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Meissner response of anisotropic superconductors

V. G. Kogan
Ames Laboratory DOE and Physics Department ISU, Ames, Iowa 50011, USA

~Received 19 March 2003; published 16 September 2003!

The response field of a half-space anisotropic superconductor is evaluated for an arbitrary weak external
field source. Example sources of a point magnetic moment and a circular current are considered in detail. For
the penetration depthl!L with L being any other relevant distance~the source size or the distance between
the source and superconductor!, the major contribution to the response is thel-independent field of the source
image. It is shown that the absolute value ofl cannot be extracted from the response field with a better
accuracy than that for the source position. Similar problems are considered for thin films.
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I. INTRODUCTION

An experimental technique, scanning superconduc
quantum interference device~SQUID! microscopy~SSM!,
has recently been developed for measuring magnetic fi
due to vortices exiting superconducting samples.1 Knowing
the field distributions one can, in principle, extract the Lo
don penetration depthl ~either isotropic or anisotropic! and
its temperature dependence.2 In other implementation of this
method, one measures the Meissner response of a supe
ductor to a weak external source of static magnetic fie
Again, the response may provide information about thel
temperature dependence and its anisotropy. Also, one can
tunable field sources to study elementary forces acting u
vortices exiting the surface.3 Similar problems are encoun
tered in the magnetic force microscopy applied to surface
anisotropic superconductors.

There are quite a few publications dealing with the
problems for isotropic superconductors.4–8 For anisotropic
materials, however, the response field is asymmetric e
when the source has certain symmetries, and one canno
methods developed for isotropic materials. To deal with
problem, one can utilize the two-dimensional~2D! Fourier
transform with respect to coordinatesx,y of the interface,
provided the equations for the field distributions inside a
outside the superconducting half-space arelinear. This is the
case if the London description for the field inside the ma
rial is adopted. Then, one solves the remaining system
ordinary differential equations in the variablez, normal to the
interface. This approach has been developed in Ref. 9
vortices crossing the superconductor surface.

Let us consider a source with known field distributionhs

in the absence of superconductor. In the presence of the
perconductor occupying the half-spacez,0, the total field
in vacuumz.0 can be written as

h5hs1hr , ~1!

wherehr is the response field which satisfies divhr5 curl
hr50 in vacuum. One can look for this field as¹w r with the
potential w r obeying the Laplace equation and the ze
boundary condition far from the surface. The general form
such a potential is
0163-1829/2003/68~10!/104511~7!/$20.00 68 1045
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w r~r,z!5E d2k

~2p!2
w r~k!eik•r2kz. ~2!

Here,r5(x,y) andz is directed normal to the superconduc
ing flat surface atz50; w r(k)e2kz is the 2D Fourier trans-
form with respect to variablesx,y at any fixedz.0. The
potential~2! is defined only in the upper half-space; henc
there is no problem of uniqueness which is in general as
ciated with the description of the magnetic field by a pote
tial.

The field inside the superconductor satisfies London eq
tions which read in the general anisotropic case as10

hi2l2mlkelstekniht,ns50, i 5x,y,z. ~3!

Here eikl is the unit antisymmetric tensor,mi j is the mass
tensor, andht,ns abbreviates]2ht /]xn]xs . The average pen
etration depthl5(lalblc)

1/3 is related to the actual pen
etration depth for the currents, e.g., along the crystal dir
tion a: la5lAma. The masses are normalized so th
mambmc51.

Hence, the problem is to match the solutions for the fi
inside and outside the superconductor with boundary co
tions of the field continuity at the interface.

II. RESPONSE FIELD

Usually in situations of interest, the sample surface is n
mal to one of the principal crystal directions. We call th
direction c and choose the framex,y,z as coinciding with
a,b,c. In this situation, the mass tensor is diagonal (mxx
5ma , myy5mb , mzz5mc), and Eqs.~3! reduce to

hx1lb
2~hz,x2hx,z! ,z1lc

2~hy,x2hx,y! ,y50,

hy1lc
2~hx,y2hy,x! ,x1la

2~hz,y2hy,z! ,z50,

hz1la
2~hy,z2hz,y! ,y1lb

2~hx,z2hz,x! ,x50. ~4!

