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Dynamics of short-time-scale energy relaxation of optical excitations due to electron-electron
scattering in the presence of arbitrary disorder
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A nonequilibrium occupation distribution relaxes towards the Fermi-Dirac distribution due to electron-
electron scattering even in finite Fermi systems. The dynamic evolution of this thermalization process assumed
to result from an optical excitation is investigated numerically by solving a Boltzmann equation for the carrier
populations using a one-dimensional disordered system. We focus on the short-time-scale behavior. The loga-
rithmically long time scale associated with the glassy behavior of interacting electrons in disordered systems is
not treated in our investigation. For weak disorder and short range interaction we recover the expected result
that the relaxation rate is enhanced by disorder. For sufficiently strong disorder, however, we find an opposite
trend due to the reduction of scattering probabilities originating from the strong localization of the single-
particle states. Long-range interaction in this regime produces a similar effect. The relaxation rate is found to
scale with the interaction strength, however, the interplay between the implicit and the explicit character of the
interaction produces an anomalous exponent.
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The interplay of strong disorder and electron-electron in-with time scales of the order of a day.

teraction is one of the major issues of contemporary con- Here we are interested in the short-time-scale relaxation
densed matter physics. This problem may well be behind thef an initially nonequilibrium occupation number distribu-
insulator metal transition in two dimensidner behind the  tion which is assumed to be a result of an optical excitation.
unexpectedly large persistent current observed in experyitimately we are interested in optical phase relaxation due
ments as compared to theoretical predictib&smilarly this  to Coulomb interactions in a strongly disordered system.
interplay is responsible for the glassy behavior of the elecTnese particular relaxation processes will take place around a
trons recently investigated both experimentaliand |ocal minimum of the free energy of the Coulomb glass.

theoretically* Since theoretically the nonperturbative treat- They are completed long before the system moves from one
ment of both disorder and interaction is still a very demand-

) . . . Do 2 P minimum to a lower one. Therefore the logarithmic relax-
ing task, numerical simulations may yield important insight

: . ation times arising due to the slow process of finding the
Into th_e pro_blem. _In this paper we present results of such %Iobal minimum of the free energy is beyond the scope of
numerical simulation.

For photoexcited ordered semiconductors, it is known thaEhe pre_sent S?Udy' The tregt_ment of_optlcal rela>§at|on due 1o
Interactions is not a trivial subject even in ordered

Coulomb scattering is a rapid proceés the presence of a . . . :
semiconductors.In order to gain some insight into these

weak disorder, i.e., in dirty metals in the diffusive regime X . AN
such process may become even fdsberause the particles Processes we here study first the population relaxation in this

diffusively can spend more time close to each other, whicHime regime, typical for processes within a given minimum.
results in an enhanced probability of scattering. This enWe are aware, however, that phase and population relax-
hancement can in other words be attributed to the absence 8fions are not identical. Nevertheless, the dependence of the
k vector selection rules in the scattering process. relaxation rates on disorder and interaction strength in the
Very little is known about the Coulomb scattering for the situation envisaged is interesting in itself as far as optical
case of a strong disorder. In this paper we show that wittphenomena are considered.
increasing disorder the localization length of the single- In order to investigate the diffusive and the localized re-
particle states reduces drastically and hence the scatterigimes as well, we use both Hubbard-type short-range inter-
probabilities as well. Our result is obtained from numericalactions and Coulomb-type long-range interactions. We al-
investigations of the dynamical energy relaxation due toready anticipate that the former is more appropriate in the
electron-electron scattering in a system modeling a disordiffusive regime as it roughly incorporates the screening ef-
dered metal in the localized regime. Our model is related tdect of the other electrons, although, both types of interac-
the quantum Coulomb-glass model introduced and studied itions yield qualitatively similar results in the localized
detail in Ref. 8. In these and subsequent studies this modeegime.
has been used to determine stationary and equilibrium prop- In order to investigate the population relaxation due to the
erties of interacting electrons in a disordered environmentparticle-particle scattering we consider a simplified model of
The interplay of strong interaction with strong disorder isa strongly disordered system described by the Hamiltonian
also responsible for the emergence of glassy beh#Vior that consists of two partdl=H,+H,, where the single-
which results in logarithmically slow relaxation processesparticle partH, reads as
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FIG. 1. Typical time evolution of the root-mean-squared devia- 0
tion of an initially nonequilibrium occupation from the Fermi-Dirac
distribution for the case of long-range Coulomb interaction. The
inset shows then, distribution at different time instants. Time is
measured in units of Heisenberg-time * energy in units of near-
est neighbor hoppingl.

