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Haldane-gapped spin chains: Exact low-temperature expansions of correlation functions
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We study both the static and dynamic properties of gapped, one-dimensional, Heisenberg, antiferromagnetic,
spin chains at finite temperature through an analysis of tf® @onlinear sigma model. Exploiting the
integrability of this theory, we are able to compute an exact low-temperature expansion of the finite tempera-
ture correlators. We do so using a truncated “form-factor” expansion and so provide evidence that this
technique can be successfully extended to finite temperature. As a direct test, we compute the static zero-field
susceptibility and obtain an exact match to the susceptibility derived from the low-temperature expansion of
the exact free energy. We also study transport properties, computing both the spin conductance and the
NMR-relaxation rate, T,. We find these quantities to show ballistic behavior. In particular, the computed spin
conductance exhibits a nonzero Drude weight at finite temperature and zero applied field. The physics thus
described differs from the spin diffusion reported by Takigatal. [Phys. Rev. Lett76, 2173(1996] from
experiments on the Haldane gap materked,V P, S.
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[. INTRODUCTION difference opens up the possibility that diffusive physics is
not present in the 3) NLSM itself but requires some addi-

The realization that one-dimensional, integer spin, antifertional mechanism. Such mechanisms might include a spin-
romagnets possess an energy ‘ghas made these systems phonon couplingas suggested by Ref. 1ispin anisotropy,
the object of intense study. The model perhaps most cominter-chain couplingthe spin-chains irAgVP,Sg are only
monly used to explore their properties is the field theoreticquasi 1-D; there do exist weak couplings in between chains
O(3) nonlinear sigma modéNLSM).2~7 Although the model  although the weakness of these couplings seems to preclude
has the virtue of being integrabfé.its properties are none- this possibility, or perhaps small generic integrable-breaking
theless only partially understood. It is possible to accesgerturbations?
static, thermodynamic quantities while dynamic properties, In this paper we attempt to address this problem by dem-
in particular, transport properties, are in general, unavailableonstrating a technique to compute exactly a low-temperature
These latter quantities depend upon knowledge of correlatioaxpansion of correlators in the(8 NLSM. This expansion
functions which are generically not exactly computable inis based upon a “form-factor” expansion. Form-factor ex-
integrable models. There are, of course, perturbative teclpansions have a long history in the computation of
niques by which correlators in the(® NLSM may be ana- correlators:*~!° However these expansions have been used
lyzed. But in strongly coupled models, of which th€3D  almost exclusively at zero temperature. When they have been
NLSM is one, perturbative techniques present a host of difused at finite temperature, they have been used either in the
ficulties and so can miss qualitatifeever mind quantita- computation of expectation values lacking dynamical
tive) features in the physics. propertied’>=2% or in the development of distinct nonpertur-

The inability to completely understand correlation func- bative representationgi.e., Fredholm determinantsof
tions in the fully quantum ) NLSM has been at the root correlator§*?® where all the terms in the expansion were
of a recent controversy in the literature. Takigaetall®  kept. In this article we show thatuncatedform-factor ex-
demonstrated through measurements of the NMR relaxatiopansions can be used to sensibly describe correlation func-
rate, 174, of the Haldane gap compountligV P,Sg, that at  tions at finite temperature. This is distinct from the program
long wavelengths, the spin—spin correlation functions areroposed if®?’ where form-factor expansions were em-
diffusive in nature. In an elegant series of papers, Sachdeployed but the form factors themselves were recomputed to
and Damlé’ developed a semi-classical treatment to attackake direct account of thermal fluctuations. Here we employ
the problem and subsequently were able to describe this dithe same form factors used in zero temperature computa-
fusive behavior. Nonetheless their computation was semitions.
classical leaving open the possibility that a fully quantum A form-factor expansion of a correlation function is predi-
treatment of the (8) NLSM would lead to different physics. cated upon some generic properties of integrable models.
This possibility was hinted at in the work of Fujimotb. Most importantly, the exact eigenfunctions of the model's
There the spin conductance was computed using exact thefilly interacting Hamiltonian are known. With this knowl-
modynamic considerations. Upon subsequent woikbe-  edge comes a well-defined notion of “particles” or elemen-
came clear that the two treatments produced qualitativelyary excitations in the system. The scattering of these par-
different results. In particular, the Drude weight of the spinticles is completely described by two-body S-matrices. In
conductanceD, of the 3) NLSM was found to be nonva- particular, particle nonconserving processes are disallowed.
nishing in the zero field limi, whereas the corresponding Ultimately this feature is a consequence of a series of non-
semi-classical treatment seBgH=0)=0. This qualitative trivial conservation laws possessed by the integrable model.
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In some sense, an integrable model is a superior version of guantities are invariably functions of differences of rapidi-
Fermi liquid: a particle’s lifetime is infinite regardless of ties. We stress that this relativistic invariance is a natural
distance from the Fermi surface. feature of the low energy structure of the spin chaiow-

In order to understand these features of th8)LSM, ever we do point out for spin 1 chaind~.4J. As J serves
we begin by providing an overview of the model. Th€3D as the cutoff for the theory, the low energy sector of the
NLSM is described by the action, theory is not unambiguously defingd.

With the excitation spectrum of the(8 NLSM in hand,
we return to the form-factor expansion. A finite temperature
expansion of correlators is given in terms of a trace over the
Boltzmann density matrix:

1
S= 5j dx dt(é*nd,n), (1.1

wheren=(n,,ny,n,) is a bosonic vector field constrained to

live on the unit sphere. This action is arrived at from the 1
Hamiltonian of the spin chain, GO%x,t)= ETr(e‘BHO(X,t)O(O,O))
HZJZ S-Sii1- (1.2 > e FEs(n,s,|O(x,1)O(0,0)|n,s,)
ns,
In the continuum, large s, limit, the spin operat&, is B _BE
related to the fieldp, via n% e PEs(n,s;[n,sp)
S=(—1)'sn+M;, (1.9

that is,n(x,t) is the sub-lattice or Nal order paramete Here the state|n,s,), denotes a set of n-particles carrying
on the other hand describes the unifofie., wave vector spin quantum number§s,}. Inserting a resolution of the

k~0) magnetization. M is related 1o via identity between the two field then leads us to a double sum,
1 GY(x,t
M=§n><(9tn, )
L . . —-BE
and so is given in terms of the momentum conjugate.to % e~ 5(1,50| O(X,1) | M, Sy)(M, S| O(0,0) [, 1)
The low energy excitations in the(8 NLSM take the msy,
form of a triplet of bosons. The bosons have a relativistic =~ =
dispersion relation given by > e FEsy(n,syIn,s,)
ns
E(p)=(p®+A?)Y2 (1.5

HereA is the energy gap or mass of the bosons related to th@e ths have reduced the evaluation of the correlator to the

bare couplingg, via A~Je™2™9. The dispersion relation of = eyajuation of a series of matrix elemerflsown as “form
all three bosons is identical as the model has a glob#&2B5U factors”). In an integrable model like the(® NLSM, these

symmetry. The exact eigenfunctions of the(3D NLSM _ matrix elements are in principle exactly computable. How-
Hamiltonian are then multi-particle states made up of MiX-gyer as the number of excitations involved increases, the
tures of the three bosons. Scattering between the bosons figctional forms of the matrix elements become increasingly
described by the S-matfix unwieldy. This, together with the difficultly in evaluating the
Az, o\ Sums,X(, sy (m,s.)» €nsure in all but a few special cases the
SalaZ( 0)= 3212, %2;2,71(0) T Oa,a39a,2,02( ) correlators do not admit a closed form expression.

To surmount this we adapt an idea from zero temperature
form-factor expansions. Rather than look at the correlator in
real space and time, we examine tineore relevantrelated

+ 5a1a45aza30'3( ),

o1(60)= _ 21 6 . . spectral functionG9(k,w). In computingG(k,w), only
(0+im)(0—i2m)’ terms in the form factor sum with a given energy, and
momentumk, contribute to the sum,
0) 0(6—im)
(6+im)(6=i2m) GOk,0)= 3 > d(w—Eq +Eq ) 5(k=pg +Ps,)
nsy
27TI(I T 0) msy
0)= - - . 1.3
73() (0+im)(6—i2m) (19 x e PEs(n,s,|O(0,0|m,sp,)
Here 6 parameterizes a particle’s energy/momentum Eia X(M, S| O(0,0)|n,5,) (1.6)

=A cosh@), P=A sinh(@). The primary advantage of this
parameterization is the implementation of Lorentz boostsas enforced by the presence of the two delta functions. For
Under such a boosty)— 6+ «. As such Lorentz invariant any w,k, this dramatically reduces the number of matrix el-
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ements one must compu@ﬂgre GY is.simplly the Fourier SE(0=0)=— 6,46cp - (1.8
transform ofG(x,t), but similar considerations also apply . ) . )
to the corresponding retarded correlatoFhis reduction ~While static properties computed in the two treatments agree
nonetheless leaves a difficult computation. However we caffor the susceptibility, we find that up to temperatures on the
exploit the gapped nature of the spin chain to make the prokerder of the gapT~A, the two computations agrgave see
lem more tractable. Because the theory is gappeéth gap,  differences in transport properties. For the spin conductance
A), the correlator admits a low-temperature expansion of th&ve find, in contradistinction to the semi-classical computa-
form, tion, that the Drude weight of the spin conductance is finite
in the limit of zero external field. Our results for the NMR
o N relaxation rate, I/;, indicate a similar discrepancy. We, like
GOk,w) =2 an(k,w)e "4, (1.7 Ref. 5, find that 1T, is characterized by ballistic logarithms.
" These logarithms are relatively robust: they continue to ap-

For the particular correlators of concern in this paper and foP€&" at higher orders in the low temperature expansion. We
the range ofw andk in which we are interested, eaeh, is do not, however, see diffusive behavior in the relaxation rate,

determined by a single matrix element. Because we can conhe., 1T~ 1/yH, nor does our |0W-_temperature expansiqn
pute these matrix elements, we obtain amact low- Match the low-temperature expansion of the semi-classical
temperature expansion. computation of the correlator.

