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Superconductivity in a two-dimensional hole-doped spin-orbital system
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A two-dimensional electron system with both spin and orbital degrees of freedom is investigated with the
slave-boson mean-field approaches. By introducing the resonating-valence-bond order parameters, we show
that the system may exhibit superconductivity after the slave bosons ‘‘condensation.’’ It is found that the
electron pairs are spin singlets and orbital singlets but the system showsp-wave superconductivity with the
symmetry ofkx6 iky .
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After the discovery of the BCS superconductivity~SC!,
looking for new types of superconductors, namely, the ‘‘u
conventional’’ superconductors, has become an importan
sue in condensed-matter physics. The first example foun
the superfluid3He, in which the pairing symmetry of th
atoms has been demonstrated to bep wave. Subsequently,
variety of heavy fermion superconductors were discove
and most of them exhibit nodes in their gap functions, a
therefore belong to the class of unconventional superc
ductors. One of the most exciting discoveries in the last t
decades is the high-Tc superconductors. It is generally be
lieved that the hole-doped high-Tc superconductors ar
d-wave paired. Recently,p-wave SC has also been found
several materials. One of such materials is Sr2RuO4,1 in
which p-wave SC exists2 with strong ferromagnetic~FM!
fluctuation.3 This material has a layered structure with t
total spin of Cooper pairs lying in the basal plane.4 Its SC
properties have been widely studied5–7 and the pairing sym-
metry was predicted to bekx6 iky . The heavy fermion ma-
terial UGe2 also shows thep-wave SC on the border o
itinerant-electron ferromagnetism.8 A more interesting mate
rial is ZrZn2,9 in which p-wave SC and long-range FM ca
ried by the same electrons coexist. A few theories have b
raised to explain the mechanism of this kind of SC.

However, most of the heavy fermion superconduct
possess strong antiferromagnetic~AF! fluctuation aboveTc
and shows odd pairing behavior in the gap functions. T
strongly suggests that the orbital degrees of freedom of
electrons may play important roles in their SC. On the ot
hand, orbital degeneracy in the transition-metal oxides m
also affect their superconductivity under hole doping, if t
Hund’s coupling and the crystal fields are weak enough. T
insulating spin-orbital systems have been studied for a l
time.10 The minimum model to describe a twofold orbit
degenerate spin-1/2 system is the so-called SU(4) mod11

As is well known, the high-Tc superconductors are in fact th
hole-doped Mott insulators without orbit degeneracy. It
therefore interesting to study the hole-doped spin-orbital s
tems. The key issue in such hole-doped systems is whe
there is any superconductivity, and if yes, what is the sy
metry of the paring state? For some insulating materials w
orbital degeneracy, Santoroet al. proposed and studied
spin-orbital coupling superexchange Hamiltonian,12–15
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H52 (
^ i , j &

S 2SW i•SW j2
1

2D S 2TW i•TW j2
1

2D . ~1!

This Hamiltonian was shown to describe the spin-orbital
teraction in many compounds of C60,16 compounds of lay-
ered fullerides, and some two-dimensional~2D!
copolymers.17 They also showed14,15 that the ground state o
the model~1! is spin-Peierls-like dimerized in one dimen
sion. Zhang and Shen18 investigated the ground state of th
model in two dimensions using interesting approaches. T
simplified the spin-orbital interaction to a reduced form in
SU~4! Schwinger boson representation.19 By introducing a
symmetric resonating valence bonds~RVB! ~Ref. 20! order-
ing parameter and applying mean-field theory, they foun
different spin-orbital FM ordered state corresponding to
short-ranged RVB crystal state, while both the spin and
bital degrees of freedom form AF ordering.

In the present paper, we investigate a toy model of a ho
doped 2D spin-orbital system based on the model~1!. By
introducing the SU~4! fermion representation, the interactio
part of the model Hamiltonian can be reduced to bon
charge interaction, which has the same form as that of
Schwinger boson representation.18 Upon this reduction, the
slave-boson mean-field phase diagram has been derived
shown that the pairing symmetry isp wave though the elec
tron pairs are both spin and orbit singlet. With the sla
boson condensation, superconductivity may exist in so
doping region. The Hamiltonian we shall study reads

H52t (
^ i , j &,s,t

P~Ci ,s,t
† Cj ,s,t1Cj ,s,t

† Ci ,s,t!P

2J (
^ i , j &

S 2SW i•SW j2
1

2
ninj D S 2TW i•TW j2

1

2
ninj D

2m0 (
i ,s,t

Ci ,s,t
† Ci ,s,t , ~2!

where t is the hopping constant, andJ.0 is the superex-
change constant;m0 is the chemical potential;Ci ,s,t

† (Ci ,s,t)
is the creation ~annihilation! operator of electrons on
site i with spin and orbit componentss,t; P•••P in-
dicates the single occupationni5 (ts Ci ,s,t

† Ci ,s,t<1; SW i
©2003 The American Physical Society12-1
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5 (s,s8,t Ci,s,t
† sWs,s8Ci,s8,t and TW i5 (s,t,t8 Ci ,s,t

† tW t,t8Ci ,s,t8
denote the spin-1/2 and orbital-1/2 operators, respectivel
a lattice sitei ; s56 1

2 , t56 1
2 represent the spin and o

bital indices, respectively;̂i , j & denotes the summation ove
the nearest neighbors. The model is constructed in a
square lattice. We note that though the second term of Eq~2!
contains more than four fermion product, it is indeed a tw
body interaction term because of the hard-core nature of
fermions.