0.1}

H]_:Ei SiCiTCi+iEj ‘]ijCiTCji (1)

v (relaxation rate)

wherec; (ciT) annihilategcreateg an electron on sitg (i.e.,

a stateli)). We consider electrons without spin. The atomic
energy levels:; are taken randomly from a box distribution
of width W around zero mean valug; describe the hopping

amplitude from sité to sitej. Nearest neighbor approxima- 0.0

tion has been used with a constant hopping tataken as

the unit of energy. The sites are assembled in a regular one w (disorder)

dimensional lattice of unit lattice spacing with periodic

boundary conditions. FIG. 2. Dimensionless relaxation rate in units of the mean level

The second part of the total Hamiltonian contains the two-spacing for the case=I"/A of (a) long-range Coulomb interaction
particle interaction which in site representation reads as  and(b) short-range Hubbard interaction as a function of the dimen-
sionless disorder strengtth=W/J. The initial occupation is similar
as in the inset of Fig. 1. The different curves are labeled according
szi 2 V. (C-TC- _ K)(C-TC- —K) ) tou=Ug,/J. The insets show the curves which are rescaled with the
2 9 RN 1 ' dimensionless interaction parameterThe system size isl=20.

where for the sake of_ charge neutrality we have glrea(_jy in- H :Z 8aclca+ E UZZCLCE%C@, 3)
cluded a compensating charge Kk at each lattice site a aBys

whereK is the filling factor. The interaction matrix element
is either of short-range or long-range type. In the former cas
Vi;=U, when two electrons are on the neighboring sites,

where the single-particle part is obviously diagonal in the HF
Basis with thes ,’s being the HF eigenvalues. In the residual

| : ) interaction
—J|=1, and zero otherwise. For long-range interactidp,
=Uq/|li—j|, Ug>0 characterizes the strength of the repul-
. ’ ) X . ¥o — ~C* C*.C..C:
sion between electrons located at neighboring sites. In any Uop |§1: VijCiaCiCisCis (4)
case due to the Pauli principle the electrons are not allowed o
to occupy the same site. where theC;, numbers represent the HF states in site repre-

The electron-electron scattering is evaluated in an effecsentation. This model is in fact the standard two-body ran-
tive single particle basis. This basis is obtained from thedom interaction mode(TBRIM) of fermions. Within the
diagonalization of the HamiltoniaH, including the “diag-  TBRIM, for example,U?% values are chosen randomly from
onal” part of the interaction, i.e., as a first step we self-@ Gaussian distribution assuming that the single-particle
consistently obtain the Hartree—Fo¢KF) solution of the states are suffiﬁiently chaotic, i.e., delocalized. The typical
Hamiltonian (1) by replacing the parametees and J;; as  matrix elementU~A/g, whereg is the dimensionless con-
ei+32;Viin;; andJd; j,— 3Viin; , respectively. In the HF  ductance of the system ardis the mean HF-level spacing.
basis our original Hamiltonian can be expressed as In our case these interaction matrix elements contain the
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Eq. (5), in fact an inelastic process because the finite width
effectively results in loss of energy.

Integration of the above equation using a standard fourth
order Runge—Kutta procedure gives the time evolution of
n,(t). The form of a Fermi—Dirac distributiomgp(E)
=1/(1+exdB(E—w)]) is fitted at every time step. This fit
provides a “chemical potentiali and an “inverse tempera-
ture” B. However, we are more interested in the error of this
fit, o?(t)==,[n,—nep(e,)]? This quantity characterizes
how close the distribution,, is to ngp . An example for one
single realization oveN=20 sites with half filling is pre-
sented in Fig. 1 where we can clearly see an approximately

w (disorder) exponential decrease that initially characterizes the relax-
ation process. From these initial exponentials a relaxation

FIG. 3. Average dimensionless relaxation rate(I',)/A as a  ratel’ can be obtained through(t)~ ooexp(—1It).
function of the dimensionless disorder strengtk W/J as obtained The scattering probability between the pairs of single-
from the expon_ential ansatz for short times. The different curves arf)article statega, 8} and{y, s} is (ng)z which is explicitly
labeled according tai=U,/J. Open symbols stand for Hubbard . 2
type interaction and filled symbols for Coulomb type interaction.pmportIonal toUg. Thgrefore for.small enougtl When the.

The data for the Coulomb interaction has been scaled down by Hartree-Fock states differ very little from the noninteracting
factor of N, whereN=20 is the size of the system. basis we expedf~US. The power of two should, however,

be an approximate value, since for strong enough interaction
information about the microscopic details of the originaland also for strong enough disorder we expect a different
model, e.g., the long-range correlations due to the Coulombxponent due to the implicit character of the interaction en-
interaction and the presence of a disorder potential. Henceoded in the coefficient§; , .
especially in the case of strong disorder we are not allowed The relaxation rate obtained from the exponentials as
to use the TBRIM model. Also note that E@) depends on  shown in Fig. 1 has been collected and averaged over many
the interaction strengtbl, explicitly throughV;; and implic-  realizations. In Fig. 2 we show the data obtained for several
itly through the coefficient€;,, . interaction strengthJ, and disordeiV. We can clearly iden-

This HF basis corresponds to a zero-temperature equilibyfy qualitatively that for the case of short-range interactions,
rium distribution of the occupation numberg=(clc,) that  weak disorder produces an increase of the relaxation’rate.
equals 1(0) for £,<Ef (£,>Egf). As disorder is increased, however, the rate decreases. Note

We assume that an excitation process has somehow gefla; g long-range interaction induces a much faster relaxation
erated an initial, nonequilibrium,, distribution of the form ¢ compared to a short range one.