One can replace any of one of these equations by dh
5hx,x1hy,y1hz,z50. It is convenient to replace the thir
one and excludehz,z from the first two:

hx2lb
2hx,xx2lc

2hx,yy2lb
2hx,zz1~lc

22lb
2!hy,xy50,
©2003 The American Physical Society11-1
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hy2lc
2hy,xx2la

2hy,yy2la
2hy,zz1~lc

22la
2!hx,xy50,

hz,z52~hx,x1hy,y! ~5!

~the first two equations are decoupled from the third!.
We now apply thex,y Fourier transform to Eqs.~5!:

~11lb
2kx

21lc
2ky

2!hx2lb
2hx91~lb

22lc
2!kxkyhy50,

~la
22lc

2!kxkyhx1~11lc
2kx

21la
2ky

2!hy2la
2hy950,

i ~kxhx1kyhy!1hz850. ~6!

Here,hi are functions ofkx ,ky , andz, and the prime denote
derivatives with respect toz. Hence, we are left with the
linear system of ordinary second-order differential equati
with respect to the variablez for hi(k,z).

The solutions are linear combinations of simple expon
tials:

hi~k,z!5(
n

Hi
(n)~k!eqnz. ~7!

The parametersqn and their number are to be determine
Substituting each term of Eq.~7! in the system~6! we obtain
a linear homogeneous system forHi

(n) :

Hx~11lb
2kx

21lc
2ky

22lb
2q2!1Hy~lb

22lc
2!kxky50,

Hx~la
22lc

2!kxky1Hy~11lc
2kx

21la
2ky

22la
2q2!50,

i ~kxHx1kyHy!1qHz50, ~8!

for eachn; the superscriptn is omitted for brevity. As has
been mentioned, the first two equations here are decou
from the third; they have a nonzero solution provided th
determinant is zero. This gives a quadratic equation forq2

which is readily solved:

q1,2
2 5

P6AQ

2la
2lb

2
,

P5la
21lb

21lc
2~lb

2kx
21la

2ky
2!1la

2lb
2k2,

Q5P224la
2lb

2~11lb
2kx

21la
2ky

2!~11lc
2k2!. ~9!

Note thatQ,P2 and bothq1
2 andq2

2 are positive; therefore
there are only two positiveq’s ~i.e., n51,2) which satisfy
the requirement of vanishing fields atz52`.

The quantitiesq determine how the field attenuates in t
superconductor. We now have to find the ‘‘amplitudes’’Hi
from Eqs.~8! for eachq. It is worth noting that solving the
homogeneous system of linear equations implies, in fact,
pressing some unknowns in terms of others. To this end,
has to determine the rank of the matrix of coefficients for
system~8!, choose a proper subsystem to solve, etc. T
actual procedure might differ depending on the situation
question.

Solving the system~8! we obtain
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Hx52 i
d2la

2q2

kxq~la
22lb

2!
Hz , Hy5 i

d2lb
2q2

kyq~la
22lb

2!
Hz ,

d511lb
2kx

21la
2ky

2 , ~10!

for eachq of Eq. ~9!.
Let us turn now to the fieldhs of the source. As a conse

quence of divhs5curlhs50 out of the source, the 2D Fou
rier components ofhs are not independent. As with the re
sponse field, we can look for this field in the fromhs

5¹ws such that¹2ws50. In our situation, the source i
situated in the upper half-spacez.0, and we are intereste
in the field hs ‘‘under’’ the source. The general solution o
the Laplace equation which vanishes asz→2` is

ws~r,z!5E d2k

~2p!2
ws~k!eik•r1kz. ~11!

The 2D Fourier components of the source field at the in
face are

ha
s 5 ikaws~k! ~a5x,y!, hz

s5kws~k!. ~12!

Hence, the boundary conditions take the form

ika~ws1w r !5Ha
(1)1Ha

(2) ~a5x,y!,

k~ws2w r !5Hz
(1)1Hz

(2) . ~13!

Since the componentsHa are expressed in terms ofHz’s, we
can solve the system~13! to obtain

w r5ws
k~q11q22k!2q1q2~121/d!

k~q11q21k!1q1q2~121/d!
,

Hz
(1)5

k@ws~q22k!2w r~q21k!#

q22q1
,

Hz
(2)5

k@ws~k2q1!1w r~q11k!#

q22q1
. ~14!

