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Disorder in fractional quantum Hall states and the gap atv=52
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Theoretical results for the gaps of fractional quantum Hall states are substantially larger than experimental
values determined from the activated behavior of charge transport. The disparity in the case of the enigmatic
v=>5/2 state is worrying as it amounts to a factor of 20—30. We argue that disorder effects are responsible for
this disparity and show how intrinsic gaps can be extracted from the measured transport gaps of particle-hole
symmetric states within the same Landau level. We present theoretical results for gepS/atand 7/2, as
well as atv=1/3, 2/5, 3/7, and 4/9, based on exact diagonalizations, taking account of the finite thickness of
the two-dimensional electron layer and Landau level mixing effects. We find these to be consistent with the
intrinsic gaps inferred from measured transport gaps. While earlier and®sest al, Phys. Rev. Lett70,
2944(1993] assumed constant broadening for each sample, our results for the disorder broadening depend on
the filling fraction and appear to scale with the charge of the elementary excitations of the corresponding
fractional state. This result is consistent with quasiparticle mediated dissipative transport.
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The gaps obtained from analyzing the activated temperaeQH states ofA?(7/2)=0.07 K andA?(5/2)=0.31 K. The
ture dependence of the longitudinal conductance near thiatter is almost a factor of 3 larger than the earlier value
center of fractional quantized HalFQH) plateaus in GaAs A?(5/2)=0.11 K (first reported in Ref. 4 and confirmed in
heterostructurég disagree with the values obtained from di- Ref. 5. The smaller gaps av=5/2 were obtained for
rect diagonalizations of finite systerhhis is the case even samples with electron densitys=2.3x 101%cn?, whereas
taking account of the softening of the Coulomb interactionthe most recent results are fiog=3x 10'Y/cn? (Ref. 6. The
between electrons resulting from the nonzero thickness dfactor of 3 difference between the new and old results for
the two-dimensional2D) electron layer and of Landau level A?2(5/2) cannot result from Coulomb interaction effects
mixing effects. The discrepancies can be around a factor of 3lone, as these scale Wm/n_s_
in the highest mobility samples for FQH states in the lowest A FQH state at=7/2 is expected on theoretical grounds.
Landau level(LLL). For FQH states in the second Landau |ts structure should be very similar to that of the 5/2 state,
level the discrepancies are even larger, as much as a factor g§ these two states are related by particle-hole conjugation
20 at filling fractionv=>5/2 (Refs. 3—5 and a factor of 30 at  symmetry, which becomes exact in the limit when LLM can
v=7/2 (Ref. §. Such large discrepancies make one wondepe neglected. In that limit, if the energy gaps are purely
whether they=5/2 state has been correctly identified. controlled by the Coulomb interaction

We argue that disorder effects are responsible for these s
discrepancies. We show how the intrinsic gap of FQH states, . Ec=e kb, @)
which are strongly affected by disorder, can be estimatedhe intrinsic gaps\'(v) of pure (disorder-fre¢ systems can
directly from measurements of the transport gaps using &e written as
simple model. These estimates are consistent with results we Ai(p)=8(v)E @)
obtain from exact diagonalizations of finite systems provided ) e .
we take account both of the nonzero width of the electronThe symbol€, in Eq. (1) stands for the magnetic length,
wave function in the direction perpendicular to the two-defined in terms of the magnetic fiel| by £,= \7c/eB,
dimensional electron layer and of Landau level mixingand « is the dielectric constant of the semiconductor mate-
(LLM). Our analysis also provides estimates for the reduc¥ial. For physically equivalent FQH states at fillingand v’
tion of the measured activation gaps relative to the disorderthose related by particle-hole conjugation symmkgttire
free intrinsic gaps—the so-called “disorder broadening.” We coefficientsd(») and §(»") in Eq. (2) will be the same and
find that the disorder-induced gap reduction depends on thée difference in the gap valués(v) andA'(v") will reflect
FQH state studied and is roughly proportional to the fracthe difference in the Coulomb energy scéle at the mag-
tional charge of the corresponding elementary excitationsnetic fieldsB, andB,. at which the FQH states occur. This
Our results show that, using a combination of the scalingvill happen forv’=2—wv, and in the second Landau level,
analysis(described hepeand comparisons with the results of when §(2+v)=8(2+(2—v)), implying 8(5/2)= 5(7/2).
exact diagonalizations, it will be possible to extract fromlf, in addition, spin mixing effects can be neglected, FQH
measurements of activation energies reliable estimates bottates at filling fractiorv can be mapped to statesdt=1
for the intrinsic FQH gap and for the disorder-induced gap— v. As an example, we expect that gaps of fractional states
reduction. at v=1/3,2/3,4/3, and 5/3 will all be described by the same

