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Fractionalization of a flux quantum in a one-dimensional parallel Josephson junction array
with alternating == junctions
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We study numerically and analytically the properties of a one-dimensional array of parallel Josephson
junctions in which everalternatejunction is a= junction. In the ground state of the array, each cell contains
spontaneous magnetic fladx<® /2 which showsantiferromagnetimrdering along the array. We find that an
externally introduced 2 fluxon @, in such an array is unstable and fractionalizes into twdluxons of
magnitude%(bo. We attribute this fractionalization to the degeneracy of the ground state of the array. The
magnitude of the flux in the fractional fluxons can be controlled by changing the critical current af the
junctions relative to the 0 junctions. In the presence of an external current, the fluxon lattice in the antiferro-
magnetic ground state can be depinned. We also observe a resonant structuré-indharacteristics above
the depinning current due to the interaction between the fluxon lattice and the array.
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One of the exciting developments in the field of Joseph- In this paper, we study numerically and analytically a dif-
son devices is the fabrication of the three-terminal controlferent class of 1D JJA: an array of parallel Josephson junc-
lable Josephson junctidnThe supercurrent through a Jo- tions in which evenalternatejunction is as junction. The
sephson junction is given by=1.sin(A¢), whereA ¢ is the round state contains spontaneous magnetic flux in each cell
gauge-invariant phase difference between the SUPefCO,”duahd are orderedntiferromagneticallyalong the array. We
ors, and the critical currentt; depends upon the junction g4 ot 4 quantum of fluxfluxon) with a 2 kink in the
geometry, normal-state resistariRg, and the temperature h . table i h d fractionali S
Morpurgo et al! showed that the supercurrent through gPnase IS unstable in such an array and iractionalizes into two
superconductor-metal-superconductor junction changes orpatially separated-kink fluxons. We also calculate the-l
passing a control current through the normal metal. For suchharacteristics of the array which show a structure above the
a junction, the supercurremt<sin(A¢+yx) where the addi- depinning current, and is attributed to the resonant interac-
the normal metal. Further theoretical work showed that in thdhe linear waves emitted by the array.
diffusive limit of the junction, the additional phase factpr Consider a 1D array of parallel Josephson junctions con-
can be mader, thus reversing the direction of the supercur-taining alternater and 0 junctions(see inset Fig. 1 The
rent with respect to the phase differentes.?® Josephson Hamiltonian for this system is
junction with y= 7 is referred to as ther junction (we use
the term O junction for the Josephson junction for whjch L5
=0). The = tlunction has now been realized in several o # * # * # *
experimentd° The fabrication of such tunable junctions has L 21 T
opened immense possibilities for new applications, as dem- “
onstrated recently by the development of controllakie 1= #=7w'uncti°ﬂ—
SQUID (superconducting quantum interference dekice

