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First-principles relativistic study of spin waves in thin magnetic films
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In order to study spin-wave excitations of itinerant ferromagnets a relativistic first-principles method based
on the adiabatic approach is presented. The derivatives of the free energy up to second order with respect of the
polar and azimuthal angles are derived within the framework of the magnetic force theorem and the fully
relativistic Korringa-Kohn-Rostoker method. Exchange and spin-orbit coupling are thus incorporated on equal
footing in the Hamiltonian. Furthermore, a detailed comparison to classical spin Hamiltonians is given and it
is shown that the magnetocrystalline anisotropy energy contains contributions from both the on-site anisotropy
and the off-site exchange coupling terms. The method is applied to an Fe monolaye{0oi)@md Au001)
surfaces and for a Co monolayer on(G0d). The calculations provide with the gap at zero wave number due
to the spin-orbit coupling and uniaxial anisotropy energies in good agreement with the results of the band
energy difference method. It is pointed out that the terms in the spin-wave Hamiltonian related to the mixed
partial derivatives of the free energy, absent within a nonrelativistic description, introduce an asymmetry in the
magnon spectrum with respect to two in-plane easy axes. Moreover, in the case of an in-plane magnetized
system the long-wavelength magnons are elliptically polarized due to the difference of the second-order
uniaxial and fourth-order in-plane magnetic anisotropy.
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I. INTRODUCTION work allows one to trace the orientational motion of the mag-
netic moments, describing thus transverse spin-wave excita-
In recent years the magnetic properties of thin films havdions only. It should be mentioned that a conceptually clear
attracted much interest both experimentally as well as thegdescription of spin dynamics within a time-dependent den-
retically mainly due to possible applications in magneticsity functional theory is matter of ongoing investigafiemd
storage technology. In thin magnetic films relativistic effectsy€t is not in the state of being used in practical terms.
such as magnetic anisotropy are more pronounced than in In the nonrelativistic case the adiabatic approach leads
bulk materials. The spin-orbit coupling plays a key role inwithin thg harmonic approximation to a classical Heisenberg
low-energy magnetic excitations of such materials as it openklamiltonian,
a gap at zero wave number which in turn is necessary for the
formation of long-range magnetic order. First-principles cal-
culations of the spin-wave excitations can help a lot in un-
derstanding the details of the underlying physics and in tai-
loring the properties of different ultrathin magnetic films.  wherea; is a classical unit vector parallel to the magnetiza-
Spin-wave excitation spectra can be determined by calcution at sitei and J;; is the exchange interaction energy be-
lating the dynamical spin susceptibilities using linear re-tween sites andj. Basically two methods are used to deter-
sponse theoryor by using the adiabatic approatif.Within ~ mine the exchange interaction enetdgy. One of these is the
the adiabatic approach the fast motion of itinerant electronso-called frozen magnon approximatibhin which the spin
is decoupled from the slow motion of the spins. Obviously,configuration is constrained to a spin wave of wave vegtor
the condition for the validity of the adiabatic approximation and the energy of this spin wave is calculated by employing
is that the time scale of the precession of the magnetic mahe generalized Bloch theorem for a spin-spiral
ments should be sufficiently larger than the characteristiconfiguration:® Since within the particular model described
(hopping time of the motion of electrons. This condition by Eq. (1) the energy of a spin wave with respect to a ferro-
corresponds to the criterion that the spin-wave energy mushagnetic ground state can be expressed as
be small as compared to the bandwidth and to the exchange
splitting. It has been shown that in terms of the rigid-spin i9.Ro:
approximation; i.e., by choosing a uniquely defined spin- S(q):jzo Joj(e'Roi—1), 2
guantization axis within each cell, the general equation of
motion for the spin density reduces to the semiclassicavhereR;; is the relative position vector connecting sites
Landau-Lifshitz equatioR® describing the orientational mo- andj, andq is the wave vector of the spin wave, the ex-
tion of the spin moments, whereas the magnitude of the spiohange coupling parametels are obtained from the inverse
magnetization can be evaluated self-consistently within théourier transform of the spin-wave dispersion law.
framework of a constrained density functional thebry. In the second approach which is frequently referred to as
non-self-consistent theory such as employed in the presette torque method or the method of infinitesimal rotatitns,

H=3 > Jjoi0, (1)
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the coupling constantd;; are calculated directly from the transverse magnonsee Introductiop the anglesd, and
change of the energy associated with constrained rotations @f,; depend on time, whereas, by supposing two-dimensional
the spin-polarization axes at siteandj. Using the magnetic translational invariance for the ground state, the time-
force theorer*?the change of the total energy is approxi- independent magnitudés,; depend only on the layer index;
mated by the corresponding change of the one-particle enere., M,;=M, for all sitesi in a particular layer.

gies, remarkably simplifying the calculations. A renormaliza- Rewriting Eq.(3) into spherical coordinates, the equations
tion of this approach was recently proposed by Bfdrmmd  of motion for the angles},; and ¢,; are given by

