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Transverse phase locking in fully frustrated Josephson junction arrays: A different type
of fractional giant steps
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We study, analytically and numerically, phase locking of driven vortex lattices in fully frustrated Josephson
junction arrays at zero temperature. We consider the case when an ac current is appliedperpendicularto a dc
current. We observe phase locking, steps in the current-voltage characteristics, with a dependence on external
ac-drive amplitude and frequency qualitatively different from the Shapiro steps, observed when the ac and dc
currents are applied in parallel. Further, the critical current increases with increasing transverse ac-drive
amplitude, while it decreases for longitudinal ac drive. The critical current and the phase-locked current step
width increase quadratically with~small! amplitudes of the ac drive. For larger amplitudes of the transverse ac
signal, we find windows where the critical current is hysteretic, and windows where phase locking is sup-
pressed due to dynamical instabilities. We characterize the dynamical states around the phase-locking interfer-
ence condition in the current-voltage curve with voltage noise, Lyapunov exponents, and Poincare´ sections. We
find that zero-temperature phase-locking behavior in large fully frustrated arrays is well described by an
effective four-plaquette model.
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I. INTRODUCTION

Phase-locking phenomena are found in wide variety
nonlinear driven systems in condensed-matter physics1 It
takes place when an internal frequency of the system lock
a rational multiple of the frequency of an external ac drive
simple example of this is the case of an overdamped par
moving in a tilted washboard potential, where the frequen
of motion of the particle over the periodic potential can
locked to multiples of the frequency of a superimposed
force for a finite range of the dc force~tilt of the washboard!.
Since the internal~washboard! frequency is proportional to
the mean velocity of the particle, phase locking results i
constant mean velocity for a certain range of dc-force cu
when the interference condition is satisfied. A particula
well-known realization of this effect is Shapiro steps2 in the
dc current-voltage (IV) characteristics of a single small are
Josephson junction driven by a time periodic current. Wit
the washboard analogy outlined above, a simple anal
provides expressions for the appearance of Shapiro ste
specific voltages3 corresponding to integer multiples of th
driving frequency.

Driven systems with many degrees of freedom can a
exhibit phase locking. This has attracted broad scientific
technological interest since phase locking in complex s
tems can either be induced by collective effects, provid
for a low dimensional interpretation of the phenomenon,
itself induce collective~low dimensional! behavior in the
complex system. Phase-locking experiments have prov
information about such dynamical response of nonequi
0163-1829/2003/68~10!/104521~13!/$20.00 68 1045
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rium collective states, where dimensionality, thermal fluctu
tions, quenched disorder, and the magnitude of exte
fields can be very relevant. A particularly well-known e
ample is the large Josephson junction array~JJA!, with N
3N junctions, driven by an external current (I dc

1I accosVt)x̂ with frequencyV and with an applied mag
netic field densityf 5Ha2/F0, where H is the magnetic
field, a the lattice period of the Josephson array, andF0 the
quantum of flux. Giant Shapiro steps at voltagesVn

5Nn\V/2e, n being an integer, have been observed exp
mentally in zero magnetic field (f 50).4Fractional giant
Shapiro steps at voltagesVn,q5Nn\V/2eq were observed
experimentally5,6 for strongly commensurate magnetic field
f 5p/q with p, q being integers, and extensively investigat
in numerical simulations.7–11 Also, subharmonicgiant Sha-
piro steps at voltagesVn,m5Nn\V/2em were observed
experimentally6 for zero magnetic field (f 50), and attrib-
uted to the nucleation of complex collective dynamic
states12,13induced by disorder or inductance effects. Shapi
like phase locking is also observed in the case of driv
vortex lattices in bulk superconductors with two-dimension
periodic pinning arrays, as recently reported bo
experimentally14 and theoretically.15 Also superconductors
where vortices are driven over a one-dimensional poten
generated by thickness modulations16 or are confined to
move through mesoscopic channels,17 show Shapiro-like
phase locking. Moreover, systems with many degrees
freedom in the presence of quenched disorder can also
hibit phase locking when there is a dynamically induced
©2003 The American Physical Society21-1
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riodicity, such as charge-density waves18 and vortex lattices
in superconductors with random pinning.19–21

In the phase-locking examples mentioned above, the
drive is applied parallel to the dc drive. However, it w
recently shown that a different type of phase locking, disti
from Shapiro phase locking, is possible in vortex lattices
the ac force is appliedperpendicularto the dc force.22,23 In
this case the interference effect is due to an effectivepara-
metric ac drive in the longitudinal direction, which is in
duced by the transverse ac drive. In several systems, suc
charge-density waves or single degree of freedom syst
~e.g., the single Josephson junction!, the dynamical variables
are such that perturbations or displacements can be ind
in only one direction~i.e., the displacement field is a scala!.
An important characteristic of vortex lattices in superco
ductors is that the displacement field is two dimensional
particular, the behavior of displacements in the direction p
pendicular to the driving force shows phenomena such a
transverse critical current24–27 and a transverse freezin
transition24,28 at high velocities. Phase locking in ac-drive
vortex lattices, where the ac and dc forces are perpendic
arises as a direct consequence of the nonlinear coupling
tween the two directions of motions.

Transverse phase locking has been reported for vortex
tices moving in rectangular or triangular pinning arrays22 as
well as in arrays of randomly distributed pinning centers23

In this paper we investigate the possibility of transve
phase locking in a two-dimensional~2D! fully frustrated JJA,
where the average of the external magnetic field correspo
to one half flux quantum per plaquette,f 51/2. This system
has several attractive properties. The presence of a mag
field ( f Þ0) breaks the axial symmetry in the direction of t
bias current, and 2D-cooperative behavior may come
play. This leads to the well-known fractional giant Shap
steps5–11 induced by a longitudinal ac current. It also, as w
will demonstrate in this paper, allows fortransversephase
locking when the ac current is perpendicular to the dc c
rent, since the two directions of motion become coupl
Nonequilibrium dynamical phases for fully frustrated JJ
driven by a dc current have previously been studied.29,30

Phase locking can be used to characterize temporal ord
the different dynamical phases of the JJA’s at high veloci
by their ac response, as was done in Refs. 20,21 for b
superconductors.