The next natural step in this field would be to consider | 0008 —
Josephson-junction arrayJJA) containing 7 junctions. 05
Theoretically, Kusmartsévwonsidered a loop containing an
odd number ofm junctions and showed that the loop con-
tains spontaneous magnetic flux in the ground state. In the
continuum limit, the long Josephson junction with alternat- 0
ing critical current density have been studied which shows
self-generated magnetic fliX° Recent studies of JJA's with
 junctiong? have shown some novel features arising out 05
of the interplay between 0 and junctions. Moreover, JJA is 0 20
a unique system which provides experimental realizations of
several interesting physical phenomena, some examples of FiG, 1. The self-induced magnetic fluxz®,;/d, along the
which are field-induced superconductor to insulatorarray in the ground stata,= 1.0 andN= 100 (only half the array is
transition;® Aharonov-Casher effecf, and coherent emis- shown for clarity. The right inset shows the array geometry and the
sion of radiation’> One is then led to ask as what new physi- arrows represent the antiferromagnetic ordering of the magnetic
cal phenomenon exists in the one-dimensidaél) JJA con-  flux induced in the cell. The left inset shows the dependence of
taining 7 junctions. 27| ®;|/Dy on ;.
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where ¢, is the gauge-invariant phase difference across the &4
ith junction. The periodic boundary condition is imposed at
the two ends of the array such the§= ¢y (N is assumed to
be even. In Eg. (1), the first term represents the charging
energy and the second term is the energy of the inducec
magnetic field due to finite self-inductance of the dgfle 0 )
effect of mutual inductance between the cells is neglected 0 30 i 6 90
The last term represents the energy associated with the Jc = 2 : ' | ' | ' |
sephson currents. The prefactor for the ¢pterm alternates L (®) g P
in sign for odd @) and even(0) junctions. The Josephson 5L
coupling energye;=1.®,/2m, wherel, is the critical cur- I
rent of a single junction. The timiis in the units of inverse & H4 %
plasma frequencyuglz V®,C/27l ., whereC is the aver- S r 1 &
aged capacitance per unit area of the junction. The effective § %
Josephson  penetration depth is given by, 5 1?
=(Pol2mLol)Y2 where L, is the self-inductance of a
single cell.\ ; determines the screening strength of the array ) | . | o
and is related to the SQUID paramef@r=»\; 2. 0 20 40 ;60 80 100
From Eq.(1), the equation of motion fogp; is

2nd/D
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FIG. 2. () The magnetic flux Z®,; /®, and the average phase
42, deb profile along the array irfa) AFJJA and(b) 0-JJA, in the presence
i%—aﬁ%-(—l)isind)--f— y=)\2(¢‘ F i 12 of a 27 fluxon. The background AF ground state has been sub-
dt2 dt : NTIHL I v tracted from 2r®; /d, in (a). The schematic in insé&) shows how
2 the fractional fluxongthick arrowsg interpolate between the two
degenerate ground state &f’s.
where a dissipative termdd; /dt is also added® The coef-
ficient a=B; Y2, where 8,=2mR2| .C/®, is the McCum-
ber parameter. The parameter1,,,/|. represents the ex-
ternal current through the junction. For the numerical
simulation, Eq.(2) is integrated using the fourth-order
predictor-corrector method. The consistency of the stead
state solutions was checked using different initial configur
tions of ¢;’s. The magnetic flux in théth cell is defined as
27D, /Dy=— (¢ 1— ¢i). We remark that for the case
where all junctions are 0 junctiorfeenceforth referred to as
the 0-JJA, Eq. (2) is the discrete perturbed sine-Gordon
equation, and has been studied extensiVel§First, we con-
sider the results from the numerical simulation.

Figure 1 shows the ground-state flux configuration
27®; /P, for N=100 and\ ;=1.0. The self-induced mag-
netic flux @; changes sign across neighboring cells with
|®;|=® remaining constant. Such a configurationdaf is
reminiscent of the ground state in 1D classical Ising mode he critical s of th d 0 functi tively
with antiferromagneti¢AF) coupling, as depicted schemati- \€ crifical currents of thér and © junctions, respectivety.
cally in the inset of Fig. 1. Therefore, we call this array theFlgl_J,[e 3a) shows the spatial profile of the fractional fluxons
antiferromagnetic JJAMFJJIA). The AF ordering ofb; (and for i; =0.8 andA,=1.0. The phase change across the frac-
hence.s;) implies that the self-induced screening currents intional fluxons isnot  but is dependent on the value if.
neighboring cells are oppositely oriented. The magnitude of "€ total phase change across both the fractions is always
the flux® in a cell depends on the screening strengitas 2, as requwed by the.flux conservation. F|gu(b)$hows
shown in the Fig. @insed. With increasing\ ;, the magnetic the magnitude of the integrated fluxmgd+/®,) in each
flux in the neighboring cells tend to overlap, add—0 as fractional fluxon as a function dff for A\;=1.0. The frac-
N;—c. In the strong screening limitA,—0 and &  tionalization occurs foif,<ig <ig,, whereig andig, are
—dy/2. the two critical values. The slopeé®/di} at the critical

