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First-principles relativistic study of spin waves in thin magnetic films
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In order to study spin-wave excitations of itinerant ferromagnets a relativistic first-principles method based
on the adiabatic approach is presented. The derivatives of the free energy up to second order with respect of the
polar and azimuthal angles are derived within the framework of the magnetic force theorem and the fully
relativistic Korringa-Kohn-Rostoker method. Exchange and spin-orbit coupling are thus incorporated on equal
footing in the Hamiltonian. Furthermore, a detailed comparison to classical spin Hamiltonians is given and it
is shown that the magnetocrystalline anisotropy energy contains contributions from both the on-site anisotropy
and the off-site exchange coupling terms. The method is applied to an Fe monolayer on Cu~001! and Au~001!
surfaces and for a Co monolayer on Cu~001!. The calculations provide with the gap at zero wave number due
to the spin-orbit coupling and uniaxial anisotropy energies in good agreement with the results of the band
energy difference method. It is pointed out that the terms in the spin-wave Hamiltonian related to the mixed
partial derivatives of the free energy, absent within a nonrelativistic description, introduce an asymmetry in the
magnon spectrum with respect to two in-plane easy axes. Moreover, in the case of an in-plane magnetized
system the long-wavelength magnons are elliptically polarized due to the difference of the second-order
uniaxial and fourth-order in-plane magnetic anisotropy.
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I. INTRODUCTION

In recent years the magnetic properties of thin films ha
attracted much interest both experimentally as well as th
retically mainly due to possible applications in magne
storage technology. In thin magnetic films relativistic effe
such as magnetic anisotropy are more pronounced tha
bulk materials. The spin-orbit coupling plays a key role
low-energy magnetic excitations of such materials as it op
a gap at zero wave number which in turn is necessary for
formation of long-range magnetic order. First-principles c
culations of the spin-wave excitations can help a lot in u
derstanding the details of the underlying physics and in
loring the properties of different ultrathin magnetic films.

Spin-wave excitation spectra can be determined by ca
lating the dynamical spin susceptibilities using linear
sponse theory1 or by using the adiabatic approach.2–6 Within
the adiabatic approach the fast motion of itinerant electr
is decoupled from the slow motion of the spins. Obvious
the condition for the validity of the adiabatic approximatio
is that the time scale of the precession of the magnetic
ments should be sufficiently larger than the characteri
~hopping! time of the motion of electrons. This conditio
corresponds to the criterion that the spin-wave energy m
be small as compared to the bandwidth and to the excha
splitting. It has been shown that in terms of the rigid-sp
approximation; i.e., by choosing a uniquely defined sp
quantization axis within each cell, the general equation
motion for the spin density reduces to the semiclass
Landau-Lifshitz equation,2,6 describing the orientational mo
tion of the spin moments, whereas the magnitude of the s
magnetization can be evaluated self-consistently within
framework of a constrained density functional theory.7 A
non-self-consistent theory such as employed in the pre
0163-1829/2003/68~10!/104436~11!/$20.00 68 1044
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work allows one to trace the orientational motion of the ma
netic moments, describing thus transverse spin-wave ex
tions only. It should be mentioned that a conceptually cl
description of spin dynamics within a time-dependent d
sity functional theory is matter of ongoing investigation8 and
yet is not in the state of being used in practical terms.

In the nonrelativistic case the adiabatic approach le
within the harmonic approximation to a classical Heisenb
Hamiltonian,

H5
1

2 (
iÞ j

Ji j sisj , ~1!

wheresi is a classical unit vector parallel to the magnetiz
tion at sitei and Ji j is the exchange interaction energy b
tween sitesi and j. Basically two methods are used to dete
mine the exchange interaction energyJi j . One of these is the
so-called frozen magnon approximation,4,9 in which the spin
configuration is constrained to a spin wave of wave vectoq
and the energy of this spin wave is calculated by employ
the generalized Bloch theorem for a spin-spi
configuration.10 Since within the particular model describe
by Eq. ~1! the energy of a spin wave with respect to a ferr
magnetic ground state can be expressed as

«~q!5(
j Þ0

J0 j~eiq•R0 j21!, ~2!

where Ri j is the relative position vector connecting sitesi
and j, and q is the wave vector of the spin wave, the e
change coupling parametersJi j are obtained from the invers
Fourier transform of the spin-wave dispersion law.

In the second approach which is frequently referred to
the torque method or the method of infinitesimal rotations11
©2003 The American Physical Society36-1
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the coupling constantsJi j are calculated directly from the
change of the energy associated with constrained rotation
the spin-polarization axes at sitesi andj. Using the magnetic
force theorem11,12 the change of the total energy is approx
mated by the corresponding change of the one-particle e
gies, remarkably simplifying the calculations. A renormaliz
tion of this approach was recently proposed by Bruno13 and
Antropov14 which considerably improved the calculate
spectra in the region of shorter wavelengths.