Antropovt* which considerably improved the calculated

spectra in the region of shorter wavelengths. M- oo sin o __% aF 5
For magnetic systems with noncubic symmetry such as rriSINVyi = ho99y’ )

hcp Co or for layered systems the importance of relativistic

effects is enhanced. In a relativistic formalism the effective S 2ug 0F

Hamiltonian, Eq.(1), no longer applies since the invariance — M Gisindy “Th den ©6)

of the Hamiltonian against a global rotation of the spins is
lost. So far, when calculating spin-wave spectra, relativisticChoosing the polafz) axis of the reference system to be
effects such as the spin-orbit coupling and the magneti®erpendicular to the magnetization in the ferromagnetic
dipole-dipole interaction were taken into account as additiveground state, Eqg¢5) and (6) can easily be linearized,

terms in the Hamiltoniar{1), while the exchange coupling

parameterd;; were calculated nonrelativistically or were es- M, ¢ :% oF @
timated from experiments.™*° A T .

The aim of the present paper is to provide with a relativ- ’
istic description of spin waves in itinerant, transition-metal . 2ug 0F
ferromagnets from first principles. Our method relies on the ~Midi=—— Ton ; (8)
adiabatic decoupling of the local spin-density functional Mlo=ml2p=0

theory and the rigid-spin approximation, whereby a fully where the constrain®= /2, ¢=0 denotes that the partial
relativistic treatment of the electrons in terms of the Kohn-derivatives have to be taken ét;= 7/2, ande,;=0 for all
Sham-Dirac equation is used. In the next section we describeandi. The linearized version of the Landau-Lifshitz equa-
the main points of our theory based on the Landau-Lifshitzions, Eqgs.(7) and (8), are the canonical equations for the
equation and a harmonic approximation to the free energy. lgeneralized coordinateg,;=(M,/ug) 1/2% and momenta
will be shown that due to the relativistic treatment the spin-p . =(M, / ug) %9, . Adopting the harmonic
wave Hamiltonian contains off-diagonal elements. Closedhpproximation—i.e., expanding the free energy up to second
formulas for the derivatives of the free energy up to secondrder in the angular variables—the corresponding Hamilton
order with respect of the polar and azimuthal angles are dgunction can be written as

rived by means of the fully relativistic Korringa-Kohn-

Rostoker(KKR) method?° The relationship of our theory to

classical spin Hamiltonians will also be given. Applications H=% rizsj (QriAvri sjdsjt riBri sjPsj+ PriBsj ri s

are then presented to typical ultrathin magnetic films with '

out-of-plane, FeAu(001), and in-plane, G&u(001), +p1iCri sjPsj)» 9
ground-state magnetic orientation. In the case Cr¢001)

the effect of the magnetic dipole-dipole interaction to theWlth
spin-wave spectrum is emphasized. PRF
A o=(M. Jun) Y227 M./ e) =22
ri,sj ( r /~LB) ] ) ( s MB) )
Il. THEORY 7017051 o-nizg-0 (10)
A. General formalism 5
As shown in Refs. 2 and 6, within the rigid-spin approxi- B, sj:(Mr/MB)_UZi (Mg/ug)~ 2
mation the adiabatic dynamics of local spin moments is de- e 9Vsi| 4_ oo
scribed by the Landau-Lifshitz equation (11
. 2ug OF PF
Mioi=——— ——Xay, ©) Crisj=(M,lug) V2o (Mg/ug) Y2
ri Ori h o, Ti ri,sj (M /ug aﬂria'&sj o o0 s/ MB
(12)

whereM,; is the magnitude of the spin moment aog is a
unit vector pointing along the spin-quantization axis in the |t s straightforward now to quantize the system using the
atomic cell at the site of layerr, usual commutation rulelg;; ,ps;]= (%/i) &; & for the gen-
eralized coordinates and momenta. By introducing bosonic
annihilation and creation operatoas = (1/\/2%) (0 +ipyi)

with the polar and azimuthal angle%,; and ¢,;, respec- anda;ﬂz(l/\/ﬁ)(qri—ip,i), the Hamilton operator of mag-
tively, and.F is the free energy of the system. For the case ohetic excitations can be written as

oy = (sindcose;; ,sintising,; ,cosdy), 4
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1 _ _ ; Quite clearly, the diagonal matrix(q) contains the excita-
H=3 > (Avisj=iByi sj+iBsj i+ Cri spajiasi+H.c., tion energies of the magnons.
el So far we have not made any distinction between a rela-
1 tivistic and a nonrelativistic theory. Relativistic effects enter
+3 > (Ari sj+iByi sj+iBsjri—Cri js)ahial +H.c. through the parameter,; 5;, By s;, andCy; s; defined by
el Egs.(10), (11), and(12), respectively. However, it is easy to
(13 see that in a nonrelativistic case the mixed partial derivatives
. ) ) ) of the free energyB,; s;, vanish and there is no difference
By utilizing the two-dimensional translational symmetry petween the second derivatives with respect to the azimuthal
of the CoeffiCientsAy s;, Byj sj, andCy; sj one can rewrite  ang polar angles, i.eA; sj=Cyis;- Consequently, the sec-

the above Hamiltonian as ond term in Eq(14) disappears and the Hamiltonian is of the
1 form of a simple harmonic oscillator. In a relativistic treat-