other controversy in the literature. LeClair and Mussatdo ancies. We argue that the structure of the conserved quanti-
argued that it was possible to use the same form-factors wies or charges differs between th€3DNLSM and its semi-
ever rather than directly evaluate individual terms in the sunfehavior on the one hand and diffusive behavior on the other.
(1.5), they first conjectured an ansatz involving a resumma- he other explanation we forward to explain this discrepancy
tion of terms in the sum. This is described in more detail inli€s in the supra-universality of the low energy S-matrix
Sec. Ill. This procedure was criticized in Ref. 21. There it(1.8. The low energy limit of this S-matrix is shared by
was argued that while this worked for the computation ofd€neric mteger spin chains. Indeed it is shown in Ref. 7 that
one-point functions, it was problematic for two-point func- @ two-leg spin-1/2 ladder, expected to share the low energy
tions. Rather it was argued it was better in general to attacRehavior of a spin-1 chain, has this exact low-energy
ample cited in Ref. 21, a computation involving interactingWay the semi-classical treatment, valid in and of itspHr-
quantum Hall edge states, involved a gapless theory, and dtgularly in light of its ability to reproduce experimental
is in a different class than the model considered in this papeflatd, may capture different physics than that of the30
above ceases to make sefddis work here shows that it is Sine-Gordon model where a similar phenomena may be ar-
possible, at least in certain cases, to make sense of the forrgli€d to occur. o _
factor expansion of two point functions at finite temperature. N the first part of Sec. Il we explain in some detail how
But while we can make sense of this expansion, we canndfe form-factor expansion is to be understood. In particular
compare our computations directly to the ansatz posited i¥€ consider the various technical details of the expansion,
Ref. 20. Their ansatz as is applies only to diagonal theorie§icluding how to regulate the infinities that appear generi-
bers, contrary to the case here. part of Sec. Ill we review the specific form factors of the
The outline of the paper is as follows. In Sec. Il we sum-O(3) NLSM. And finally in Sec. IV, we review the low-
marize the results of the form-factor computations for thred€mperature expansion of the exact free energy, necessary for
quantities: the magnetic susceptibility, and two transpor€omparison with the form-factor computation of the suscep-
properties, the spin conductance and the NMR relaxatiofPility.
rate, 1T,. The details of these computations are found in
later sections or in appendices if the reader is so interested.  1I. SUMMARY AND DISCUSSION OF RESULTS
The first quantity, the susceptibility, is compared to the sus-
ceptibility as derived from a low-temperature expansion of
the exact free energy. We see that they match verifying our In this subsection we present results for the magnetic sus-
claim that the form factor expansion can yield an exact low-ceptibility arising from several methods of computation: a
temperature expansion. form-factor evaluation of the magnetization—magnetization
We compare our transport calculations to the semi-correlator in the context of a Kubo formula, an exact com-
classical computations in Refs. 6 and 7. The essence of thjsutation of the system'’s free energy, and finally, treating the
method lies in treating the spin-chain as a Maxwell-excitations of the (8) sigma model as noninteracting par-
Boltzmann gas of spins which interact with one anotherticles obeying both a Fermi-Dirac distribution and a
through the low energy limit of the scattering of th€3D Maxwell-Boltzmann distribution in the spirit of the semi-
NLSM, classical approximation of Sachdev and Dafnéle thus

A. Zero field, finite temperature susceptibility
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will be able to determine the temperature regime over which 5 5 3
our truncation of the form-factor expansion applies as well a$812|Mo(X, 7)Mg(0,0)[s,8,) = mZ (8152|Mo(x,7)[mS)
comparing with other computational techniques. Sn
X(MS,|M3(0,0)[s,51)
1. Kubo formula and form factors

The susceptibility,y, atH=0 can be computed from the = Z, (5152|M3(x,7)| 1))
magnetization-magnetization operator using a Kubo formula: 515,
X(s551[M3(0,0)[s,51)

In the above we have truncated the sum arising from the
o B _ resolution of the identity. With the first matrix element of the
C(wZO,kZO)Z[fdefO drenel thermal trace, we only keep terms from the resolution of
identity with one excitation. We are interested in the behav-
ior of the susceptibility atv=0 and this term provides the
only contribution. Similarly, the only term arising from the
wop——iots second matrix element of the thermal trace contributing to
(2.1) the dc susceptibility comes from keeping the term from the
resolution of the identity involving two excitations. Further
details surrounding the methodology of this expansion and
To evaluate this correlator we employ an expansion in termshe explicit exact evaluation of the matrix elements are found
of the exact eigenfunctions of the theory, i.e., a form-factonn Sec. 11l and Appendix A. With such details we can evalu-
expansion. In particular we write ateC(w=0k=0) with the result

X(T(M3(x,7)ME(0,0))

C(w=0k=0)=C(0=0k=0)+Cy(w=0k=0),

1 2.4
(M3(x, 7IME(0,0)) = 5 Tr(e #0(x, ) 0(0,0) 24
whereC,; andC, are given by
e PEs(n,S,|O(x,7)0(0,0)|n, 28A
_% (NSO NO00INS) L _org)- /75'7 K.(BA):
e PEsy(n,Syn,
%‘ S Cy(w=0k=0) 6ﬁAK (2BA)+ ZEAJ do,dé
w=UK= = I
(2.2) 2 - 1 - 1Yv2
X efﬁA(cosh(el) +cosh(02))cosh 01)
Here|n,S,) is a state of n excitations with spins described by ) 5
Sh={s1,---,Sn}. In writing the above we have suppressed % 11m"+261,
sums over the energy and momenta of the excitations. A term 05,4572 05+ 47t
in the thermal trace with n excitations is weighted by a factor
of e "PA_ At low temperatures it is thus a good approxima- 68A 22BA
tion to truncate this trace. For this computation we keep only - a Ki(2BA)+ P Ko(BA)K1(BA)
terms with one and two excitations, i.e+1,2. To evaluate
the matrix elements appearing in Eg.2) we insert a reso- Lo Ie—2BA 2.5
lution of the identity in between the two fields. As we only A ' ‘

consider matrix elements involving one and two excitations -~
from the thermal trace, we thus have where 6,,=6,— 6, and K, are standard modified Bessel

functions. The first term iIC, is a “disconnected” contribu-
tion related toC,. The second term is a connected contribu-
3 3 3 tion and as such is genuinely distinct fro@;,. We now
<31|Mo(X,7')|\/|o(0,0)|31>:mzSm (s1IMo(x,7)|mSy) consider such disconnected contributions further.

X(mMS,|M3(0,0)s,) 2. Resummed form factors

In computing the susceptibility, we are able to go beyond

= > (s4|M3(x,7)s}) the approximation introduced in truncating the form-factor

s sum arising from the thermal trace. It is possible to include
“disconnected” terms arising from higher particle contribu-

X (s1IM§(0,0)[s)+ - - -; tions. Such disconnected terms appear when higher particle
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matrix elements are evaluated. For example when we evalu- 3. Gases of free particles
ate the four excitation matrix eleme(g,s;|M3(0,0)|s,s,),

' For the purposes of comparison, we compute the suscep-
we obtain a term of the form

tibility of both a free electron ga&r equivalently, a system

of hard-core bosonsas well as a Maxwell-Boltzmann gas.
<s§s£|M3(O,O)|szsl>=---+5Srsl<s£|Mg(0,O)|sz>+~~-. At sufficiently low temperatures both of these quantities

? should be close to the exact value pffor the Q3) sigma

This term is “disconnected” in that it is directly related to a model. How the susceptibility of the free electron gas devi-

matrix element involving a lesser numbgwo) of excita- ~ ates from the exact value qf gives us an understanding of

tions. It arises from the annihilation o, with s;. Such a the temperature gt_\{vhlch interactions pecome important. And

term is responsible, as we just indicated, for the first term of?OW the susceptibility of the Maxwellian gas deviates from

C, above. the exact answer marks the temperature at which the semi-
What is remarkable is that we are able to sum up adler Classical approximation found in Damle and Saclidewust

possible disconnected pieces arising from arbitrarily higrP€din to breakdown. .

particle form factors which are proportional to the connected 1nese two susceptibilities are given by

lower particle matrix elements already computed. This re-

summation amounts to the evaluation of a geometric series. BAf ncosf( g)e~PAcoshO)  2BA

For example, including all disconnected terms involving the  Xfree 1=~ =——Ki(Bb)

v — BA cosh(@@)y2
matrix element going into the evaluation ©f modifies it as (1+e )

follows
[28A T
+0(e P = %e—ﬁuo

_a BA|.
BA A= )
C1=7f dhe P4 coshl) cosh g)
[2BA
XMB~— _77_ e BA. (28)

We see that at low temperature8X<1) both of these ex-

N %f d ge—BA cosh@) cosh( ) 2 (— 3)nef nBA cosh()
n=0

BA g PAcoshO) cosiih)  2BA pressions coincide with the low temperature limit of the form
- 1+3e Bhoosh®) 7 Ki(BA) factor computation ok. In particular, the terms ab(e #%)
are identical.
68A _3pa
- Ku(2BA)+0O(e 7). (2.6) 4. Thermodynamic Bethe Ansatz

It is possible in the case of the(8 sigma model to arrive

We see resumming the disconnected pieces thus reproducgsexact expressiongn the form of coupled integral equa-
both C; and the first term irC, plus additional terms higher tions) for the zero-field susceptibili§?**These equations, in
order ine”#%. The appearance of the fact@s?* " in  their most compact form, appear as
the geometric series is natural and arises from the Boltzmann
weighting of the higher particle terms. The combinatorial 2
factor of 3 reflects the three bosons in the system. (H=0)=— AJ d6 cosh 0)(9H €( 6’)|H=0.

In collecting all the disconnected pieces related to the 2m 1+ePe®
connectederm in C,, we find something similar

connectedC,+ disconnected terms €(0)=A cosh 0)—Tf dé’ log(1+eP<?))s(6—6');
ﬁA e BA(cosh(@,)+cosh(@,))
=— do,db, (cosh 6,) .
Wf TP 143e A coshiy en(e)sz d6’'s(6—6'){log(1+efen-1(?")
117%+262 , :

+ 08t )5 2.7) +log(1+en+1l?)) + 5, log(1+e <))}
One expects in general that the inclusion of disconnected H= lim €n(M) (2.9
terms from arbitrarily high particle number will improve the now N

accuracy of the calculation. In the case of the susceptibility,

the agreement between the form-factor computation and thé/e will show results from the exact numerical evaluation of
exact numerical analysis actually becomes slightly worsethese equations in the next section. However these equations
However, this should not be taken as indicative of the resumadmit a closed form low-temperature expansion. The details
mation in general. We will comment on this further at the of this expansion may be found in Sec. IV. Here we just give
end of this section. the final results
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0.6 | ?ﬁi Eﬁilvcfr 0.6 | ® TBA: Exact| p
« . By +— FF: 2+4p b
’ +—~ Max. Boltz.
0.4 | 04 1
o =

02 | 02

0 L ¢
0 1 2 3 4 5 0 1 2 3 4 s

T/A T/A

FIG. 1. Plots of the zero-field susceptibility computed both from ~ FIG. 2. The zero-field susceptibility of a Maxwellian gas is
the TBA equations and from the form-factor expansions. The first ocompared here to both the exact susceptibility of tH8) QILSM
these is an exact numerical solution of the TBA equations for thend the susceptibility of the @) NLSM computed via a form-
O(3) sigma model. The second is arrived from a small temperaturdactor expansion.
expansion in powers o0& #* of these same equations. The final
plot gives the form-factor computation of the susceptibility. We higher that the exact numerics @t-5A and disagrees at
have truncated the form-factor expansion at the four particle levelroughly the 10% level whereas the susceptibility computed

using the unresummed form factors sees better agreement at
28A 68A these same temperatures. At lower temperaturds (
x=———Ki(BA)— ——Ky(284) ~2-3A) the disagreement between the exact numerics and
the two form-factor computations is roughly the same. In

B _ BA(coships) + coshie)) general then, the resummation does not improve the accuracy
t— f do,dére ! 2V cosh 6;) of the computation of the susceptibility.
1172+ 262, (2.10 B. Spin conductance
X . 2.1
07, + 5262 ,+ 4 In this section we compute the spin conductivity, The

) . . spin conductivity gives the response of the spin chain to a
Remarkably, we see this expansion agrees exactly with thgpatially varying magnetic field. It is defined via
corresponding expression derived with the aid of form fac-
tors. Thus the form-factor expansion at finite temperature j1(x,t)=0VH, (2.11)
passes an important test.
and so can be expressed in terms of a Kubo formula,

5. Comparison of methodologies

In this section we compare the various methods of comReog(k,w)=— %J dx dtd et im(j o(x,1)}1(0,0) )retarded
puting the susceptibility of the @) sigma model. In Fig. 1 (212
are plotted the susceptibilities computed via an exact numeri- '
cal analysis of the TBA equations, a low-temperature expan-
sion of the same equations, and a computation based upon
the two and four particle form factors. We see that as indi- :g;f;:;’ed FF: 244 p
cated previously that the form-factor computation and the I © TBA: Exact
low-temperature expansion match exactly. Moreover these )
two computations track the exact susceptibility over a con-
siderable range of temperatures despite the fact these com- =
putations are truncated low-temperature expansions.