This work has been motivated by the observation of acoefficient §(1/3) as long as the Zeeman energy is large
transport gap for a FQH state at=7/2 by Eisensteiret al®  enough to suppress spin reversal in all these states and as
and by their report of transport gaps for the7/2 and 5/2 long as LLM effects can be neglected.
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The gap observed in the activated transport in an ideal 0.5
homogeneous sample should be the intrinsic gap given by 0.25
n=5/2, 7/2

Eq. (2). In practice, the transport is found to be activated but
with a gap which is smaller than the expected intrinsic gap.
In the absence of any microscopic theory of the effects of
impurities, previous analyses simply assumed that the intrin-
sic gap is reduced by a filling-factor-independefiitut
sample-dependentlisorder broadening of electronic stafes.
Such analyses gave intrinsic gaps which scaled|Bs

— By, whereB, is the magnetic field at which the filling is

energy gap A [K]
S
(S

preciselyv, and implied an effective mass of the composite e
fermions which is independent of the filling fraction, con- 50 40 G0 80 100 120 140
trary to theoretical predictiors. e /klo [K]

Here we explore the implications of a much weaker o .
assumption—namely, that the effect of disorder in any given FIG. 1. The activation gaps\*(») from Ref. 6 plotted against
sample is the samenly for states which have elementary Ec=€7«{o for »=5/2 (right) and 7/2(left). The slope of the
excitations carrying the same fractional charge. We defing!raight line through the measured gdps Eq. (4)] yields a coef-
the gap reductiod’(»), as the difference between the mea-"cient 8(5/2)=0.014, i.e. A;=0.01&,, and via the intercept, an
sured activation gaps\®(»), and the intrinsic gami(v) estimate of the gap reduction due to disord&,~1.2 K.
=0(v)Ec: pend on properties of the low-lying excitations like their

a chargeq. These will be common to symmetry-related states
A%(v)=6(»)Ec—T(»). 3 in the setS, but different for inequivalent setS,. Effects

We then assume that the intrinsic gap paramé(er’) and related to the internal structure of the excitations, which will
the reduction due to disorddt(»’) are the samenly for result in an additional dependenceldfr) on the ratiol,/d,

symmetry-related states, i.e., for states within the sets, ~ '© assumed to be small. In practice this means that our
which is a subset ofv, 1— »,1+ 1,2— v} (see below, so that ansatz(4) should hold best for states i8, for which the
’ ’ ' ’ ratios|,/d are close, for example the statesiat 1/3 and