For magnetic systems with noncubic symmetry such
hcp Co or for layered systems the importance of relativis
effects is enhanced. In a relativistic formalism the effect
Hamiltonian, Eq.~1!, no longer applies since the invarianc
of the Hamiltonian against a global rotation of the spins
lost. So far, when calculating spin-wave spectra, relativis
effects such as the spin-orbit coupling and the magn
dipole-dipole interaction were taken into account as addi
terms in the Hamiltonian~1!, while the exchange coupling
parametersJi j were calculated nonrelativistically or were e
timated from experiments.15–19

The aim of the present paper is to provide with a relat
istic description of spin waves in itinerant, transition-me
ferromagnets from first principles. Our method relies on
adiabatic decoupling of the local spin-density function
theory and the rigid-spin approximation, whereby a fu
relativistic treatment of the electrons in terms of the Koh
Sham-Dirac equation is used. In the next section we desc
the main points of our theory based on the Landau-Lifsh
equation and a harmonic approximation to the free energ
will be shown that due to the relativistic treatment the sp
wave Hamiltonian contains off-diagonal elements. Clos
formulas for the derivatives of the free energy up to seco
order with respect of the polar and azimuthal angles are
rived by means of the fully relativistic Korringa-Kohn
Rostoker~KKR! method.20 The relationship of our theory to
classical spin Hamiltonians will also be given. Applicatio
are then presented to typical ultrathin magnetic films w
out-of-plane, Fe1Au(001), and in-plane, Co1Cu(001),
ground-state magnetic orientation. In the case of Fe1Cu(001)
the effect of the magnetic dipole-dipole interaction to t
spin-wave spectrum is emphasized.

II. THEORY

A. General formalism

As shown in Refs. 2 and 6, within the rigid-spin approx
mation the adiabatic dynamics of local spin moments is
scribed by the Landau-Lifshitz equation

Mri ṡri 52
2mB

\

dF
dsri

3sri , ~3!

whereMri is the magnitude of the spin moment andsri is a
unit vector pointing along the spin-quantization axis in t
atomic cell at the sitei of layer r,

sri 5~sinq ri cosw ri ,sinq ri sinw ri ,cosq ri !, ~4!

with the polar and azimuthal anglesq ri and w ri , respec-
tively, andF is the free energy of the system. For the case
10443
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transverse magnons~see Introduction!, the anglesq ri and
w ri depend on time, whereas, by supposing two-dimensio
translational invariance for the ground state, the tim
independent magnitudesMri depend only on the layer index
i.e., Mri 5Mr for all sitesi in a particular layerr.

Rewriting Eq.~3! into spherical coordinates, the equatio
of motion for the anglesq ri andw ri are given by

Mr ẇ ri sinq ri 5
2mB

\

]F
]q ri

, ~5!

2Mrq̇ ri sinq ri 5
2mB

\

]F
]w ri

. ~6!

Choosing the polar~z! axis of the reference system to b
perpendicular to the magnetization in the ferromagne
ground state, Eqs.~5! and ~6! can easily be linearized,

Mr ẇ ri 5
2mB

\

]F
]q ri

U
q5p/2,w50

, ~7!

2Mrq̇ ri 5
2mB

\

]F
]w ri

U
q5p/2,w50

, ~8!

where the constraintq5p/2, w50 denotes that the partia
derivatives have to be taken atq ri 5p/2, andw ri 50 for all
r and i. The linearized version of the Landau-Lifshitz equ
tions, Eqs.~7! and ~8!, are the canonical equations for th
generalized coordinatesqri [(Mr /mB)1/2w ri and momenta
pri [(Mr /mB)1/2q ri . Adopting the harmonic
approximation—i.e., expanding the free energy up to sec
order in the angular variables—the corresponding Hamil
function can be written as

H5
1

\ (
ri ,s j

~qri Ari ,s jqs j1qri Bri ,s jps j1pri Bs j,ri qs j

1pri Cri ,s jps j!, ~9!

with

Ari ,s j5~Mr /mB!21/2
]2F

]w ri ]ws j
U

q5p/2,w50

~Ms /mB!21/2,

~10!

Bri ,s j5~Mr /mB!21/2
]2F

]w ri ]qs j
U

q5p/2,w50

~Ms /mB!21/2,

~11!

Cri ,s j5~Mr /mB!21/2
]2F

]q ri ]qs j
U

q5p/2,w50

~Ms /mB!21/2.

~12!

It is straightforward now to quantize the system using
usual commutation rules@qri ,ps j#5(\/ i )d i j d rs for the gen-
eralized coordinates and momenta. By introducing boso
annihilation and creation operatorsari 5(1/A2\)(qri 1 ipri )
andari

† 5(1/A2\)(qri 2 ipri ), the Hamilton operator of mag
netic excitations can be written as
6-2
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H5
1

2 (
rs,i j

~Ari ,s j2 iBri ,s j1 iBs j,ri 1Cri ,s j!ari
† as j1H.c.,

1
1

2 (
rs,i j

~Ari ,s j1 iBri ,s j1 iBs j,ri 2Cri , js!ari
† as j

† 1H.c.

~13!

By utilizing the two-dimensional translational symmet
of the coefficientsAri ,s j , Bri ,s j , andCri ,s j one can rewrite
the above Hamiltonian as

H5
1

2 (
q,rs

hrs~q!@ar
†~q!as~q!1as~q!ar

†~q!#

1
1

2 (
q,rs

@wrs~q!ar
†~q!as

†~2q!1wsr* ~q!ar~q!as~2q!#,

~14!

where

ar~q!5
1

AN
(

i
eiq•Tiari ~15!

and

hrs~q!5(
i

~Ar0,s j2 iBr0,s j1 iBs j,r01Cr0,s j!e
iq(T j 1Cs2Cr ),

~16!

wrs~q!5(
i

~Ar0,s j1 iBr0,s j1 iBs j,r02Cr0,s j!e
iq(T j 1Cs2Cr ),

~17!

with the two-dimensional translational vectorsT i and the
layer generating vectorsCr (Rri 5Cr1T i).