Here, we report transverse phase-locking steps in theIV
characteristics, similar to the longitudinal giant Shap
steps, but with very different characteristic dependencies
external ac-drive amplitudeI ac and frequencyV. The criti-
cal depinning current in the system with transverse ac d
is larger than the critical current of the dc-driven system. F
I ac /V!\/2eRN (RN is the normal-state shunt resistance! the
depinning critical currentI c and the phase-locked step wid
DS1 for V5V\/2e increase quadratically withI ac . For
I ac /V.\/2eRN we find windows ofI ac /V where depinning
is hysteretic and the periodic phase-locked dynamical st
become unstable. We characterize the dynamical st
around the phase locking interference condition in theIV
curve with the voltage noise, Lyapunov exponents, and P
caré sections. We find that zero-temperature phase lock
10452
ac

t
f

as
s

ed

-
n
r-
a

ar,
e-

t-

e

ds

tic

to

r-
.

in
s
lk

n

e
r

es
es

n-
g

behavior in large fully frustrated arrays is well described
an effective four-plaquette model.

The remainder of this paper is outlined as follows. In S
II we present the model used for simulating the dynamics
the fully frustrated JJA. In Sec. III we develop an analytic
framework for predicting critical current and phase locki
properties of the fully frustrated JJA. Section IV presen
simulated transverse phase locking steps in typicalIV curves
obtained from an effective four-plaquette model for the JJ
We calculate numerically the dependence of the critical c
rent and the magnitude of phase locking steps with the
plitude I ac and frequencyV of the external ac drive. The
results obtained are analyzed in more detail by studying v
age noise, Lyapunov exponents, and Poincare´ sections for
the dynamical states around the phase locking interfere
condition. We also compare numerical simulation results
large arrays with those obtained using the effective fo
plaquette model. The discussions and conclusions of the
vestigation are presented in Secs. IV and V.

II. MODEL

We study a current driven JJA with an ac current perp
dicular to the dc current, as shown in Fig. 1~a!. A magnetic
field H is applied such that half a flux quantum,f
5Ha2/F051/2 with a2 being the area of a plaquette an
F05h/2e being the flux quantum, penetrates each plaque
This corresponds to the fully frustrated XY model,31,32where
the ground state is a ‘‘checkerboard’’ vortex lattice in whi
a vortex ~flux quantum! penetrates every other square gr
@see Fig. 1~b!#. In such ground state, current and phase d
ferences in the junctions are described by a repeated
junction by two-junction (232 plaquette! superlattice unit
cell.

Numerical simulations7,8 of large driven arrays sugges
that this spatial periodicity is preserved when the dynamic
phase locked to an external ac perturbation applied in pa
lel to the dc force. We will show later, in Sec. IV, that this
also a good approximation when the ac current isperpen-
dicular to the dc current. We will therefore consider th
simple system of a 232 superlattice unit cell of the arra
and the associated gauge-invariant phase differences

FIG. 1. ~a! Schematic JJA showing driving currents and t
repeated two-junction by two-junction superlattice unit cell in t
ground state.~b! Ground-state ‘‘checkerboard’’ vorticity forf
5Ha2/F051/2. Black squares represent plaquettes with one v
tex, white squares represent plaquettes without vortices.
1-2
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TRANSVERSE PHASE LOCKING IN FULLY . . . PHYSICAL REVIEW B68, 104521 ~2003!
field of f 51/2, with the dc current~per plaquette! I dc per-
pendicular to an ac current~per plaquette! I accos(Vt), as
shown in Fig. 2. Flux quantization, total current conservat
at the central node, and the applied total currents in the
directions give the following governing equations,

a1b2d2g5p~112n!, ~1!

ḃ1ġ1sinb1sing52I accosVt, ~2!

ȧ1 ḋ1sina1sind52I dc , ~3!

ȧ1ġ2ḃ2 ḋ1sina1sing2sinb2sind50, ~4!

where n is an integer,t is the normalized time in units o
t052eI0RN /\, RN being the normal-state single junctio
resistance,V is redefined as the normalized frequency
units of 1/t0 , I ac and I dc are redefined as the normalize
external currents in units of the single junction critical cu
rent I 0. This model was introduced by Benzet al.33 ~for
I ac50) to study the dc current-voltage curve of thef 51/2
array. They obtained analytically that the critical current p
junction of this model isI c5(A221)I 0.33 The same mode
was later used in Ref. 9 to study the~longitudinal! Shapiro
steps. Since the analysis done in the work of Refs. 9,33
not include the transverse ac current with accompany
transverse voltage drop, an additional constraint ofb52g
was implied, reducing the model system to two dynami
degrees of freedom. In contrast, our model system of a fo
plaquette unit cell consists of three effective dynamical va
ables. We calculate the instantaneous longitudinalVx and
transverseVy ~normalized! voltages per junction as

Vx5~ ȧ1 ḋ !/2, ~5!

Vy5~ ḃ1ġ !/2, ~6!

and theIV characteristics,vx5^Vx& as a function ofI dc ,
where^•••& is a time average. The total longitudinal voltag

FIG. 2. Square four-plaquette model,a, b, g, d, being the
gauge-invariant phase differences.
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vT for an N3N array, built with this 232 superlattice unit
cell is vT5Nvx . When vortices move with a mean velocit
u in such 2a32a superlattice structure, we can obtain th
normalized voltagevx using the relation 2pu/2a5vx ,
wherea is the array periodicity@see Fig. 1~a!#. The intrinsic
washboard frequency for vortices moving with velocityu in
the periodic potential of the JJA isv052pu/a. Phase lock-
ing in the longitudinal direction is obtained when the fr
quencyV of the ac drive locks to a rational multiple of th
intrinsic washboard frequency. For thenth harmonic this cor-
responds tov05nV, i.e., 2pu/a5nV. This leads to phase
locking at voltagesVn,25(n/2)V for fully frustrated JJA. In
general, forf 5p/q, the ground state hasqa3qa superlat-
tice structure, therefore the voltage for vortices moving w
velocity u is 2pu/qa5vx , and phase locking for thenth
harmonic is obtained at voltagesVn,q5(n/q)V. This is the
condition for the so-called ‘‘fractional giant Shapir
steps.’’5–11

III. PHASE LOCKING AND CRITICAL CURRENT
ANALYSIS

We will in this section assume that the dynamics of t
system is represented by the simple two-plaquette degree
freedom as shown in Fig. 2. We will apply the followin
linear transformation of the phase variables of Eqs.~1!–~4!:

Fx5
a1d

2
, ~7!

Cx5
a2d

2
, ~8!

Fy5
b1g

2
, ~9!

Cy5
b2g

2
. ~10!

With these variables we can represent the constraint (f 5 1
2 )

of Eq. ~1! asCx1Cy5p/2, and thereby write the relevan
three degrees of freedom in either of the two followin
forms, eliminatingCx :

Ḟx1sinCysinFx5I dc , ~11!