Thus, the response outside and inside the superconduct
expressed in terms of the source fieldws. It is worth noting
that sincews(k) can be replaced withhz

s(k)/k, the response
field can be expressed in terms of thez component of the
source field at the interface.

One can see, in particular, that the total flux in thez di-
rection ‘‘reflected’’ by the superconductor is equal and opp
site in sign to the incident flux of the source crossing t
interface. Indeed, this flux is

hz
r uk5052kw r uk5052kwsuk5052hz

suk50 . ~15!

It is seen from the general formulas~10! that the case
la5lb is singular. The formal reason for this is that the fir
two equations of the system~8! ~which we have used to
expressHx and Hy in terms ofHz) are no longer indepen
dent. This situation should be treated separately.
1-2
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A. Small l

In many situations, the penetration depths are small r
tive to other relevant lengths in the problem such as
distancez0 between the source and interface. The charac
istic k’s then satisfykl!1. The relations between the re
sponse and source fields then simplify. In this approximat
Eqs.~9! give q151/la andq251/lb for la,lb . Then, Eqs.
~10! yield d51 and

Hx
(1)50, Hz

(1)52 ikylaHy
(1) , ~16!

Hy
(2)50, Hz

(2)52 ikxlbHx
(2) . ~17!

Finally, the boundary conditions give

w r5wsS 122
lbkx

21laky
2

k D , ~18!

Hy
(1)5

ky

kx
Hx

(2)52ikyw
sS 12

lbkx
21laky

2

k D . ~19!

Note that in this approximationlc does not enter the resul
in other words, the currents alongz are small and can be
disregarded. The results~16!–~19! can also be obtained di
rectly starting with the London equations~4! and taking ad-
vantage of]/]z@]/]xa .

It is also worth observing that in zero order inkl!1,
w r5ws. This means that thex andy components of the re
sponse field are the same as those for the source, whe
hz

r52hz
s ; see Eqs.~2! and ~11!. In other words, in this ap-

proximation the response field is the mirror image of t
source field.

B. Isotropic materials

It is readily seen that in this case

q15q25Al221k2. ~20!

The first two equations of Eqs.~8! turn identities, whereas
the third gives one ofHi ’s in terms of two others, e.g.,Hz
5(kxHx1kyHy)/ iq. The boundary conditions then give

w r5
q2k

q1k
ws, Ha5

2iq

q1k
kaws. ~21!

C. laÄlbËlc

This is the case, e.g., of a layered crystal with theab plane
being the surface. Equations~9! yield

q15Alab
221k2, q25Alab

221g2k2, ~22!

whereg5lc /lab is the anisotropy parameter. Substitutin
q1 in the first two equations of the system~8!, we obtain two
identical resultsHx

(1)ky2Hy
(1)kx50 which together with the

third equation yield

Hx
(1)5

iq1kx

k2
Hz

(1) , Hy
(1)5

iq1ky

k2
Hz

(1) . ~23!
10451
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Doing the same forq2, we obtain from the first two equa
tions Hx

(2)kx1Hy
(2)ky50 which is compatible with the third

only if Hz
(2)50. Hence, we have

Hz
(2)50, Hy

(2)52
kx

ky
Hx

(2) . ~24!

The boundary conditions~13! yield

w r5
q12k

q11k
ws, Hz

(1)5
2k2

q11k
ws, H(2)50. ~25!

Note that for this case,q2 along with lc drops off the
result for any source. In other words, the response of
uniaxial superconducting half-space with thec axis normal
to the interface to an arbitrary weak source is as if the sup
conductor were isotropic with the penetration depthlab .
Clearly, for real samples this statement holds provided
size of the flat sample surface is large compared to the c
acteristic source size along with the distance from the sam
surface to the source; also, the sample should be thick r
tive to the penetration depth.

D. lcÄlaËlb

This is the case of the screening by the ‘‘side surface’’
a uniaxial crystal. Our notation, however, differs from th
commonly used~for standard notation, we should have r
placed in our formulaslc andla with lab andlb→lc). We
then obtain using Eq.~9!

q15Ala
221k2, q25A11lb

2kx
21la

2ky
2/lb . ~26!