The same structure of the Hamiltonian has been obta
by Erickson and Mills16 in terms of the Holstein-Primakof
transformation of a Heisenberg Hamiltonian with addition
magnetic dipole-dipole interactions. Following their proc
dure, in order to diagonalize the Hamiltonian in Eq.~14! we
introduce a new set of creation and annihilation opera
as

†(q) and as(q), respectively, defined by the transform
tions

ar~q!5(
s

Srs~q!as~q!1Trs* ~q!as
†~2q!, ~18!

ar
†~q!5(

s
Srs* ~q!as

†~q!1Trs~q!as~2q!, ~19!

where the transformation matricesS(q) andT(q) satisfy the
eigenvalue equation

S h~q! w~q!

2w†~q! 2h†~q!
D S S~q! T* ~q!

T~2q! S* ~2q!
D

5S S~q! T* ~q!

T~2q! S* ~2q!
D S «~q!

2«~q!
D . ~20!
10443
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Quite clearly, the diagonal matrix«(q) contains the excita-
tion energies of the magnons.

So far we have not made any distinction between a re
tivistic and a nonrelativistic theory. Relativistic effects ent
through the parametersAri ,s j , Bri ,s j , andCri ,s j defined by
Eqs.~10!, ~11!, and~12!, respectively. However, it is easy t
see that in a nonrelativistic case the mixed partial derivati
of the free energy,Bri ,s j , vanish and there is no differenc
between the second derivatives with respect to the azimu
and polar angles, i.e.,Ari ,s j5Cri ,s j . Consequently, the sec
ond term in Eq.~14! disappears and the Hamiltonian is of th
form of a simple harmonic oscillator. In a relativistic trea
ment the second term in Eq.~14! appears to be nonzero du
to the magnetic dipole-dipole interaction and spin-orbit co
pling. The effect of the magnetic dipole-dipole interaction
described in detail in Refs. 15–17, but according to o
knowledge the effect of the spin-orbit coupling on the sp
wave spectra has not yet been studied from first principl

B. Evaluation in terms of the Korringa-Kohn-Rostoker
method

Expressions for the derivatives of the free energy w
respect to the orientation of the magnetic moments can
derived in the framework of the fully relativistic KKR
method which was successfully applied to calculations
magnetic anisotropy of thin films.20 Within the magnetic
force theorem, the free energy~grand potential! at zero tem-
perature is approximated by

F5E
2`

EF
d«~«2EF!n~«!52E

2`

EF
d«N~«!, ~21!

whereEF denotes the Fermi energy of the system,n(«) is
the density of states~DOS!, andN(«) is the integrated DOS
Employing Lloyd’s formula,21 apart from a constant term
corresponding to the potential-free system, the free ene
can further be written as

F52
1

p
ImE

2`

EF
d« Tr ln t~«!, ~22!

where the site representation of the scattering path oper
t(«)5$t i j («)% can be expressed in terms of a site-diago
single-site scattering matrixt(«)5$t i(«)d i j % and the struc-
ture constantsG0(«)5$G0,i j («)(12d i j )% as

t~«!5@ t21~«!2G0~«!#21. ~23!

In here, t i j («), t i(«), and Gi j («) are matrices in angula
momentum space.

The change of the free energy has to be expressed u
second order with respect to a small deviation of the ori
tation of the magnetizations at sitesi and j relative to the
ferromagnetic ground-state orientation. As it is explained
Ref. 20 the orientational dependence of the single-sitet ma-
trix corresponds to a similarity transformation that rotates
z axis of the reference system to the desired orientation gi
by the anglesq i andw i ,

t i
215mi5R~q i ,w i !mi

0R†~q i ,w i !, ~24!
6-3
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wheremi
0 denotes the inverse of thet matrix at sitei in a

local frame in which thez axis coincides with the axis of th
spin quantization~magnetization!. Note that for brevity we
have dropped the energy argument from the correspon
matrices. The change ofmi up to second order inq i andw i ,

Dmi
(1)5mi

qdq i1mi
wdw i , ~25!

Dmi
(2)5

1

2
mi

qqdq idq i1mi
wqdw idq i1

1

2
mi

wwdw idw i ,

~26!

can easily be expressed by means of the derivatives of
rotation matricesR(q i ,w i),

mi
q[

]mi

]q i
5

]Ri

]q i
mi

0Ri
†1Rimi

0
]Ri

†

]q i
, ~27!

mi
w[

]mi

]w i
5

]Ri

]w i
mi

0Ri
†1Rimi

0
]Ri

†

]w i
, ~28!

mi
qq[

]2mi

]q i]q i
5

]2Ri

]q i
2

mi
0Ri

†1Rimi
0
]2Ri

†

]q i
2

12
]Ri

]q i
mi

0
]Ri

†

]q i
,

~29!

mi
wq[

]2mi

]w i]q i
5

]2Ri

]w i]q i
mi

0Ri
†1

]Ri

]w i
mi

0
]Ri

†

]q i
1

]Ri

]q i
mi

0
]Ri

†

]w i

1Rimi
0

]2Ri
†

]w i]q i
, ~30!

mi
ww[

]2mi

]w i]w i
5

]2Ri

]w i
2

mi
0Ri

†1Rimi
0
]2Ri

†

]w i
2

12
]Ri

]w i
mi

0
]Ri

†

]w i
,

~31!

where for simplicity we used the abbreviationRi
[R(q i ,w i).