In Fig. 2 we compare both the exact TBA susceptibility
and the form-factor computation gf with the susceptibility
of a classical Maxwellian gas. We see the results track one
another for temperature§<A. For temperatures beyonq
however, the Maxwellian susceptibility differs markedly.

This is then roughly the temperature at which the semi-
classical approximation found in Refs. 6 and 7 should be
expected to break down. FIG. 3. The zero-field susceptibility of the(8 NLSM as com-

In Fig. 3 are plotted the exact results for the susceptibilityputed using a resummed form-factor expansion is compared both
together with the susceptibility from the resummed form fac-with the exact result coming from the TBA equations and the unre-
tors. We see that the resummed susceptibility is somewhaummed form-factor susceptibility.

T/A
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In the notation used in this paper the spin currgnis syn-

onymous withM,, the Lorentz current counterpart of the
uniform magnetizationlM y=j,. We will focus primarily on 14 |
computing the Drude weight, D, of Re;, i.e., computing

1.6

the term inoy(k, ) of the form 127
1 L

o(k=0,0)=D(w). (2.13 & os
However we are able to computeg for generak, ». We find ot |

that for w<2A, k=0, the spin conductivity is described
solely by the Drude weight. In particular, we find no indica- 04 |
tion of a regular contribution to-y(k=0,w).

-——- Resummed FF
Form Factors: 2+4p

To evaluatess, we employ the identical form-factor ex- 02
pansion to that used in computing the susceptibility. And like 0 s s s s s s : s
the susceptibility, our result is an exact low-temperature ex- 0 05 1 15 2 25 3 35 4 45 5
pansion ofD, T/A

FIG. 4. In this plot we present the form-factor computation of
D= 2 D. e "BA the Drude weightP, of the spin conductance. As with the suscep-
7 " tibility, both the unresummed and resummed computation give
roughly the same answer.
Here we will computeD; andD, exactly. As the details of
the computation are nearly identical to that of the suscepti- e observe thab(H=0)+0. This is in accordance with
bility, we merely write down the results: Ref. 11 whereD is computed using an argument involving
the finite size scaling of the thermodynamic Bethe ansatz

D(H =0)=,3Af d ge— BA cosh@) sint?( 9) 1—3e-Adcoshe))  equations(We do note that the computation DfatH=01in
cosh 0) Ref. 11 appears only as a note added in proof and so is
decidedly sketchy. However, the equations goverriinde-
+23Af d 6, d g, FA(cosh01) +cosh(dy)) veloped in Ref. 11 are manifestly positive with the conse-
guenceD cannot vanish.But our results do differ from the
inr 11724 262 semi-classical computation of Ref. 12 where it was found
Sinfr(6,) ™ 12 —38A thatD vanishes aH =0. We find as well no additional regu-
+0(e )
costiby) ¢1,+5w262,+ 47" lar contributions targ(w,k=0) nearw=0—only the Drude
term is present in contrast to Refs. 6 and(There will,
e hA [2m 140 T o261 /1 however, be regular contributions at higher frequencies, in
BA A BA particular forw>2A, which persist even in the zero tem-

perature limij.
3\/— 11\/T o T We have only given the spin conductivity ldt=0. How-
VT NATY ever, it is extremely straightforward to generalize the form
) o ) factor computation to finite H. As H couples to the total spin,
This expression involves only the two and four particle formg conserved quantity, the form factof§(x,t), of an opera-

factors. If we also include all higher order disconnectedtor’ O(x,t), carrying spin s, are altered via the rule
terms related to those above we find instéallin to the

susceptibility, £O(t)— st O(t).

X +0(e %), (219

sink( ) 1 (In tge case of the spin conductance, the spin currgnts,
=M, carry no spin and so are not altered at)alhe only
remaining change induced by a finite field is to the Boltz-
mann factor appearing in the thermal trace. If an excitation
+2BA f d @, d e FA(coshr)+cosh@y)) with rapidity, 6, carries spin s, its Boltzmann factor becomes

— — — BA cosh(®)
D(H=0) ﬁAf doe cosH8) 15 3aPt o)

e—,B(A cosh(®) —sH)_
sinté(6,)  11m?+262,

coshi6z) ¢},+57262,+ 4"

For example, we find as a function oH (to O(e™#4)) to
be

1

X2

1 1
1+ 3P4 cosh(ey) * 1+ 3P4 cosh(ey) | (2.19 D(H)=BA cosh BH) f dge£A cosh@)

sink?(6)
cosh @)
We plot these two results in Fig. 4 as a functionTél . Akin (219

to the susceptibility, the result does not differ greatly if the Again this in agreement with Ref. 11. Indeed Ref. 11 com-
resummed disconnected terms are included. putesD(H) at largeH/T (butH<A) to be
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BA o sint?(0) A cosh@ —2pA 24 ;
D—EE‘B f 0me A ()+(’)(e By, | — < T/A=15
(2.17 +— T/A =30
Up to a factor of 2r, this expression is in exact agreement ' gﬁ;gg
with Eq. (2.16). In this particular case our derivation of E§ 18 B
D(H) agrees with the semi-classical computatfofpro- 2 T/A=.75
vided T<H<A). The symmetries in the semi-classical = 16
model that lead(H=0) to vanish are broken for finite H. E 14 |
=
C. NMR correlators 12 ¢
In this section we compute the NMR relaxation raté,;1/ 1
We are interested in computing this rate in order to compare
it to the experimental data found in Ref. 10 on the relaxation 0‘%-3 107
rate of the quasi one-dimensional spin ch&ig,V P,Sg. For H/A
temperatures in excess of 100 (khe gap,A, in this com- . .
pound is on the order of 320)Kthe experimental datd FI_G. 5. In this Iog-Ilnear.pIot we present the fqrm factor com-
shows the relaxation rate to have an inverse dependen@&tation of the NMR relaxation rate, T, as a function of H for a
upon \/ﬁ variety of temperatures. We plot a normalized rate, the ratio of
' 1/T,(H) with 1/T,(H=A/36).
]_/Tloc\/iﬁ_ 1T (MEM5) (x=0,0p~0). (2.19

_ o . ~ We now proceed to computdgM3).
This dependence is nicely reproduced by the semi-classical T compute(M(l)M (1)>, we again employ a form-factor ex-

methodology in Refs. 6 and 7. Moreover, the semi-classicahansion. Akin to the computation of the susceptibility and
computation reproduces the activated behavior ®f Il this {16 spin conductance, this computation amounts to a low-

same temperature regime: temperature expansion 6M3M2),
1T e 3PA2, <Mé|\/|(1)>=alef’8A+azefzﬁA+ .
We are interested in determining whether a calculation in th
fully quantum @3) NLSM can reproduce these results. To
this end we compute Tj using a form factor expansion.
Sagi and Affleck have already done such a computation to

Shere we are able to compudg anda,. We place the de-
tails of this computations in Appendix B, here merely quot-
ing results:

lowest order ine”#2. But they do not find the above behav- 2A 4T
ior. Rather they see <M3Mé>(xzo,w:o):<7e—m( IOg(W) — 7)
UT xlog(H); 1T xe P, A oT
— e 2BA( — | =
We continue this computation one further step, computing to € ( og( H ) y)

O(e %P%). Given the behavior, T)~H 2, appears only

as T is increased beyond 100 (Ke., T/A~1/3), it is not +Ae‘2ﬁA(log
unreasonable to suppose higher order terms in a low-

temperature expansion ofTL/ are needed to see this singu-

N

larity X(1+O(H/T)+O(TIA)), (2.20
To proceed with the computation ofTl/, we review its  \herey=0.577 ... isEuler’s constant. We are interested in
constituent elements. Ti{ can be expressed in terms of the the regimeH<T<A (the regime where it is expected spin
spin—spin correlation function: diffusion produces singular behavior inT4}. The terms that
dk we have dropped do not affect this behavior. In principle
1T, = A (KA. (—K){(MEMZ)(K, , there is no difficulty in writing down the exact express[on
YA ) 2w as(K A ~K)(MgM§) (K, on) O(e~2P%)]; it is merely unwieldy. This expression forTy

(2.18 is plotted in Fig. 5 for a variety of values of the rafldA.

We see that we do not obtain the same behavior as found
where wy= ynH is the nuclear Lamour frequency withy in Refs. 6 and 7. Going to the next orderd{e~2#*) pro-
the nuclear gyromagnetic ratio and thg,; are the hyperfine duces a behavior in T/ as H—0 identical to the lower
coupling constants. In the above we assume H is aligned iorder computation o®(e~#2): we again find a logarithmic
the 3-direction. The above integral is dominated by values obehavior consistent with ballistic transport. An alternative
k near 0> Moreover in the relevant experiment, the hyperfinecomparison we might make to the results of Refs. 6 and 7 is
couplings are such that on(WIéM(l)) contributes. Hence to perform a low-temperature expansigm O(e”#4)) of the
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semi-classical computation ¢MiM3)(x=0,0=0). Doing  form factors then contain the same information we use in our
so by treatingTe #2/H as a small parameter, we find representation of the correlators. Moreover, we can make this
identification precise. Our use of form factors in the grand
canonical ensemble involving some few number of particles,
n, is predicated upon the small paramer*#. But the
disconnected terms of an N-particle form factor involvimg

m 1\ T? 284 _3pa particles (with n<N) are similarly weighted by the same
—rt 4 2 me +0(e ) |- small parametere #2". More generally, the presence of a

gap, A, thus means we can in principle create an explicit
(2.29 map between the two approaches.

The semi-classical method found in Refs. 6 and 7 is simi-
to the approach taken in Ref. 28 in that it uses a canonical
ensemble. It is an interesting question whether a grand ca-
nonical ensemble approach can be developed in this same
semi-classical approach. The answer is not obvious. Our
method workdqat least at the technical leyddecause we can
readily identify disconnected terms. It is not clear whether a
similar identification can be made semi-classically.