Ḟy1cosCysinFy5I accosVt, ~12!

2 Ċy2cosFxcosCy1cosFysinCy50, ~13!

or eliminatingCy :

Ḟx1cosCxsinFx5I dc , ~14!

Ḟy1sinCxsinFy5I accosVt, ~15!

2 Ċx1cosFxsinCx2cosFycosCx50. ~16!
1-3
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The normalized voltages are given byVx5Ḟx and Vy

5Ḟy . We will in the spirit of the usual Shapiro analys
assume that

Fy5
I ac

V
sinVt, ~17!

which is the solution to Eqs.~12! and ~15! for large I ac and
V.

A. Critical current

We will here look at Eqs.~14! and ~16!. AssumingFx

5Fx
(0) andCx5Cx

(0)1«(t), whereFx
(0) andCx

(0) are con-
stants andu«(t)u!1, the static contribution to Eq.~16! is

cosFx
(0)sinCx

(0)5J0S I ac

V D cosCx
(0) ~18!

⇒tanCx
(0)5

J0S I ac

V D
cosFx

(0)
, ~19!

whereJn is the nth order Bessel function of the first kind
Inserting this into the static part of Eq.~14! yields

I dc5cosH tan21F J0S I ac

V D
cosFx

(0)
G J sinFx

(0) . ~20!

This expression provides a unique relationship between
constant phaseFx

(0) and the dc currentI dc . However, for
increasingI dc , there exists a critical valueI c

↑ for which no
real Fx

(0) can satisfy Eq.~20!. This value is given by

I c
↑5maxF cosH tan21S J0S I ac

V D
cosFx

(0)
D J sinFx

(0)G , ~21!
e

which is the predicted critical dc current for static stat
(vx5^Ḟx&50). We notice that the identical expression f
the critical current, Eq.~21!, can be obtained from theaniso-
tropic dc-driven system:

a1b2d2g5p~112n!, ~22!

ḃ1ġ1G sinb1G sing50, ~23!

ȧ1 ḋ1sina1sind52I dc , ~24!

ȧ1ġ2ḃ2 ḋ1sina1G sing2G sinb2sind50,
~25!

where the anisotropyG ~suppression of transverse critic
current! is given by the standard Shapiro3 critical current,
G5J0(I ac /V).

B. Phase locking

Here we will use Eqs.~11!–~13!, since^Cy&50(modp)
for ^Ḟx&Þ0 provides for a simple description of the dynam
ics. We will assume the ansatzFx5Fx

(0)1Vt and Cy

5A sinVt1BcosVt. The equation forCy , Eq. ~13!, now
reads:

2Ċy2cos~Fx
(0)1Vt !cosCy1sinCy(

k
JkS I ac

V D
3coskVt50, ~26!

where we will use the approximations cosCy

'J0(AA21B2) and sinCy'Cy . We take the small-angle ap
proximation inCy since^Cy&50(modp). With this ansatz
for Cy , the above equation has no static component. T
time varying component, at frequencyV, yields the coeffi-
cientsA andB:
A15A0J0~AA0
21B0

2!5

2V cosFx
(0)2FJ0S I ac

V
D 1J2S I ac

V
D GsinFx

(0)

4V21J0
2S I ac

V
D 2J2

2S I ac

V
D J0~AA0

21B0
2! ~27!

B15B0J0~AA0
21B0

2!5

2VsinFx
(0)1FJ0S I ac

V
D 2J2S I ac

V
D GcosFx

(0)

4V21J0
2S I ac

V
D 2J2

2S I ac

V
D J0~AA0

21B0
2!, ~28!

104521-4
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where A0 and B0 are the solutions forJ0(AA0
21B0

2)51.
Thus, the solution (A,B)5(A0 ,B0) is correct up to order
V21 and (A,B)5(A1 ,B1) is correct up toV22. Inserting
this solution (A1 ,B1) for Cy into theCy-linearized Eq.~11!
gives the following static properties:

J0~AA0
21B0

2!
1

2
~A0cosFx

(0)1B0sinFx
(0)!5I dc2V

~29!

⇒J0~AA0
21B0

2!
1

2

2V2J2S I ac

V D sin2Fx
(0)

4V21J0
2S I ac

V D2J2
2S I ac

V D 'DI 1

2
1

2
DS1sin2Fx

(0)5I dc2V. ~30!

Thus, the locking range for the this step can be found
second order inuCyu. The dominant part of this expressio
for the range in phase locking yields:

DS15

UJ2S I ac

V D U
4V21J0

2S I ac

V D2J2
2S I ac

V D

3S 12

3V21
1

4 FJ0
2S I ac

V D1J2
2S I ac

V D G
S 4V21J0

2S I ac

V D2J2
2S I ac

V D D 2 D . ~31!

The expression displays quadratic growth of the pha
locked step size for smallI ac . This is consistent with the
particle~pancake! model results22 for vortices in rectangular
pinning arrays, and it is different from the known longitud
nal ~Shapiro! phase locking of JJA’s.4–7

In addition to the range of phase locking,DS1, Eq. ~30!
provides information about the offsetDI 1 of the phase-
locked step relative to the Ohmic~linear! curve~see inset in

FIG. 3. IV curve of a 232 JJA forI ac52.3 andV51, showing
transverse phase locking and critical currents. Inset shows a d
of the hysteresis around the critical current.
10452
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Fig. 3!. The offset is given by the part of the equation th
doesnot depend onFx

(0) . From Eq.~30! we have

DI 15
V

4V21J0
2S I ac

V D2J2
2S I ac

V D

3S 12
1

4

4V21J0
2S I ac

V D12J2
2S I ac

V D
F4V21J0

2S I ac

V D2J2
2S I ac

V D G2D . ~32!

Expressions~31! and ~32! provide a second-order~in
V21) description of the phase locking step magnitude a
location as a function of the system parametersV andI ac for
largeV.