With q5q1, Eq. ~10! gives

Hx
(1)5 i

kx

q1
Hz

(1) , Hy
(1)5 i

11la
2ky

2

la
2kyq1

Hz
(1) , ~27!

and forq5q2

Hx
(2)5 i

q2

kx
Hz

(2) , Hy
(2)50. ~28!

Finally, Eqs.~14! give w r , Hz
(1) , and Hz

(2) in terms of the
source fieldws.

III. EXAMPLES OF SOURCES

To apply the above formulas for the response fields, o
needs the Fourier transformws(k) of the source field at the
interface. Below we provide examples for whichws(k) can
be calculated analytically.

A. Point magnetic moment

Consider a magnetic momentm situated at the heightz0
above the superconductor. The corresponding potential~in
the absence of the superconductor! at z50 is
1-3
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ws52
m•R

R3
5

mzz02m•r

~r 21z0
2!3/2

. ~29!

Here,R5(x,y,z2z0) is the radius vector originating at th
source; the first minus sign is due to the definitionhs

5¹ws. The 2D Fourier transform is11

ws~k!52pe2kz0S mz1 i
m•k

k D . ~30!

The response field can now be calculated with the help
Eqs. ~14!. In general, this can be done numerically; forl
!z0, an analytic evaluation is possible.

As an example take the moment directed alongz above
the flat isotropic superconducting surface; for the isotro
films this problem has been considered in Refs. 6,8, and
According to Eq. ~18! for the isotropic casew r5ws(1
22kl). Transforming back to real space we obtain

w r~r ,z!5mS Z

R3
22l

2Z22r 2

R5 D ,

R5Ar 21Z2, Z5z1z0 . ~31!

Here, the first term is the field of a moment2m at z5
2z0, i.e., of the image source. The second term is the field
a magnetic quadrupole proportional tol and situated at the
same point.

For the magnetic force microscopy, the quantity of int
est is the interaction energy which is given by

E52m•hr~0,0,z0!/2

52
1

2E d2k

~2p!2
w r~k!e2kz0~2mzk1 imaka!. ~32!

The factor 1/2 here is due to the fieldhr being induced by the
momentm; see, e.g., Ref. 13. Substituting here Eqs.~18! and
~30! and integrating we obtain

E5
mz

2

8z0
3 F11

3~la1lb!

4z0
G1

mx
21my

2

16z0
3

1
3

64z0
4 @mx

2~3lb1la!

1my
2~3la1lb!#. ~33!

In addition to a repulsive force2]E/]z0, the magnetic mo-
mentm experiences a torque, because the energy depend
the moment orientation. It is readily seen that if the posit
and the value of the magnetic moment are fixed, the m
mum of E corresponds tom situated in the planexy and
parallel to the direction of largestl. Thez component of the
torque is easily evaluated:

tz5
3m'

2

32z0
4 ~la2lb!sin 2b, ~34!

wherem' is the in-plane part of the magnetic moment, andb

is the angle betweenm' and x̂. For la5lb , the position of
10451
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m' in the xy plane is arbitrary; still, there is a torque whic
tends to rotatem out of thez direction and to place it in the
xy plane.

B. Source as a current loop

Let the source be a circular current of a radiusa situated
in the planez5z0. If a and z0 are of the same order o
magnitude~practically, they are both of a few-micron size!,
modeling of the source by a point-size magnetic mom
does not suffice. The scalar potential of the field created b
loop in the planez50 reads14

ws~r!52
I

cE dS•R

R3
. ~35!

The source currentI flows counterclockwise relative to thez
axis so that an area elementdS5dSẑ. R is the radius vector
from this element to the interface point (r,0), and the inte-
gral is over the area of the current contour. The position
the elementdS5d2r8ẑ in our situation is (r8,z0) so thatR
5r2r82z0ẑ and

ws~r,0!5
Iz0

c E d2r8

@~r2r8!21z0
2#3/2

. ~36!

For a circular loop of radiusa, the integral is over the circle
area. Compare this with Eq.~29!: the source field can be
considered as created by magnetic moments distributed
formly over the loop area with the densityI ẑ/c so that the
total moment of the loop ispa2I ẑ/c.