We do want to emphasize a caveat to our methodology as
scussed in some detail in Sec. lll. It is unclear whether it is
possible to compute quantities that show nonanalyticities as
_ _ T—0. For example, it is not obvious how to compute the
D. Discussion thermal broadening present in the single particle spectral

We have demonstrated that it is possible to compute exadtnction. AtT=0 it takes the form
low-temperature expansions of correlators using form fac-
tors. Moreover, we have done so in a nontrivial theory where (nn)(,k)~ 8(w—\k?+A?), (2.22
particle scattering sees the exchange of quantum numbers.
An important question to answer concerns the breadth of thbut is expected to broaden into a Gaussian-like peak at finite
applicability of our techniques. Our ability to carry out theseT. To see this in a form-factor expansion would likely require
computations was partially predicated upon the particulaa resummation of terms. However, it may well be feasible to
correlators we studied. For example, the fact that only aleduce the necessary resummation from the lower order
single matrix element contributes@(e #*) andO(e %)  terms in the form-factor expansion.
in the computation of the susceptibility is related to the mag- We have also discussed using a resummation of higher
netization operator in the @) NLSM model being a Lorentz  order “disconnected” terms to improve the form-factor com-
current density. Because of these particular details, we thysutation. For the quantities considered, it turned out the re-
expect that exact low-temperature expansions of correlatorsummation did not provide a real improvement to the origi-
will not be available in all theories. nal computation. Nevertheless we would guess that in
The computation of correlators is done in the context of ageneral, the resummed form factors will provide a more re-
grand canonical partition function. Specifically, we do notliable answer as the temperature is increased. It is an artifact
work at fixed particle number but include matrix elementsof the above cases that they do not do so here. For example,
involving an arbitrary number of particles or excitatidsee  we see that at extremely high temperatures, the susceptibility
Eq. (1.5 for exampld. This differs from the treatment found as computed by either of the form-factors methods saturates
in Ref. 28. There correlators are computed in a canonicalo a constant. As such, errors in either method are cutoff—as
ensemble using form factors at some fixed particle numbethese expressions dt=<« do not differ greatly from their
N. A thermodynamic limit is then taker\,L—o holding low T values, any potential error is bounded. If instead we
N/L (i.e., the particle densijyfixed. On a technical level computed the finite field magnetizati¢where at lowest or-
these methods may seem ostensibly different. In particular ider we would expect a linedr dependence—providegH is
this paper we end up computing correlators using form fackept constant the differences between the two form-factor
tors involving a small finite number of particles whereas Ref.computations would be comparatively magnified.
28 computes correlators using form factors involving a di- To come to some sort of judgement between the form-
verging number of particles. It might appear then that we ardactor and the semi-classical approaches, an understanding is
somehow missing information that arises in working at aneeded of the differences between our computations of the
finite particle density. This would seem crucial in computingspin conductance and the NMR relaxation rate. In the case of
transport properties where a finite particle density is neceshe first quantity, it is likely this difference is real and not an
sarily determinant. artifact of our methodology. The data that go into the spin
However, this difference is only apparent. The N particleconductance is identical to that needed to compute the sus-
form factors used by Ref. 28 include disconnected termsceptibility and we know that we can match the low-
These disconnected terms are equivalent to form factors intemperature expansion of the susceptibility with a similar
volving small numbers of particles. Thigarge N-particle  expansion coming from the exact free energy. Moreover, we

aT
(M(l)M(l))(x=O,w=0)ocAe‘ﬁA( log| +

We see that the low-temperature expansion of the sem"\;a
classical result agrees to leading order with our computatio '
but afterward differs(We have already seen that this occurs
with the computation of the susceptibilitylt possesses no
term of O(e 2f%). The next term rather appears at
O(e 3P and possesses aH divergence. That the small
H behavior should be JH does suggest the importance of
summing up terms. But the lack of a term 6{e”2%) in
the semi-classical result nonetheless hints that the two resul&
are genuinely different.
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know that the Drude weight af(H=0) has been found to than those appearing in the fully quantum model. In particu-
be finite from an approachindependent of ours. lar, the semi-classical approximation does not admit nonlocal

In generic systems the Drude weigb, of a conductivity =~ conserved quantities. As shown in Refs. 6 and 7, the struc-
at finite temperatures will be zero. It is then the integrabilityture of theZ, symmetries in the semi-classical approach is
of the O3) NLSM and the attendant existence of an infinite such that all matrix element$JQ,), vanish. It would thus
number of conserved quantities that leads to a finite weightseem the absence of a Drude weight in the semi-classical
The existence of these quantities can be directly related to ease is a consequence of differences in the symmetries be-
finite D. As discussed in Ref. 3D is bounded from below tween the semi-classical and fully quantum models.

via an inequality developed by Mazur: To understand the discrepancies in the case of the NMR
relaxation rate, T7;, is not as simple. However, if we be-

D?CE (JQn) (2.23 lieve that the spin conductance demonstrates finite tempera-
T (Q3) ' ture ballistic behavior, it is hardly surprising to find the NMR

. relaxation rate characterized by ballistic logarithms. Again
where J is the relevant current operato@, are a seg of the difference between the fully quantum treatment and the
orthogonal conserved quantities, i.€QnQm)=nm(Qh):  semi-classical approach will lie in the differences between
andc is some constant. For a finite Drude weight we thenhe models’ conserved quantities. Nonetheless one possibility
require that at least one matrix eleme(dQ,), does not hat we must consider is that merely going@ge2%%) in
vanish. While we do no direct computations, we can obtainpe computation of T, is insufficient. It is possible that we
an indication of whether the matrix elements vanish by exygeq to perform some resummation of contributions from all
amining the symmetries of the model. Un_der the discretg)jers to see the desired singular behaviol, 4/1/\H.

(Z;) symmetries of the (3 NLSM, the spin currentJ,  \yhjle this would belie our experience with computing the
transforms via susceptibility and the spin conductance via the correlators,
Z,(J)—+J the data that goes into the two computations is not exactly
) +J. e e
identical. Thus the possibility that the low-temperature ex-
In order that the matrix element)Q,), not vanish we re- pansion of 1T, is not well controlled cannot be entirely
quire that ruled out.
The differences in the nature of the conserved quantities
Z5(Qn)—*Qx- between the (8) NLSM and the semi-classical model of
The Z, Symmetries in the (3) NLSM include Ny— — Ny, Refs. 6 and 7 suggest the latter is not equivalent to t@ O
a=1,23, parity' and time reversal. The Spin current we aré\lLSM, even at low energies. An indication of this lack of
interested in transforms under rotations as a pseudo-vectdtquivalency may lie in the universal nature of the ultra low
Thus any chargeQ,, coupling to the current must also €nergy S-matrix. This quantity is the primary input of the
transform as such. From the work by daher®? there is at ~Semi-classical model. The semi-classical model imagines a
least one conserved pseudo-vectorial quantity such th&et of classical spins interacting via
(JQ,) does not vanish due to the action of one of the above

Z, symmetries. For the sake of completeness we exhibit it. ng,(0=0)= — 0adOch s
Rewriting the magnetization and spin currelty ;, explic-
ity as antisymmetric tensors, i.e., in the scattering of two spins, the spins exchange their
quantum numbers. However this specification may be insuf-
M‘Zb=nat9Mnb—nbﬂﬂna, n=0,1; ficient to adequately describe thé3DNLSM. Even beyond

the quantum interference effects which are neglected by the
semi-classical treatment, it is not clear that the zero-
momentum S-matrix is enough to determine the model.
Qab(t)=> f dx; dxX, Sg(X; — X2)M3%(t,x1)MEP(t, %) In this light it is instructive to consider the sine-Gordon
¢ model in its repulsive regime. The sine-Gordon model is
given by the action

the conserved quantity, takes the form,

—f dxM2P(t,x).

1 “
While the first term 0fQ2° does not contribute to the matrix S= @f dxdt(9,® 9*d+\cogpP)), (2.29
element,(JQ?°), as it is bilinear in the currents\®®, the
second term does. We point out tf@t° is an exotic object

inasmuch as it is @aonlocal conserved quantity. As pointed pulsive regime occurs in the rangeg4 82< 8. The mod-

out in Ref. 32, it is the first in a series of nonlocal charges.el,S spectrum then consists solely of a doublet of solitons
While the structure of the conserved quantities in thg8)O P : y of
carrying Ul) charge. It is repulsive in the sense that the

NLSM seem to be consistent with the existence of a finite_ . .
Drude weight, this is not the case in the semi-classical aps_;olltons have no bound states. The sine-Gordon model has a
proach. The dynamics of the semi-classical approximatioﬁImllar low energy S-matrix to the (@) NLSM,
used in Refs. 6 and 7 also admit an infinite number of con-

dpe oy —
served quantities. Importantly, however, these are different Sab(0=0)= = 8248cp

WhereZ%=,8/\/4w. The model is generically gapped. Its re-
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where here the particle indices range over the two soli-  certainly cease to be true. And the energy/temperature ranges

tons in the theory. Thus we might expect that sine-Gordormwe are interested in exploring do not permit dropping terms

model to possess identical low energy behavior over its enef O(e™2/2).

tire repulsive regime. It is important to stress we do not question the agreement
This is likely to be in general untrue. For example, we petween the semi-classical model and experiment. What we

might consider the behavior of the single particle spectraljo question is whether the fully quantunt3DNLSM exhib-

function. We might thus want to compute a correlator of thejig spin diffusivity. If we are then to understand spin diffu-

form sion in terms of the (8) NLSM, it is possible we need to
(+(x,1)$_(0,0)), include additional physics such as an easy axis spin anisot-
ropy (weakly present in the experimental system,
where . are Mandelstam fermions given by AgVP,S;), inter-chain couplings, or a spin-phonon coupling
(as done in Ref. 11

¢L(X,t)1|§(i—,@) ¢R(X’t)); Beyond th_ese, another mechanism that might lead to_ dif-
B fusive behavior are small integrable breaking perturbations
of the Q3) NLSM. Generically any physical realization of a
[ spin chain will possess such perturbations, even if arbitrarily
(ZSL/R:E(@(X't)iIJ_mdyat(b(y’t))' (229 gmall. Such perturbations may introduce the necessary er-
~ godicity into the system, ergodicity that is absent in the in-
As these fields depend explicitly upgh it is hard to see tegrable model because of the presence of nontrivial con-
how the properties of the above correlator, even at low enefserved charges, and so lead to diffusive behavior. As
gies could be independent of this same quantity. More gendiscussed in the semi-classical context by Garst and Rdsch,
erally, B determines the compactification radius of the bosorsuch perturbations introduce an additional time scBlgov-
in the model and so is related in a fundamental way to therning the decay of conserved quantities in the problem. For
model's properties. times,t<T, the behavior of the system is ballistic and the
It is useful to point out that Mandelstam fermions are theorigingd conserved quantities do not decay_ For timesT,
unique fields that create/destroy solitonsAthat carry Lorentzhe bpehavior is then diffusive. Consequently the Drude
spin 1/2, i.e., a spin that is independent/f They would  weight in the purely integrable model is transformed into a
then be the only fields with a chance of matching any semipeak ino(w) at w~ 1/T.
classical computation. However there are other soliton cre- Now the difference in the physics between th¢30

ation fields, for example, NLSM and its semi-classical variant is not that of integrable
breaking perturbations. As demonstrated in Refs. 6 and 7,
their semi-classical model is classically integrable. However,

for which one could determine the corresponding spectrafis discussed above the models do possess different con-
density. As these fields carry spin that varies as a function oferved charges. It might then seem for certain transport quan-
B, their spectral functions will depend upon more than thdities, thg ;emrclassmal model cures the lack of ergodicity
ultra low energy soliton S-matrix. In general, the semi-Presentin its quantum counterpart.
classical treatment of the sine-Gordon model cannot capture
its full quantum field content.

As with the Q3) NLSM, the conductance of the fully Ill. COMPUTATION OF FINITE TEMPERATURE
guantum model differs from that of the semi-classical treat- CORRELATORS
ment. If one were to compute the conductance at finite tem-
perature in the sine-Gordon model one would again find a Here we present the general method by which we com-
finite Drude weight,D, while the semi-classical approach pute the correlators at low but finite temperature and field:
yields D =0."° The notion of under-specificity appears hereform-factor expansions. In the first part of this section we
again. The semi-classical approach for the sine-Gordoggnsider the general form of these expansions and why we
model equally well describes the Hubbard model at half-expect them to be applicable at finite temperature. In the
filing (the solitons are replaced by particle/hole excitation§ager parts of this section, we review the exact expressions
in the half-filled band But it fails to give the correct Drude for the form factors in the (3) sigma model together with

\évrelghi'; At\rr:ean?éf’elﬁcoef g?ltaenszﬁa(;g:s\ﬁ%?h:r? %%e&frzﬁ] ®"the necessary regulation of said form factors at finite tem-
9y b J | perature.

finds a finite Drude weight in the half-filled Hubbard mode
at finite temperature.

