— N . ini d finally it increases. Thugs| increases faster
H2 — *(cosvdm . ) +a*(cos/a minimum an y 93
res (mra)? (93¢ 0e- )+ 01 ms+)) than |g,] and eventually it wins over it. However, if
|g3(0)|<]g94(0)|, gs_ decreases monotonically to negative

cosy4mos- N values andg,| still wins over|gs|. As a result, both regions
+ 2 (g3 (cosy4mbe-) of the phase diagram with DDWDC order and CDW- SP
2(ma) :
order expand beyond the limg= *+g,, and the correspond-
—gl{cosVames.)). (3.5 ing areas ofd-wave ands-wave superconductivities shrink.

_ _ _ _ Due to the symmetry of E(3.2), the situation is reversed
At this stage of RG, the renormalized couplings satigly  for g,_(0)<0. For an initial point located on one of these
=g3 andg; =g3 . Once again we can take phase boundaries, its RG trajectory flows to the correspond-
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-0.4

0.4

FIG. 2. Phase boundaries with positive initial value @gf,
[9s+(0)=0.2] and different initial values ofjs_(0) with dashed
line [gs (0)=0], solid points [gs (0)=0.1], and triangles
[gs (0)=—0.1]. Phase boundaries of CDWSP—DSC, DDW
+DC+ SSC become of first order fays, (0)<0.

ing unstable fixed point, as shown in Fig. 3. Fgy, (0)
<0, the effect ofgs_(0) is similar, but the phase boundaries
CDW+SP—DSC and DDW+DC«+SSC are now first-order
transitions and there are no accessible critical points.

We conclude this section with some comments on the
DDW phase which has attracted considerable interest re-

PHYSICAL REVIEW B68, 115104 (2003

from half filling.*>*? For the two-leg ladder, we findsee
Appendix A that the DDW phase may exist but it is neces-
sarily incommensurate. We also fiM] , large and positive,
reducesg, and enhanceg_, which is favorable for the
DDW phase to exist. However, a negatiygwith magnitude
comparable tdg,| is also needed. Thus, we suggest to look
for it in the regimesv, >Vy>V,>0, which has only repul-
sive interactions, or iV, >0>V, which has some attrac-
tive interactiongand thus is less physically relevanthese
arguments agree with the results of a recent two-dimensional
mean-field calculatici that the HubbardJ alone cannot
stabilize the DDW phase and that negative nearest-neighbor
interactions are needed. However, ,V <0 together favor
d-wave superconductivity over the DDW state.

IV. THE PHASE DIAGRAM AT HALF FILLING

Let us now discuss the phase diagram at half filling. The
main change is the presence of Umklapp terms. Compared to
the incommensurate case discussed in Sec. lll, the main dif-
ference is that at half filling th&, symmetries behind two-
fold degeneracies found in away from half filling now can be
broken spontaneously, with possible phase transitions be-
tween the CDW and the spin-Peierls phases, and between the
DDW and the DC phases. Since much of the analysis is
rather similar, here we will only sketch the main differences.

The set of RG equations is now more complicated:

cently. Until now, there is no solid numerical evidence away

g

v
.
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FIG. 3. RG flows in the three-dimensional parameter space with

0s+(0)>0. The dashed lines mark the critical surfapg;| wins
over |g,| on the left of the surface and,| wins over|gs| on the
right. On the critical surface, the RG trajectories flow to the line

|9al=194.

dK., K2,
d—|c =- 8—;2(95c+ 90395+ d0s),
dk.. 1
d—f=ﬁ(g§+gﬁ+g§),
dKs+ K. 2, 2, 2.0 42
T:—ﬁ(gﬁgﬁ‘gs*‘gus),
dKq_ 2 1
TIPS O A TR At R
dg; 9495  Qualus
ar ~ 2K =K )5 -
dg, 1 0395  9u30us
W‘(Z_KS+_C %" 2n " 2m
dgs 1 1 9295  9uauc
W—(Z‘KC_‘K—S_)%*TH 2
dg4_ 1 0195 = QuaQuc
W_(Z_K_C__Ks)g4__2w+ 2
%: Z—L—K _9194 9203 Jus9uc
di Ko st )97 on T on T o
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dg 03%us . 940us  959us 3 g; 1
dlucz(Z_Kc+_K_)g“°+ om t 2 o A
o
DSCHSDW
dgus 929us  939uc