First we evaluate the diagonal terms of the second der
tive tensor of the free energy by introducing a change of
orientation of the magnetization only on sitei. The logarithm
of the scattering path operator appearing in Eq.~22! can now
be written as

ln t85 ln~m1Dmi2G0!215 ln t2 ln~11tDmi !. ~32!

Quite clearly, the site-diagonal matrixDmi has only the
block corresponding to sitei with nonzero elements. Expand
ing the logarithm in Eq.~32! and keeping the terms up t
second order one obtains

ln t82 ln t52tDmi
(1)2tDmi

(2)1
1

2
tDmi

(1)tDmi
(1) .

~33!

The first term on the right-hand side of the above equa
contributes to the gradient of the free energy, while the s
diagonal elements of its second derivative tensor are rel
to the second and third terms of Eq.~33!.
10443
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In order to find an expression for the site-off-diagonal p
of the second derivative of the free energy, the orientation
the magnetization has to be altered simultaneously at
different sitesi and j ( iÞ j ),

ln t85 ln~m1Dmi1Dmj2G0!21

5 ln t2@11t~Dmi1Dmj !#, ~34!

which can be rewritten into the form

ln t85 ln t2 ln~11tDmi !2 ln~11tDmj !2 ln~12tDitDj !,
~35!

where we introduced the notationDi[Dmi(11tDmi)
21.

Expanding Eq.~35! up to second order gives

ln t82 ln t52t~Dmi
(1)1Dmj

(1)!1tDmi
(1)tDmj

(1) .
~36!

Similar to the site-diagonal case the second derivatives
be deduced from the second term of the right-hand s
~RHS! of Eq. ~36!.

In the following a layered ferromagnetic orderis as-
sumed; i.e., the orientation of the magnetization is the sa
within each layer but the magnetic moment can be differ
in different layers. With these conditions the single-sitet
matrix depends only on the layer index. Substituting E
~25!–~31! into Eqs.~33! and~36! and applying Eq.~22!, the
second derivative tensor of the free energy with respec
the site-dependent orientations of the magnetization can
written as follows:

diagonal terms:

]2F
]w ri ]w ri

52
1

p
ImE

2`

EF
d« Tr@2t r0,r0~«!mr

ww~«!

1t r0,r0~«!mr
w~«!t r0,r0~«!mr

w~«!#, ~37!

]2F
]w ri ]q ri

52
1

p
ImE

2`

EF
d« Tr@2t r0,r0~«!mr

wq~«!

1t r0,r0~«!mr
w~«!t r0,r0~«!mr

q~«!#, ~38!

]2F
]q ri ]q ri

52
1

p
ImE

2`

EF
d« Tr@2t r0,r0~«!mr

qq~«!

1t r0,r0~«!mr
q~«!t r0,r0~«!mr

q~«!#; ~39!

off-diagonal terms:

]2F
]w ri ]ws j

52
1

p
ImE

2`

EF
d« Tr@ts j,ri ~«!mr

w~«!t ri ,s j~«!ms
w~«!#,

~40!
6-4
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]2F
]w ri ]qs j

52
1

p
ImE

2`

EF
d« Tr@ts j,ri ~«!mr

w~«!t ri ,s j~«!ms
q~«!#,

~41!

]2F
]q ri ]qs j

52
1

p
ImE

2`

EF
d« Tr@ts j,ri ~«!mr

q~«!t ri ,s j~«!ms
q~«!#,

~42!

where t ri ,s j is the block of the real-space scattering pa
operator that corresponds to sitei of layerr and sitej of layer
s. In Eqs.~37!–~42! the trace has to be performed in angu
momentum space.

C. Relation to classical spin Hamiltonians

In order to study, e.g., magnetic properties at finite te
peratures the energy of an itinerant electron system is o
mapped onto a simple classical spin Hamiltonian. Usin
quadratic approximation of the~effective! spin-spin interac-
tion, such a Hamiltonian can be written in the most gene
form as

H5(
i

K~si !1
1

2 (
i j

siJi j sj , ~43!

where the first term stands for the on-site anisotropy ene
and theJi j in the second term are 333 matrices. It is evi-
dent that the matricesJi j ( iÞ j ) can be chosen such tha
Ji j 5J j i

t , wheret refers to the transposed matrix. In order
relate the Hamiltonian~43! to physically significant interac
tions,Ji j has to be decomposed as

Ji j 5Ji j I1J i j
S1J i j

A , ~44!

whereI is the unit matrix,

Ji j 5
1

3
Tr~Ji j !, ~45!

and the symmetric, traceless part ofJi j , J i j
S , is defined by

J i j
S5

1

2
~Ji j 1J i j

t !2Ji j I, ~46!

while the antisymmetric part ofJi j , J i j
A , by

J i j
A5

1

2
~Ji j 2J i j

t !. ~47!

Clearly, therefore, a typical intersite interaction consists
the three terms22

siJi j sj5Ji j si•sj1siJ i j
Ssj1Di j ~si3sj !, ~48!
10443
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where the first and second terms on the RHS are the isotr
and the symmetric anisotropic exchange interactions, res
tively, while the third term represents the Dzyaloshinsk
Moriya ~DM! interaction,22,23 the vectorDi j being defined as

Di j
x 5

1

2
~Ji j

yz2Ji j
zy!, Di j

y 5
1

2
~Ji j

xz2Ji j
zx!,

Di j
z 5

1

2
~Ji j

xy2Ji j
yx!. ~49!

