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Meissner response of anisotropic superconductors
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The response field of a half-space anisotropic superconductor is evaluated for an arbitrary weak external
field source. Example sources of a point magnetic moment and a circular current are considered in detail. For
the penetration depth<<L with L being any other relevant distan@®e source size or the distance between
the source and supercondugtdhe major contribution to the response is téndependent field of the source
image. It is shown that the absolute value)fcannot be extracted from the response field with a better
accuracy than that for the source position. Similar problems are considered for thin films.
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I. INTRODUCTION 2
r dk r ik-r—kz
¢'(r,z)= ;@ (ke : @
A i i i ' (2m)
n experimental technique, scanning superconducting

e,r=(x,y) andzis directed normal to the superconduct-
flat surface az=0; ¢'(k)e ¥ is the 2D Fourier trans-
form with respect to variableg,y at any fixedz>0. The
potential (2) is defined only in the upper half-space; hence,
there is no problem of uniqueness which is in general asso-
ciated with the description of the magnetic field by a poten-

guantum interference devid&SQUID) microscopy (SSM), er
has recently been developed for measuring magnetic fielc{;c,l|
due to vortices exiting superconducting samplé&sowing 9
the field distributions one can, in principle, extract the Lon-
don penetration deptk (either isotropic or anisotropi@and
its temperature dependentén other implementation of this
method, one measures the Meissner response of a superc
ductor to a weak external source of static magnetic field.
Again, the response may provide information about Xhe
temperature dependence and its anisotropy. Also, one can u
tunable field sources to study elementary forces acting upon hi = N2M@is€kniN ns=0, 1 =X,Y.Z. 3)
vortices exiting the surfacéSimilar problems are encoun-
tered in the magnetic force microscopy applied to surfaces dfiere g is the unit antisymmetric tensomy; is the mass
anisotropic superconductors. tensor, and, ¢ abbreviate?h, / 9x,dxs. The average pen-
There are quite a few publications dealing with theseetration depthx = (A A \o) Y is related to the actual pen-
problems for isotropic superconduct8r€ For anisotropic  etration depth for the currents, e.g., along the crystal direc-
materials, however, the response field is asymmetric evetion a: A,=A\m,. The masses are normalized so that
when the source has certain symmetries, and one cannot usgmym.=1.
methods developed for isotropic materials. To deal with the Hence, the problem is to match the solutions for the field
problem, one can utilize the two-dimensior{@D) Fourier  inside and outside the superconductor with boundary condi-
transform with respect to coordinatesy of the interface, tions of the field continuity at the interface.
provided the equations for the field distributions inside and
outside the superconducting half-spacelarear. This is the Il. RESPONSE FIELD
case if the London description for the field inside the mate-
rial is adopted. Then, one solves the remaining system of Usually in situations of interest, the sample surface is nor-
ordinary differential equations in the variatdenormal to the ~ mal to one of the principal crystal directions. We call this
interface. This approach has been developed in Ref. 9 fodirectionc and choose the frame,y,z as coinciding with

The field inside the superconductor satisfies London equa-
'ggns which read in the general anisotropic cas€ as

vortices crossing the superconductor surface. a,b,c. In this situation, the mass tensor is diagonal,{
Let us consider a source with known field distributich ~ =m,, my,=m,, m,,=m¢), and Egs(3) reduce to

in the absence of superconductor. In the presence of the su-

perconductor occupying the half-spaze0, the total field hyt M5(hzx—hy ;) 2+ NE(hy =y ) =0,

in vacuumz>0 can be written as ) )
hy+Ag(hxy—hy ) x+N5(h,y—hy ) ,=0,
h=hS+h", 1
( ) hz+)\521(hy,z_ hz,y),y+)\§(hx,z_ hz,x),x:O- 4
whereh' is the response field which satisfies Hiv= curl ~ One can replace any of one of these equations byhdiv
h'=0 in vacuum. One can look for this field &p" with the ~ =hxx+hyy+h,,=0. It is convenient to replace the third
potential ¢" obeying the Laplace equation and the zeroone and excludé, , from the first two:

boundary condition far from the surface. The general form of 5 ) 5 5 o
such a potential is Ny = Nphy xx— A ghxyy = NPy 22T (Ag =N p)hy xy=0,
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hy—=N2hy = Nahy gy = Nahy 2+ (V2= AD)hy =0, o d-ade? AP
T gl e Y e e
hz,z= - (hx,x+ hy,y) 5 A\ b) yQ( a b)
(the first two equations are decoupled from the third d=1+NpkE+N2KZ, (10)

We now apply thex,y Fourier transform to Eqg5):
for eachq of Eq. (9).

(1+ )\ﬁk§+ )\gk)zl)hx_)\%hz+()\t2)_)\§)kxkyhyzov Let us turn now to the fieldh® of the source. As a conse-

quence of disn®=curlh®>=0 out of the source, the 2D Fou-

(N5 NDkekyhy+ (14N 2K+ N3k:)hy—N3hy =0, rier components ofi® are not independent. As with the re-
sponse field, we can look for this field in the froh?

i (ke +kyhy) +h;=0. 6) =V ¢S such thatV2¢S=0. In our situation, the source is

situated in the upper half-spaee-0, and we are interested
Here,h; are functions ok, ,k,, andz, and the prime denotes in the field h® “under” the source. The general solution of
derivatives with respect ta. Hence, we are left with the the Laplace equation which vanisheszas —« is
linear system of ordinary second-order differential equations

with respect to the variablefor h;(k,z). d?k ik
The solutions are linear combinations of simple exponen- @3(r,2)= f (2m)? e(ke : (11)
tials:

The 2D Fourier components of the source field at the inter-
hi(k,z)=>, H{M(k)e?, (7y faceare
n

S _; S, — S__ S
The parameters|, and their number are to be determined. M= ko (k) (a=xy), hz=ke (k). 12
Substituting each term of E¢7) in the systen(6) we obtain  Hence, the boundary conditions take the form
a linear homogeneous system faf" :
iko(@%+ @) =HP+HEP  (a=xy),
Hx(1+NEKE+ N2k —NEa?) +Hy(Aj—A2)k,k, =0,
k(e5—)=H®P+HE . (13
Hy(\2 = N2)koky + Hy (14 A 22+ A2~ \202) =0, _ o
Since the components,, are expressed in terms bf,’s, we

i (kHy +k,Hy) +qH,=0, (8)  can solve the systeifi3) to obtain
for eachn; the superscript is omitted for brevity. As has . sk(q1+ d,—k)—q10,(1—1/d)
been mentioned, the first two equations here are decoupled LA 4 k(Qy+ 0o+ K)+q:0,(1—1/d)
from the third; they have a nonzero solution provided their
determinant is zero. This gives a quadratic equationgfor Kl 03( 0o —K) — & (0o + k
which is readily solved: @ _Ke(0zm = ¢ (G2t )]
02— 01
P+\Q
2 S r
N 2 KeS(k=ap)+¢'(qs k)]
H{¢) = . 14
2\2Np 2 D=, (14
P=N2+Np+NZ(NGKE+HNGKD) +NANDK?, Thus, the response outside and inside the superconductor is

expressed in terms of the source figldl It is worth noting
Q= p2_4)\§)\§(1+)\§k)2(+)\§k§)(1+)\ng)_ (99  that sincep®(k) can be replaced with3(k)/k, the response
field can be expressed in terms of theomponent of the
Note thatQ< P? and bothq? andq3 are positive; therefore, source field at the interface.