IV. RESULTS AND DISCUSSION

We will here show the results of numerical simulations
the system analyzed in the preceding section. The sim
tions are conducted with numerical parameters correspo
ing to the model parameters, using a fourth-order Run
Kutta method such that the normalized time step typically
no larger than 1% of the period of the driving frequency, a
often smaller. Since we are mostly concerned with dcIV
characteristics, we choose to acquire data for averaging
many ac periods of motion~typically 102–103) after a suffi-
cient initial time interval allowed for transient behavio
SimulatedIV characteristics are obtained by performing t
necessary averages as described, and then changing t
currentI dc slightly to acquire the next point on theIV curve.
All simulations are conducted for the fully frustrated case
f 5 1

2 .
Figure 3 shows a simulatedIV characteristic,vx as a

function of I dc , simulated forV51 and I ac52.3, for the
simple four-plaquette model showed in Fig. 2, described
Eqs.~1!–~4!. As is obvious from the figure, we obtain clea
signatures of critical current~s! and phase-locked steps. Sp
cifically, we observe theDS1 step atvx5V ~main step!, and
stepsDS1

2 and DS2 at vx5 1
2 V and vx52V, respectively.

We observe a critical current larger than the previou
predicted33 value of I c5A221'0.41 for a fully frustrated
dc-driven system. The characteristics of this plot are v
similar to the behavior observed in JJA with parallel ac1 dc
drives, obtained both by simulations8,10 and experiments,5 as
well as analytically for the four-plaquette model.9

Comparing simulations of the full-resistively shunte
junction ~RSJ! dynamical equations27,30 for different large
arrays (N3N junctions! we will later ~below! demonstrate
that the simple model of a 232 array gives very good de
scription of the JJA dynamics. However, we will first com
pare the predictions of the analytical treatment of the prec
ing section to numerical results.

A. Critical current and phase locking for VÐ1

In order to verify the simple theory for critical current an
phase locking behavior developed above, we have condu
numerical simulations of the four-plaquette system descri
by Eqs.~1!–~4! for 1<V.

ail
1-5



at

ar
a
g

ci

at
o
ic

he

ca

e

er-

-
me

r-

is
the
e

n

lt of

-
ng

c
olt-

d
t

ke
di
s.
e
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The first set of simulations are conducted to investig
the critical currentI c , as it is described by Eq.~21!. This
expression provides an estimate of the critical currentI c

↑ for
which the JJA switches from a zero-voltage state (^Vx&50
andI dc,I c

↑) to a non-zero voltage state. The simulations
conducted accordingly, starting the system at rest for sm
I dc and slowly increasing the dc bias until nonzero avera
voltage is detected. The results are shown in Fig. 4~a!, where
the solid curve represents expression Eq.~21! and the mark-
ers represent the simulation results for several frequen
1<V<3 as a function of the characteristic ratioI ac /V. The
size of the markers are larger than the error on the estim
critical current. It is obvious that the agreement is very go
for all simulated datasets, and we conclude that the crit
current, as given by Eq.~21!, is a relevant estimate forV not
smaller than 1.

Figure 4~b! shows the critical currentI c
↓ evaluated from

numerical simulations when the dynamical system switc
from the nonzero voltage state to the zero-voltage state~see
inset in Fig. 3!. We have here shown the results of numeri
simulations with markers as for Fig. 4~a!, together with the

FIG. 4. Critical currentI c of a 232 JJA vs ac amplitude and
frequency,I ac /V for high frequencies,V>1. The hysteresis of the
critical current is demonstrated by~a! the critical currentI c

↑ switch-
ing from zero to nonzero voltage state and~b! the critical currentI c

↓

switching from nonzero to zero voltage states. See Fig. 3. Mar
are results of numerical simulations and lines are the correspon
predictions:~a! Eq. ~21!; ~b! dashed curve is the maximum of Eq
~21! and~37!, while the solid curve is the minimum of the two. Th
critical currentI c

↓ , is predicted to follow the solid curve.
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solid curve of Eq.~21!. However, it is clear from the figure
that the critical currentI c

↓ for decreasing dc bias may b
smaller than for increasing dc bias (I c

↑>I c
↓). Since this is a

multidimensional system, the critical current may be hyst
etic, such that decreasing the dc currentI dc for nonzero volt-
age states (vx5^Ḟx&Þ0) is subject to different critical char
acteristics. One simple way of investigating this is to assu
a non-phase-locked state of voltagevxÞ0, such thatFx
5vxt. A primitive analysis can provide a hint to this hyste
esis.

The critical current analysis of the preceding section
obviously a critical current for a system operated at

^Ḟx&50 branch of theIV curve. We may instead analyz
what may happen for anon-phase-locked̂Ḟx&5vxÞ0 state.
We will still assume Eq.~17! to be an appropriate descriptio
of the transverse current. However, Eq.~13! becomes~for
small uCyu and with no resonance toV)

2 Ċy2cosvxt1J0S I ac

V DCy50 ~33!

⇒Cy5

J0S I ac

V D
J0

2S I ac

V D14vx
2

cosvxt1
2vx

J0
2S I ac

V D14vx
2

sinvxt.

~34!

Inserting theCy solution into Eq.~11! yields the following
static component:

vx1UJ1S 2vx

J0
2S I ac

V D14vx
2D U5I dc , ~35!

where the second term on the left-hand side is the resu
the resonant mixing between the propagation^Ḟx&5vx and
the transverse oscillationCy . However, the overdamped dc
driven pendulum equation is also subject to the followi
simple relationship:3

Avx
21~ I c

↓!25I dc . ~36!

Combining the two expressions provides the relationship

I c
↓5AF vx1UJ1S 2vx

J0
2S I ac

V D14vx
2D UG 2

2vx
2<0.826591.

~37!

As we have indicated, the critical currentI c
↓ has a maximum

value at around 0.82@for J0(I ac /V)50 and vx'0.33].
Thus, we can argue that propagating (^Ḟx&Þ0) solutions
may exist forI dc.I c

↓'0.82, which provides for a hystereti
IV characteristic switching between zero and nonzero v
ages in the rangeI c

↓<I dc<I c
↑ , when I c

↓<I c
↑ . Notice that

when I c
↓.I c

↑ , the relevant critical current for both zero an
nonzero voltage states must beI c

↑ , since no static states exis

rs
ng
1-6
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TRANSVERSE PHASE LOCKING IN FULLY . . . PHYSICAL REVIEW B68, 104521 ~2003!
for I dc.I c
↑ . However, whenI c

↓,I c
↑ , the actual critical cur-

rent for switching into a zero-voltage state may be anywh
in the interval@ I c

↓ ;I c
↑#.