Since the on-site term in Eq.~43!, siJi i si , contains only
symmetric contributions, it can readily be included as
second-order term to the magnetic anisotropyK(si). Conse-
quently, the summation in the second term on the RHS of
~43! has to run overiÞ j only. In what follows we show how
the parameters of the Hamiltonian~9! can be related to thos
in Eq. ~43!, the magnetocrystalline anisotropy and the ge
eralized exchange interactions occurring in Eq.~48! being
thus automatically included in our Hamiltonian for tran
verse magnons.

We start by calculating the second derivatives of t
Hamiltonian in Eq.~43! with respect to the polar and az
muthal angles,

]2H
]a i]bk

5d ikKab~si !1d ik (
j (Þ i )

si
abJi j sj

1~12d ik!si
aJiksk

b , ~50!

wherea andb can be eitherq or w and

Kab~si !5
]2K~si !

]a i]b i
, si

a5
]si

]a i
, si

ab5
]2si

]a i]b i
.

Note that, according to Eqs.~7! and ~8!, all the derivatives
have to be taken atq i5p/2 andw i50 in a coordinate sys-
tem with thez axis normal to the reference orientation of th
magnetization.

If the magnetization points along thex axis of the global
coordinate system, i.e., to which the matricesJi j are related,
Eq. ~4! yields,

si5S 1

0

0
D si

w5S 0

1

0
D si

q5S 0

0

21
D si

ww5S 21

0

0
D

si
qq5S 21

0

0
D si

wq5S 0

0

0
D , ~51!

which, when substituted into Eq.~50!, leads to

]2H
]w i]wk

5d ikKww~si !2d ik (
j (Þ i )

Ji j
xx1~12d ik!Jik

yy ,

~52!

]2H
]q i]qk

5d ikKqq~si !2d ik (
j (Þ i )

Ji j
xx1~12d ik!Jik

zz,

~53!
6-5
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]2H
]w i]qk

5d ikKwq~si !2~12d ik!Jik
yz , ~54!

]2H
]q i]wk

5d ikKqw~si !2~12d ik!Jik
zy . ~55!

Assuming for matters of simplicity second-order uniax
magnetic anisotropy

K~si !52K2,isin2~q i !, ~56!

the diagonal components of the second derivative tensor
given by

]2H
]w i]w i

52 (
j (Þ i )

Ji j
xx ,

]2H
]q i]q i

52K2,i2 (
j (Þ i )

Ji j
xx ,

]2H
]q i]w i

5
]2H

]w i]q i
50, ~57!

while for the off-diagonal components (iÞk) we get

]2H
]w i]wk

5Jik
yy ,

]2H
]q i]qk

5Jik
zz,

]2H
]w i]qk

52Jik
yz ,

]2H
]q i]wk

52Jik
zy . ~58!

If the magnetization points parallel to thez axis of the
global coordinate system, the corresponding derivatives
be obtained by applying the unitary transformation

U5S 0 0 1

0 1 0

21 0 0
D , ~59!

whereas also the uniaxial magnetic anisotropy, Eq.~56!, has
to be transformed to

K~si !52K2,isin2~q i !cos2~w i !. ~60!

Thus, one ends up with the expressions for the on-site te

]2H
]w i]w i

5
]2H

]q i]q i
52K2,i2 (

j (Þ i )
Ji j

zz,

]2H
]q i]w i

5
]2H

]w i]q i
50, ~61!

and for iÞk with

]2H
]w i]wk

5Jik
yy ,

]2H
]q i]qk

5Jik
xx ,

]2H
]w i]qk

5Jik
yx ,

]2H
]q i]wk

5Jik
xy . ~62!

Evidently, the magnetocrystalline anisotropy constantsK2,i
and the elements of the matricesJi j can be calculated from
Eqs. ~57!, ~58!, ~61!, or ~62! using Eqs.~37!–~42!. ~The
missing elementsJi j

xz andJi j
zx can be derived by choosing th

orientation of the magnetization along they axis of the glo-
bal coordinate system.!

It is, however, obvious that this mapping between
Hamiltonians, Eq.~9! and Eq. ~43!, is homomorphic: the
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above procedure can be repeated for any three indepen
reference orientations of the magnetization, resulting in s
of parametersK2,i and Ji j that are not necessarily unique
This follows from the fact that the spin-wave Hamiltonia
Eq. ~9!, has been derived from a second-order expansion
the exact free energy@see Eq.~22!# in the vicinity of a given
magnetic configuration; therefore, it cannot provide an ov
all good approximation to the energy of the system for ar
trary spin configurations. In other words, when expand
with respect to spin variables, Eq.~22! contains also spin-
spin interaction terms beyond the quadratic approximatio24

Consequently, a mapping to a Hamiltonian of the form of E
~43! leads to parameters that depend on the reference m
netic configuration. Using the accidental degeneracy of
mapping@see, e.g., Eqs.~58! and~62! for Jik

yy], we estimated
for a Co monolayer on Cu~001! an uncertainty of abou
5 mRy for the nearest-neighbor interactions, which in tu
corresponds to a relative accuracy of about 0.1%.