H=7 2 h(@)lal(qaga)+a(q)al(q)] ment the second term in E¢L4) appears to be nonzero due
2 qrs to the magnetic dipole-dipole interaction and spin-orbit cou-

1 pling. The effect of the magnetic dipole-dipole interaction is
+2 > [we(gal(@al(—q) +wi(qa(qal—q)],  described in detail in Refs. 15-17, but according to our
247 knowledge the effect of the spin-orbit coupling on the spin-
(14 ~Wwave spectra has not yet been studied from first principles.

where B. Evaluation in terms of the Korringa-Kohn-Rostoker
1 method
a,(q)=— 2 e'dTia, (15 Expressions for the derivatives of the free energy with
YN respect to the orientation of the magnetic moments can be
and derived in the framework of the fully relativistic KKR

method which was successfully applied to calculations of
, magnetic anisotropy of thin film®. Within the magnetic
hes(@) =2 (Arosi—iBrosj+iBsjro+ Crosj)€'aTiHCs™ ), force theorem, the free energgrand potentialat zero tem-
' (16) perature is approximated by

Er Er
Wrs(Q):Z (Aro,sj+iBrO,sj+ist,rO_CrO,sj)eiq(TﬁCSiC')y 4 f*ocdS(s EF)n(S) JlocdSN(S), (21)

I
(177  whereEg denotes the Fermi energy of the systar(ig) is
the density of state®0S), andN(¢) is the integrated DOS.
Employing Lloyd's formula® apart from a constant term
orresponding to the potential-free system, the free energy
an further be written as

with the two-dimensional translational vectofs and the
layer generating vectoiS, (R,i=C,+T;).

The same structure of the Hamiltonian has been obtaine
by Erickson and Mill$® in terms of the Holstein-Primakoff
transformation of a Heisenberg Hamiltonian with additional 1 Er
magnetic dipole-dipole interactions. Following their proce- F=- —ImJ de Trin#(e), (22
dure, in order to diagonalize the Hamiltonian in Et4) we . o
introduce a new set of creation and annihilation operatorgvhere the site representation of the scattering path operator
a;r(q) and a¢(q), respectively, defined by the transforma- (e)={j(e)} can be expressed in terms of a site-diagonal

tions single-site scattering matrit(s) ={ti(¢) §;} and the struc-
ture constant&y(e) ={Gyjj(e)(1— &)} as
a()=2 S<(@as()+Tr(@ag(~a), (18 He)=[t 1(s)—Gyle)] L. 23

In here, 7j(g), ti(e), and Gj;(¢) are matrices in angular
momentum space.

The change of the free energy has to be expressed up to
second order with respect to a small deviation of the orien-
where the transformation matric&q) andT(q) satisfy the  tation of the magnetizations at sitesandj relative to the

ar*(q):§ SL@al(@)+T(@al(—q), (19

eigenvalue equation ferromagnetic ground-state orientation. As it is explained in
N Ref. 20 the orientational dependence of the singletsita-
h(q) w(q) Sa) T trix corresponds to a similarity transformation that rotates the
-wi(q) —h'(q)/\T(-q) S*(—q) zaxis of the reference system to the desired orientation given
. by the anglesy; and ¢;,
(S THa) (&) 20
“\T-a s-q) —eq)) @O ti=m=R@, MRS 0), (29
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wherem? denotes the inverse of thtematrix at sitei in a In order to find an expression for the site-off-diagonal part

local frame in which the axis coincides with the axis of the of the second derivative of the free energy, the orientation of

spin quantizationimagnetization Note that for brevity we the magnetization has to be altered simultaneously at two

have dropped the energy argument from the correspondindifferent sitesi andj (i #j),

matrices. The change afi up to second order i¥; and ¢; ,

In7 =In(m+Am;+Am;—Gy) !

AmM=mPd 9+ méde;, (25)
=In7—[1+7Am;+Am))], (39

1 1
AmBP=>m?d9;d & +m¢ de;dd; + M ¥ dede;, which can be rewritten into the form

2
(26) ,
In 7 =In7—In(1+ 7Am;) —In(1+ 7Am;) —In(1— 7A; 7A),
can easily be expressed by means of the derivatives of the (35

rotation matriceR(J;,¢;),
e where we introduced the notatiaj=Am;(1+7Am;) L.