Interestingly, however, there are certain properties at low
energies that seem to be independenBofFor example, if

one were to compute the low-temperature static charge SUS- To compute two-point correlation functions, we employ a
ceptibility, the term of®(e~#*) would be independent 8. form-factor expansion. At finite temperature, such correlators
However, at the next ordet)(e 2#%), this would almost take the form

i1 .
w+<x,t)=exp( +=|=+B
2\

e¢i¢L,R/£¢,

A. General methodology
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Here t can be real or imaginary time and the stipg is over

all possible eigenstates of the Hamiltonian. Each eigenstate
is characterized by the number of particles,in the state
together with a set of internal quantum numbéssg}, in this
case the value of5, carried by each particle. The form

GOx,t)= %Tr(e‘BHO(x,t)O(O,O))

> e PBs(n,s,|O(x,1)0(0,0)|n,s,)

ns, : ! .
= (38.)  factor representation of the correlator is then arrived at by
2 e #Esy(n,s,|n,s,) inserting a resolution of the identity between the two
nsy fields:

E e_'BEsﬂ<niSn| O(x,t)|m,sm><m,sm| (9(0,0)|n,sn>
ns,

GOx,t) = —m . 3.2

> e PEs(n,s.|n,s,)
sy

At zero temperature, the representatiorGSt reduces to one  from the analytic dependence of the matrix elements upon
involving a single SUMX s . energy-momentum. However, with increasingand m the

Thus the computation d&© amounts to the evaluation of €valuation of these matrix elements and the corresponding
a set of matrix elements. These matrix elements can be congvaluation of the sum;, s , becomes increasingly arduous.
puted in principle for arbitrary,m from a knowledge of the We are, however, in a better position when we consider
two-body S-matrix together with various constraints comingthe spectral function corresponding &5

% e FEs2m8(w—Es +Es )(N,5,|O(x,0)[m,sp)(m, 5| O(0,0) . S,)
GO(x, )= = . 3.3

> e FEs(n,s.|n,s,)
nsy

We see then that only certain terms, those meeting thever, here the massiveness of the theory again comes to our
matching conditionw=Es —Es , contribute to the spectral aid. With increasing, the terms are weighted with the Bolt-
function. zmann factore #Es,<e P4, Thus at temperatures small

In this paper we are concerned in particular with massivaelative to the gapA, we expect in general only the first
or gapped theories. Gapped theories are particularly amegerms to make a significant contribution. We can thus evalu-

nable to this sort of computation as they admit a notion ofate the correlator in a controlled fashion, expanding it as the
thresholds. First imagine fixing,s, in the sum above. Ina gym,

massive theory the intermediate states have a finite energy. In

particular in the @) sigma model, the energy of an

m-particle state has a minimum thresholdrofA. And so

states WithESm exceedingw + Es, do not contribute to the GO(X,w)=2 Cn(X,w)e B4,
sum. For example ifw+ Esn is below the three particle ¥

threshold, A, states withm=23 do not make a contribution.

At zero temperature, i.eEsn=O, the notion of thresholds Moreover, while the evaluation of this sum in its entirety
leads to a situation where only a finite number of matrixwould require the evaluation of an infinite number of matrix
elements needs to be computed in order to obtaimyxactt elements, each individual coefficient,, depends only upon
result at a given energy. In contrast, at finite temperature a finite number of matrix elementat least in the cases con-
we in general would need to compute an infinite number ofidered in this papgrAs such we are able to compute these
matrix elements in order to arrive at an exact result. How-coefficients exactly.
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While the ability to do so results from eada being |n,s,) are excitations above the empty vacuum statéith
determined by a small, finite number of matrix elements, thissuch a basis, the correlators have the following form factor
feature will not be found in all theories. However form factor representation:
expansions in massive theories have in general found to be
strongly convergent*16-18 Specifically, matrix elements,
(n,s,|O(0,0)Jm,s,,), wheren and m are large have been
found to be relatively small. Even in massless theories where
there are no explicit thresholds, convergence is good pro- X{(n,s))1/O(0,0[07). (3.9

Y'ded the Iengmdgenng _dlm(?rr;]smn of thi opem(vrbmaéches This method involves considerable technical complications.
Its anomalous dimension. Thus even If eahwere deter- |, ganarg) it is a challenge to compute the new vacuum state
mined by a Iargéeven infinitg number (_3f matrix elements it h?ﬁ as well as the excitations aboy@), never mind the
would be possible nonetheless to arrive at a reasonable a Srm factors(07| O(x,1)|(n,s,) ). These difficulties are only

proximation for the coeff|C|ent'. o enhanced by the nondiagonal scattering present in {3 O
There are, however, certain situations where we do noéigma model, i.e., the two-body S-matrix is other than

expect to be able to truncate the sup,s e~ #=. In certain S s s o _ I 0

. ¢ hvsical tity will ¢ i thSab = Paa Fpp , Where no internal quantum number are ex-
cireumstances, a physical quantity Wit e a transition as Shanged. This method was developed in particular for theo-
limit of zero temperature is taken that is non-analytic in na-

ture. To be concrete consider the sinale particle spectr ries that are massless. However, in our case the theory is
” gie partic .p ﬂapped. It thus makes sense to exploit the control over the
function of the staggered component of the spin field:

sum,En,Sne‘BEsn, that the low-temperature regime affords

X,w)=(N(X,w)Nn(0,0)). 3.4 us.
S = nixeIn(0.0) 34 In some sense our approach is similar to that of LeClair

At zero temperature, we expect that for energies; 3A, and Mussard@? There they begin with the form-factor sum

(O(x,00(0,0)= 2 (0] O(x,0(n,50)7)

S(x,w) takes the form of a-function: as in Eq.(3.1). However they recast the sum of the thermal
trace through introducing a set of hole excitations comple-
S(X,w)=cd(w—A), w<3A, T=0. (3.5 mentary to the particles. Hole excitations appear naturally in

o o terms of the form factors. A typical form factor that needs to

We then do not expect to be able to see this broadening
unless we evaluate the sumnysne‘ﬁEsn, in its entirety. In- (sl,esl|(9(x,t)|sz,esz>, (3.10
deed, computings(x,w) through the truncation of this sum

at any finiten leads to where we have explicitly labeled the energy of the state.

Using crossing symmetry, this matrix element can be rewrit-
S(x,w)=cé(w—A)+---, T>0. (3.6 tenas

Only through the resummation of the higher order terms is <O(X,t)|52,652;;1,—651>, (3.1)
the &-function replaced by a broadened peak. However, it .
may well be possible to guess at the resummation on thprovided e;=¢€,, s;=s, does not hold. Heres; is the

basis of the first terms in the series. “charge conjugate” ofs;. The excitation, §;,— Es ), can be

Rather than consider such situations, we want to focu?nought of as a new type of excitation, a hole. Thus the

upon quantltles that POSSESS a Smodth 0 tranS|_t|on. AS qouble sum of a two point correlator was recast in Ref. 20 as
such consider the behavior of the staggered field spectra

function, S(x,w), for energies below the gap<A. At T
=0 we have (oxno0)= > 1[I f(ésp)l_h[ fes,)
P

mp ,Sp ;mh ,Sh

S(x,|o|<A)=0, (3.7 X{(O(x,1)|my,Sp; My, Sh)
while atT#0 X(my,Sy;My,Sp|0(0,0).  (3.12
S(x,|w|<A)=0(e ). (3.9 Notice that the partition functionZ, is absent from Eq.
(3.12 while new factors]If, have been added to the expres-
Thus theT—0 limit behaves in a smooth fashion. sion. Eachf(eg) is the occupation number of the excitation

This method is markedly different than that developed in(in this case assumed to be fermionis with energye:
Refs. 26-28. In our method we employ the basis of eigen-
states|n,s,), that arises from the zero temperature problem.
There a new basis is adopted that takes into direct account fles)= 14ess/T
the thermalization of the vacuum state. L@$) be the state
with a representation of the particle content of the system imhese modifications represent an ansatz put forward in Ref.
equilibrium at finite T and let|(n,s,)7) be states that are 20, and are argued to come from the regulation of the matrix
excitations above this thermalized ground stéite.contrast, elements,
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(s1,€1|O(X,1)[82,€2), (3.13 S:iz:( )= 5a1a25a3a40'1( )+ é\ala?,5::12a40'2( 0)

in the cases;=s,, €;=¢,. )

Although this ansatz is supported in the case of one point + 5313453233‘73( 0);
functions(i.e., expectation values of the energy or $ph 2 2mif
it has come under criticism for the computation of two-point o1(0)= i 7 i :
functions in Ref. 21. There the allied case of current—current (6+im)(6—i2m)
correlators in the quantum Hall edge problemTat0 but 0(6—im)
finite voltage was examined and it was found that their an- o,(0)= - : :
satz did not seem to reproduce the correct results. (O+im)(6—i2m)

What relevance does this critique have for our approach? 2i(i7m— 6)
We do not and cannot use the ansatz of LeClair and Mus- o3(0)= . - . (3.17
sardo as scattering in our theory is nondiagonal and their (6+im)(6—i2m)
ansatz only makes sense in the case of theories that are dis #—0, the S-matrix reduces @232‘2& — 0a,a,0,a, ThiS

agonal. However, might the critique in Ref. 21 still have s the approximation underlying the semi-classical analysis

bearing upon our results? We do not think so. The correlatogs pamle and SachdéV, For the form factor to be consistent
considered in Ref. 21 is computed in a massless theoryin two body scattering we must then have

whereas our results depend upon the gapped nature of the

O(3) sigma model producing a series of thresholds. More- fay a . a (01 0ic1, 0, -, 00)

over, we already expect to run into difficulties whenever .,

there is nonanalytic behavior &=0 near a threshold as in = Shi e 6,— 9i+1)f0 .y

the behavior of the staggered field spectral function rear A+ R R N R

~A. Thus we do not expect to capture the physics of the X (0,0 ,6i01,-,0,). (3.18

conflation of all the thresholds in a massless theory. This relation is arrived at by commuting théh andi + 1th

. . particle.
B. Form factors in the O(3) sigma model A second constraint upon the form factor can be thought
1. Constraints upon form factors of as a periodicity axiom. In continuing the rapidi#, of a

particle to 6—2ri, the particle’s energy-momentum is un-
changed. However, the form factor is not so invariant. We
instead have

The form factors of a fieldD are defined as the matrix
elements of the field with some number of particleg(6):

foy (01 00) =(O(0,0A, (6)- - Aq (61)).

(3.19
The A,(6) are Faddeev—Zamolodchikov operators which X(0,—2mi, 04, --,0,_1). (3.19
create and destroy the elementary excitations of the théory.
is the rapidity which encodes the energy-momentum carrie
by the excitation,

fgl’“.’an(ela' : '10n):f0

L EARRL B

a’his constraint is derived from crossing symméftyt im-
plicitly assumes that the field is local: if O is nonlocal
additional braiding phases appear in the above reldfio.
p=Asinh(6); E=Acosh®9). (3.15 Another condition related to analyticity that a form factor
The form of 0 is determined by a combination of two- must sgtisfy is the annihilatior_1 pole axiqm. This c.onditio'n
body scatterinlg Lnorentz invariance, analyticity, and hermi-21 oS 1N form factors mv_olvmg a partlcle gnd lts antl-
ticity ' ' ' partlcle._ Un_der the appropriate analytical continuation, such
: a combination of particles are able to annihilate one another.

mul—gt?oﬁorﬁ;?(;rr]; f(r)?n;asd?éte%Tga';(ﬂgggﬁﬁ(;\r/ogn é?aet(frzr_n'As such this condition relates form factors witlparticles to
P " those withn—2 particles. In the case of the(8 sigma

Aa (01)Aq,(62)= SZiZ‘Z‘( 01— 02)Aa,(02)Aa (03); model it takes the form
i resﬂnzan,l-%—vif(ala T an)al,- S8

:f(alv"'vanfz)ai,-“,a 533

AL (01)A] (0)=S522(01— 0,)AL (02)A] (05); n

a,

AL (02)Ag,(05) = 520,561~ 6) e
% 53153é_ .. 53(1—253;1—1
+522:1(01_ 92)Aa3(94)A;4( 03). ( a & &n-2 -1
(3.16 — ST (010 S] 52 (0y-19) - ST 4O 10-3)
191 292 n—-3%n-3

S, the two-body S-matrix, gives the amplitude of the process ,

by which particleda, ,a,} scatter intd{az,a,}. Itis solely a X Sgnfsznfz( On_1n-2)). (3.20
function of 6, — 6,= 6,, by Lorentz invariance. In our case, noitnee

scattering between magnons in thé8Dmodel, the S-matrix Here res refers to the residue of the pole in the form factor
is given by when two particles are allowed to annihilate, i6g.is taken
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to 6,_,+im.This relation as written assumes that we are (0,S5,=1|S,|6',S,=1)=275(6—6"). (3.26
normalizing our particle states 48|60’)=275(6—6").