1
dl :(Z_KH_E)g”S_F 2 * 27’

dgus 919us  949uc DDW SP o
3

W:(Z_KC+_KS—)QU4_ 2a + 2 ’
dg 019us  920us = Usd
drf’:(z—Kﬁ—Kﬁ)guS— ;7:4-1‘ 277” + ;W“C SSC+DC!

4.1

We will not be interested here in solving these RG equations
in their full glory, but only in the regime wheré;, <1 and
K._~1. For this range of parameters, there are a number of FIG. 4. Stable phases and phase boundaries at half filling with
useful hierarchies of scales which considerably simplify thegs_(0)=04gs,(0)>0, andg,(0)>0. Phase boundaries 1,2,5,6
analysis. represent first-order transitions whgg, (0)<<0. The critical fixed
Contrary to what happens away from half filling, the field points for the transitions from phases in this figure to their counter-
¢+ Nno longer decouples due to the effects of the Umklapgparts in Fig. 5 are analogous to those of Fig. 2.
terms of Eq.(2.5). Clearly, ¢, plays a role quite similar to

that of f_ . Indeed, in this regimeg, is the most relevant  pere too, the SU(2) conditiogi = g% — g% is obeyed, albeit
coupling and it is associated with an operator with scalingamong renormalized couplings. The resulting stable phases
dimensionK, +1/K. . This operator takes the RG flow anq the phase boundaries between them are given in the
close to a fixed point at which the field, . acquires a gap  phase diagrams of Figs. 4 and 5. The corresponding stable
approximately of the formmg, ~a"*|g,c(0)| "e+™. " fixaq points and values of pinned fields are summarized in
In this regime, the field).. behaves roughly in the same Taple III. The critical(or unstablg fixed points are given in
way as in Eq.(3.2). Here too, the coupling constagt  Taple IV. Umklapp terms break the symmetry groupCtg,
flows to strong coupling, ¥.-—0, and a gapm._ de-  and thus remove the degeneracy between CDW and SP
velops in this sector as it does away from half filling. We phases, and between the DDW and DC phases. Hence, all
will set (¢e.)=\m/2, correspondingly(#._)=0 or \m  four states become distinct phases with true long-range order,
when  g,(0)>0 or <O, respectively, so that which break the residudl, symmetry spontaneously. At the
(cos(dme,y~—(am., )+ and  (cos/4mh. )  quantum phase transitions between CDW and SP, and be-
~sgn@,.) (am,_) Y-, tween DDW and DC, the symmetry is(1).

Once the fieldsh., andd,_ become pinned close to their Perturbative RG studies of Refs. 35 and 36 have described
classical values, the effective residual interactions among thithe CDW and DDW fixed points with the property that the
remaining fluctuating degrees of freedom have an effectivgoupling constantéwritten in our notatioh satisfy
Hamiltonian of the form

2 4

—0,=*03=*Q05=— = =F —
Heff:%(glcosm¢s—gzcos\/ﬂas) 92==095==0s 9u3ﬂ OQus=+Quc— t*,
B 7 -8 .
’ 2( 71a)2 (05 c0s(4m0s+ 07 00345 DSQ+SP!
+gtcosVdmes. ), 4.2)
where 9§,4(0):93,4(0)<C05\/E9c7>—gu3,u4(0) DC CDW .

X(cosy4mc.) and gz (0)=g;(0)—93(0). If g,c(0) is
not small compared to the initiégbr barg values of the other
coupling constants, this first step, of the renormalization
group flow is rather quick. In this step the marginal coupling

constants cannot change very much and thus SSq+DDW!

|(cosy4me. )|>|(cos4mb,_)| is a good approximation.