s Omp IR o . OaRiT Expanding Eq(35) up to second order gives
M= -5 = 75 MR +Rimi =2, (27)
B ' In# —In 7= — 7 Am®+ AmY) + sAm 7am{®.
om oR . L IR! (36)
miE_:_mi Ri+Rimi_, (28)
dei i i Similar to the site-diagonal case the second derivatives can
be deduced from the second term of the right-hand side
oy M PR o PRI R IR (RHS) of Eq. (36).
M= 09,00, ggz TR T RIM ot 2 Mg, In the following a layered ferromagnetic ordefs as-
(29) sumed; i.e., the orientation of the magnetization is the same
within each layer but the magnetic moment can be different
2 20, T _ T in different layers. With these conditions the single-dite
miw?z L :‘9_leio IT _ 1 ioﬁJrﬁ_R' ?ﬁ matrix depends only on the layer index. Substituting Egs.
d@idV;  dgidV; dei 1T 9V T I (25—(31) into Egs.(33) and(36) and applying Eq(22), the
2R second derivative tensor of the free energy with respect to
+RM—— (30)  the site-dependent orientations of the magnetization can be
i dY; written as follows:
diagonal terms:
vo M PR WRT R, IR
LT dgi0e 9 iR Rimy of ‘?_‘Pimi(?_‘Pi' —(92]: =— 1|mJ’EFds Tr[ = 7roro(8)MP?()
(31) @i Iy T — oro '
where for simplicity we used the abbreviatiof + Troro(8)ME(e) Tros0(8)ME(e) ], (37
=R(¥i,¢i). ' '
First we evaluate the diagonal terms of the second deriva- 2T 1 £
tive tensor of the free energy by introducing a change ofthe  _~ -~ _ _ — |mf Fde T — 7r00(e)MEY(e)
orientation of the magnetization only on sitéThe logarithm @Iy w —o ' '
of the scattering path operator appearing in @) can now
be written as + 7ror0(£)ME (&) Tros0(e)MY ()], (38)
In7 =In(m+Am;—Gy) " =In7—In(1+ 7Am;). (32 PPF 1 Er
S o |mf de Tr[ — 7ror0(2)M ()
Quite clearly, the site-diagonal matriXm; has only the 90ri I Vyi & -

block corresponding to sitewith nonzero elements. Expand-
ing the logarithm in Eq(32) and keeping the terms up to
second order one obtains

+ Top0(e)M () Tror0(e)MP ()] (39)

off-diagonal terms:
1
In7 —In7=—7AmY— zAm® + ETAmi(l)TAmi(l). PF

(33 a‘Pria‘st

The first term on the right-hand side of the above equation 1 Er

contributes to the gradient of the free energy, while the site- =— ;'mf xds Trl 76j,ri(8)Mf () 7y sj(8)ME(e) ],
diagonal elements of its second derivative tensor are related

to the second and third terms of E3). (40)
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PF where the first and second terms on the RHS are the isotropic
EPSEr and the symmetric anisotropic exchange interactions, respec-
nees tively, while the third term represents the Dzyaloshinsky-

1 Er s Moriya (DM) interaction?*?*the vectorD;; being defined as
=- ;'mJ_ de Tr[ 7j i(e)mf(e) 7 sj(e)Mg (&) ],

1 1
a D=3 =3 DY =39
(92—]: D2 _1 ny_Jyx (49)
9005 i"_2( i)
1 Er N N Since the on-site term in Ed43), ¢,7; 07, contains only
=—;|mJ_md8 Trl 7sjri(e)My(e) 7i sj(e)Mg (&) ], symmetric contributions, it can readily be included as a
second-order term to the magnetic anisotr&gyr;). Conse-
(42)  quently, the summation in the second term on the RHS of Eq.
h(43) has to run over# j only. In what follows we show how
the parameters of the Hamiltoni&®) can be related to those
in Eq. (43), the magnetocrystalline anisotropy and the gen-
eralized exchange interactions occurring in E4g8) being
thus automatically included in our Hamiltonian for trans-
verse magnons.
We start by calculating the second derivatives of the
In order to study, e.g., magnetic properties at finite tem-Hamiltonian in Eq.(43) with respect to the polar and azi-
peratures the energy of an itinerant electron system is oftemuthal angles,
mapped onto a simple classical spin Hamiltonian. Using a

where 7; ¢; is the block of the real-space scattering pat
operator that corresponds to sitef layerr and sitg of layer

s. In Egs.(37)—(42) the trace has to be performed in angular
momentum space.

C. Relation to classical spin Hamiltonians

2
quadratic approximati_on of th(@ﬁect_ive) s.pin-spin interac- H = 5, K™ () + 6 2 o o
tion, such a Hamiltonian can be written in the most general da;d By i(#1)
form as o
+(1- dik) o7 Jikoy (50
1 .
— where« and B can be either) or ¢ and
H—zi K(O’,)‘f’z ; 0'“7”0'], (43) a B ¢
) . . KO‘B _ ﬁzK(O]) a_(;O'i ap_ (920'i
where the first term stands for the on-site anisotropy energy (o7)= Ja,dB; o = da;’ g ~ @B

and theJ; in the second term are>33 matrices. It is evi- _ o
dent that the matrices7; (i#j) can be chosen such that Note that, according to Eq$7) and (8), all the derivatives

Jij=J, » wheret refers to the transposed matrix. In order to have to be taken at;= /2 and¢;=0 in a coordinate sys-
relate the Hamiltoniari43) to physically significant interac- tem with thez axis normal to the reference orientation of the