there are only two positive’s (i.e., n=1,2) which satisfy One can see, in particular, that the total flux in thei-

the requirement of vanishing fields zt — «. rection “reflected” by the superconductor is equal and oppo-
The quantities) determine how the field attenuates in the site in sign to the incident flux of the source crossing the

superconductor. We now have to find the “amplitude$” interface. Indeed, this flux is

from Eqgs.(8) for eachq. It is worth noting that solving the

homogeneous system of linear equations implies, in fact, ex- h) k0= —K¢ k0= — K@%l eo=—h5lk=0. (15

pressing some unknowns in terms of others. To this end, one

has to determine the rank of the matrix of coefficients for the It is seen from the general formuld40) that the case

system(8), choose a proper subsystem to solve, etc. The\,=\y is singular. The formal reason for this is that the first

actual procedure might differ depending on the situation intwo equations of the systert8) (which we have used to

guestion. expressH, andH, in terms ofH,) are no longer indepen-
Solving the systen(8) we obtain dent. This situation should be treated separately.
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A. Small A Doing the same fog,, we obtain from the first two equa-

. 2 2 _ . . . . .
In many situations, the penetration depths are small relat-'O”S_H5< )(|2<)x+H§/ 'ky=0 which is compatible with the third
tive to other relevant lengths in the problem such as thé@nly if H;”’=0. Hence, we have
distancez, between the source and interface. The character-

istic k's then satisfykh<1. The relations between the re- H@—p H@=_ &H(z) (24
sponse and source fields then simplify. In this approximation, z r Y ky X
Eqgs.(9) give q;=1/A, andqg,=1/\y, for A ;<\ . Then, Egs.
(10) yield d=1 and The boundary conditiongl3) yield
HM=0, H®=—ikaHM, 16 - 2
X z yNally (16) <Pr:%+:i<Ps, H§1)= ZE_k‘PS’ H?—0. (25
H®=0, HP=—ikAHP. 17 Ee G
Finally, the boundary conditions give Note that for this caseq, along with A, drops off the

result for any source. In other words, the response of a
uniaxial superconducting half-space with tbexis normal
' (18 to the interface to an arbitrary weak source is as if the super-
conductor were isotropic with the penetration dept}y,.
Npk2+ )\aki Clearly, for real samples this statement holds provided the
K ) (19 size of the flat sample surface is large compared to the char-
acteristic source size along with the distance from the sample
Note that in this approximatiok, does not enter the result; surface to the source; also, the sample should be thick rela-
in other words, the currents alormjare small and can be tive to the penetration depth.
disregarded. The result46)—(19) can also be obtained di-
rectly starting with the London equatiof4) and taking ad- D. Ae=A<M,
vantage ofd/ 9zl 9x,, .
It is also worth observing that in zero order ka<1,

2 2

1—

k
y .
H§1>=k—XH§Z):2ukycpS

This is the case of the screening by the “side surface” of
o' = This means that the andy components of the re- a uniaxial crystal. Our notation, however, differs from that

sponse field are the same as those for the source, where %mmoply usedor standard not'atlon, we should have re-
h'=—hs; see Eqs(2) and(11). In other words, in this ap- placed in our formulaa . and\ , with A, and\,—\ (). We
z YAl . y

proximation the response field is the mirror image of thethen obtain using Eq(9)

source field.
Q1= VA T+ K2, A= VIHNGKEHNGKS/N, . (26)

B. Isotropic materials With q=q;, Eq. (10) gives
It is readily seen that in this case

o Koo I S N
91=0p= VA " Z+K% (20) H® =i q—Hg ), H >:|—)\2k HY, (@7
1 a1
The first two equations of Eq$8) turn identities, whereas =
the third gives one of;’s in terms of two others, e.gH, and forg=q;,
= (kyHy+kyHy)/ig. The boundary conditions then give
.2
_ ; (2)—; 124 (2) (2)—
goqu k(ps oo 2iq o 21 Hy IkaZ ,  Hy”=0. (28
g+k™ ' ¢ g+k ¢
Finally, Egs.(14) give ¢', H"), andH{? in terms of the
C. Aa=Ap<A, source fieldp®.
This is the case, e.g., of a layered crystal withdbglane
being the surface. Equatior8) yield IIl. EXAMPLES OF SOURCES
— - To apply the above formulas for the response fields, one
_ h-2,2 — N-2_.21.2
01= Vhap +K%  G2=VAap + 77K (22) needs the Fourier transforgP(k) of the source field at the

where y=\/\,p is the anisotropy parameter. Substituting interface. Below we provide examples for whigfi(k) can
gy in the first two equations of the syste@®), we obtain two  P€ calculated analytically.