—_>7-1 _ _ 2 2 i . . . .
Ne=Z""ex (ga Eo)72w7], whereE, Ezthef_cenéekr) of rt1he As we can see in the insets of Fig. 2 the relaxation rate
ex%F?tlog an_l\:lv |_Is_h|ts en;argyf;r])rea 'tISt' xe hy the . grows as a power dfl; that is smaller than two. This is due
fr?enlc;vlyer; hl;rl]fac; thé eneefent?arn?j te i?:);(l:ll aaltoi?slz? dglseecr)]rlgtto the strong perturbation the interaction makes on the HF
Tgy L » typically states as compared to the noninteracting basis. One may also
the band edge. The widtv is typically chosen to be one detect a slight difference in the exponents between the two
fourth of the bandwidth with which one could more or less stght @ P
types of interactions.

avoid the possibility of the non physical situation of, Wi e that th f th .
>1. During the numerical simulation this initial distribution e may summarize that the error of the occupation num-

is assumed to reldxtowards equilibrium via electron- Per distribution decays for short times roughly as an expo-
electron scattering. This process is described by the Boltz2€ntial (Fig. 1) therefore we may expect that the solution

(rescaled relaxation rate)

1.9

Yu

mann equatioh of Eq. (5 is also an exponential whose derivative is
n,~—I,n,. If we substitute this ansatz into E) we can
d 2 512 calculate thd”, values from the initial derivatives. This al-
ateT TR BEM Vsl “deates—e,—e) lows obviously for a much better statistics, however, will still
" strongly depend on the initiah, distribution. An average
X[N ng(1=n)(1=ns—=(1=ny)(1=ng)n,nsl. over the individual rate§’, and obviously over many real-

) izations of the disordered potential is presented in Fig. 3. We
can observe that the effectilé, dependence here is roughly

As we have noted already, in the localized regime we cannaivo owing to the simple approximation of the exponential
apply assumptions of ergodic wave functions in order to esansatz for short times.

timate the typical value dﬂgz. Also our spectra are discrete  In summary our numerical results show that weak disor-
therefore thesd function in Eq.(5) is not possible to be sat- der indeed causes the energy relaxation of an initially non-
isfied exactly. However, we may approximate it with a boxequilibrium occupation number distribution towards a Fermi-
of finite width of the order of the mean level spacitigThis  Dirac distribution to become faster for the case of short-
approximation enables us to call the relaxation described imange interactions. On the other hand with an increase of
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disorder the single-particle localization volume decreasesnated directly from the carrier-carrier scattering rates but it
hence the quasiparticles have smaller chance to effectivelig a rather complicated phenomenon. So-cailedcattering
scatter and therefore the relaxation rate decreases consideontributions largely compensate the dephasing provided by
ably. Note that the long-range type interaction is more effecthe usualout scattering terms°-*?As a result the depen-
tive, thereforel is orders of magnitude larger than in the dence of the dephasing rate of the interband polarization on
case of short-range interaction. However, qualitatively bothhe carrier density is rather weak, see Ref. 11, where for
of them produce a similar tendency as a function of largey- and three-dimensional systems a dependencendf
enough disordeiV. was found. It would be very interesting to include coherent
From the results presented here one could expect that cyntributions in our type of approach and to investigate up to

herent phenomena at elevated density of particles may Bghat extent such results are altered in the presence of disor-
more robust with respect to dephasing processes in strongjya,.

disordered systems. Thus one could suspect that these sys-
tems may serve as a testing ground of coherent phenomena We are indebted to B. Altshuler, F. Izrailev, and Ph. Jac-
even at elevated carrier densities, especially in the case wheyuod for encouraging discussions. This work was supported
these phenomena do require the presence of strong disordey the Deutsche Forschungsgemeinsch&FG) through
anyway. One such phenomenon is for instance the curremroject No. KO816/8-1, by the Alexander von Humboldt
echo’ Stiftung, by OTKA Grants Nos. T032116, T034832, and
The loss of coherence, i.e., dephasing, following inter-T042981, by the European Community’s Human Potential
band photoexcitation has been widely studied in semiconProgram under Contract No. HPRN-CT-2000-001M&no-
ductor systems, where the optically induced coherence iscale Dynamics, Coherence and Computatiand by the
monitored in the time domain by ultrafast nonlinear opticalCenter for Optodynamics, Philipps University, Marburg,
techniques®!! Using many-body theory it has, however, Germany. T.M. acknowledges the DFG and I.V. acknowl-
been shown that the dephasing of the interband polarizatioedges the Hungarian Academy of Sciences for financial sup-
due to the Coulomb many-body interaction cannot be estiport.
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