tions, 7; has to be decomposed as magnetization. . .
If the magnetization points along theaxis of the global
T =3I+ jﬁ+j{?, (44) coordinate system, i.e., to which the matricgsare related,
Eq. (4) yields,
whereZ is the unit matrix,
1 0 0 -1
1
Iy =3I, 45  o=| 0] of=|1] o= 0| of*=| O
0 0 -1 0
and the symmetric, traceless partgf, jﬁ , is defined by 1 0
1 a’’=| 0 |o¥’=| 0 (51
S_ L
ij_E(u7ij+g7itj)_JijZ, (46) ! 0 ! 0
while the antisymmetric part off; , Jﬁ, by which, when substituted into E¢50), leads to
2
1 0“H _ “x vy
jﬁ:z(j” - J4). (47) Godor oikK?#(ay) — 5ikj;) i+ (1=61)3
(52)
Clearly, therﬁ;gre, a typical intersite interaction consists of )
the th t I“H
e free ter a0 8K (07) — Sy 2, I+ (1= 6 35,
i0Uk i(#0)
0',._7”0']:\]”0'|(Tl+0'|jﬁO'I+D”(0'|XO']), (48) (53)
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above procedure can be repeated for any three independent
reference orientations of the magnetization, resulting in sets
of parameterX,; and 7; that are not necessarily unique.
This follows from the fact that the spin-wave Hamiltonian,
Eqg. (9), has been derived from a second-order expansion of
the exact free energygee Eq(22)] in the vicinity of a given

Assuming for matters of simplicity second-order uniaxial magnetic configuration; therefore, it cannot provide an over-

magnetic anisotropy

K(a;)=—Ky;sird(%), (56)

all good approximation to the energy of the system for arbi-
trary spin configurations. In other words, when expanded
with respect to spin variables, E(R2) contains also spin-

the diagonal components of the second derivative tensor aspin interaction terms beyond the quadratic approximétton.

given by
PH PH
——=— > I, o =2Ky— 3 3
deidei  F) 3999, i(#)
P*H P*H 57

901091 Iiad; -0
while for the off-diagonal components# k) we get

2 2 2
PH Ly M. PN,
dpidpr T 9o KT dgid0y e
P*H
=_—J%
&0”?()01( Jlk " (58)

If the magnetization points parallel to tteaxis of the

global coordinate system, the corresponding derivatives c

be obtained by applying the unitary transformation

0 0 1
u=( 0 1 0], (59
-1 0 O

whereas also the uniaxial magnetic anisotropy, (B6), has
to be transformed to

K(07)=—Kysir(9;)cos(¢;). (60)

Thus, one ends up with the expressions for the on-site terms,

PH  PH
dgide; %D

:2K2,i_ E

I(#0)

zz
‘Jij y

FPH  PH o o1
%0 deidd (61
and fori #k with
2 2 2
I“H gy I“H _ o J“H _ g
&goi&gpk ko (913,(91‘)‘k ik (950,(91%( ik
*H .
— Xy
aﬁia(Pk ‘JIK " (62)

Evidently, the magnetocrystalline anisotropy constafis
and the elements of the matricgg can be calculated from
Egs. (57), (58), (61), or (62 using EQgs.(37)—(42). (The

missing elementd;* andJ{;* can be derived by choosing the

orientation of the magnetization along thexis of the glo-
bal coordinate system.

Consequently, a mapping to a Hamiltonian of the form of Eq.
(43) leads to parameters that depend on the reference mag-
netic configuration. Using the accidental degeneracy of the
mapping[see, e.g., Eq$58) and(62) for J%], we estimated

for a Co monolayer on G001) an uncertainty of about

5 uRy for the nearest-neighbor interactions, which in turn
corresponds to a relative accuracy of about 0.1%.

In the absence of spin-orbit coupling the off-diagonal el-
ements vanish and the diagonal elements become identical:
this situation clearly corresponds to isotropic exchange cou-
pling. In this particular case, the similarity transformation in
Eq. (24) can be performed in spin space and the off-diagonal
terms(40) or (42) as well as the diagonal terng37) or (39)
become identical to the expressions derived by Liechtenstein
et al! for the effective exchange interaction parametkys
and for the on-site rotation ternds, respectively. Since in

he nonrelativistic case there is no preferred orientation of

the magnetization, the energy of the system is invariant
against a global rotation of all the magnetic moments, and
the following condition has to be satisfied:
*H 9*H
&ai&ai j(#i) aai&aj

=0

(a=O or ¢), (63

which is equivalent to the condition for the exchange inter-
action parameters,

Ji:,E ‘]I] .

i(#1)

(64)

In the relativistic case this sum rule no longer applies.
Indeed, the expression on the LHS of E63) can be used to
define an effective second-order magnetic anisotropy con-
stant)\; . For the case of a magnetization parallel to ztais

of the global coordination frame, Eq&61) and(62) imply
1 &*H P*H

M=t D e

2 (919“7’&, j(;&i) &19,(9"3]

1
=Koy=5 2 (TH= T (65

2 it7)
The physical content of the above equation is obvious: be-
yond the on-site anisotropy term the magnetocrystalline an-
isotropy energy of the system contains contributions that
arise from the anisotropy of the intersite exchange interac-
tions.