Hence, the renormalized residual couplings are approxi- 6 §

mately @3 ,9% ,92)~(943(0),9,4(0),9,5(0)). FIG. 5. Phase diagram and boundaries at half filling with
The new RG equations, which control the subsequent R@;s (0)=0,95.(0)>0, and g,.(0)<0. Note that here we use

flow, are the same as in EqB.2) after setting IK._—0. —g% and—g} as thex,y axes.
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TABLE IV. Fixed points at half filling: Unstable fixed points in all the four phases of CDW, DDW, SP, and QiGRecall
which have the common fixed valugs_=0. Here t0o,(¢.+)  that the signs of the coupling constants change in some of the
=\/7/2, and the SU(2) condition requireg =g’ —g3 . The col-  phases. Nevertheless, what is clear is that the spectrum
umn on the right_ indicates which transition is controlled by eachfgnd in these more anisotropiand more generjcregimes
unstable fixed point. is smoothly connected to the multiplets found in the(§0
limit. In other words, there is no phase transition separating

ue G5+ 950185 fo s Transition these regimes, but the spectrum is organized differently.
1 + 0 +00,4,0 0 / DSC+SDW-«SP Let us now discuss the phase transitions between the
2 +o 0 —00,—0,0 0 / SSG-DC'DDW CDW and the SP phases, and the between the DDW and DC
J7 and phases, and to the associated critical fixed points. As we
3 4o -—» -—w4w+4o 0 __ DSC+SDW-—DDW noted before, these phase transitions are driven by the Um-
2 klapp terms, the most relevant of which is controlled by the
4 Fo —e dwme—e 000 SSC+DC'>SP coupling constang,,.. Henceat the critical pointseparating
5 —% 0  —w—0 ﬁ / DSCHSP s COW the SP and CDW phases, and the DDW and DC phases, the
> Umklapp terms are tuned to zero. The critical fixed points
coincide with the stable fixed points of the incommensurate
6 —= 0 +0,+%,0 Vm / SSCFDDW!—DC CDW+SP phase and DDWDC phase respectively. In both
2 cases, the transition is controlled by the sigmggf. We also
Jr note that the renormalized coupling constgiithas different
7 e —w doeomw—o 0 DSC+SP«+DC signs on both sides of this phase transition. This is because,
2 close to the transitioly ~gs(cos/476._), and(f._)=0
8 —w - —w w4 Vo SSCEDDW!s CDW in the SP phase whilg,_ )= \7r/2 in the CDW phase. The
o 2 same is true for the phase transition between the DDW and

the DC phases.
It can be shown that, if only charge interactions are
91=094=0y4=0, (4.3 considered? theng,.=g,; at the bare level. In this regime,

where the uppeflowen sign holds for the CDWDDW) the CDW and SP phases are more easily accessible than the

phase. It turns out that a model with this particular choice o DW and DC phases. There is a strong numerical evidence

coupling constants was proposed by Scalapino, Zhang a 8r a commensurate DDW phase at half filling in a
bing prop y pino, 9 aNC3.Hubbard laddé* who included Heisenberg-like ex-

Hanke (SZH) (Ref._ 34 as a Iadder_ model of the %6) hange interactions at the microscopic level. It is easy to see
theory. However, Lin, Balents, and Fisher found that, at leas . . . ; :
at although the inclusion of microscopic exchange interac-

ﬁect)rnei-sl,ogrg)la?rde?jra:r(]:tjaﬂer':(L)jrgg;lvl\jo?gsgr3t?1'etsr:aeasu¥rr?o_rs tions does not lead to a different low-energy theory, it
y 9 Y X : changes the strengths of the different effective couplings. In