A3(v')~8,Ec~T, Y V' eS,. (4) v=2/3, but less well for the state at=5/3. When we com-
pare with our results from exact diagonalizations, this is in-
Analyzing the experimental data on the basis of B). deed what we findsee below.
brings the experimental estimates of the intrinsic gaps very In Fig. 1, we show the gap results from Ref. 6 for the
closely into line with expectations from first-principles exact =5/2 and 7/2 states as a functionkyf. According to Eq(4)
diagonalization studies. We also find that the gaps in théhe slope of the straight line through the two gap values
lowest Landau level agree to within a few percent acrosyields §(5/2)~0.014. This is just~35% smaller than the
different samples. In the second half of the paper we testheoretical estimate for a spin-polarized paired state of the
(again empirically the validity of the ansat#4) using the =~ Moore-Read typé? 6"(5/2)~0.022, which was computed
results of finite-size diagonalization studies. For states closwithout taking account of LLM effect3 The intercept of the
to v=1/2 and for the pair at=5/2 and 7/2, for which Lan- straight line give§see Eq(4)] an estimate of the gap reduc-
dau level mixing effects are similar, we find that our weaktion due to disorded’(5/2)~1.24 K, which is only slightly
assumption appears valid and suggests a gap reductidess than the estimate for the intrinsic gap itself. We empha-
which, in any given sample, scales with the fractional chargesize that the estimate fdr for the two states is based solely
of the elementary excitation. on the assumption that the 7/2 and 5/2 states are particle-hole
The disorder scattering in the GaAs heterostructures, foconjugates of each other and that the Coulomb interaction
which studies of the activated transport have been reportedlominates the value of the intrinsic gap. Although, in prac-
is thought to be due mainly to ionized donors separated frontice, the state at=7/2 is likely to be more strongly affected
the electron gas by a spacer layer of width where d by LLM than that atv=>5/2, the assumption of particle-hole
~800 A (Ref. 2. In the case of moderate to strong disorder,symmetry between the two states should still be approxi-
the system is expected to break up into regions of compressnately valid. In the following, we show that the effects of
ible fluid surrounded by filamentary strips of incompressibleLLM reduce the theoretical value #®"(5/2)~0.016, so that
fluid, which percolate through the system and are responsiblihe discrepancy between theoretical and experimental esti-
for the quantized Hall respongeQur assumption that the mates of the gap at 5/2 essentially disappears. This provides
values ofI'(v) in a given sample are comparable for all further support for the identification of the FQH staterat
statesy’ in S, is equivalent to assuming that the effect of the =5/2 as a paired staté?
ionized donors on the low-lying excitations fr at the We have also reanalyzed older results for FQH states at
boundary of the incompressible strips, which are respon-filling v=p/(2p+1) and @+1)/(2p+1). In Fig. 2, we
sible for the quantized Hall response, is similar for all filling show the measured gaps taken from Refs. 1, 2, and 8 for
fractions in the se§, . In the limitl,/d<1, the fractionally three different very high-mobility samples at filling fractions
charged elementary excitations will appear point like on thev=p/(2p+1), v'=1-v», and v'=2—v for p=1 [Fig.
scale of the impurity potential, in which casgv) will de-  2(a)], p=2 [Fig. 2(b)], andp=3 [Fig. 2(c)] as functions of
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P slopes of the three straight line fits through the gaps of
10 a) O samples A, B, and C are quite similar, yielding estimates of
_ 7.5t v=1/3,2/3,5/3 /A/f.-" 813=0.064, 0.058, and 0.075, respectively. By contrast, the
=) . /{}4* intercepts aE.=0 yield estimatef‘jfg,t that vary by almost a
2 /‘/ factor of 2 and reflect differences in sample quality. In Figs.
g 2.5 ST 2(b) and 2c) we show the analysis of the statesiat 2/5,
8, Ae 3/5 andv=23/7, 4/7, respectively. Again the slope of the gaps
& /_/,-(" s as function ofg. are very similar for the two samples A and
T2 T B. They yield estimates af,;s=0.029 for both samplds-ig.
s 2(b)] and 85,=0.027 and 0.026Fig. 2(c)] for samples A and
] z B, respectively.
T We can test the ideas behind the angdjzdirectly using
b) ///*.-" the results of exact diagonalization studies. We attribute the
_ 4 y=2/5.3/5 //.‘.-" difference between precise calculations of FQH gaps of
) ’ ALK disorder-free systems and measured gaps to the effects of
<, A disorder and then use E@) as the definition of ' (»). Such
5 P calculations must of course include the effects of the finite
% // thicknessw of the two-dimensional electron system as well
g ? RS as LLM. We take account of LLM within the random phase
Rt approximation for the dielectric functidh
-2 .
€(q,0)=1-V(q)Il(q,w) )
/s
2l ©) & * and represent the electron-electron interaction by
e &7 .
= s u f 9 G- ©)
20 AL ) (2m)2 (@ a0
o0 / -
%“a -1 i where
8 e
-2 // 2
- V(g)= eerfo(qw) (7
b Kq
0100 ez/iljo[K] 200 250 300 is the interaction between electrons that are trapped at the

interface in a Gaussian wave function of width(Ref. 3.