The 2D Fourier transform ofz0@(r2r8)21z0
2#23/2 with

respect tor is 2pe2kz0e2 ik•r8 @see Eq.~30!#; therefore,

ws~k!5
I

c
2pe2kz0E d2r8e2 ik•r85

4p2Ia

ck
e2kz0J1~ka!.

~37!

According to Eq.~25! the 2D Fourier transform of the re
sponse potential for isotropic superconductor is

w r~k!5
4p2Ia

ck

q2k

q1k
e2kz0J1~ka!. ~38!

The z component of the response field follows:

hz
r~r,z!52

Ia

c E d2k
q2k

q1k
e2k(z1z0)J1~ka!eik•r

52
2pIa

c E
0

`

dkk
q2k

q1k
e2k(z1z0)J1~ka!J0~kr !.

~39!

Further, one can evaluate the response flux through a
probe placed above the superconductor. If the probe
circular loop of a radiusap with the center atr50 at the
heightzp<z0, the flux is given by
1-4
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Fz
r52

4p2Iaap

c E
0

`

dk
q2k

q1k
e2k(z01zp)J1~ka!J1~kap!.

~40!

All formulas for the isotropic case have been worked o
earlier by Clem and Coffey making use of the cylindric
symmetry of the problem.4

C. Interaction with vortices

It is of interest to evaluate the force acting on the vor
tip by screening currents in the sample induced by a circ
current as the field source; experiments for which this
relevant are described in Ref. 3. A similar problem for is
tropic films and the magnetic moment as a source has b
considered in Ref. 6. We do this for materials isotropic in
xy plane, for which the force depends only on the distancr
from the loop center along with the loop heightz0. One can
calculateFx(x,0;z0) and replacex with r in the result:

Fx~x,0!5
f0

c E
2`

0

dz jy

5
f0

4pE2`

0

dz~hx,z2hz,x!

5
f0

4pE d2k

~2p!2
eikxxS Hx

(1)2
ikx

q1
Hz

(1)D . ~41!

With the help of Eqs.~22!, ~23!, and~37! we obtain

Fr~r !52
f0Ia

clab
2 E

0

` dkke2kz0

q1~q11k!
J1~ka!J1~kr !. ~42!

Using 1/l25q1
22k2 and the substitutiont5ka, we write

Fr52
f0I

2caE0

`

dtGS l

a
t D te2z8tJ1~ t !J1~r 8t !,

G512
l

a
tS 11

l2

a2 t2D 21/2

, ~43!

where z85z0 /a and r 85r /a. Usually, the parameterl/a
!1. Besides, due to the factore2z8tJ1(t), the region con-
tributing to the integral is 0,t,min(1/z8,1) because of the
oscillating J1(t) at large t ~unlessr 8'1). Then, one can
expandG in powers oflt/a and keep only the linear term

Fr52
f0I

2ca S f 02
l

a
f 1D ,

f 05E
0

`

dtte2z8tJ1~ t !J1~r 8t !,

f 15E
0

`

dtt2e2z8tJ1~ t !J1~r 8t !, ~44!
10451
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The integrals here can be expressed in terms of the hy
geometric functions@see Ref. 11,~6.612.3!# or alternatively
of the complete elliptic integrals convenient for numeric
evaluation.12

One can define a potentialU(r ) so thatFr52dU/dr:

U52
f0I

2c S u02
l

a
u1D ,

u05E
0

`

dte2z8tJ1~ t !J0~r 8t !,

u15E
0

`

dtte2z8tJ1~ t !J0~r 8t !, ~45!

The energyU is defined so thatU(`)50; its value at the
origin is

U~0!52
f0I

2c F12
z0

~z0
21a2!1/2

2
la2

~z0
21a2!3/2G . ~46!

Thus, the source loop creates a potential well of de
uU(0)u or a barrier of heightuU(0)u for vortices underneath
depending on the current and vortex directions. This op
an interesting possibility for studying the behavior of vor
ces~or antivortices! in tunable potentials.3 In a similar man-
ner, one can evaluate interactions of vortices with other ty
of sources.