In the absence of spin-orbit coupling the off-diagonal
ements vanish and the diagonal elements become iden
this situation clearly corresponds to isotropic exchange c
pling. In this particular case, the similarity transformation
Eq. ~24! can be performed in spin space and the off-diago
terms~40! or ~42! as well as the diagonal terms~37! or ~39!
become identical to the expressions derived by Liechtens
et al.11 for the effective exchange interaction parametersJi j
and for the on-site rotation termsJi , respectively. Since in
the nonrelativistic case there is no preferred orientation
the magnetization, the energy of the system is invari
against a global rotation of all the magnetic moments, a
the following condition has to be satisfied:

]2H
]a i]a i

1 (
j (Þ i )

]2H
]a i]a j

50 ~a5q or w!, ~63!

which is equivalent to the condition for the exchange int
action parameters,11

Ji5 (
j (Þ i )

Ji j . ~64!

In the relativistic case this sum rule no longer applie
Indeed, the expression on the LHS of Eq.~63! can be used to
define an effective second-order magnetic anisotropy c
stantl i . For the case of a magnetization parallel to thez axis
of the global coordination frame, Eqs.~61! and ~62! imply

l i[
1

2 S ]2H
]q i]q i

1 (
j (Þ i )

]2H
]q i]q j

D
5K2,i2

1

2 (
j (Þ i )

~J i j
zz2J i j

xx!. ~65!

The physical content of the above equation is obvious:
yond the on-site anisotropy term the magnetocrystalline
isotropy energy of the system contains contributions t
arise from the anisotropy of the intersite exchange inter
tions.

Going back now to Eqs.~39! and ~42! and using the no-
tation used in Sec. II B, one obtains, for the layer-resolv
anisotropies,
6-6
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l r52
1

2p
ImE

2`

EF
d« Tr@2t r0,r0~«!mr

qq~«!

1t r0,r0~«!mr
q~«!t r0,r0~«!mr

q~«!#

2(
s j

1

2p
ImE

2`

EF
d« Tr@ts j,r0~«!mr

q~«!t r0,s j~«!ms
q~«!#,

~66!

which for practical purposes can be rewritten in terms
reciprocal-space summations as

l r5
1

2pV
ImE

2`

EF
d«dkuuTr@t rr ~«,kuu!mr

qq~«!#

2
1

2pV (
s

ImE
2`

EF
d«dkuuTr@tsr~«,kuu!mr

q~«!

3t rs~«,kuu!ms
q~«!#, ~67!

where the k integral is performed in the first two
dimensional~2D! Brillouin zone, the area of which is de
noted byV. Note that Eq.~67! can be regarded as an exte
sion of the expression for the anisotropy energy derived
Refs. 25 and 26 to the case of two-dimensional translatio
symmetry.

III. RESULTS

We demonstrate our method for three systems: an Fe
a Co atomic monolayer on a Cu~001! surface and an Fe
monolayer on Au~001!. The calculations were performe
supposing perfect epitaxial structure by neglecting any re
ation of the lattice. The energy integrals in Eqs.~37!–~42!
were performed on a semicircle contour using a 16-po
Gaussian quadrature. The integration over the full Brillou
zone was performed by taking up to 93104 k points at the
energy closest to the Fermi level, and the number ofk points
then gradually decreased for energy points more distant f
the real axis in the complex plane and towards the bottom
the band. The second derivatives, Eqs.~40!–~42!, were cal-
culated within a sphere with a radius of up to 29 times
2D lattice constant. The induced moments of the nonm
netic substrate and vacuum layers were fairly small as c
pared to the magnetic moments of the ferromagnetic lay
However, the neglect of these small moments—i.e., miss
summation over the corresponding sites—introduced an
ror comparable to the gap atq50 due to spin-orbit coupling
In our calculation, therefore, beyond the ferromagnetic la
the nearest and next-nearest nonmagnetic layers are
volved. In order to test the accuracy of our procedure,
sum rule, Eq.~63!, was checked with spin-orbit couplin
turned off.27 Assuringly, the deviation was always at lea
two orders of magnitude smaller than the corresponding
in the magnon spectrum. The magnetic dipole-dipole in
action was taken into account as an additional term to
band energy contribution~22!,
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Edip5
1

c2 (
iÞ j

Ri j
2 M i•M j23~M i•Ri j !~Ri j •M j !

Ri j
5

. ~68!

As has been shown by Szunyoghet al.20 the orientation of
the magnetization for an Fe monolayer on Au~001! is perpen-
dicular to the surface due to the relatively strong band ene
anisotropy. In the case of an Fe monolayer on Cu~001! the
magnetic dipole-dipole interaction overrides the posit
band energy contribution~out-of-plane orientation!, resulting
in an in-plane ferromagnetic order.28 For a cobalt monolayer
on Cu~001! surface both the magnetic anisotropy and t
magnetic dipole-dipole interaction favor the in-plane orie
tation of the magnetization.29 The magnon spectra of th
three systems should therefore account for these three d
ent situations.

The calculated magnon spectra along the high-symm
directions of the Brillouin zone are depicted in Figs. 1–
The almost dispersion-less bands belong to the nonmagn
nearest- and next-nearest-neighbor layers. There are
crossings between the bands which are the most pronou
in the case of Co/Cu~001!, indicating the largest interaction
between the magnetic and nonmagnetic layers. For
Cu~001!, the dispersion relation is very similar to that o

FIG. 1. Spin-wave spectrum for Fe1 /Au(001). The almost
dispersion-less bands belong to the two Au layers adjacent th
monolayer.