FIG. 2. The measured activation gap¥(v) plotted against the The polarizationll(q,w) in Eq. (5) is given by
Coulomb energ{E,=e?/k{,. Triangles and asterisks, respectively,

refer to samples A and B in Refs. 2 and 8; diamonds represent m* [v(s) -1l =

results from Ref. 1(a) Gaps atv=1/3, 2/3, 5/3.(b) Gaps atv II(gq,w)=— 5 z F(v(s)—n) E Fk

=2/5, 3/5.(c) Gaps atv=23/7, 4/7. The slope oA? vs E gives an whe s =0 k=n+1

estimate of the intrinsic gap’~ 5,E. of the setS, of symmetry- (- 1)(k, ")(k— n)

related states. Samples of differing quality lead to similar slapes —u(s)) Lﬁ_n(x)LE_k(x)e_x,
of the straight line fit, but to different intersectionsEt=0, which (wlwe)?+(k—n)?

provide estimates for the gap reductibf® for that family S, . )

E.. Samples A and B of Ref. 2 have an electron densfy where x=(q{)?/2 and = stands for the summation over
of (112 and 2.3x10"cnm? and  mobilites «  spins=1,|. The symbo[x] denotes the largest integerx.
=(6.8 and 12x 1(Pcn?/V's. The sample of Ref. Iwhich  Equation (8) agrees with expressiofAl) of Aleiner and

we will call sample @ hasng=1.65<10"/cn? and a mo-  Glazmant* which describes the spin-degenerate caég)
bility x=5x10Pcn?/V's. Gaps atv=5/3 and 4/3 were re- =yp(|)=N, with integer filing 2N. The functionF(z) is
ported for sample A in Ref. 8. The dependence of the gap ointroduced to treat the case of fractional filling and measures
total magnetic field in a tilted field experiment showed that atthe filling fraction of the Landau leved, via F(z)=z for 0
v=>5/3 the ground and low-lying excited states were spin<z<1, F(z)=1 for z=1 andF(z)=0 for z<0. We have
polarized. Atv=4/3 the ground state was not spin polarizedverified this method for incorporating finite width and LLM
for tilt angles up to 65.1° while the excitations involved spin corrections at filling fractionv=1/3 where we could check
reversals up to even larger tilt angles. We therefore assunt@at our results are consistent with those by YoshiGkax-
that only the states at=1/3, 2/3, and 5/3 are related by pression(6) together with Eqs(7) and (5) lead to a modifi-
symmetry and not the state @& 4/3. We show the measured cation of the electron interaction at short separation, which is
gaps in untilted field as a function & in Fig. 2@. The  controlled by the dimensionless parameterE /A w,.
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TABLE I. The values for the intrinsic gap®®' [see Eq.(2)] 10
estimated by fitting the measured activation gagsto the ansatz
(4) for different samples, together with our theoretical vald®év) Z s B
for the gaps obtained from exact diagonalization stuttiésRef. 3 = Pk
and the corresponding gap reductib(w) (see text The theoreti- [:0 g A
cal values5t"(v) include finite width and Landau level mixing E 6 F
corrections. Numbers in parentheses denote the error of the last '§ rd .
quoted digit of %', These are calculated from the quoted experi- _g B //3‘
mental error(Ref. 1) or from the discretization error when extract- 5 &
ing numerical data from experimental pldgRefs. 2 and 8 For the "g /%/ g
latter as well as fow=>5/2 and 7/2, no experimental uncertainty is g 2 //,,‘"" o R R
specified. If for the values ak? of Refs. 2 and 8 similar uncertain- /,./« e -9
ties are assumed as specified in Ref. 1, errors for samples A and B o =

are 4-5 times bigger than quoted. 0: 05 Ol Oule G Dhas G Deod

v v Ref & M) M) T(v) ()