For convenience, we introduce the notationsus,t&:

u1&5U1 1

2
;1

1

2L ,u2&5U2 1

2
;1

1

2L ,

u3&5U1 1

2
;2

1

2L ,u4&5U2 1

2
;2

1

2L , ~3!

and creation~annihilation! operatorsdi ,n
† (di ,n) creating~an-

nihilating! the four states, wheren takes 1, 2, 3, 4. By a
projection procedure on the spin-spin and orbital-orb
quardratic superexchange interactions,18 the Hamiltonian can
be written as

H52t (
^ i , j &,n

P~di ,n
† dj ,n1dj ,n

† di ,n!P

2J (
^ i , j &

Bi j
† Bi j 2m0 (

i ,n
di ,n

† di ,n , ~4!

with

Bi j
† 5di ,1

† dj ,4
† 1di ,4

† dj ,1
† 2di ,2

† dj ,3
† 2di ,3

† dj ,2
† .

In the slave-boson approach,21 the single-occupation condi
tion can be treated self-consistently with the following o
erator transformation:

di ,n
† →ai ,n

† bi , ~5!

whereai ,n
† is creation operator of fermion andbi is the an-

nihilation operator of the hole boson. With this transform
tion, the constraint can be expressed as

(
n

ai ,n
† ai ,n1bi

†bi51. ~6!

Then the Hamiltonian can be written as

H52t (
^ i , j &,n

~ai ,n
† bibj

†aj ,n1H.c.!2m0 (
i ,n

ai ,n
† ai ,n

2J (
^ i , j &

Ba,i j
† Ba,i j 1 (

i
l i S (

n
ai ,n

† ai ,n1bi
†bi21D ,

~7!

where Ba,i j is Bi j with d replaced bya. With mean-field
approximation, we replacel i by its static valuel, and as-
sume bi

†bi5ubi u25d. Introducing a unique short-range
RVB pairing order parameter,

D i j 5^Ba,i j &, ~8!
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we obtain

H52td (
^ i , j &,n

~ai ,n
† aj ,n1H.c.!2m (

i ,n
ai ,n

† ai ,n

2J (
^ i , j &

@Ba,i j
† D i j 1D i j* Ba,i j 2uD i j u2#2N~12d!l,

~9!

with m5m02l. The Green’s functions of the mean-fie
Hamiltonian read

^^ak,n ;ak,n
† &&5

v1ek

~v1Ek!~v2Ek!
, ~10!

^^ak,n̄
† ;ak̄,n

†
&&5

6 iDk*

~v1Ek!~v2Ek!
, ~11!

where ak,n is the Fourier transformation ofai ,n ; 6 takes
1for n51,4 and 2 for n52,3; k̄52k and n̄51,4 if n

54,1 andn̄52,3 if n53,2. The excitation spectrum is

Ek5Aek
21uDku2, ~12!

with ek522td@ cos (kxa)1 cos (kya)#2m and Dk
52J@Dx sin(kxa) 1Dy sin (kya)#, where Dx and Dy are D i j
along the x and y axis, respectively. From Eqs.~10! and~11!
we obtain21

^ak,n
† ak,n&5

1

2
2

ek

2Ek
tanh

1

2
bEk , ~13!

^ak̄,n
†

ak,n̄
†

&5
6 iDk*

2Ek
tanh

1

2
bEk , ~14!

where the6 takes2 for n51,4 and1for n52,3. Applying
Fourier transformation to Hamiltonian~9!, and with Eqs.
~13! and ~14!, we obtain the free energy

F5
1

b E
0

b

^H&db

52
4

b (
k

ln cosh
1

2
bEk22mN1H0 , ~15!

whereH05N@l(d21)1J(uDxu21uDyu2)#, andb5T21.
The relative phase factor betweenDx andDy is introduced

as

Dy5Dxexpiu. ~16!

By minimizing the free energy, we can determineu
56p/2. Therefore the RVB order parameter can be rew
ten as

Dk52JDx@ sin~kxa!6 i sin~kya!#. ~17!

Obviously, the above gap function has akx6 ikyp-wave
symmetry.
2-2
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With Eqs. ~13! and ~14!, we obtain the self-consisten
equations of the mean-field order parametersD(5Dx) and
the chemical potential satisfies the following equations:

d5
2

N (
k

ek

Ek
tanh

1

2
bEk21, ~18!