FIG. 2. Spin-wave spectrum for Fe1 /Cu(001) with an in-plane
ground-state magnetization. Four additional Cu layers indicated
bands of very low dispersion have been taken into account.
almost identical solid and dashed lines represent the~100! and~010!
directions of the magnetization, respectively.
6-7



he
u-
o
e-

the
,
e-

p-
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FIG. 3. Spin-wave spectrum for Co1 /Cu(001)
with an in-plane ground-state magnetization. T
four additional Cu layers considered in the calc
lations are coupled relatively strongly to the C
monolayer as indicated by the noncrossing b
havior ~hybridization! of the corresponding
bands. The solid and dashed lines represent
~100! and ~010! directions of the magnetization
respectively. The spectrum between the symm
try pointsX andG as well as betweenM andX is
shown on an enlarged scale in upper left and u
per right insets, respectively.
l
n-

f
c

r
e
b
b
o

n-
a

c
ic

the
e
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xis

of
ec-

n
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y.
tained by Pajdaet al.18 using the method of infinitesima
rotations combined with the nonrelativistic tight-binding li
ear muffin-tin orbital~TB-LMTO! approach. A local mini-
mum observed between the pointsX andM is an indication
for a so-called Kohn anomaly4 which is the consequence o
the long-range RKKY-like behavior of the exchange intera
tions.

In Fig. 4 the spectra in the vicinity of theG point are
shown for Fe/Au~001! as calculated for an in-plane and fo
an out-of-plane magnetic orientation, and also for the cas
neglecting spin-orbit coupling. In the absence of spin-or
coupling the dispersion curve starts from zero as has to
expected. Inclusion of spin-orbit coupling opens up a gap
D543 mRy for the normal-to-plane orientation. For an i
plane magnetization the relativistic calculation resulted in
imaginary magnon energy close to theG point, indicating
that the in-plane ferromagnetic order corresponds to a lo
maximum in the free energy and the easy axis is perpend
lar to the surface.

FIG. 4. Spin-wave spectrum for Fe1 /Au(100) in the vicinity of
the G point. The solid lines correspond to the normal–to–pla
orientation of the magnetization, the dotted line represents the s
trum for an in-plane orientation, and the dashed line denotes
magnon spectrum with spin-orbit–coupling turned off.
10443
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The long-wavelength parts of the relativistic spectra of
Fe/Cu~001! monolayer without and with inclusion of th
magnetic dipole-dipole interaction are shown in Fig. 5. Co
sidering only the band-energy contributions the easy a
turned out to be perpendicular to the surface and a gap
D517.5mRy appeared in the corresponding magnon sp

e
c-
e

FIG. 5. Spin-wave spectrum in the vicinity of theG point for
Fe1 /Cu(100) neglecting the magnetic dipole–dipole interaction~a!
and including the magnetic dipole–dipole interaction~b!. The solid
and dashed lines represent the spectra corresponding to the nor
to–plane and to the in-plane magnetic orientations, respectivel
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trum, while, similar to the previous case of Fe/Au~001!, there
are imaginary excitation energies in the in-plane magn
spectrum at small wave numbers. Inclusion of the magn
dipole-dipole term, Eq.~68!, reverses the situation: there is
tiny gap for the in-plane magnetized film and the magn
spectrum becomes negative for the out-of-plane direction

In the case of a thin film with an easy axis perpendicu
to the layers the gap is determined by the second-o
uniaxial anisotropy. For a magnetic layer with an in-pla
easy axis the lowest energy of the magnetic excitations—
the gap atq50—lies in the order of the in-plane anisotrop
energy which for the present systems ofc4v symmetry is at
least by an order of magnitude smaller than the uniaxial o
Our calculation resulted in a gap ofD50.3 mRy for the
Fe/Cu~001! monolayer and the easy axis turned out to
parallel to the~110! direction. We have to mention that suc
a small value is very close to the numerical accuracy of
calculations inherent mainly to the Brillouin zone samplin

A similar drop of the gap has, however, been indicated
the experiments for a thermally deposited three-monola
film of Fe on Cu~001!. In contrast to the pulsed-lase
deposited~PLD! samples having an in-plane ground-sta
magnetization30,31thermal deposition~TD! produces Fe films
on Cu~001! with an out-of-plane easy axis.32 In their Bril-
louin light scattering experiment Dutcheret al.32 studied the
lowest-lying spin-wave mode in the presence of an exte
magnetic field parallel to the substrate. They found that
frequency of this mode has a minimum as the magnetic fi
passes a critical value where the spins become parallel to
film.

In the case of an in-plane magnetization thec4v symmetry
of the fcc ~001! surface is lifted and the spin-wave spec
for the ~001! and ~010! directions of the magnetization be
come different as is shown in Fig. 3 for Co/Cu~001!. A split-
ting of a few meV due to spin-orbit coupling can clearly
seen in the insets in Fig. 3. This splitting of the spectrum
also be interpreted in terms of the Dzyaloshinsky-Mor
interaction.22,23 On the one hand, it is straightforward t
show that transverse magnons are affected only by the c
ponent of the DM vector,Di j @see Eq.~49!#, parallel to the
ground-state magnetization. On the other hand, in agreem
with the symmetry rules set up by Moriya,22 we observed
noticeable parallel components of the DM vectors only if t
vector Ri j connecting the two interacting spins is align
close to a direction perpendicular to the magnetization, w
the DM interactions along a direction parallel to the groun
state magnetization turned out to be practically zero. E
dently, the above real-lattice asymmetry of the DM intera
tions shows up as a corresponding asymmetry in the s
wave spectrum for wave vectors parallel and normal to
magnetization.