13 2/3 ' 00699 0.075 0.074 72K 6.4K
13 53 ' 00714 0075 0.057 72K 53K
1/3 2/3 2A 0.0632) 0.077 0.073 65K 53K
1/3 53 %%A 0.0641) 0.077 0.052 65K 31K
2/5 3/5 %A 0.0293) 0.036 0.034 3.0K 26K
3/7 47 A 0.0275) 0.025 0.025 23K 23K
4/9 5/9 2A  0.0136) 0.019 0.019 22K 21K
13 2/3 2B 0.0582) 0.077 0.076 94K 7.8K
2/5 3/5 2B 0.0293) 0.036 0.036 43K 39K
3/7 47 B 0.0253) 0.025 0025 36K 35K
4/9 5/9 2B  0.0005 0.020 0.020 33K 3.0K
52 72 8 0.014 0.016 0015 15K 14K

Here w.=eB/m* ¢ stands for the cyclotron frequency, with

m* the effective mass of the electrons.

For the particular sample of Ref. 6 we have repeated t
calculation of Ref. 3 using the interaction amended for LL
mixing and taking account of the nonzero thickness of the
wave function. We have computed the quasiparticle an
guasihole energies as described in Ref. 3 and, by extrapol
ing to the thermodynamic limit, we have estimated the in-

trinsic gaps atv=>5/2 and v=7/2. The gaps are®'"(5/2)

=0.016 ands'"(7/2)=0.015, and are close to the estimate

Se~0.14 obtained from the experimental valuesAdt at

v=5/2 and 7/2, using Eq4) as discussed above. We have
also calculated the finite width and LLM corrections for all
the other states reported in Refs. 1,2, and 8. These results are
listed in Table I. The differences between the two theoretical"
estimatess" for the pairs of states are generally very smal
reflecting very small differences in the LLM corrections for

the members of each pair. With the exception of the5/3

IR.L. Willett et al, Phys. Rev. B37, 8476(1988.
2R.R. Duet al, Phys. Rev. Lett70, 2944 (1993.

a_

charge of excitation q
FIG. 3. Disorder broadening(v) for samples of different high
electron mobility plotted as a function of the charge of the elemen-
tary excitations. Solid symbols refer to sample A, open triangles and
diamonds to sample BRefs. 2 and 8 and the data on the dash-
dotted line represent=5/2 and 7/2(Ref. 6. Triangles refer tav,
diamonds to +v.

case, our assumptiof(»')~ &(v) for all v in the setS, of
symmetry-related states therefore appears reasonable. The
estimatess®*' of the gap coefficients, calculated on the basis
of the simple ansat#) from the experimental values of the
activation gapA?, are consistent with the theoretical values
5™"(v) within realistic error bargcf. caption of Table ).
Estimates fol'(v), based on Eq3), are listed in the last
two columns of Table | and plotted in Fig. 3 against the
chargeq=1/(2p+1) of the elementary excitation of the
FQH state ab=p/(2p+1) or its symmetry-related siblings.

hé['he values we obtain fofF (v) scale with the charge of the

excitation in each sample. They are comparable for families
of symmetry-related states as we assumed inN&gwith the

v=1/2. However, in each family[’(v) is systematically
smaller for larger filling factors, with smaller differences be-
tweenI'(v) andI'(1—v) whenv is close to 1/2. The largest
differences are for the case of=1/3, 2/3, and 5/3, where
I'(1/3) is about twicd(5/3). We attribute this reduction of
I'(v) at largerv to LLM and other polarization and screen-
ing effects which should increase ggd increase<for the
p=5/3 state in Ref. 8,/d~1/3), but which would require a

%ssumption better justified the closer the filling fractions are

icroscopic model of the response of the FQH system to

Ipotential variations to quantify.
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