D. Accuracy of the SSM determination ofl

Magnetic fluxes of the response field, in particularFz

5*d2rhz
r(r,zp) ~the integral is over the area of a pickup co

placed at the heightzp above the superconducting surface!,
can be measured with high accuracy for a given sou
given geometry of the coil and a known heightzp . In prin-
ciple, this leads to a possibility to measure the penetra
depth. However, the accuracy of this determination in bou
by the accuracy with which the heightsz0 andzp are known.
To demonstrate this consider the response field of an iso
pic material for smalll ’s:

hz
r~r,zp!52E d2k

~2p!2
kw r~k!eik•r2kzp

52E d2k

~2p!2
kws~k!~112lk!eik•r2kzp. ~47!

If zp varies bydzp , the response field variation is

dhz
r5dzpE d2k

~2p!2
k2ws~k!~112lk!eik•r2kzp. ~48!

If only l varies, we have

dhz
r522dlE d2k

~2p!2
k2ws~k!~112lk!eik•r2kzp;

~49!
1-5
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V. G. KOGAN PHYSICAL REVIEW B 68, 104511 ~2003!
in other words,

dhz
r

dl
522

dhz
r

dzp
. ~50!

Therefore, the accuracy of extractingl from the data on
hz

r cannot be much better than knowledge ofzp ~the same is
true about the source positionz0). The latter is usually
known within a fraction of a micron. This is a severe restr
tion upon the accuracy of the absolute determination ofl.
Still, in principle, SSM allows one to determine accurate
the temperature dependence ofl ~for fixed zp andz0).

IV. THIN FILMS

The Meissner response of superconducting thin films
be probed by the SSM method in yet greater detail than
of bulk samples. Some films have a large Pearl lengthL
52l2/d (d is the film thickness! exceeding substantially th
size of the SSM sensing loop, making the SSM measurem
to a local probe. Formally, the problem of a thin film in
field of an external source is simpler than that of the sup
conducting half-space, because in the film case there is
‘‘internal problem’’ to solve; instead, the film provides
boundary condition for the outside field distribution.

Consider a film in thex,y plane made of a uniaxial ma
terial with thec axis at an angleu to the film normalz. We
write the London equation~3! for i 5z, hz24pl2(mxl j l ,y
2myl j l ,x)/c50 and integrate it over the film thickness:

hz2
2p

c
L~mxxgx,y2magy,x!50, L5

2l2

d
, ~51!

whereg is the sheet current. Note that only two compone
of the mass tensor,mxx5macos2u1mcsin2u and myy5ma ,
determine the film anisotropy.

Using the relation of sheet currentsg to the tangential
components of the response field,

2p

c
gx52hy

r ~10!,
2p

c
gy5hx

r ~10! ~52!

@10 denotes the upper film face; the tangential compone
satisfyht

r(10)52ht
r(20)], we obtain forz510

hz
s1hz

r1L~mxxhy,y
r 1mahx,x

r !50; ~53!

for more detail, see Ref. 9. Further, sincehz
s1hz

r5k(ws

2w r), we obtain

w r5
kws

k1L~mxxky
21makx

2!
, z510. ~54!
e
s.

d
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In particular, foru50 we have

w r5
ws

11Lak
, La5maL5

2lab
2

d
. ~55!

This result holds also for isotropic materials wherema
51. In this case, one can readily obtain the fieldhz for the
circular current~37! at the heightz0 above the film; its 2D
Fourier transform for 0,z,z0 is given by

hz
r~k,z!52kw re2kz52

4p2Ia

c

J1~ka!

11kL
e2k(z1z0).

~56!

This field can be measured by SSM.15

For completeness, we write down the field on the oppo
film side, i.e., forz,0, where the response potential is give
by

w r~r,z,0!5E d2k

~2p!2
w r~k!eik•r1kz. ~57!

The London boundary condition~53! should now be written
in terms of the field components atz520:

hz
s1hz

r2L~mxxhy,y
r 1mahx,x

r !50, ~58!

which yields the 2D Fourier transform of the response p
tential ~54! with the minus sign. Proceeding as above,
obtain for the isotropic case

hz
r~k,z,0!52

4p2Ia

c

J1~ka!

11kL
ek(z2z0). ~59!

The force acting upon a Pearl vortex situated in the film
a radial distancer from the current ring center is readil
evaluated:

Fr~r !52
f0Ia

c E
0

` ke2kz0

11kL
J1~ka!J1~kr !dk. ~60!
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