The form factor must also satisfy constraints coming fromThys from the knowledge of the two particle form factor, we
Lorentz invariance. In general, the form factor of a figlt,  can fix the overall normalization. To check this normalization
carrying Lorentz spin, s, must transform under a Lorentaye will compare the form-factor computations with the re-

boost, 6;— 6+ @, via sults of other techniques. For example we will compute the
magnetic susceptibility using both form factors and the ther-
9 (0,+a,---,0,+a)=e%f? (61, --,6,) modynamic Bethe ansatz. Through comparing TheO, H
a;---ay 1 ’ 1Un a;---a 1> 1 Yn/-

(3.21) —0 results, we see that the normalization has indeed been
' consistently computed.
The particular fields we will be interested in are the magne- AS i/]et ar_l(_)t_her checklf_ we can f|x_the ph;‘_S? of this con%tant
tization density,My(x,t), as well its corresponding con- ;smg ?rn;'t'c't¥' Fort Epurpp;e |th|s sufiicient to consider
served currentM ;(x,t). Together they form a Lorentz two- -particle form factors. Hermiticity then gives us
current. (Here 0,1 are Lorentz indices. Spin indices have : : ;
been suppressadas this current is topological we may re-  (O(0,0A,,(82)Aa,(01))* = (A5 (61)A; (62)07(0,0))

write it in terms of a Lorentz scalar fielan(x,t): (OT(O A= (6,—im)
= V)R (01— I

M (X, 1) = €,,0"M(X,t) (3.22 X Ag, (02— i), (3.27

The form factors are then determined for the fiehfx,t)
which obeys Eq(3.21) with s=0 while the corresponding
form factors ofM ,(x,t) are related to those ah(x,t) by

where the last line follows from crossing and so

o x_ 07 , .
faya,(01,02)* =F 2 (6—im, 61—im). (3.2

M
fall.:b. .an(

011' : ’16n): e,u,VPV( 0i)f211...an(011' o ,ﬁn),
(3.23 C. Review of Q(3) sigma model form factors

From Egs.(3.22 and (3.23 it is sufficient to give the
form factors for the scalar operaton(x,t). These have been
computed by both Smirndv and Balog and Niedermaigf.

whereP%=3;A cosh@) and P*=3;A sinh(#).
These conditions do not uniquely specify the form factors

It i.s easily seen that if (61, --,0n)a, ... a, satisfies these 1, ever, Ref. 37 presents them in a more amenable form,
axioms then so does possible in this particular case because of the simple struc-
ture of the S-matrix of the (3) sigma model.
Pn(costi ;) Using the axioms as presented in the previous section,
f(0y,- .,en)alv_“,anm, (3.29 Ref. 37 thus finds for the two and four particle form factors
n ij
2
where P, and Q, are symmetric polynomials in coshy, M (9, 0.)=i m €22132,( 9
1<i,j=<n, and are such that 12, 01:62) ¥(012),
Polo,=6, ,+==Pn-2; Qulo,=g, ,+=i=Qn-2- 48 = tantf(9/2) im+6
(3.29 0  2mi+6’
To deal with this ambiguity, we employ a minimalist axiom. my
We chooseP,, and Q,, such thatP,/Q, has the minimal a1a2a3a4(01’02’03'64)

number of poles and zeros in the physical strip, Rg € 0,
0<Im 6<2. Additional poles are only added in accor- A m
dance with the theory’s bound state structure, an unnecessary = T.E[J P )Galaaza3a4
complication in our case as the(& sigma model has no
bound states. Using this minimalist ansatz, one can deter- 25A
mine P,,/Q, up to a constant. ' - _H P(6,)) (5243 d%Rg, (6)
To determine this constant we rely upon the action of the 8 i<
conserved charge
+ 6%4%22%3%1g,( 6;) + §4%1€2%%2g;5( ;)

S,= f dxM3(x,0), + 6%%2e2f1g, (6;) + 6%3%1€2M%2gg( ;)
upon the single particle states. We expect + 6°2%1€7%%3g6( 6)));
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9.(6) — 7 (0324 031 — i TOzp— i WO+ 277%) D. Regularization of form factors
) ) We end this section with a discussion of the regularization
92(6) (03— 1) O31( 031~ 1 ) of form factors that appear in the evaluation of thermal cor-
, ) , relators. Form factors with all particles either to the right or
9a(0) | (Ozp= i) (Ogp+127) (17— 031) the left of the field such as
=i
94(6) 032031(37i — O31) f;”l,...,an( 01, 00)=(O(0,0A, (6,)--Aq (61))
0s(6)) O3 O3p— i 77) O34 do not pose any such problems. However, the form factors
encountered in the evaluation of finite temperature correla-
0s(6)) 27 (17— 635) 031 tors are of the form
+i(043—im) (Ap (Bm)- - Ap (01)O(0,00A, (8r)- - - Ag (61)).
— 472 —im( O3+ O37) — (03— b31)? To understand such an object we must contend with the pos-
5 ) ) sibility that ;= 0;, a;=Db; for somei,j. From the algebra of
—2m" = 3mi 31+ O31 the Fadeev—Zamolodchikov operatdB16), we know the

5 2 commutation relations involvé-functions, i.e.,
_477 +|7T(032_2631)_032

X Al (6)A, (6)=275(0,—6)85p +---. (3.30
2772+i77(032+2031)_2032031 al( I) bl( : I ] albl

It is crucial to include the contributions of thefunctions to

—1m(2035+ O31) + 203,03, the correlators. In particular they contribute pieces which
. cancel off otherwise ill-defined terms arising from the parti-
— 27 +im(03—303) tion function. To do so we must understand the above form
0 factor to equal
0 (Ap, (B« - Ap (01)O(0,0A, (6,)- - Aq (61))
_ _ 0 :{a-}guA SA,AlSB,Bl<Bl|Al><BZ|0(0-0)|A2>connected
+i(O43—i7)2 . (3.29 NI
_ 032 i 1 2
(3.3
031~ 2 The sum in the above is over all possible subsetsagfand
o {bi}. The S-matrixSs AL arises from the commutations nec-
327 V31

essary to rewriteA, (6,)- - -Aq (61)[0) as AxA;|0) and

We have checked that these form factors do indeed satis§imilarly for Sg g . The matrix elementB;|A;) is evaluated
the necessary axioms and found that the results of Ref. 37 atssing the Fadeev—Zamolodchikov algebra. In this Wifly
without typographical error. The reader should note howevedefined terms proportional ta5(0) are produced but which
that we use a different particle normalization than Ref. 37cancel similarly ill-defined terms arising from the evaluation
and so the results differ by an overall multiplicative constantof the partition function.

The two particle form factor differs from that appearing in ~ The “connected” form factor appearing in the above ex-
Affleck and Weston’s workon the @3) sigma model. The pression is to be understood as follows. Using crossing sym-
two particle form factor Affleck and Weston use is given by metry, the form factor can be rewritten as

3 B,|©0(0,0|A (A, (6,)- Ay (6,)0(0,0
fgﬂlgz(ﬁlyﬁz)“(coshﬂl) < 2|O( )| 2>connected’< bik( 'k) bil( |1) ( )

. XA (6:)---Ar (6
tanh( 615/2) 7+ 645 aiq( Jq) ajl( Jl)>connected

—cosh( 6,)) 33122 . .
01, 2mi+ 0,5 :<(9(o,o)Aaj, (Hiq)' . 'Aaj’ (6; )Ap;
q 1 Ik

This differs from our form in that it has a different Lorentz
structure and lacks an extra factor of taf2). The differ-
ent structure of the two particle form factor is a result of the .
constraint the annihilation pole axiom places on form factors —17)) connected
of different particle numbers. If one only computes the two -9 _ (B —im,- B,
particle form factor, as done in Ref. 38, this constraint can go b objaj ey tTh o
unsatisfied. However, in terms of the low energy behavior )

(i.e., 0,,6,—0), the two forms forfmla , are nearly identical. —im 0y, veiq)connected 332

x (6 iw)--~Ag{(?i1

i

k

a;a
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where the last relation holds provided we do not h#e Here 6; are the rapidities of the other excitations in the
:ng , ;=D for anyi,j. If this does occur we see from the ground state while the’s mark out spin excitations above an

annihilation pole axiom that the form factor is not well de- originally polarized ground statgThe Bethe ansatz con-

fined, having a pole a#;=6; . In such cases the form factor str_uction begins with & complet(_aly polarized ground state c.)f
requires regulation o spin 1 excitations above which one then creates spin

To regulate the form factor, we employ a scheme Sug_excﬂatmns—marked out by the's—in order to give the

gested by Balo¥ and used by LeClair and Mussafdowe ground state the desired spin polarizatjoN. is the total
number of excitations in the ground state whie is the

define
number of spin excitations. The quantum numiSer,is then
o ~ - -~ given byS,=N—M. The total energy of the ground state in
f5 = (0, —im+ing,- -, 6, — AP
bil"'bikajl'”ajq( o, ~ i Ot a magnetic field is then equal to
+ingg, ejl! ) gjq)connected N
o ~ E=A2 cosi8,)—H(N—M).
=finite piece of limfy; .., ./ (6 —i7 a=1
—0 1 Ik 11 I . . . ;
! ’ Analysis of these equations proceeds using the string hypoth-
+imy,- - ,"éik_iw.q.i M0, --,0;). (333 esis. The solutions of the above equations take the form
q
In taking the finite piece of®, we discard terms propor- 0, are real;
tional to 77,  as well as terms proportional tg I7;. In this
way the connected piece is independent of the way the vari- )\g,k:)\2+iﬂ(n+1_2k)/2, k=12,...n; (4.2

ous limits 7,—0 are taken. Baloy has already used this

prescription to compute one point functions and successfullyhat is the\’s are organized into “complexes” which share a
compare them to TBA calculations. In Ref. 39 it was arguedreal part,\!, the center of the complex.

that the delta functions leading to such terms arise from the In computing the free energy, we are interested in the
use of infinite volume wave functions. If such wavefunctionscontinuum limit of the above equations. To arrive at this
are replaced instead with finite volume counterparts, théimit, we introduce densities per unit lengtip(6) and
delta functions are regulated. For example, a poleyirs o, (\), of, respectively, the,’s, and the centers\” , of the

changed as follows: complexes. We further introduce particle and hole densities
by writing p=pp+ pp ando,= oy + oy . A particle density

i:f do o(0) Hf de f(9) (3.34 gives the probability that the ground state contains an exci-
iy 0+in 0+in’ ' tation at a given rapidityg/\, while the hole density gives

here f . harol ked f . b the converse probability that the excitation at the rapidity is
where f(0) is some sharply peaked function abo#t0 ot fong in the ground state. Equations describing these
which in the infinite volume limit evolves into a-function.  jansities can be arrived at in a standard fasléee Section