Figure 4 clearly indicates the hysteretic switching in t
IV characteristics whenI c

↓<I dc<I c
↑ , which is the case for

small uJ0(I ac /V)u.
We note that the above rather primitive analysis of

hysteresis provides a fairly good agreement with the res
of numerical simulations. The results of the analysis are
completely consistent with its assumptions in that the res
ing amplitude ofCy for the optimizedvx'0.33 is about 1.5,
which is not a small number. However, a more detailed~non-
linear! analysis of a single frequency representation ofCy
yields quantitatively similar and qualitatively identical r
sults (I c

↓<0.77) as above, and we therefore conclude that
simple explanation for hysteresis presented here is relev

For J0(I ac /V)50 we can provide an explicit approx
mate expression forI c

↓ by assuming that the critical current
given by the value ofvx which optimizesJ1(1/2vx). This
leads tovx'1/3.6, which when inserted into the above equ
tion yields the optimized coordinates: (I c

↓ ,vx)
5(0.81,0.28).

It is noteworthy that we observe, as predicted by the
pression forI c

↑ , I c(V,I ac) to be larger than the dc-driven
system,I c(V,I ac)>I c(V,0)'0.41. Hence, a transverse a
driving leads to anenhancementof the critical current. This
is contrary to the case with the ac current parallel to the
current, where the critical current is reduced, i.e.,I c
<I c(V,0)'0.41.5,8–10 The increase of the critical curren
due to a transverse ac bias can be understood from the e
tive anisotropicmodel of Eqs.~22!–~25!. The presence of an
ac drive in the transverse direction reduces the critical c
rent in this direction by a factorJ0(I ac /V), which is the
well-known reduction of critical currents due to an ac driv
Therefore this reduces the Josephson coupling between
different rows in the longitudinal direction and the syste
has a more ‘‘one-dimensional’’ behavior with a critical cu
rent much closer to the single junction critical current~and
therefore higher than the ‘‘two-dimensional’’ value,I c
50.414).

The predicted rangeDS1 in I dc of phase locking, as given
by Eq.~31!, is investigated through simulations similar to th
above study of the critical current. Comparisons between
predicted expression and results of numerical simulations
shown in Fig. 5~a!, which displays the largest magnitude
the range in dc current for which phase locking is obser
as a function of the characteristic ratioI ac /V, for different
values ofV in the interval 1<V<3. Markers represent re
sults of numerical simulations and solid curves represent
corresponding predicted results of Eq.~31!. It is obvious that
the simulated parameter sets provide very good overall v
dation of the perturbation analysis, with the larger of t
simulated frequencies providing better agreement than
smaller, as expected. However, an observation common t
simulated frequencies is that large deviations from the
pected behavior are found for parameter valuesV and I ac
leading toJ0(I ac /V)'0. The reason for this discrepancy
likely due to a dynamical instability, which can be explain
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by the perturbation analysis above. The average equilibr
position ^Cy& of the variableCy can be observed from Eq
~26! if we write Cy5Cy

(0)1cy , where Cy
(0) is varying

slowly in time ~much slower thanV) andcy represents all
high-frequency~including V) contributions (ucyu!1). The
slow evolution of Eq.~26! can then be written:

2Ċy
(0)1J0S I ac

V D sinCy
(0)50. ~38!

Thus, we find that the stable position ofCy is

^Cy&5H 0, J0S I ac

V D.0

p, J0S I ac

V D,0.

~39!

The consequence of this abrupt transition inCy is that the
locking phaseFx

(0) must experience a similar abrupt trans
tion of p, as can be seen from Eq.~11!. We therefore claim
that the apparent discrepancy observed between the num
cal simulations and the perturbation theory near the root
J0(I ac /V) is a result of dynamical instabilities arising from
switching the average phase^Cy& between 0 andp.

We finally show the comparisons of the center of t
phase-locked step as a function of the characteristic r

FIG. 5. Phase locking of a 232 JJA atVx5V. Markers are
results of numerical simulations and lines are the correspond
predictions of Eqs.~31! and ~32!. ~a! Phase-locking range in dc
current.~b! Offset of the phase-locked step relative to the Ohm
curve. See Fig. 3.
1-7
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I ac /V, for different values ofV in the interval 1<V<3.
The predicted behavior, Eq.~32!, is subject to the same is
sues as the predicted range of phase locking since the o
of both expressions is Eq.~30!. Figure 5~b! shows the offset
DI 15I 12V between the center of the stepI 1 and the Ohmic
curve. As is the case for the phase locking range show
Fig. 5~a!, the comparison between numerical simulatio
~markers! and the corresponding predicted offsets~solid
curves! is very good, except for the instabilities near t
roots ofJ0(I ac /V), where the obtainedDI 1 is larger than the
analytic value given by Eq.~32!. Notice that the phase lock
ing analysis leading to the predictions Eqs.~31! and ~32!
does not depend on the sharpCy transition between 0 and
p. The reason is that this transition provides only a s
change in the effective equations of phase locking, and
magnitudes of locking range and offset are therefore un
fected as long asJ0(I ac /V)Þ0.

Based on the above presented comparisons between
numerical simulations of critical currents, range of pha
locking and position of the phase locked step in theIV char-
acteristics of a transversely ac-driven JJA and the co
sponding results from simple perturbation analysis, we c
clude that the high-frequency behavior is well described
the presented analytical treatment.

B. Critical current and phase-locking for intermediate and
low V

In Fig. 6 we show the critical current behavior for inte
mediate and low frequencies. For intermediate frequen
@Fig. 6~a!# we observe how the critical currentI c

↑ increas-
ingly deviates from the high-frequency behavior outlin
above. Even so, we notice that the overall behavior of
critical current is qualitatively well described by the analy
leading to Eq.~21! for V> 1

2 . We have, for comparison
included an example of the critical current for the longitu
nally ac-driven JJA as an inset. Not surprisingly, decreas
the frequency further@see Fig. 6~b!# results in rather large
discrepancy between the high-frequency analysis of Sec.
and the numerical simulations, and no universal behavio
the critical current as a function of the characteristic ra
I ac /V can be found. However, we do observe that the cr
cal current does seem to increase quadratically for smallI ac .

In Fig. 7 we show the phase locking rangeDS1 at vx
5V as a function ofI ac /V for intermediate (V.0.5) and
low frequencies (V,0.5). Again, as for the critical curren
we observe that the intermediate frequency range prov
for reasonably good qualitative comparisons between
merical simulations and the high-frequency analysis of S
III A. We have, for comparison, included an example of t
comparable range of phase locking for the longitudinally
driven JJA as an inset. A noticeable feature of Fig. 7~a! is
that the dynamical instability discussed above arou
J0(I ac /V)50 seems to widen as the frequency is lower
Also the behavior of the offsetDI 1 ~not plotted here! shows
dynamical instabilities in the same range of values ofI ac /V
as forDS1. Figure 7~b! shows how this instability provide
for increasing discrepancy between high-frequency anal
and numerical simulations. However, we notice that even
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very low frequencies retain the basic feature of quadra
growth of the phase locking range as a function ofI ac for
small I ac .