identical resultsH Mk, — H{Pk,=0 which together with the

third equation yield A. Point magnetic moment

0.k Consider a magnetic momept situated at the heigld,
HL = 'qﬂH(l). (23 above the superconductor. The corresponding pote(itial
Y 2t the absence of the supercondugi@rz=0 is

iqk
H== 22 HO
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. mR o pugzo— per M, in the xy plane is arbitrary; sti!l, there is a torqqe. which
P T T TR T 2y 2802 (290  tends to rotatgu out of thez direction and to place it in the
R>  (r°+zj) xy plane.
Here,R=(x,y,z—z,) is the radius vector originating at the
source; the first minus sign is due to the definitibh B. Source as a current loop
=V¢°. The 2D Fourier transform 15 Let the source be a circular current of a radausituated
K in the planez=z,. If a and z, are of the same order of
o3(K) =276 %| 1+ ] la _ (30) magnif[ude(practically, they are bqth o_f a few-mic_ron size
k modeling of the source by a point-size magnetic moment

The response field can now be calculated with the help ijoes.nothsufflice. T_he scalaér4potential of the field created by a
Egs. (14). In general, this can be done numerically; for oop in the planez=0 read
<Zy, an analytic evaluation is possible.

As an example take the moment directed alangbove @5(r) = If ds-R

R3

the flat isotropic superconducting surface; for the isotropic c
films this problem has been considered in Refs. 6,8, and 12. ) )
According to Eg.(18) for the isotropic casep’ = ¢%(1 The source curreritflows counterclockwise relative to ttze
—2k\). Transforming back to real space we obtain axis so that an area elemat=dSz R is the radius vector

from this element to the interface point,@), and the inte-

(35

. Z 2722 gral is over the area of the current contour. The position of
¢(rz=p E_Z)‘ R/ the elementdS=d?r'Zz in our situation is (’,z) so thatR
=r—r'—2zyz and
R=\r2+2z%, Z=z+z,. (31 ,
4 der’
Here, the first term is the field of a momentu at z= e5(r,0)= — (36)

— 2o, i.e., of the ima i i ¢ [(r=r)?+z5%*
o 1-€., ge source. The second term is the field of 0
a magnetic quadrupole proportional Xoand situated at the
same point.

For the magnetic force microscopy, the quantity of inter-

est is the interaction energy which is given by

For a circular loop of radiug, the integral is over the circle
area. Compare this with Eq29): the source field can be
considered as created by magnetic moments distributed uni-
formly over the loop area with the density/c so that the
E=—p-h"(0,079)/2 total moment of the loop isra?lzZ/c.

The 2D Fourier transform ofo[ (r—r')2+ 23]~ %2 with

1 d?k - A .
__ - r —kzo( _ ; respect tar is 27e” “%e [see Eq(30)]; therefore,
2] Gyt (08 Akt ipaks). (@
_ _ o S . - W
The factor 1/2 here is due to the fidil being induced by the o3(k)= EZTre Zof dor'e™ " = e “%J,(ka).
momentu; see, e.g., Ref. 13. Substituting here H48) and 37)

(30) and integrating we obtain
According to Eq.(25) the 2D Fourier transform of the re-

o ,u_§ 3(Ngt+ )\b)} ,u§+ ,uf, . 3 [W2(3Nph) sponse potential for isotropic superconductor is
3 4 3 4 LMx a
8z, Zy 16z, 64z, . Am2la q—k oy .
+ p2(3N+ \p)]. (33) o (0= qrr®  Jaka).