However, the principal value of this regularized integral isg 3 o Ref. 40 for an analogous derivation in the case of the
zero. Thus discarding the pole terms is justified in this sensexyqerson modai

For terms that are ratios of infinitesimals, Balog also demon-
strates that such terms, once regularized, disappear in the

g o A
infinite volume limit. pp(0)+pn(0)= Ecosf( 0)+(s* o) (6);
IV. THERMODYNAMIC BETHE ANSATZ AT FINITE L .
TEMPERATURE AND FINITE FIELD Omp(N) + Tmi(A) = 8omS* pp(N) +8* (Omy1pt O'mfl,h)EZ)é)

In this section we review the derivation of the equations _ 1 N .
describing the exact free energgnd hence the susceptibil- wheres(x)—[frco§hé<)] andf*g denotes the convolution
ity) of the (Q3) sigma model together with its low- of these two functions:
temperature expansion. The exact description of the thermo-
dynamicg of the CS) sigma model takes the form of a §et of fxg= f dN FON=N")g(N).
guantization conditions for the momenfa,, of the excita-
tions in the ground state. With,= A sinh(@,), we have the

following condition° From these equations the free energy per unit lerfgthcan

be derived(again see Ref. 40 for details of an analogous
N Y . derivation:

eild simno) — T Ou= Optimr O Ny—lm

B=1 0a—0ﬁ—iw7:1 Ga—)\y-i'i’lT'

TA
Q=—Zf d 6 cosh 6)log(1+ e A<(9)y;
N B Natim NN tiw
£e o] ——. (4.1)
=1 0g—N,—im 321N, —N,—i7 e(0)=A cosh §)— Ts* log(1+eP<2)(9);
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€n(N) =Ts*log(1+efn-1)(1+efni1)(N) €n=Ts* log(1+ePen-1)(1+efn+1)
+ 80 T8 log(1+e #9)(N); + 8,,Ts* log(1+ ¢(2)e PA cosh®));
li i—H 4.4 €,
M= 49 lim—=H. (4.10)

n—oo
n—o

Here we have expressed t.he free energy qf the system i, the order ine #2 to which we are working, these equa-
terms of the dressed energi@s pseudo-energigse/e,, of  ions reduce to
the excitations. These functions give the energetic cost of

making an excitation at a given rapidity taking into account $?(n)

the excitation’s interactions with the other particles in the ¢(n—1)¢(n+1) =(Tn-11FTn+1,0*S

ground state. These equations are in agreement with Ref. 29

where they were first written down and correct typos found + Spnlog(1+e Al oshl)xg,

To derlve the low temperature expansion of the free en-

ergy, we follow Ref. 29. We solve the above Edé.d) As can be directly checked, they admit the solut|on

through iteration. We write for each pseudo-enekgy, $(1)
. M= ¢(2)¢(n)(¢(n+1)an ¢(n 1)an+2)* ~hx
+ Ben(0) — . .
Lrefalll= 2 tan(T.0) (49 Xlog(L+ p(2)e 42 o),
This expansion is such that,, is of O(e"™%). On the
basis of Eq(4.5 we can write the free energy as a series in -~ 2n
e 8, 0= gz (413
% With this, () to O(e™#*) takes the form
Q=2 cy(T)e M, (4.6) &(1)
m €(0)=A costi9)~Tlog ¢(2) T == (h(3)ay
We will compute them=1,2 terms of this expansion. $(2)
Them=0 term of Eq.(4.5) is arrived at by neglecting the — $(1)ay)* e BAooshl) L O(g=2B4) (4.14

term involving log(t-e 49 in the equation fok,. If this is

i i ini =2. In-
done, these equations reduce to We can continue this procedure, obtaining,,m=2. In

deed Ref. 29 goes on to computg and so corrections of

T O(e"2P) to ().
en(N)= Slog(1+efen-1)(1+efen1); The zero field susceptibility is given by
lim <M =H. 4.7 X(H=0)=— 320 11_o

n—oo

They are then algebraic in nature and admit the following (0)
solution: == _f dé cosh 9) 0|

L+ efr=r 0= ?(n);

(4.19
~[H Using €(6) in Eq. (4.14 and expanding the above expres-
Sln”(ﬁ(”‘*‘ 1) sion to O(e~2#%), we find
()= ———5— (4.8
BA A h@ A h@
sinh 5+ x(H=0)="— fdocosrw)e PA cosh()( 1 — 3@ A4 cosh)
At this order of the iteratione(6) becomes 2B8A
+——| d#,df, cosh o
€(0)=A cosh{6)— T log $(2), (4.9 w f 100z cosfi 6,)
and so X efﬁA(cosh(01)+cosh(92))
TA 2
Q=—-—| d@cosh 8)log(1+3e FA cosh@)) 201+ 117 O(e~3BA 41
2w o 242 ;T O(e ), (4.19
(4.10 01,57 0,+4m
Clearly Q) is of O(e™#4). where 0,,= 61— 6,. This agrees exactly with the derivation
The next coefficient in the seridd.5), r,;, is found by  of y coming from the computation of the two and four par-
substituting Eq(4.9) into the equations fog,: ticle form factors.
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APPENDIX A: COMPUTATION OF MAGNETIC
SUSCEPTIBILITY USING FORM FACTORS

To compute the correlatotM3(x,7)M3(0,0)), we first

consider the action of the thermal trace:
C(x,7)=(Mg(x,7)M3(0,0))

SEH e #Esi(n,s,|M3(x,7)M3(0,0)|n,s,)

> e PEs(n,soln,sp)
Sy .N

(A1)
Keeping the first two terms leads us to

(M3(x,7)M3(0,0))

J' % e BAcosh(@)
2

xg (AL(6)IM3(x, IIM3(0,0|A,(6))

1(do, do,

e BA(cosh(@)+cosh(@,))
2) 27 27

X 27 (A, (01)Aq,(62)IMG(x,7)

a1ay

><M3(0,0)|Aa2(62)Aa1(91)>) /

2 f Fae? “"S“(")(Aa(G)IAa(a»)- (A2)

Expanding the denominator then gives us

d
C(x,7)= j %e‘“mh‘@ (Aa(O)IMG(x,7)

de
_ ___ ~—BAcosh@)
! Ea: J 27 °

L L[ dodo,
2) 27 27

X M3(0,0)|A(6))x

X(Aa(0)|Aa(0))

% @~ BA(cosh(Ey) +cosh(®,)) ¢ 2 <Aa (01)Aa (02)
1 2
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To evaluate this expression we begin by computing the

pfirst term of the traceA,(6)|M3(x,7)M3(0,0)|A,(6)) by

inserting a resolution of the identity between ti€’s:
JAa(O)IMG(X, IMG(0,0/[Aq(6)
1 (do, dé,

5y ifen (o

n=1a;, --,a, n! E
X(A(O)IMG(X,7)[Aq (0n) - Aq (61))
X(Aq,(61)- - -Aq (6,)IMG(0,0]A4(6)).  (Ad)

We only need to keep the lowest order temms 1, in this
expansionall other terms make no contribution to the sus-
ceptibility. The terms corresponding to n even are identically
zero(by parity); the remainingh>1 odd terms vanish in the
low energy-low momentum limit of the corresponding spec-
tral function.(We will return to this is a momentGiven that

we can thus compute the entire contribution
(AL(0)IM3(x,7)M3(0,0)|A,(6)) makes to the susceptibility,
we will able to find an exact correspondence between the
form-factor computation and a low-temperature expansion of
the exact free energy. With the=1 term we then have

(Aa(O)|M3(x,7)M3(0,0|A4(6))
déo
=3 [ SHALOIMIx A 0)

X (Aq,(61)|M3(0,0[A(6));

dg,

e tA(cosh(@,) —cosh(@)) +ixA(sinh(#,) — sinh(6))
ER 2

X(M3(0,0)|Aq,(61)Aq(6—im))

X(M3(0,0)[Aa(0)Aq (01 —im));
— E % e~ tA(cosh(@,) —cosh(@)) +ixA(sinh(#,) — sinh(6))
a; 27T

3 M

3
X0 (=i, 00)f,0(61—im,6). (A5)

1
We have used crossing symmetry in the second line. From
3

M . .
Sec. llI C, the form factorfaaol(e,al) is given by

m2A

€3331(sinh( ) +sinh(6,)) (60— 6,).

(A6)
Then the lowest order contributioi&4(x,7), to the spin—

m3 .
06,6 =i

, , 8182 spin correlatorC(x, 7), is given by
X|MO(X17)M0(010)|Aa2( 02)Aal( 01)> (A3) da da
1
The term arising from the partition function is ill-defined as ~ Ci(X,7)= —Zf EJ 5. € phcosh)

the state normalization is given bjAa(6)|Aa1(61)>

=2775aa15(0— 01). However, this term will be canceled
from

by disconnected terms arising
(Aa,(02)Aa,(62)|M3(x, TIM3(0,0)|Aq(62)Aq (62)).

xXe~ 7A(cosh(@1) —cosh(@)) +ixA(sinh(6,) —sinh(6))

M3 . M3 .
XTMo(g—im,0)f (0, —im,0). (A7)
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Fourier transforming ik and = and continuingw,— —i

; forming and taking thé&k=0 limit forces the term to vanish
+ & yields,

and Eq.(A9) ends up making no contribution to the suscep-
tibility. In the same way, it is easy then to convince oneself
that terms involving an even greater number of particles
similarly do not contribute to the static susceptibility.

_2BA We now go ahead and compute the second term arising
N 1(BR), (A8) from performing the thermal trace,
where K, is a modified Bessel function. This has the ex-(Aal(el)Aaz(62)|MS(X,T)M8(0,0)|Aa2(02)Aa1(01)>. We
pected small temperature behaviorC,(«w=0k=0) evaluate it as before by inserting a resolution of the identity

~T Ve kA, between the two fields. In this case the only term that con-
Let us consider further why the above computation givesriputes is then=2 term:

the sole contribution tqA,(6)|M3(x)M3(0)|AL(6)). The
next potential contribution to this matrix element takes the
o P (Aa,(01)Aq (02)M3(x, TIM3(0,0)| A, (6,)Aq (61))

f 06, 6, dB5(As()|M3X)|Aq,(61)Aq (8,)Aq (62)

A
Ci(w=0k=0)= %f d@ cosh §)e~ P4 cosh@)

1 dés dé,
X(Aa,(03)Aq,(02)Aq (01)|M3(0)|Ag(0)).  (A9) 2 a5, J 2m 2m
Upon evaluation this expression produces two types of ><<Aa1( ‘91)Aa2( 02)|M8(x,r)|Aa3( 03)Aa4( 04))
terms. The first is associated with the disconnected pieces of
the matrix elements appearing in the above. An example of X (A, (02)Aq( 93)|Mg(0,0)|Aa2( 02)Aqa,(01)).

this type of term is

(A12)
f d 61 d 02< M g(X) |Aal( el)AaZ( 62))

Allowing for the presence of disconnected terms, the matrix

(A G)Aaz( 02)Aal( 01)|M8(0)|Aa( 0)) elements in the above expression take the form

= f d6,d 6,/ AX(sinn@D) +Sinh(62) (sinky( §,) + sinh 6,)) (Aal(al)Aa2(92)|Mg(x,r)|Aa3(.93)Aa4(a4))
3
X (term regular ind; andé,). (A10) = 5a1a42775( 01— 64)1‘ (02— i, 03)+ 5a'a'277