;gllijn%’ gslgavsvt'trggaﬁ p;g‘é:ga}'\ée Eﬁé”thdaetvtigﬁéﬁ??gm'thisparticular, it makes the DDW phase more accessible. For
; y stable, 1.€., simplicity, we discuss the conditions of the commensurate
trajectory converge to this trajectory under the RG flow. In'DDW phase on the SZH ladder which only includes nonzero
terestingly, the S@) manifold is an integrable fermionic interactionsU V. J. . The coupling constants are given in
system for which a number of exact properties have bee oL amLe T ping g
. 48 . e weak interaction limit in Appendix A. Let us suppose that
calculated using the Bethe AnsatzSQO(8) is clearly a dy- V. andJ. >0. Eirst of all. we need positiv to set u
namical symmetry which is possible because all the opera;+ L =Y. FIrst of all, we need p e+ P
ymmetry > P S b athe overall repulsive interaction, i.eJ+2V, >0. A large
tors that are involvedback in the fermionic representatijon 3. helos to mak ~0 and ’<.O im ﬁ n ’ Vi
are of dimension two, they are superficially marginal but;~ €pS 10 Makeguc anddus simuitaneously 1.€.,

1 _ _3 .
become marginally relevant due to fluctuations leading to the‘JL>U Vi>—%J,. ButJ, cannot be too large, other

development of a gap wise negativegs_ suppresses the DDW phase. Fos|

However, for more generic values of the coupling con->|%9|‘}|’ é"héCh can be act:)hlevedl withy <r?' this phaseldls
stants this dynamical symmetry does not necessarily arise. Efa tzed. U‘i_U| C_?Q”Ot etooharg(at,hot erwise. WO‘: -
is not known that how large the basin of attraction of theP€COME N€gative. The region where (€ commensurate

SQ(8) manifold actually is. In fact, using bosonization meth- V&S found in Ref. 41 agrees .With _this analys_is. Again, we
ods, we find that far away from the $® manifold, the need to keep in mind that this naive analysis only makes

scaling dimensions of these operators begin to differ signifiSENSe in the weak-coupling limit, which also neglects effects

cantly from each other and thus evolve differently under thefrom many ir'relevant operators._ Thus, we do not expect this
RG [see Eq.(4.3]. In particular, by checking their scaling analysis to give a precise location of the phase boundary.

dimensions, we find that the renormalized couplings can. Novawe d|scussf tlhe rzmalplnﬁ_pﬁ?s?ds atr:d phase_transl-
renormalize differently from each other as tions. Upon a careful study of which fields become pinne

and what are their allowed expectation values, we conclude

|gz|<|93|:|gs|<|gu3|:|gu4|<|gc|_>oc that the remaining four phases are actually qugntum disor'-
dered Haldane-like states. For example, there is a phase in
01,94,944—0 (4.4  which d-wave superconductivity and the SDW order param-
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eters(DSC+SDW) are quantum disordered. The order pa-effects ofgs_(0) on phase boundaries are discussed. The
rameter for DSC is very sensitive to fluctuations in the C.., symmetry makes CDW and spin-Peierls, DC and DDW
sector sincépscxe e+, Similarly, thex, y, andz compo-  degenerate. In the absence of Umklapp terms, there is an
nents of the SDW order parameter are controlled byincommensurate quasi-long-range order. These degeneracies
fluctuations in the s* sector since Ogpy are removed at half fiIIing. where true long-range order ap-
«(sin(ymfs_),sin(/m6s.),cosf/mhs,)). At this fixed Pears. Power-law fluctuating-wave ands-wave suprecon-
point, the fieldsd,, and 6. are not pinned and fluctuate ducting phases at low doping levels become quantum disor-
wildly. Nevertheless, the remaining fields in the expressionéléred at half filling, with finite amplitudes among DSC, SSC
for these order parameters do provide for a finite amplitudé’d SDW, DC, SP, DDW/, respectively. Suggestions on
even though the fluctuations of both phase and orientatioROW t0 best find these phases in numerical simulations were
are so strong that the system is quantum disordered. THgVen. _ o
analysis of other three phasesyave superconductivity and ~ After this paper was submitted for publication, we be-
triplet DC (SSCG+DCY), d-wave superconductor and triplet c@me aware of the work by Tsuchiizu and Furusaki on a very
spin-Peierls (DS&SP), and swave superconductor and similar model(at half fI||II’1g). 'In th|§ work, these authors
triplet d-density wave (SSEDDW!), is similar. Because of also obta_lned the same e'lght insulating pheses we found here
large charge gaps, the low-energy physics of their spin sect@t half filling. Also after this work was subrglltted, we learned
may be described by the corresponding O(3) nonlinear ©f the numerical work by Schollwockt al.>* on a DMRG
model without a Berry phase term, which is quantum disor-Study of.a similar ladder model away from the half filling. At_
dered. low doping, these authors found that their results are consis-
The phase transition between the DSEDW phase and ten_t with an inhomogeneous picture of the doped state in
the DSG+SP phase(see Figs. 4 and)ss the commensurate Whlch_ the system is locally commensurate. It is our under-
limit of the d-wave superconductor found away from half _standmg that at Ior_wg Iength scales, the system Is actually
filing. A similar relation holds for the phase transition be- NcomMmensurate with discommensuratides kinks) sepa-