C. Dynamics of phase locking

Let us now analyze in detail the dynamics of the volta
responses~increasing and decreasing dc current! to elaborate
on our previous results: critical current hysteresis and w
dows without transverse phase locking. We calculateIV
curves and Lyapunov exponents as a function ofI ac andV.
In order to distinguish between periodic or quasiperiodic d
namics and chaotic dynamics we calculate the maxim
Lyapunov exponentl, following the standard methods o
nonlinear dynamics.34,35This means that a small perturbatio
eW (0) to the initial condition will displace the new trajector
by an amountueW (t)u;ueW (0)uelt. The Lyapunov exponent is
then defined as

l5 lim
t→`

1

t
ln

ueW~ t !u

ueW~0!u
5 lim

t→`

l~ t !.

To recognize a chaotic trajectory we evaluate the maxim
Lyapunov exponent. Ifl.0 the trajectory is locally un-

FIG. 6. Critical currentI c
↑ as a function of ac amplitude an

frequency,I ac /V for intermediate frequenciesV.0.5 ~a! and for
low frequenciesV,0.5 ~b!. Inset: Comparison with longitudinal a
drive for V51.38.
1-8



ch
su
ve
st
wi

ne
ic

d

e

th

i
t
h
.

d

i-
ce of
nce

xi-
lock-

ub-

ys-

ed

re-
:
e

ar-
itive
i-
erse
:

-

c

v

r-

TRANSVERSE PHASE LOCKING IN FULLY . . . PHYSICAL REVIEW B68, 104521 ~2003!
stable; i.e., initial points that are arbitrarily close to ea
other are macroscopically separated by the flow after a
ficiently long time and the attractor is chaotic. Negati
Lyapunov exponents are obtained when trajectories that
sufficiently close to a subset are attracted to it. Here we
show two particular cases:I ac /V53.0/1.552, correspond-
ing to a set of parameters where no hysteresis is obtai
and I ac /V54.05/1.552.7, corresponding to the hysteret
regime. In Fig. 8 we plot theIV curves and maximum
Lyapunov exponents forV51.5 andI ac53.0 @Fig. 8~a,b!#
and I ac54.05 @Fig. 8~c,d!#. The exponents are estimate
from l'l(t) after a finite timet51024T, with T52p/V.
For I ac53.0 we show a range inI dc where a wide transvers
phase-locking step exists@Fig. 8~a!#, and the corresponding
maximum Lyapunov exponentl is shown in Fig. 8~b!. We
see that within the step we havel,0, with the most nega-
tive value ofl at the center of the step. Outside the steps,
Lyapunov exponent is nearly equal to zero,l&0, corre-
sponding to quasiperiodic behavior. A different behavior
obtained forI ac54.05, shown in Fig. 8~c!, where we see tha
the step disappears and thus there is no transverse p
locking in the sameI dc range where we find a step in Fig
8~a!. The maximum Lyapunov exponent, plotted in Fig. 8~d!,
is small but positive for theI dc range around the expecte

FIG. 7. First integer step widthDS1 vs ac amplitude and fre
quency, I ac /V for intermediate frequenciesV.0.5 ~a! and low
frequenciesV,0.5 ~b!. Inset: Comparison with longitudinal a
drive for V51.38.
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location of the step, the smallness ofl implies that the dy-
namics can be either chaotic (l.0) or quasiperiodic (l
50) in this case. TheIV curves near the corresponding crit
cal currents are shown as insets. We see that the absen
hysteresis in critical current is associated with the occurre
of transverse phase locking for the main step (vx5V). In-
versely, hysteresis in critical current is obtained for appro
mately the same parameters for which transverse phase
ing is absent for the main interference condition.~On the
other hand, for subharmonic interference conditionsV
5(n/m)V we have found coexistence of hysteresis and s
harmonic phase locking in some cases!. This is in agreement
with the above analysis that indicates the critical current h
teresis is present in the vicinity ofJ0(I ac /V)50, which is
also the location of the dynamical instabilities of the lock
phase of theDS1 step~the main harmonic step!.

In summary, around the transverse phase-locking step
gion we can distinguish three different voltage responsesA,
B, andC, which are indicated in Fig. 8. We now calculate th
voltage power spectrum and Poincare´ sections to distinguish
these three types of dynamical behaviors. This way to ch
acterize dynamical behaviors was used before in capac
rf-biased JJA.36,37We analyze both transverse and longitud
nal voltage power spectra. From the instantaneous transv
voltage we obtain the transverse voltage power spectrum

FIG. 8. IV curves forV51.5 and their corresponding Lyapuno
exponents,l: ~a! Part of IV curve with phase-locking step forI ac

53.0. Inset: Detail ofIV curve near the critical current. No hyste
esis in I c is observed.~b! l for I ac53.0. ~c! IV curve for I ac

54.05, no phase-locking step is observed. Inset: Detail ofIV near
the critical current; hysteresis inI c . ~d! l for I ac54.05.
1-9
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Sy~v!5U 1

Tt
E

0

Tt
dtVy~ t !exp~ ivt !U2

, ~40!

whereTt5NtDt. From the instantaneous longitudinal vo
ageVx we obtain the longitudinal voltage power spectrum

Sx~v!5U 1

Tt
E

0

Tt
dtVx~ t !exp~ ivt !U2

. ~41!

For studying the nature of the attractor in the different
gimes it is useful to consider a Poincare´ section of the phase
space trajectories.34 We consider the stroboscopic Poinca´
section of the trajectories in thedFx /dt vs sinFx plane,
recording the values taken by these variables in each pe
of the ac drive. In Fig. 9 we show the power spectra a
Poincare sections forV51.5 and for theI ac and I dc values
corresponding to theA, B, andC regimes. For each case w
show the longitudinalSx(v) and transverse,Sy(v), voltage
power spectra as a function ofv/V and their corresponding
Poincare´ sections. Let us first discuss the case correspond
to the regimeB, in which there is transverse phase lockin
This is shown in Fig. 9~b! for I dc51.66 andI ac53.0, which
corresponds to the step with mean voltagevx5^Vx&5V ~see
Fig. 8~a!, regime B). We see that the longitudinal powe
spectrum Sx(v) presents a deltalike peak forv52V.
Thereby, the first harmonic of longitudinal voltage fluctu
tions is locked to 2V, as expected for this step, since
corresponds ton52 in the phase locking conditionv0
5nV. The phase locking with a double frequency cor
sponds to the case when the vortex lattice oscillates in
synchrony with the transverse ac current, and the gro
state repeats itself after one period of the ac drive. In
transverse voltage power spectrumSy there is a sharp peak a
V. This is characteristic of transverse phase locking:
dynamics in the transverse direction locks at half the f
quency than the dynamics of the longitudinal direction. T