In addition to a repulsive force- 9€/ 9z, the magnetic mo- The z component of the response field follows:
mentu experiences a torque, because the energy depends on
the moment orientation. It is readily seen that if the position
and the value of the magnetic moment are fixed, the mini-
mum of £ corresponds tqu situated in the planey and

la -k .
hi(r,z)=— ?f dzk%e*"(z*zo)\]l(ka)e"“r

parallel to the direction of largedt Thez component of the _ Zwlafx q—k —k(z+2g)
torque is easily evaluated: =—— ), dkkgzxe /J1(ka)Jo(kr).
3u? . (39
7= ——2(Na—\p)Sin 2B, (39
32z, Further, one can evaluate the response flux through a flat

) ) . probe placed above the superconductor. If the probe is a
wherex, is the in-plane part of the magnetic moment, #d  circular loop of a radius, with the center ar=0 at the
is the angle betweep, andx. For\,=\y, the position of  heightz,=<z,, the flux is given by
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47%laa, (» q—k The integrals here can be expressed in terms of the hyper-
r p a —k(zg+2,) : . .
&,=— c q+ke 074’ J,(ka)Jq(kap). geometric functiongsee Ref. 11(6.612.3] or alternatively
0 (40) of the complete elliptic integrals convenient for numerical
evaluation?

All formulas for the isotropic case have been worked out One can define a potentil(r) so thatF,=—dU/dr:
earlier by Clem and Coffey making use of the cylindrical

symmetry of the problerfi. Uz — ¢l Une Eu
2c\ % at)
C. Interaction with vortices .
It is of interest to evaluate the force acting on the vortex Ug= J;) dte 2"135(1)Jo(r 1),

tip by screening currents in the sample induced by a circular
current as the field source; experiments for which this is "
relevant are described in Ref. 3. A similar problem for iso- ulzf dtte 213, (t)Jo(r't), (45)

tropic films and the magnetic moment as a source has been 0

considered in Ref. 6. We do this for materials isotropic in the ] ] )

xy plane, for which the force depends only on the distance ~1he energyJ is defined so that (<) =0; its value at the
from the loop center along with the loop height One can  0MgIN IS
calculateF,(x,0;z5) and replacec with r in the result:

0
F.(x,0= %f dzj,

| 2
U(O)Z—(i—(;

Zy
(Z§+a2)l/2 (Zg+a2)3/2 ’

(46)

Thus, the source loop creates a potential well of depth
bo [© |U(0)| or a barrier of heightU(0)| for vortices underneath
:EJ dz(hy ,—h,y) depending on the current and vortex directions. This opens

- an interesting possibility for studying the behavior of vorti-
¢ 42K ik, ces(or antivortice$ in tunable potential%.ln a similar man-
OJ' eik x( H -~ H(l)) . (41  ner, one can evaluate interactions of vortices with other types
(277)2 J: of sources.

With the help of Eqs(22), (23), and(37) we obtain D. Accuracy of the SSM determination ofA

bola (= dkke k% Magnetic fluxes of the response field, in particuthy
f ) Ji(ka)di(kr). (42 =fd2rh;(r,zp) (the integral is over the area of a pickup coil
0 9a{@s placed at the height, above the superconducting surface
) 2 2 L2 Lo ) can be measured with high accuracy for a given source,
Using 1A“=q;—k" and the substitution=ka, we writt  giyen geometry of the coil and a known height. In prin-
ciple, this leads to a possibility to measure the penetration
F— bol J’ dtG( te 2 3,(1)34(r'1) depth. However, the accuracy of this determination in bound
'™ 2ca RS 0 by the accuracy with which the heigi andz, are known.
To demonstrate this consider the response field of an isotro-
A A2 |12 pic material for small\’s:
G=1—at(1+¥t2) , (43