15
2J

N (
k

~ sin2 kxa1 sin2 kya!

Ek
tanh

1

2
bEk . ~19!

Solving the above equations in the limitD→0, the pre-pair
temperatureTRVB below whichDÞ0 can be derived numeri
cally.

In order to determining the superconductivity transiti
temperatureTSC, we need to know when the phase coh
ence among the RVB pairs occurs. The physical electrons
represented by the operatordi ,n

† 5ai ,n
† bi , and superconduct

ing order parameter is given by

^Bi j
† &'^bibj&•D* . ~20!

Thus the superconducting state is a state with both^bibj&
Þ0 and D* Þ0. With a simple mean-field approximation
the slave-boson degrees of freedom can be described in
case as

H52t (
^ i , j &n

~^ai ,n
† aj ,n&bibj

†1H.c.!2m (
i

bi
†bi

5(
k

bk
†bk@eb~k!2m#, ~21!

with

eb~k!52tgk (
n

^ai 1a,n
† ai ,n&. ~22!

Then the Bose-Einstein condensation~BEC! temperature
TBEC is determined by

d5
1

N (
kÞ0

1

exp$@eb~k!2eb~0!#bBEC%21
, ~23!

with bBEC5TBEC
21 . Below TBEC the slave bosons underg

Bose-Einstein condensation and^bi&Þ0.
The numerically calculated phase diagram from Eqs.~18!,

~19!, and~23! for t56J is shown in Fig. 1.TRVB decreases
to zero with increasingd, while TBEC decreases to zero wit
decreasingd. CurvesTRVB andTBEC intersect each other. In
the area aboveTRVB, the electrons do not form RVB pairs
the system should behave as a normal Fermi liquid. While
the area under the envelop formed by the two curves,
fermions form RVB pairs withp-wave symmetry and the
slave bosons condense. Thereforep-wave SC, a quantum or
dered liquid state, occurs in this region. In the region un
TRVB but aboveTBEC ~to the left of the curves’ intersection!,
RVB pairs without phase coherence exist in the sense tha
slave bosons do not condense. This phase may corresp
some kind of anomaly Fermi liquid state, similar to that
the high-Tc superconductors.
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To show the symmetry of the pairing clearly, we study t
mean-field ground state

uGS&5)
k

~uk1vkak,1
† ak̄,4

†
!~uk2vkak,2

† ak̄,3
†

!u0&, ~24!

with

uk
25

1

2 S 11
ek

Ek
D ,

vk
25

1

2 S 12
ek

Ek
D . ~25!

One can notice that the total spin, orbital, and combin
spin-orbital operators,

Sa5 (
i

Si
a , ~26!

Ta5 (
i

Ti
a , ~27!

Lab52 (
i

eiQ•RiSi
aTi

b , ~28!

generate an SU~4! Lie algebra, wherea,b denotex,y,z; Q
is the commensurate anti-ferromagnetic wave vector, andRi
is the coordinate of sitei on the square lattice. Our Hamil
tonian commutes with the 15 operators. It is easy to sh
that SzuGS&5TzuGS&5LzzuGS&50. Further, the Casmir o
this algebra can be constructed as

Ĉ5Sz
21Tz

21Lzz
2 1E1SE2S1E2SE1S1E1TE2T1E2TE1T

1E1LE2L1E2LE1L1E1S1TE2S2T1E2S2TE1S1T

1E1S1LE2S2L1E2S2LE1S1L1E1T1LE2T2L

1E2T2LE1T1L , ~29!

FIG. 1. The mean-field phase diagram fort56J. The solid line
represents pre-pair temperatureTRVB, below which thep-wave
RVB pairs appear. The dotted line is BEC temperatureTBEC , below
which the slave bosons undergo BEC.d is the density of doping
holes.
2-3
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where

E6S57
1

A2
~Sx6 iSy!,

E6T57
1

A2
~Tx6 iTy!,

E6L57
1

A2
~Lxx6 iL yy!,

E6S6T5@E6S ,E6T#. ~30!

Acting the Casmir onto the ground state we readily ha
ĈuGS&50. Therefore the ground state is an SU~4! singlet
with zero spin, orbital, and combined spin-orbital eigenv
ues. This result is also correct for a single pair stateBi j

† u0&.
However, due to the existence of the additional internal
G

.

d

J

W
an
-

10451
e

-

-

grees of freedom, i.e., the local orbits, the parity of the el
tron pairs must be odd, which in our case possesses thkx
6 ikyp-wave symmetry.

In summary, a strongly correlated electron model w
orbital degeneracy defined in a square lattice is studied.
introducing the short-ranged RVB order parameter,
mean-field phase diagram of the system is obtained. I
shown that the RVB electron pairs are spin-singlet, orbit
singlet, and combined SU~4! singlet objects. However, the
gap function of the electron pairs in the momentum sp
possess akx6 iky-type p-wave symmetry. Therefore ou
model provides a simple example which showsp-wave SC
without ferromagnetic fluctuation.
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