Next, we consider the consequence of introducing an exvaluesi?, andi?, appears to diverge, suggesting a transition
ternal fluxon in AFJJA? In the 0-JJA, a fluxon corresponds between the fractionalized state and the single-fluxon state.

to a 2 kink in the phase profileb(x) and the magnetic field
(<A ¢/AX) is spatially localized on the length scalg. Fig-
ure 2@ shows the steady-state profiles of®; /P, and ¢;
in AFJJA in the presence of am2fluxon. The self-induced
y|‘nagnetic field of the AF ground state has been subtracted
rom 27d; /Py We find that a 2r fluxon is unstable in the
AFJJA andfractionalizes into two spatially separated flux-
ons each carrying half the quantum of flux. Also, eachiad
fractional fluxons is am kink in ¢;. The magnetic field
around the fractional fluxon decays as expl\efr), Where
Neff~2\ ;. This should be compared with ther2luxon in
the 0-JJAFig. 2(b)] whereh¢¢=~X\;. The increase il in
AFJJA is a consequence of the magnetic flux in the AF
ground state.
Itis possible to vary the magnitude of the magnetic flux in
ach fraction by changing =17/12, wherel” and1? are
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FIG. 3. (a) The spatial profile of the fractionalized external fluxon ipr=0.8 and\ ;=1.0. The magnitude of flux in the two fractions
are not equal(b) The integrated total flux 2 /®, in the two fractional fluxongrepresented by dashed and dotted liressa function of
i =|§/|2. Also shown is the maximum flux2d ,,/®, at the center of the two fractional fluxods, and®,, (represented by symbgls

In experiments, the magnitude of the flux at the center of thare invariant on translation by the lattice vector along the
fluxon ®,,, can be measured more easily. Figutb)hows array. Hence, substituting,,=u and v,=v, Eq. (2) be-

the behavior ofP,(i%). comes
In Fig. 4, we show the numerically obtained parameter
space\ ;-iZ . We have assumed thgt can be varied inde- sinu=sinv=2)\§(u—v). (4)

pendent of\ ;. The region of fractional fluxons is bounded
by i%(N;) andi¥,(\,). Itis easy to understand the absence
of fractional fluxons in the limii¥ —0 since the array be-
comes a 0-JJAwith lattice constant twice the original armay
which allows only 27 fluxons. In the opposite limit} —

such that 2—0 andI 7 is finite, there are twer jungtions N Eora given value of,, the quantities) andu can be cal-
each cell and the array can be shown to be equivalent to thg,ated graphically from Ed5). It can be easily verified that

0-JJA, and the fractionalization is again not expected. INpe nontrivial solution is the ground state for any finitg.
obtaining the parameter space in F|g.|éﬁJs assumed to be Tpe magnetic flux in the cell is given byb==+(u

There are two trivial solutions of Eq4): u=v=0 andu
=y =. The nontrivial solution of Eq(4) is given by

u=m—v and si=2\5(m—2v). (5)

finite and fixed which leads to fractionalization fag<<0.7 —v)®y/2m, where the+ and— signs are for the cell to the

even as¢—o. _ left and the right of ther junction, respectively. Thus, the
The simulation results discussed above can also be undefiagnetic flux alternates in sign along the array. The values

stood analytically. Consider the caseipf=1. Define of u, v, and|®| obtained from Eq(5) are in excellent agree-
ment with the numerically obtained values. In the strong

oms1=Uy and ¢om=vm, (3) screening limit\ ;— 0, u= 7 andv =0, and the flux in each

cell attains the maximum valu®,/2. In the limit \ ;— oo,
the solution of Eq(5) is u=v = w/2 which is degenerate to
the trivial solutions of Eq(4), and the ground state contains
no spontaneous magnetic flux.