Fe(r)=-—
r( C)\gb

d%k _

r _ r ik-r—kz
where z'=zy/a andr’=r/a. Usually, the parametex/a ha(r.2,) f (Zw)zk(p (ke "
<1. Besides, due to the facter‘z'tJl(t), the region con- )
tributing to the integral is &.t<min(1/z',1) because of the _ _f d*k
oscillating J1(t) at larget (unlessr’~1). Then, one can (2m)?

expandG in powers ofAt/a and keep only the linear term:

keS(K)(1+2nk)e'k K5, (47)

If z, varies byéz,, the response field variation is

®ol A
Fr=———|fo—=f1, 42K 4
" 2cal® all shl= 5zpf - )2k2¢5(k)(1+2)\k)e'k'r‘kzp. (48)
v
f dtte Z13,(t)Jq(r't), If only \ varies, we have
d?k .
Shy= —25>\J S K2e%(K) (1+21k)e' ko,
f dtt?e™*13y(1)Jy(r't), (44) (2m)
(49)
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in other words, In particular, for6=0 we have
sh, sh, @S 2\2
— T = — 4 r: —_— = = ab
o 2oz, 0 =T ak NeamMaA=g ®9
Therefore, the accuracy of extractingfrom the data on This result holds also for isotropic materials whemg

h} cannot be much better than knowledgezpfithe same is  =1. In this case, one can readily obtain the fibldfor the
true about the source positiory). The latter is usually circular current(37) at the heightz, above the film; its 2D
known within a fraction of a micron. This is a severe restric- Fourier transform for 8.z<z, is given by

tion upon the accuracy of the absolute determinatiomn .of
Still, in principle, SSM allows one to determine accurately

47?la Jy(ka)
the temperature dependencedoffor fixed z, and zy). €

c 1+KkA

h;(k,Z)Z _k(Presz:_ 7k(z+zo)_

(56)

IV. THIN FILMS This field can be measured by SSR1.

The Meissner response of superconducting thin films can For completeness, we write down the field on the opposite
be probed by the SSM method in yet greater detail than thdtlm side, i.e., forz<0, where the response potential is given
of bulk samples. Some films have a large Pearl lenjth by
=2\?/d (d is the film thicknessexceeding substantially the
size of the SSM sensing loop, making the SSM measurement o' (r z<0)=j
to a local probe. Formally, the problem of a thin film in a '
field of an external source is simpler than that of the super- N )
conducting half-space, because in the film case there is nbhe London boundary conditio$3) should now be written
“internal problem” to solve; instead, the film provides a in terms of the field components at —0:
boundary condition for the outside field distribution.

Consider a film in thex,y plane made of a uniaxial ma- h3+hz=A(myhy y+mahi ) =0, (58)
terial with thec axis at an angl# to the film normalz. We  which yields the 2D Fourier transform of the response po-
write the London equationi3) for i=z, h,—4m\*(myj;,  tential (54) with the minus sign. Proceeding as above, we
—myj; x)/c=0 and integrate it over the film thickness: obtain for the isotropic case

d? .
(,Dr(k)e'k'H'kZ. (57)

71_2

2m 2\° 47l Jy(ka
h,— TA(mxxgx,y_magy,x)ZOa A:Ty (51) h;(k,2<0)=— ’7TC f_’(_—l(A)ek(zfzo)_ (59)

whereg is the sheet current. Note that only two components
of the mass tensom,,=m,cos'g-+mesinfd and my,=m,,
determine the film anisotropy.

The force acting upon a Pearl vortex situated in the film at
a radial distance from the current ring center is readily

Using the relation of sheet currengsto the tangential evaluated:

components of the response field, bola [~ke K%

- o Fr(r)=—Tfo mJl(ka)Jl(kr)dk. (60)
Tgx:_h;("_o)y ?gy:h;(+o) (52)
[ +0 denotes the upper film face; the tangential components ACKNOWLEDGMENTS
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