Going back now to Eq9:39) and(42) and using the no-

It is, however, obvious that this mapping between thetation used in Sec. Il B, one obtains, for the layer-resolved

Hamiltonians, Eq.(9) and Eg.(43), is homomaorphic: the

anisotropies,

104436-6



FIRST-PRINCIPLES RELATIVISTIC STUDY OF SPIN.. .. PHYSICAL REVIEW B8, 104436 (2003

300

1 Er 99
N =— ﬁlm 7xd8 T — 7ror0(e)M; " (&)

~

+ Tror0(2) MY (&) Trop0(8)M (2)] = 200 | \
S
1 Ep =
-2 Elmf de Trl 7 c0(e)M{ (£) Tr05i(£)M (2) ], S
s o £ 100
(66)
which for practical purposes can be rewritten in terms of 0
reciprocal-space summations as X r M X
FIG. 1. Spin-wave spectrum for FRAuU(001). The almost
1 Ep dispersion-less bands belong to the two Au layers adjacent the Fe
)\r:—zwﬂ ImfiwdsdkHTr[rrr(s,kH)m}”(s)] monolayer,
— > Im " dedk TH 7,(&, k)M (&) 1 & RIMi-M;=3(M;-R;)(R;j- M)
2nq g ) EETITL Tsr e KD Edip=— 2. 5 . (69)
c* 7] R
X 1rs(,Kjpm(s)], (67)

As has been shown by Szunyoghal ?° the orientation of
where the k integral is performed in the first two- the magnetization for an Fe monolayer on(8@d) is perpen-
dimensional(2D) Brillouin zone, the area of which is de- dicular to the surface due to the relatively strong band energy
noted byQ. Note that Eq(67) can be regarded as an exten- anisotropy. In the case of an Fe monolayer or(GDd) the
sion of the expression for the anisotropy energy derived ifhagnetic dipole-dipole interaction overrides the positive
Refs. 25 and 26 to the case of two-dimensional translationd?and energy contributiofout-of-plane orientation resulting
symmetry. in an in-plane ferromagnetic ord&For a cobalt monolayer

on CUY00) surface both the magnetic anisotropy and the
magnetic dipole-dipole interaction favor the in-plane orien-
Ill. RESULTS tation of the magnetizatiof?. The magnon spectra of the
r;[gree systems should therefore account for these three differ-
ent situations.
The calculated magnon spectra along the high-symmetry
X__(Ij_irections of the Brillouin zone are depicted in Figs. 1-3.
. . . ) he almost dispersion-less bands belong to the nonmagnetic
ation of the lattice. The energy integrals in E¢87)—(42) pearest— and next-nearest-neighbor layers. There are anti-

were performed on a semicircle contour using a 16-poin : .
G : . : .. crossings between the bands which are the most pronounced
aussian quadrature. The integration over the full Brillouin.

zone was performed by taking up to<d0® k points at the in the case of Co/Q001), indicating the largest interactions

energy closest to the Fermi level, and the numbé¢ pbints between the magnetic and nonmagnetic layers. For Fe/

then gradually decreased for energy points more distant frorrcl:u(om)' the dispersion relation is very similar o that ob-

the real axis in the complex plane and towards the bottom of

We demonstrate our method for three systems: an Fe a
a Co atomic monolayer on a (@D1) surface and an Fe
monolayer on A(001). The calculations were performed
supposing perfect epitaxial structure by neglecting any rela

the band. The second derivatives, E@)—(42), were cal- 400 — ]
culated within a sphere with a radius of up to 29 times the

2D lattice constant. The induced moments of the nonmag- 300 |

netic substrate and vacuum layers were fairly small as com-

pared to the magnetic moments of the ferromagnetic layers. 200

However, the neglect of these small moments—i.e., missing
summation over the corresponding sites—introduced an er-
ror comparable to the gap @& 0 due to spin-orbit coupling. 100 | \ /
In our calculation, therefore, beyond the ferromagnetic layer

the nearest and next-nearest nonmagnetic layers are in-

volved. In order to test the accuracy of our procedure, the 0
sum rule, Eq.(63), was checked with spin-orbit coupling X r M X

turned Oﬁ:.27 ASSUrineg, the deviation was aIWayS at least FIG. 2. Spin_wave spectrum for EB:u(OOJ_) with an in_p|ane
two orders of magnitude smaller than the corresponding gaground-state magnetization. Four additional Cu layers indicated by
in the magnon spectrum. The magnetic dipole-dipole interpands of very low dispersion have been taken into account. The
action was taken into account as an additional term to theimost identical solid and dashed lines representtfé) and(010)
band energy contributio(22), directions of the magnetization, respectively.

Energy (meV)
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FIG. 3. Spin-wave spectrum for ¢6Cu(001)
with an in-plane ground-state magnetization. The
four additional Cu layers considered in the calcu-
lations are coupled relatively strongly to the Co
monolayer as indicated by the noncrossing be-
havior (hybridization of the corresponding
bands. The solid and dashed lines represent the

Energy (meV)
Energy (meV)

500 |

< 400 | ] (100 and (010 directions of the magnetization,
GE) respectively. The spectrum between the symme-
< 300 ] try pointsX andI' as well as betweell andX is
= shown on an enlarged scale in upper left and up-
L‘I‘Cj 200 } | per right insets, respectively.
100 -—ﬁ 7
0
X r M X

tained by Pajdaet al!® using the method of infinitesimal The long-wavelength parts of the relativistic spectra of the
rotations combined with the nonrelativistic tight-binding lin- Fe/Cy001) monolayer without and with inclusion of the

ear muffin-tin orbital(TB-LMTO) approach. A local mini- magnetic dipole-dipole interaction are shown in Fig. 5. Con-
mum observed between the poittsandM is an indication  sidering only the band-energy contributions the easy axis
for a so-called Kohn anomdlywhich is the consequence of turned out to be perpendicular to the surface and a gap of

tions.