tween the SSEDC! phase, the SSEDDW! phase, and the rating the locally commensurate regions. On length scales,
swave superconductor. ' ’ long compared to the distance between kinks, this state be-

Finally, let us discuss the unstable fixed points W] haves like an effective “elastic solid” which in one dimen-
_|g*|_)o; 9. =0, summarized in Table IV. The RG flows sion has the same quantum critical behavior as a Luttinger
- 4 1Ys— — Y .

' . . liquid. Thus, this state is qualitatively equivalent to our
starting from th? phase_ boundaries wah, (0)>0 evolye weak-coupling picture, albeit with substantially renormalized
towards these fixed points. At these phase boundaries, t rameters
order parameters for CDW, SP, DC, and DDW have power- '
law correlations and have scaling dimension 3/8 at the fixed
points denoted by 1,2,5, and 6, and scaling dimension 1/8 at ACKNOWLEDGMENTS
tohe tf;]xed pc;]lnts dbenotgd _by 3";" ’ andie Figs. 4 and)5_ We thank S. Chakravarty and P. Phillips for helpful dis-

n these pnase boundaries, (A@ave andswave SUPercon- . qqiong  This work was supported by NSF Grant No.

ducting order parameters are quantum disordered. Similarl)b,\/les_17941 and Grant No. DMR01-32990 at UIUC

t
the SDW, SR DC.:' and DDW °fd9f parameters have W.V.L. was also supported in part by funds provided by the
power-law correlations and their scaling dimension is 3/8 al S. Department of EnergyDOE) under Grant No. DF-
the points 1,2,5,6, but are quantum disordered at point§662_94ER40818 at MIT '

3,4,7,8. Folgs_(0)=0, at these phase boundaries, the renor-
malized couplings satisfyg}|=|g;| as before. Nonzero
0s_(0) also has similar effects on these phase boundaries:
9s-(0)>(<)0 favors phases CDW, SP, DC, and DDW e considered an extended Hubbard model on a ladder
(DSC+SDW, SSC-DC', DSC+SP, and SSG-DDW'), re-  yjith a Hamiltonian of the following form:
spectively. Whergg, (0)<0, the situation is similar except
that transitions 1,2,5,6 become the first order and there are no
corresponding unstable fixed points. H= —t(Z) {ciT’j(,cHl’j(,Jr H.c.}—ti(z> {CIO(,Ci’lo.-i- H.c}

i,jo o

APPENDIX A: FERMIONIC HAMILTONIAN

V. CONCLUSIONS U NNV NNV Ny,
1) 1] i

In summary, in this paper, we studied the problem of com-

peting orders in two-leg ladders, which were mapped to two- 2 a
coupled Luttinger liquids withp-h symmetry at both low +Va 2, (ni'ln‘+1'2+ni’zni+1'1)+‘]lzi S Sz
doping and at half filling. We use@belian) bosonization

and RG methods to study the phase diagrams of these lad-
ders both at half filling and at low doping. Stable and un-
stable fixed points of the RG flows with the corresponding
phases and phase boundaries were investigated in detaierei labels the sites along legs apdabels the leggor
First-order transitions whegs, (0)<0 are found and the rungs; the coupling constants, V,V, , andVy represent