There is another interesting feature of the in-plane m
nons. The long-wavelength part of the spin-wave spectrum
determined by the anisotropy fields which are considera
different for the out-of-plane and for the in-plane motion
the magnetic moments and, consequently, the spin wave
elliptically polarized. In our theoretical picture the out-o
plane and in-plane motions are assigned to the anglesq ri and
w ri , respectively. In order to characterize the ellipticity of
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magnon in a specific mode~band! a, the difference of the
mean-square deviation of the out-of-plane and in-plane c
ponents of the magnetization,

ha5~DMa
'!22~DMa

i !2.K (
ri

M r
2~q ri

2 2w ri
2 !L

a

5mBK (
ri

~qri
2 2pri

2 !L
a

, ~69!

is introduced, where the notation̂&a refers to a quantum-
mechanical expectation value with respect to the eigens
labeled bya of the Hamiltonian~14!. The ellipticity ~69! can
obviously be expressed as a sum in reciprocal space,

ha5(
r ,q

h r
a~q!, ~70!

h r
a~q!5^ar

†~q!ar
†~2q!1ar~q!ar~2q!&a , ~71!

while h r
a(q) can easily be calculated using the matrices

Eq. ~20!,

h r
a~q!5Sra~q!Tra~2q!1Tra* ~q!Sra* ~2q!. ~72!

In Fig. 6, h r
a(q) is shown for the band having the large

weight in the cobalt layer in the case of Co/Cu~001! along
the ~001! and ~010! directions. As the wave number is in
creased the isotropic exchange interaction plays an incr
ingly important role in the formation of the magnetic excit
tions and the ellipticity rapidly tends to zero. The ba
crossing and the asymmetry are also reflected by the ellip
ity.

Finally in Table I we summarize the uniaxial anisotrop
constants provided by Eq.~67! together with those obtaine
by taking the band-energy difference between the cases o
in-plane and a normal-to-plane magnetization.20,28,29The re-
sults of the two types of calculations are in very good agr
ment. It is worth mentioning that the present method na
rally supplies layer-resolved anisotropy constants that

FIG. 6. Spectral resolution of the ellipticity,h r
a(q), for the mag-

non band having the largest weight at the Co monolayer
Co1 /Cu(001). The solid and dashed lines refer to the~100! and
~010! directions of the magnetization, respectively.
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differ from the projection of the band-energy anisotropies
the layers as applied so far in magnetic anisotropy calc
tions.

IV. SUMMARY

In order to study low-energy spin-wave excitations of iti
erant ferromagnets we have developed a relativistic fi
principles method based on the adiabatic decoupling
rigid-spin approximation. A spin-wave Hamiltonian has be
constructed starting from the Landau-Lifshitz equation a
using a harmonic approximation for the free energy. Clo
formulas for the derivatives of the free energy up to seco
order with respect of the polar and azimuthal angles h
been derived within the framework of the magnetic for
theorem by means of the fully relativistic Korringa-Koh
Rostoker method. Exchange and spin-orbit couplings h
thus been treated in equal terms. We discussed in detail
relevance of classical spin models with respect to the Ha
tonian of transverse magnons. The method has been ap
to an Fe monolayer on Cu~001! and Au~001! surfaces and for
a Co monolayer on Cu~001!. Our calculations reproduced th
gap at zero wave number due to spin-orbit coupling a
provided uniaxial anisotropy energies in good agreem
with the results of the band-energy difference method.

TABLE I. The gap at theG point for monolayers with out-of-
plane magnetization and the uniaxial magnetic anisotropy cons
given by the present method and by the band energy differe
method.

Gap l l

System (q50) Present method Band energy dif

Fe1 /Au(001) 56.8mRy 42.8mRy 42.9mRy
Fe1 /Cu(001) 17.5mRy a 12.1mRy 12.2mRy
Co1 /Cu(001) 230.6mRy 231.3mRy

aMagnetic dipole–dipole interaction is not included.
f-

o-

ys

,

.
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pointed out that a relativistic treatment gives rise to an asy
metry in the magnon spectra with respect to magnetic or
tations along two in-plane easy axes. We also emphas
that in the case of an in-plane magnetized system the lo
wavelength magnons are elliptically polarized due to the d
ference of the second-order uniaxial and fourth-order
plane magnetic anisotropy.

The lifetime of the magnetic excitations in the adiaba
approach is infinitely long. Edwards and Muniz33 proved that
the adiabatic approximation gives quantitatively reliable
sults only to order ofq2 in the dispersion relation. Rigor
ously, one can use it to calculate the exchange stiffness,
if one tries to extend the adiabatic approach to the sh
wavelength region, the method may break down. Mills a
co-workers34–36 extended the discussion to ultrathin film
and made careful comparisons between the dispersion cu
calculated with dynamical theory and the adiabatic appro
at very short wavelengths.

Relativistic effects can also have an important impact
the damping of the spin-wave excitations allowing tran
tions which are forbidden in the spin-conserving nonrelat
istic description. These transitions for the low-energy exc
tions can contribute to the Gilbert damping. Th
investigation of the relativistic effects in magnetic excit
tions beyond the adiabatic approximation is an important
sue; this, however, extends the scope of the present stu
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