In Fig. 4 the spectra in the vicinity of thE point are

shown for Fe/A00]) as calculated for an in-plane and for
an out-of-plane magnetic orientation, and also for the case of
neglecting spin-orbit coupling. In the absence of spin-orbit %
coupling the dispersion curve starts from zero as has to be £
expected. Inclusion of spin-orbit coupling opens up a gap of 3
A=43 uRy for the normal-to-plane orientation. For an in- §
plane magnetization the relativistic calculation resulted in an w
imaginary magnon energy close to thepoint, indicating
that the in-plane ferromagnetic order corresponds to a local 00 - , , ,
maximum in the free energy and the easy axis is perpendicu- 000 002 004 008 008
lar to the surface. q (w/a)
3 1.0

3 2t S

E g

= = 05}

= 5

q, —

S| g

________ T Y
0 L—mnczzcos - N N N
0 0.01 0.02 0.03 0.04 0.05 0.06 0.00 0.01 0.02 0.03 0.04
q (m/a) q (m/a)
FIG. 4. Spin-wave spectrum for FEAU(100) in the vicinity of FIG. 5. Spin-wave spectrum in the vicinity of tHe point for

the I' point. The solid lines correspond to the normal-to—planeFe, /Cu(100) neglecting the magnetic dipole—dipole interactan
orientation of the magnetization, the dotted line represents the speand including the magnetic dipole—dipole interactibn The solid

trum for an in-plane orientation, and the dashed line denotes thand dashed lines represent the spectra corresponding to the normal—
magnon spectrum with spin-orbit—coupling turned off. to—plane and to the in-plane magnetic orientations, respectively.
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trum, while, similar to the previous case of Fe(80Q1), there 25
are imaginary excitation energies in the in-plane magnon
spectrum at small wave numbers. Inclusion of the magnetic 2.0
dipole-dipole term, Eq(68), reverses the situation: there is a
tiny gap for the in-plane magnetized film and the magnon T 157
spectrum becomes negative for the out-of-plane directions. B 10l
In the case of a thin film with an easy axis perpendicular '
to the layers the gap is determined by the second-order 05 | ;
uniaxial anisotropy. For a magnetic layer with an in-plane ' i
easy axis the lowest energy of the magnetic excitations—i.e., 0.0 S . X :
the gap ag=0—lies in the order of the in-plane anisotropy 0.00 002 004 0.06 0.08
energy which for the present systemscgf symmetry is at q (wa)
least by an order of magnitude smaller than the uniaxial one.
Our calculation resulted in a gap df=0.3 xRy for the FIG. 6. Spectral resolution of the ellipticity,(q), for the mag-

Fe/Cy001) monolayer and the easy axis turned out to benon band having the largest weight at the Co monolayer in
parallel to the(110) direction. We have to mention that such C01/Cu(001). The solid and dashed lines refer to (460 and

a small value is very close to the numerical accuracy of ouf010 directions of the magnetization, respectively.

calculations inherent mainly to the Brillouin zone sampling.

A similar drop of the gap has, however, been indicated inmagnon in a specific modéand «, the difference of the
the experiments for a thermally deposited three-monolayefean-square deviation of the out-of-plane and in-plane com-
film of Fe on CW001). In contrast to the pulsed-laser- ponents of the magnetization,
deposited(PL?I;)))ﬂsamples having an in-plane ground-state
magnetizatiorr " thermal depositiofTD) produces Fe films o« n 2 2
on CY001) with an out-of-plane easy axié.In their Bril- 7°=(AM)* = (AMy) <E ME(D7 <Pri)>
louin light scattering experiment Dutchet al3? studied the

3

lowest-lying spin-wave mode in the presence of an external —

magnetic field parallel to the substrate. They found that the ~HMB ; (ar—pr)) > (69
frequency of this mode has a minimum as the magnetic field a

passes a critical value where the spins become parallel to tqg introduced, where the notatiap, refers to a quantum-

film.

In the case of an in-plane magnetization the symmetry
of the fcc (001) surface is lifted and the spin-wave spectra
for the (001) and (010) directions of the magnetization be-
come different as is shown in Fig. 3 for Co/@©01). A split-
ting of a few meV due to spin-orbit coupling can clearly be 77“:2 7%(q), (70)
seen in the insets in Fig. 3. This splitting of the spectrum can ra
also be interpreted in terms of the Dzyaloshinsky-Moriya
interaction?>?* On the one hand, it is straightforward to i) =(al(q)al(—q) +a(q)a,(—a),, (72
show that transverse magnons are affected only by the com-
ponent of the DM vectoD;; [see Eq.(49)], parallel to the while »77(q) can easily be calculated using the matrices in
ground-state magnetization. On the other hand, in agreemekiq. (20),
with the symmetry rules set up by Moriya,we observed
noticeable parallel components of the DM vectors only if the P (D=S (DT —D+TF (DS (—q). (72
vector R;; connecting the two interacting spins is aligned
close to a direction perpendicular to the magnetization, whilén Fig. 6, »/(q) is shown for the band having the largest
the DM interactions along a direction parallel to the ground-weight in the cobalt layer in the case of Co(001) along
state magnetization turned out to be practically zero. Evithe (001) and (010 directions. As the wave number is in-
dently, the above real-lattice asymmetry of the DM interaccreased the isotropic exchange interaction plays an increas-
tions shows up as a corresponding asymmetry in the spiringly important role in the formation of the magnetic excita-
wave spectrum for wave vectors parallel and normal to theéions and the ellipticity rapidly tends to zero. The band
magnetization. crossing and the asymmetry are also reflected by the elliptic-