FIG. 9. Voltage power spectra and Poincare´ sections forV
51.5 in differentI dc regimes:A, B, andC @see Fig. 8~a!# Transverse
Sy and longitudinalSx power spectra forI dc51.5 andI ac53.0; A
regime. ~b! I dc51.66 andI ac53.0; B regime. ~c! I dc51.66 and
I ac54.05; C regime.~d!,~e! and~f! are the corresponding Poinca´
sections. Power spectrumSx is plotted displaced on they axis for
clarity.
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is so because in a single period of the ac drive,T52p/V,
the longitudinal component moves forwardn steps in the
lattice perioda, while the transverse component complet
only the first half of its oscillation. In Fig. 9~e!, we show the
Poincare´ section corresponding to this case in the regimeB.
The figure shows a very localized Poincare´ section since the
trajectory always comes back approximately to the same
cation in phase space in each ac cycle, since the trajecto
periodic ~closed orbit!.

Now we analyze the case corresponding to theA regime,
which is for a current outside the step,I dc51.5, see Fig.
8~a!. In this case we see again inSx(v) a peak at 2V and in
Sy(v) a peak atV. However, the peaks now have a sm
broadening, and small amplitude satellite peaks have
peared at neighboring frequencies. This is evidence of
other kind of long-term behavior, namely, quasiperiodic d
namics. We can corroborate this with the correspond
Poincare´ section shown in Fig. 9~d!. It consists now of a
closed one-dimensional curve, which means that trajecto
wind around on a torus, never intersecting themselves
yet never quite closing, typical of a quasiperiodic orbit. W
have also looked at the time-dependent estimates of
Lyapunov exponent,l(t). We find thatl(t),0 for finite t,
but its absolute value tends to zero for long times as 1t,
consistent with quasiperiodic behavior.

Let us now study the last case, corresponding to regimeC.
This is done forI dc51.66 andI ac54.05 in Fig. 9~c!. We see
that there are broad peaks in the spectrum in both directi
Sx(v) andSy(v), and that there is a marked increase in t
power spectra for low frequencies. Moreover, in Fig. 9~f! we
show the corresponding Poincare´ section which consists o
successive points jumping from one region of phase spac
another and forming a complex curve, which does not se
to close on itself. It is rather difficult to decide from this plo
if it corresponds to a quasiperiodic orbit or to a low dime
sional attractor of a weakly chaotic orbit. We have obtain
also the time-dependent estimate of the Lyapunov expon
also for this case. We find thatl(t).0 for all t, but its
magnitude is decreasing with time as 1/t as far as we have
been able to observe. The fact thatl(t) is positive for finite
t means that there is a dynamical instability that cause
seemingly chaotic behavior at intermediate times and a la
noise as seen in the low-frequency power spectrum. H
ever, for long times it is very likely that the system will sett
in a quasiperiodic dynamics withl(t)→0. In any case, the
regimeC is very different from the regimeA, as can be seen
by comparing the power spectra of Figs. 9~a! and Fig. 9~c!.

Another view of the dynamics can be obtained by looki
at the behavior of the Lyapunov exponent and the noise
the region, where a step is expected, as a function ofI ac /V.
We proceed as follows: for a givenI ac ,V, we compute the
set of values of Lyapunov exponentsl and low-frequency
longitudinal noiseS05 lim

v→0
Sx(v) that correspond to cur

rents I dc in the region of voltage where a step is expecte
~We look atI dc values for whichV2e,Vx,V1e, we con-
sidere50.005.! We plot the resulting set of values ofl as a
function of I ac /V in Fig. 10~a! and the values ofS0 as a
functions of I ac /V in Fig. 10~b!. The vertical lines in the
1-10
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TRANSVERSE PHASE LOCKING IN FULLY . . . PHYSICAL REVIEW B68, 104521 ~2003!
plot correspond to the zeroes ofJ0(I ac /V). We see clearly
that near these values there are windows of dynamical in
bility where l*0 and where the noiseS0 is large. In the
regions of phase locking we find a couple of interesting
sults that are worth mentioning.

~i! The most negative value of the Lyapunov expon
occurs in the middle of the phase-locked step and its ma
tude is proportional to the step widthDS1, as given by Eq.
~31!.

~ii ! The largest value of the noiseS0 occurs at the edge o
the phase-locked step; its magnitude is also proportiona
the step widthDS1, as given by Eq.~31!.

D. Results for large JJA

We will now consider the quality of the simple 232
model as representing the dynamics of largeN3N JJA’s. It
is known that collective effects at high currents may co
into play. At high currents, theZ2 symmetry of the ground
state can be broken because a driving current can ind
domain walls.29,30,32Simulations ofIV curves with the RSJ
model and free boundary conditions, forf 51/2 andT50,

FIG. 10. Lyapunov exponentsl and low-frequency noiseS0 for
currentsI dc giving voltages nearV5V plotted as a function of
I ac /V. Vertical dashed lines correspond to the zeros ofJ0(I ac /V).
~a! Lyapunov exponents. Symboln indicates value ofl at the
center of the phase-locked step. Dot-dashed line: Curve pro
tional to DS1(I ac /V) as given by Eq.~31!. ~b! Low-frequency
noise. SymbolL indicates value ofS0 at the center of the phase
locked step. Dot-dashed line: Curve proportional toDS1(I ac /V) as
given by Eq.~31!.
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have reported a chaotic regime atI .I c related to the motion
of domain walls.38 It has been shown that open bounda
conditions nucleate domain walls leading to a critical curr
lower than the analytic valueI c50.35,A221 at T50.39

Moreover, Ciria and Giovanella11 have shown microscopi
cally that different dynamical states are possible for the l
gitudinal Shapiro steps. Besides the checkerboard grou
state configuration, other stable solutions with domain wa
are possible. Then, depending on dc current value and
tory, domain walls can appear, which are not permitted in
four-plaquette model. Therefore, in order to evaluate to w
extent the four-plaquette model is valid in the transverse
driven case, we have calculated numericallyIV curves for
N3N arrays, forN58, 16, 32, 64, with the full-RSJ mode
used before in Refs. 27,30. We use periodic boundary co
tions in both directions in the presence of an external
current I dc plus a perpendicular ac currentI acsin(Vt). We
solve the dynamical equations with time stepDt50.1tJ
(tJ52pcRNI 0 /F0) and total integration timet int5215Dt
after a transientt int/2. We calculateIV curves as a function
of I ac and V, increasing dc currentI dc

↑ from checkerboard
ground state atI dc50 and then decreasing dc currentI dc

↓

from the phase configuration obtained at high current.
use a dc current stepDI dc50.01 to obtainI c and DI dc
50.0001 to calculate the step width.