+J ; S-Sy (A1)
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the on-site Hubbard interaction and various nearest and nexébove Hamiltonian with the right and left movers of the
nearest neighbor Coulomb interactions, dncandJ; are the  bonding and antibonding bands represented by the operators

Heisenberg interaction along the rungs and chains, respe@gy. ¥ 1. ¢¥r2. %2 as below, where i (X)=(cj;
tively. +¢;p)/\2a. In the low-energy limit, the free part of the

After diagonalizing the kinetic part, we can rewrite the continuum Hamiltonian density can be written as

T 2 . . .
HOZUfl(E(‘JLl‘JL1+‘]R1‘JR1)+§7T(JL1"JL1+‘]R1'JRl)]

T 2 L . I
tvs E(JL2‘]L2+‘]R2\]R2)+§7T(JL2"]L2+‘]R2'JRZ)]a (A2)

whereJ; g = lﬁiT,R,Lglﬂi,R,La andji'RyL= lﬂiT,R,Lglﬂi,R,La are the right and left moving components of the charge and spin current

densities for the bonding € 1) and antibondingi& 2) fermions, respectively.
The interaction part of the Hamiltonian splits into several terms. First, we have a set of terms involving only the charge

currents:

u 1 vV, U cosX¢\ V, 3
Hint,c= §+§(V||+Vd)+7 (J1rd1rtd1pda +Iordort 20 do0) + Z+(V\|+Vd) 1‘7 +T_§COSZ(f1J||
3 U cosXsp| V., 3 3 U 1
—E\]L JirdiLt+ Z+(V‘|+Vd) 1- 5 +T—§C052(f2\]“—1—6\h_ Jordo + Z+VH 1- ECOSk_
1 3 3 3 U 1 1
+Vqy| 1+ Ecosk_ +ZVL_§‘]HCOSk—+1_6‘]L (J1rdortI11doL) + Z+V|| 1—§cosk+ +Vgy| 1+ Ecosk+
3 3 3
+ZVL_§J”COSI(++1_6JL (JlRJ2L+J1LJ2R)1 (AS)

wherek, =k¢; +kip=m(1— ), andk_=Kk¢; —ksp=2sin 4t, /(2 cosrdl2)].
Next we have the couplings involving the spin currents:

u Jy | = = = = = - s - 3. 1. -
Hint,s:[_g+§+z (J1rI1r T I10d1 +I2rI2r T J20d21) — U+2(V+Vd)COSZ(f1+VL_Z‘]L]‘]lR‘JlL
3 . 1 J,
- U+2(V”+Vd)cos2kf2+VL—ZJl Jordo =1 U+2(V|—Vg)cosk_—V, — 1+§cosk_ ‘]”_Z
- o . - 1 il - - L
X(JlRJ2R+J1LJ2L)_ U+2(VH_Vd)COSk+_VL_ 1+ ECOSk+ J”_Z (JlRJ2L+‘]1L‘]2R)' (A4)

Next we have the low-energy couplings associated with singlet-pair and triplet-pair tunnelings:

sinkySink;,(ATA,+H.c)
(A5)

J
2(Vj~Vg)+ 5

3 3
U+ ( 2(Vj—Vq) — 53) cosks,coski,—V, + ZJL] (AlA,+H.c)+

Hint,pt:

whereA = (| — g, z,bu)/ﬁ is the singlet-pair operator on a given chain ants its triplet counterpart. Note that 1 and
2 stand here for the chain label.
Finally, the low-energy Umklapp scattering terms are

Ham=e2o™{ | 2 465 v, £ —cosk_ |~V =+ cosk_ |+ 23|+ v, + 3, INING
um—¢€ 2 e [ > COSK_ d 2 COSK_ 8 I 4 VLT g0t 1N
i o) 1 Jl XN U 3 iom VL 3
—iU+e —2(VH—Vd)+ E‘FCOSK_ J“ —VL—Z NiN,+ E— V”—Vd—ZJ” e —7 §‘]L
X (MigMy +migmy) | +H.c., (A6)
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Here NT:l//;QUl//La and NT= Ir’/;eg(t;/z)%/fm are CDW and Following the standard Bosonization procedure with the