To understand the fractionalization of ar2fluxon, we
, , , note that the AF ground-state solution of E4) is twofold
ni N=100 degenerate. Ifp={u,v} obtained from Eq(5) is one solu-
tion, the other solution is obtained by translatigby one
lattice constant. Thus, the other solution ¢s ={u’,v'},

where m=0,(N/2)—1. Thus, u,, and v,, are the gauge-
invariant phase differences across theand O junctions, re-
spectively. In the absence of any external fluxag,andv,,

3 . where u’=v+= and v'=u+a. The degeneracy of the
ot ) ground state has an important implication: the elementary
single fluxon single fluxon excitation for the array is a kinkor domain wall in ¢;

which interpolates between the two degenerate ground states
¢ and ¢'. It can be easily verified that the phase change
across the “kink” is7r and corresponds to an additional flux
®y/2 in the array. In the presence of ar2luxon, the energy
o . , . , . minimization leads to twor kinks which are separated by
0 1 2 3 the degenerate ground states. This is shown schematically in
the inset of Fig. Pa). Fractionalization of a Z fluxon in

FIG. 4. The parameter spaag-i¥ . The circles are the numeri- AFJJA is thus a consequence of the degeneracy of the
cally obtained values whereas the full lines are the analytical resulground state. A similar phenomenon is observed in
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FIG. 5. The full V-l curve of the AFJJA. The direction of the
current ramp is indicated by the arrow. Upper inset: ke curves
for different values oh ; (theV branch with increasing is shown.
Left inset: the 2D space-time plot ofi2b; /®, in six cells of the
array for y=0.3, where the maximum value is 2(Black and the
minimum value is -2.2white).

FIG. 6. (a) The \; dependence of the width of the voltage pla-
teau Ay)s. (b) Resonance frequenayg(\;) and(c) the voltage
V4(\;). (d) The depinning curreny.. The open symbols are from
the simulation whereas the bold lines(in—(d) are the analytical
results described in the text.

polyacetylen& and certain field theorié$?® where frac- inset of Fig. 5. The\; dependence of the width of the volt-

tional topological excitations occur and are related to theage plateauX y)s=y,— 7. is shown in Fig. 6a). (Ay)s is

ground-state degeneracy. nonmonotonic and is maximum fory~2. Below a cutoff
Equations(4) and (5) can be extended for the case  \j~0.45, the plateau iV disappears ang,= vy, .

#1. We find that the AF ground state is stable and fluxon The origin of the platea(or step in V can be understood

fractionalization occurs foi* >1 when \;<\;,= 1/\/5[1 from the fluxon dynamics. In a 0-JJA, the motion of a single

—(1/i*)]17¥2 and fori* <1 when\;<\j=(12)[i*/(1 2 fluxon leads to the emission of small-amplitude linear

_i:)]uz_ This is plotted in Fig. 4 and is in good agreementwaves(plasma wavesdue to the 'discreteness of the array.
with the numerically obtained behavior Gfi,(\,) and The resonances between these linear waves and the periodic

izi(Ny). Further details of the analytical calculations will be ,?;gg?nng OtLitQ?oﬂtuhX;?:acsaeuzisAli Jie';'etié)fpﬂ?ézwﬁ'ﬁjj@
given elsewhere. i

. : can be attributed to the phase locking between the moving

Next, we study the. dynamical Prﬂpe”'es Of_ the AI:‘J‘]A'fluxon lattice and the linear waves emitted by the array. The
We restrict the analysis to the caie=1.0 "?‘”d n Fhe ab- frequencyws of the linear waves can be calculated from Eq.
sence of any external fluxon. Thel curve is obtained by 5) "y, the absence of any external fluxon, the symmetry of
sweepingy in small steps, and calculating=a{d¢/dt) in o orond state allows only waves with the wave vegtor
the steady stateM is in units of R,l;). Recall that for the —2m/(2a) to be coupled resonantly to the moving fluxon
0-JJA, all junctions switch from the superconducting state Qattice (herea is the lattice constapt Thus, all O junctions
the normal state simultaneously at=1. In the AFJJA, the i