There is another interesting feature of the in-plane magity.
nons. The long-wavelength part of the spin-wave spectrum is Finally in Table | we summarize the uniaxial anisotropy
determined by the anisotropy fields which are considerablgonstants provided by E§67) together with those obtained
different for the out-of-plane and for the in-plane motion of by taking the band-energy difference between the cases of an
the magnetic moments and, consequently, the spin waves aireplane and a normal-to-plane magnetizatidf®?°The re-
elliptically polarized. In our theoretical picture the out-of- sults of the two types of calculations are in very good agree-
plane and in-plane motions are assigned to the anjleand  ment. It is worth mentioning that the present method natu-
@i » respectively. In order to characterize the ellipticity of arally supplies layer-resolved anisotropy constants that can

mechanical expectation value with respect to the eigenstate
labeled bya of the Hamiltonian(14). The ellipticity (69) can
obviously be expressed as a sum in reciprocal space,
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TABLE I. The gap at thd” point for monolayers with out-of-  pointed out that a relativistic treatment gives rise to an asym-
plane magnetization and the uniaxial magnetic anisotropy constantgietry in the magnon spectra with respect to magnetic orien-
given by the present method and by the band energy differenctations along two in-plane easy axes. We also emphasized

method. that in the case of an in-plane magnetized system the long-
wavelength magnons are elliptically polarized due to the dif-
Gap A A ference of the second-order uniaxial and fourth-order in-
System 6=0) Present method Band energy diff. plane magnetic anisotropy.
The lifetime of the magnetic excitations in the adiabatic
Fe /Au(001)  56.8uRy  42.8uRy 42.9uRy approach is infinitely long. Edwards and Mutiiproved that
Fe /Cu(001) 17.5uRy*  12.1uRy 12.2 uRy the adiabatic approximation gives quantitatively reliable re-
Co,/Cu(001) —30.6 uRy —31.3uRy sults only to order ofg? in the dispersion relation. Rigor-

ously, one can use it to calculate the exchange stiffness, but
if one tries to extend the adiabatic approach to the short-

. L . . wavelength region, the method may break down. Mills and
differ from the projection of the band-energy anisotropies to 34-36 oytended the discussion to ultrathin films

the | lied so far i tic anisot lculagd Worker
tioisayers as applied so far In magnetic anisotropy calculagy g made careful comparisons between the dispersion curves

calculated with dynamical theory and the adiabatic approach
at very short wavelengths.
IV. SUMMARY Relativistic effects can also have an important impact on
the damping of the spin-wave excitations allowing transi-

In order to study low-energy spin-wave excitations of itin—t. hich torbidden in th ) : lati
erant ferromagnets we have developed a relativistic first,'ONS WRICH are forbidden in € Spin-conserving nonretativ=

principles method based on the adiabatic decoupling anlft'c description. These transitions for the low-energy excita-

rigid-spin approximation. A spin-wave Hamiltonian has beenf[Ions can contribute to the Gilbert damping. The

constructed starting from the Landau-Lifshitz equation an nvestigation of the_relat.ivistic effgcts_ in 'magn.etic eXCit"’."
using a harmonic approximation for the free energy. Closedi®nS beyond the adiabatic approximation is an important is-

formulas for the derivatives of the free energy up to secondU®’ this, however, extends the scope of the present study.

order with respect of the polar and azimuthal angles have
been derived within the framework of the magnetic force
theorem by means of the fully relativistic Korringa-Kohn-  This paper resulted from a collaboration partially funded
Rostoker method. Exchange and spin-orbit couplings havey the RTN network “Computational Magnetoelectronics”
thus been treated in equal terms. We discussed in details thi€ontract No. HPRN-CT-2000-001%#2nd by the Research
relevance of classical spin models with respect to the Hamiland Technological Cooperation Project between Austria and
tonian of transverse magnons. The method has been appli¢tuingary(Contract No. A-23/0)L Financial support was also
to an Fe monolayer on @@01) and AU001) surfaces and for provided by the Center for Computational Materials Science
a Co monolayer on G001). Our calculations reproduced the (Contract No. GZ 45.53] the Austrian Science Foundation
gap at zero wave number due to spin-orbit coupling andContract No. WOO% and the Hungarian National Scientific
provided uniaxial anisotropy energies in good agreemenResearch FoundatioriGrant Nos. OTKA T038162 and
with the results of the band-energy difference method. WeOTKA T037856.

3Magnetic dipole—dipole interaction is not included.
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