SDW (Néel) order parameters, respectiveiy.is the paring assumption of Eq(2.1), we arrive at the bosonized Hamil-

order with &, momentum, for examplens= ¢r : g | - tonian density in the Sec. Il. The bare values of the weak-
' TR coupling constants are given as

3
gc+ =U+V|[4+cosmd (1+coski )]+2V, +Vy4—cosmd(1—cosk; )]+ ZJ||COS775(1+ cosk_),

3 3
Oc_= —(V+ ZJ)COSW& (1—cosks_)—V, +cosmd(1+cosks )Vyq— =3, ,

4
Jj 1 J,
gs+ =U—V|cosmd(1+cosk;_)+Vycosmd (1—cosks -5 1—§c05w5 5
Jj 1 1
gs- =V|cosmd(1—cosk;_)+V, —Vycosmd(1+coski )+ 2 1- 5005775 — ZJL ,
Jj 1 3
g3=2 VII_Vd+Z [cosk_ +cos7é6],g4=U+2(V|—Vg)cosk_ —V, +J| cosmd— Ecosk, +ZJL’
3 3 1 1 J,
Juc=U—2cosmd V”—Vd—EJH -V, + ZJL,gu3=U—2COS7T5 V”—Vd—JH Z+§C08k_ _VL_Z’
1 J,
9u,=U—2 cosmd| (Vj+Vgcosk_ —Jj| 1+ Ecosk, +V, + R
01=0s+ t0s—, 92=09s+0s-,
U5=04— 03, guszgu4_gu3a (A7)

where cosk,=1—ti/(2t2). Up to the first order, these coupling constants are independent of the d&ping

When away from the half filling, the particle-hole symmetry E2;1) only holds approximately at small dopingask .
—m=46 m,Av¢/a= 5 t, . Taking these into account, there are some small residue terms as appearing(th@edg.7), and
(2.8), they vanish linearly with doping. The corresponding coupling constants are

1 3
Agczli(v-i-vd)-i- gJ}SiI’MT(SSinkf )
1 . .
Ags: . E(V”—i-Vd)Sln ’7T§S|nkf_ ,

3
Agyc=-—2 Siﬂ7T5( V”—Vd—ZJ) ,

) 1 cosk_
Agyz=—2sinméd V||_Vd_‘]H Z+ >
. 1
Agys=—2sinmd| (V|+Vg)cosk_—J| 1+ Ecosk”, Ags=A0uz3—AQus- (A8)

APPENDIX B: BOSONIC REPRESENTATION OF THE ORDER PARAMETERS

The difference of the charge density between two legs r§a,cﬂ&)”lcj*,,(i)cj(,(i):E,,df{(,(x) Yo (X) + z,//;(,(x) P15(X).
After expressed by the right and left movers, it contains the staggered pa@dgy. A similar situation happens to its triplet
counterparOgspy, .y - USing the bosonization identitiess | (x) = 1/y2raexp{*i J(#(x) + 6(x))} and we can obtain their
bosonic expressions as below:
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_ Ocow(®) _(—yreriom [ YALo(X) Yi2ro(X) F W31 o(X) Y1, (X) + Hoc.
Ospwizxy(X) UL ()(F12) wtharp(X) + I o(X)(012) gibira(X) +H.c.