: : . v == andm junctions oscillate with the same amplitude and phase.
magnetic flux in the ground state alters this behavior S'gn'f'linearizing Eq.(2) for the 7 and the O junctions using
cantly. ’

Figure 5 shows th&/-1 curve forN=30 and\;=1. « = UoexP{ed) andv =voexpled), respectively,
=0.1 for the rest of the discussion beléThe important
feature of theV-1 curve is the appearance of a plateawin
above a depinning currenft.. The transition to the normal
state occurs at a higher currep}. By analyzing the spa-
tiotemporal dynamics of fluxons on the voltage plateau, w
find that the interpenetrating lattice of the fldx and the
antiflux —® move in the opposite directions, which appears
as a stationary wave of breathing flux-antiflux parghis is
evident from the 2D space-time plot ofr2>; /®, which is
shown for a section of the array in the inset of Figd6®
in each cell oscillates between the positive and the negative
values, and is in antiphase with the neighboring cells. Thu . L .
at any instant of time, the total flux in the array is zero a:The above quadratic _equatlon ‘“ﬁ can be solved to obtain
expected from the ground state. We also find that Xgr the frequency of the linear waves,
>1, a linear flux flow regime appears before the plateau, 5 5
whereas for smalk ;, V shows a sharp step as shown in the ws(\y)=V2NT+(1+4N) ®)

—wlu—u=2)\3(v—u),

—w§v+v=27\§(u—v). (6)

%or simplicity, we have used=y=0. Adding the above
equations gives the relation betweenand v, u=v(1
—wg)/(1+ wg). Substituting foru in the second equation
leads to

(1- 02)(1+ 0?) + 4\ 3w2=0. (7)
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wy is in units of the plasma frequenays . The condition for ~ The phase in the above equation is the solution of the Eq.
phase locking of the linear waves with the moving fluxon (5). Figure &d) compares the above expression wjthob-
lattice then becomes ,T=2m, whereT is the time period tained from the simulation. The agreement is good at large
corresponding to the motion of the fluxon lattice. From the\ ;, and the deviation appears as—\} below which no
simulation,T (and hencevg) on the plateau can be obtained flux flow is observed.
from the time evolution of the magnetic fluk;(t) in a cell. In conclusion, we have introduced a new class of JJA
In Fig. 6(b), ws calculated analytically is compared with that containing s junctions. We considered the one-dimensional
obtained from the simulation for increasihg. A reasonable case in which every alternate junction ismajunction, and
agreement is observed over a range\ef The discrepancy  stydied its properties numerically and analytically. The
appears a&; approachea. , below which the plateau I ground state of the array contains spontaneous magnetic flux
is not observed. The voltagés on the plateau is given by in each cell and are ordered antiferromagnetically along the
Vs=aws. This is shown in Fig. &) and is in good agree- grray. A 21 fluxon in such an array is unstable and fraction-
ment with the simulation. _ _alizes into two spatially separaterdfluxons. The fractional-
Finally, the dependence of, on the screening strength is jza4ion s related to the ground-state degeneracy. VHe
shown in Fig. &d). A finite . in JJA is attributed to the .,e shows a voltage plateau due to resonant interaction
pinning potential created at the center of the ElFor  opyeen the linear waves emitted by the array and the mov-

AFJJA, the pinning potential or the energy barrier can b&ng aniiferromagnetic fluxon lattice present in the ground
defined asAE=Ey —Ea, whereEy, is the energy of the giie

array with the fluxon lattice placed on the junctions dds We recently became aware of the experimental fabrication
the ground-state energy. Equating the pinning fordE2o ¢ gp array of coupledr loops using YBaCuO-Nb zigzag
the Lorentz force required to overcome the energy barri€gyctyre in Ref. 27. Some of the results obtained in this

gives the depinning current; (per junction, paper are applicable for such structures also.

1 1 P , _ ,
_- T2 52 art of this work was done during the authors’ stay at the
Yo 2 cosv) 2 Ny(m=2v)7). ©) University of California, Davis.
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