One of the relevant results with the four-plaquette mo
is the dependence of the critical current withI ac /V for high
frequencies, as shown in Figs. 4~a! and 6~a!. We have also
calculatedI c as a function ofI ac /V for high V in large JJA
arrays. In Fig. 11~a! we show the case for a particular high
frequency value in a 32332 array. We see that it has th
same behavior as observed in the four-plaquette mo
I c(I ac ,V)>I c(0,0), ranges ofI ac /V around the maxima of

r-

FIG. 11. Critical currentsI c and step widthsDS1 obtained from
numerical simulation in large arrays (32332 junctions! as a func-
tion of I ac /V. ~a! I c obtained by increasingI dc (I c

↑ , d) and de-
creasingI dc (I c

↓ , L). Dot-dashed lines show the analytical resu
of Eqs.~21! and~37!. Inset shows the size dependence ofI c

↑ andI c
↓

for system of sizeN3N, corresponding to the casesa andb indi-
cated in the plot.~b! Width of the first integer phase-locked ste
DS1, obtained numerically for a 32332 array,d; and analytical
result of Eq.~31!, dot-dashed line. Inset shows size dependence
DS1 for the casec shown in the plot.
1-11
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I c where there is hysteresis, and a quadratic increase withI ac
for I ac /V!1. We compare the analytical results expec
for I c

↑ , Eq. ~21!, andI c
↓ , Eq. ~37!, which are represented b

dot-dashed lines. We see thatI c
↑ obtained numerically for a

large array is in excellent agreement with the analytical
sult for the 232 system. This is quite reasonable, sinceI c

↑

corresponds to the limit of stability of the checkerboa
ground state, which is well represented by the 232 model.
On the other hand, theI c

↓ shows some small deviation from
the 232 result, I c

↓(N3N)&I c(232). Also the range in
I ac /V where there is hysteresis is bigger in a large syst
The currentI c

↓ corresponds to the low current limit of stabi
ity of the moving~nonzero voltage! state. In large systems
the moving state can have domain walls, as was found
Refs. 29,30, and the presence of domain walls can lead
lower I c

↓ .
In order to analyze more quantitatively in whichI ac /V

ranges the collective effects could be more relevant, we
cus on two cases: casea corresponding to values that do n
show hysteresis in the critical current in a small system,
are close to the edge of theI ac /V range of hysteresis, an
caseb corresponding to values that show hysteresis in
232 system. For each case we calculate the critical cur
by both increasing and decreasing the dc drive, and there
they correspond toa↑, a↓, b↑ and b↓ in Fig. 11~a!. We
show in the inset of Fig. 11~a! the critical currents obtained
for all these cases as a function of system sizeN. In casea,
corresponding to the nonhysteretic region, we see that t
is no size effect ina↑ up to N564. Also we see thata↓
5a↑ for N<32, while forN564 we find that hysteresis ha
appeared anda↓,a↑. In the hysteretic region, caseb, size
dependent critical currents are obtained forb↓, while b↑ is
size independent. Moreover, the amplitude of the hystere
b↑2b↓ weakly increases with system size.

In Fig. 11~b! we show the range of phase lockingDS1 as
a function ofI ac /V for the 32332 array. We find that, when
there is phase locking, the numerically obtainedDS1 is very
accurately described by the analytical result of Eq.~31! for
the 232 model. In the inset of Fig. 11~b! we show the size
dependence ofDS1 for the case marked asc in the plot @it
corresponds to the sameI ac /V of casea of Fig. 11~a!#.
There is no appreciable size dependence. As observed i
simulations of the 232 system, we also find here that th
phase locking is lost near the zeros ofJ0(I ac /V) due to the
presence of dynamical instabilities. Also, we observe that
presence of hysteresis in the critical current is nearly coin
dent with the absence of phase locking. We find that w
increasing system size these regimes of dynamical instab
are amplified in their extension both in theirI dc dependence
and in their range ofI ac /V around the zeros ofJ0(I ac /V).
This means that the dynamical instabilities detected in
-
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four-plaquette system can lead to an increased spatiotem
ral chaos in larger systems where collective effects are
portant.

V. CONCLUSIONS

It is important to point out that there are no trivial co
nections between vortex dynamics in the fully frustrated J
and that of a commensurate vortex lattice moving in a re
angular pinning potential in a bulk superconductor.22 This is
so because the London model with vortices interact
through pair potentials apply to JJAs only in the limit of ve
low vortex density, such thatf 5Ha2/F0!1.27 The fully
frustrated case represents, in this last respect, an intere
limit for studying, where the complete phase field, rath
than just the positions of vortices, should be taken into
count to describe the dynamics.

We have found transverse phase-locking steps in fu
frustrated JJA. This type of~fractional! giant phase locking
steps presents marked differences with the well-known l
gitudinal fractional giant Shapiro steps. Particularly, the pr
ence of the transverse ac force increases the critical de
ning current with respect to the case without ac drive~or
with a longitudinal ac drive!. We have analyzed both analyt
cally and numerically the behavior of the steps as a funct
of ac amplitudeI ac and frequencyV. For I ac /V!1, the
depinning critical current and the phase-locked step wi
DS1 for V5V\/2e increase quadratically withI ac . For
I ac /V.1 we have found windows ofI ac /V where depin-
ning is hysteretic and phase locking is destroyed due to
namical instabilities. The emergence of a weakly chaotic
havior at zero temperature, in a system with noncapaci
junctions, is another particular characteristic of transve
phase locking which is absent in longitudinal phase lock
in overdamped JJA. Comparing with the behavior of lar
fully frustrated arrays we have found that transverse ph
locking can be well described by an effective four-plaque
model, and that collective effects become more import
close to the regions of dynamical instability of the fou
plaquette model. Our results could be observed experim
tally in JJA. In particular, the enhancement of the critic
depinning current with a transverse ac drive could be
interesting experimental consequence of the phenomena
ported here.
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