2 cos/m6,_cos|m . sinymos_

oT cos\/;¢>S+ cos\/; O
o E{Coi \/;¢c+ - 577)() Sil’h/;ﬂc_ COS\/;aer COS\/;¢S, + Slr( \/;(z)ch - 577)()
—sinym 6. cosym s
— 2sinm 0, _sinym ., cosym
sinym ., siny/m 65
X
—cosymhc—1 sinm b, sinymes_
cos\m b, SinVm s

(B1)

whereI" equalsi n;(1)#,(2) for the singlet andz component of the triplet-order parameters, and(1)»,(2) for x,y
components of the triplet-order parameters, and the same as below.
The difference of the bond strength between two legs=is(—)! " c],(i)c;, (i +1)+H.c.= = 4], (X) 2, (x+ )

+ zﬂZU(x) J1.(x+a)+H.c., similar is its triplet analog. Their staggered padts, and étsp are the following:
Ospl(X) . T\ Y16 () Pra(X) + 1 o (X) th1rs(X) —H.C.
Bt x) [ =(=)2sinku+ 56 if e imoxiomiz R R R
SPzxy 2 D1La(X)(012) o gthorp(X) + th3 ((X)(012) o gth1re(X) —H.C.
2sinmr 0, siny .. cosym b5
oT sin\/;¢s+sin\/;65,
= —{codVm e, — dmx—dml2) cos/mo, | SN0 SINTd,
cos\m 0. Sinym s

208/ 0. oS\ ps.. Siny/ 7 O
COS\ 7 s COS\ O

sinyméc—3 cosymés, cosymeps_
—sin\/_aﬁcos\/—qbs,

It is clear thatOcpw andOgp are real and imaginary parts ¢ﬂ-_L01ﬂ2R0+ sz,_Uzle,, respectively.
Next we present the staggered part of the diagonal current derﬁ,lty—)“lc (i)cj+1(i+1)—H.c, and its triplet analog
as below:

+sin(\Tpe, — Smx— Sl2) (B2)

| (WAL OO Phre(X) — b (X) iR, (X)) T H.C.
]=(—)XSIr‘(kf1+57T/2){e mox '5’2’7{ R - P - ;
P1La(X)(012) 4tharp(X) = thap o(X)(072) 4 gth1re(X) +H.C.

2087 0._sinym ., cos\m
or Py Sinym b, sin w65
OCE{COS( Ve, = mox- 7) —sinym0._4 sinVmbs, sinym e
cos\m O, SinVm s
-2 sin\/;ec,cos\/;¢s+sin\/;05,
Py COS\/T s COSV T s
Ve —mox- 7) cosyml,_{ oS\ b, COS\T b
— sinym 6., cosym s

The difference of the current density along the legedg— )J“[c +)Cjo(i+1)—H.c]. Its staggered part is

Opc(x)
éfDC,z,x,y(X)

+sin (B3)
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o A .
(- )chos( a5 (=) 2 {e™ ™Rl () ha0r(¥) — oot () P,m(X)) ~H-C}.

Similarly, the staggered current along the rljflggg(i)clg(i)— H.c] is
i .
(—m|§ 2 e XYoL baor Yo Y1or) ~HCf

It can be shown that they satisfy the continuous relatfesy does its triplet counterparﬁDDWt staggered currents along legs
and rungs have thé-wave feature. We use currents along the rung as order parameters. Their bosonized forms are

2siny6._cos\m s, Sinym

Oppow(X)| 2r coS\/m s, COS\ T b5 _
Oppwt zxy(X) " ralo0d Vo~ 7o) —cosym,_{ cos|mb,cos|mds Fsin(mée, = mox)
— siny/m 6., cos\m s
2 cos/%@c_ sin\/;¢s+ cos\/;es_
sinym ., siny/m 65
N _ sinym 6, sinym s, sinym b
cosym s, Sinm b

(B4)

It can also be seen that the DC and DDW order parameters are the real and imaginary p;&{r,_tg/qf%— z//;,_gwmg,
respectively.
Finally, the bosonized forms of thdtwave ands-wave pairing order parameters are

Ag= (Y1 ¥1r, — 1L ¥ary) — (Yo Yor| — Yo | Y2ry)
_ 2 (D)D) =y ; i i i
= el (— cosym O, SiN s ST b + i Siny 6. cos\m s, COSVT s ),

ma

As= (11 ¥R, — Y1 iry) T (Yo Yor) — oL | Yary)

= %)am(l)ei T+ (cosym 6, cosym g, COS s +i Sinmm O, sinym g SNV s ). (B5)
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