As MS is a Lorentz current, the terr(sinh(#;)+sinh(®,))
appears in the above. Thus when the Fourier transform,
fe'*™ is taken followed by the limitk—O0, this term van-
ishes identically. e

The second type of term we must deal with in evaluating + 8410, 280, 0,) S, 132(912]: 0 (91_”7 03)
Eg. (A9) takes the form 274

3

X 8(63— 62>salaz<alz>saaa4<eg4>f o (01717.60)

3
f dﬁld 02d aseixA(sinh(Hl)Jrsinh(ﬁz)+sinh(f}3)fsinh(0)) + 5a a’2775( 93)8 3a4( 034)]: Mo (02_ i, 04)
3 M3 .
aasaz l(t9—|71'-|—|¢s ,03,65,07) +fa2 oy, aa( O,—i1,0,—i7,04,03)c, (A13)
M . . . . . .
fglgzgsa( O1—imtie,—imtiey O3—imties,0), wheref . refers to a connected form factor. We now substitute

Eqg.(Al13) into Eqg.(A12) and obtain the following after some

(A11) lengthy but straightforward algebra:
and arises from the connected pieces of the matrix elements

appearing in Eq(A9). To evaluate this term we deform the

contoursé, , 3 via de, db, db; do,

1

4 2w 27 27 2w
0123 0153t et Tememen

(In doing so we assume that time is real, not imaginary. This

does not pose a problem as we could as well directly evalu-

ate the retarded correlators as opposed to evaluating them via

an analytical continuation of imaginary time-ordered correla- X (Aq,(0)Aq( 63)|IM3(0, 0)|Aa2 02)Aq,(61))

tors) We then deform through a number of poles whose resi-

dues we will pick up. Evaluating these residues we again

obtain something of the forrfA10). As such, Fourier trans- =Cyy+ Cyyt Cyozt Cyut Cost+ Cog;

X(A 01 A (02)|M0(X T)|A33(03)A (04)>
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d6; do, d dos_
— — BA(cosh(@) +cosh(@,))

. _ A(s L M3 _ M3 _
X e A(cosh(f3) —cosh(,)) —ixA(sinh(63) smh(BZ))fEJaz( 93— i, 02) fgzovaa( 02_ i, 93);

do, dé,

e 2BA cosh(9,) e TA(cosh(@,) —cosh(@1)) —ixA(sinh(6,) —sinh(64))
27 2

C22: -3

3
» f— (Hz_iﬂyal)fMO (01—im,0,);
az,al

ajap

d6, do,

e BA(cosh(@)+ cosh(ﬂz))e— TA(cosh(@,) —cosh(@,)) —ixA(sinh(61) —sinh(65))
27 27

C23: -3

X D f M (01—|7702) (02—|7r01)

aja, 4182

C :1 Z d01d92d93 @~ BA(cosh(t) +cosh(®;)) g~ mA(cosh(¥s) — cosh(F)) —ixA(sinh(d3) —sinh(d))
277 5o | 27 27 22°
m3 .
x| =0 (63—, 0,—im,0;,0,)f— (02—|7-r 03)+ 2 s4a2(0 1)sf‘zal(als)
as,al,al,az a arara/
41978,
M3 . . M3 . _
ngz;134"3‘3(Hl_lW,eg_lW’GZ'Gl)Cf%'ai(ez_l7T'03)+(02<_)03) ;
C :E 2 d01d02d03 ~ BA(cosh(fy) +cosh(b)) g — A (cosh(B3) — cosh(B;)) — ixA(sinh(83) - sinh(8;))
25 4 ajayas 277 27T 277
aja . . M3 . ajal
{ E Sa4a1( 1)fa .8, a3(03_|77,01_|’7T,92,01)cfg20'a2( 02_|’7T,93)+ z, Sazai( 013)
614&14 asa,
w M Or— 7. Oa— 17 0y 09)o £ (8= i, B5)+ (B B3) | :
g2;1’a4'a3( 1=, 03—im,04,05)¢ gsﬁi( b1, 03)+ (0 03) |
C :E E %%%dg“ — BA(cosh() +cosh(d,))
274 o idn, ) 27 27 2m 270
xXe~ rA(cosh(03)+cosh(04)—cosh(&l)—cosh(ez))—ixA(sinh(03)+sinh(04)—sinh(ﬁl)—sinh(az))fmgi (03_ i m, 94_ i , 491 , 02)0
ag,a,,a1,3,
Mo Oy—im, 0y~ i, 04,0 Al4
3251’%63( im0 —im,04,03)c. (A14)

Although appearing exceedingly complicated, these terms dramatically simplify once we Fourier transform.
The first term,C,4, on the r.h.s. of E§A14) involves §(0) and so is ill-defined. However it precisely cancels the term
arising from the evaluation of the partition function in E4.3),

dé, do
J S 2 Y e AA(oshEn TeoshB (A, (6)|M3(X, 7IM3(0,0)|Aq, (8))(Aa,(8)|Aq (6)) (A15)
2w 2w a8y 1 2 2
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as is evident if a resolution of the identity is inserted between XG™  (f,—im Oy—imOy—i7.0 —ié))

the two fields,M3, in the above and then truncated at the lajag2 2 L RN 7=0

one-particle level.

Having canceled off thé(0)-terms we now look at terms n 01 H

that make a genuine contribution to the spin—spin correlator. cosh62)d-iy, 4

We first consider the completely disconnected terms. Fourier

transformingC,, and C,3 in time and space and then ana- c™ Os— it O — 7 O —i7 Oo—i8 )

lytically continuing, w,— —iw+ 8, leads to taga,2 02 1M 0171 61717, 6,710) =0’
(A19)

C22(w=0,k=0)+C23(w=0,k=0)
wherell ¢ is given in this case by

=— S&YO d 6 cosh §) e~ 2AA cosh()
™ IT o= (020 9( 01— i 7 +im) 01— i m+i5)
A
=—6'87K1(2,8A), (Al16) X (01— imp+id).
. ) ) Discarding the pole termighe first set of terms on the r.h.s.
where agairK, is a standard Bessel function. of Eq. (A19)] and evaluating the remainder leaves us with

To computeC,, we need to evaluate the connected four-ihe desired connected form factor
particle form factor. To do so we add small imaginary pieces
to the rapidities where potential poles lurk and take only thez fMg
finite piece. For example, the first term G, upon Fourier <
transforming reduces to

1§1a12( 02_i77,01_i77,01,02)c

672 cosh 6;) + (572 +263,)cosH 65)

B _ =27
Co(w=0k=0)=— 877—2Aj de, do,e BA(cosh(,) +cosh(y)) (4772+ 9%2)(7724- 9%2)
(A20)
3
x cosh 1(6,) x fg"lo( 0,—i1r,05) Combining Egs(A20) and (A6) with (A17) we find
> fog (6—im,0,—i,601,6,) Coy(w=0 k=0)=&f d 6y dppe A (cosCr)+cosnCz))
</ laa,2 2 U1 Y1, V2)ce ’ iy
+three other terms. (A17) » 672 cosh 6,)+ (572 +2 afz)cosf( 0,)
Then to evaluate the connected form factor in this expression (472 + %) (72 + 6%)
we write 114
3 + three other termss ——=K(BA)K(BA)
Mg . . - A
= (0,—im,0,—im, 60,,0,).=finite part of
la;a,2 T
3 +O| —e P2 | +three other terms. (A21)
0 (Gy—im, O =i, O~ i, 0,—i5) A

laja,2
t To arrive at the last line we have dropped terms polynomial
(A18)  in g,,. This leads to errors aP((T/A)e #2). The remain-

We evaluate this matrix element using the discussion in Sed?d three terms make equal contributionsGg,. We thus
Il D, throwing away any poles im or & together with terms ~ finally have
of the form /8. Expanding the form factor on the r.h.s. of

A
Eqg. (A18) in » and § by using Eq.(3.29 leads to Cow=0k=0)= ’8—] d 6, dg,eFA(Cosh0) +cosh@z))
a
Mg ; ; : - 2 2 2
= O,—im,0—imw,0,—in,0,—10 67 cosh{0,) + (57°+ 267, cosi
< 1a1a12( p—im, 01—, 01—17n,0,—10) y H o) +( 12)cosht 2). (A22)

(4m2+ 07) (7°+ 62))

A7® 16(cosh 6;) cosh @
__ o7 — .h 1)+ .I'( 2)) We note that in regulating the form factor @, we do not
8 m 16 ' allow the infinitesimal imaginary pieces to affect the spatial
o dependence of the form factor, i.e., we do not write
X(H l/, 50,7]O)Gla?’lalz(az_lﬂ-lal_|7T101102) M3 . ) ) )
2 (O,—im,0,—im, 0,+in,0,+i8,X)
5 laja,2

Am> 16

~ 8 44 costidy)d g | IT v — gl Ax(i 3 cosh(ez) +i7 coshioy) . . .
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If we were to do so we would find an additional term comingthermal trace and resolution of identity such tha& 6, and

from expanding expdx:--) in » and §. However, generi-

0,< 65 [and correspondingly multiplying the expressions in

cally such terms lead to a violation of translation invarianceEq. (A14) by 4]. If we had done so we would find that in this
and as such should not be included. We moreover know thataseC,;=0 and C,, is twice its current value. Of course
such terms would violate the equivalence of the form-factoboth approaches must yield the same answer. But to do so we
computation with the expression for the susceptibility com-needC,s(w=0k=0)=C,(w=0k=0). Given the regular-

ing the thermodynamic Bethe ansatz.
We go through a similar procedure wi@ys and find an
identical resultC,5(w=0k=0)=C,(w=0k=0). That we

ization of the form factors one must do to compQtg, it is
not a priori that this will be the case. That it is is a nontrivial
check of our regularization procedure.

do so is significant. We might have approached the calcula- The final term we must evaluate G,5. Fourier trans-
tion equally validly by ordering the in and out states in theforming as before we find

do, do, dos dé,

1
CZG(“’:O"‘:O):WJEEEE

X 27 8(sinh( 63) + sinh( 6,) — sinh( 6,) —sinh( 6;))

e BA(cosh(@3) + cosh(04))( 1—e" BA(cosh(@3) +cosh(@,) —cosh@,) — cosh(ﬂz)))

X
cosh 6,) + cosh( 6,) —cosh 63) — cosh 6,)
M5 M3
X f—2 O3—iT,0,—i7,07,0,) X f—= O,—im,0,—i7,04,03). A23
aimas a3a4a1a2( 3=, 0,—1m,01,05)¢ a2a1a4a3( p—im, 0y =i,04,03)c ( )
|
As the 4-particle form factors are proportional ¢sinh(¢s) X<Aa1( ‘91)|M(1)(Oy0)|Aa( 0)), (B2)

+sinh(#,)—sinh(#,) —sinh(¢,))—the Lorentz pre-factor for

the matrix element—one might believe it is immediate thatwhereS, is the spin of particle. We have assumed the field,
this expression vanishes once the Fourier transformfi, is aligned along the 3-direction. Although we perform the
lim, .o/ dx€**, is taken and so makes no contribution to thecalculation at finite H, the form factors themselves retain

susceptibility. However the need to regulate the form factoitheir H=0 form, a feature of the model’s underlying integra-

leaves this ambiguous. Nevertheless, after the regul&tign

ends up making no contribution to the susceptibility. It will,

bility. Finite H merely breaks the degeneracy of the triplet
state with the consequent energy shifts seen above. For the

however, make a contribution to the NMR relaxation rate.purposes of this computation, we are interested in the regime

Hence some of the details needed to compDig will be
dealt with in the context of that computatigsee Appendix
B and Sec. II Q.

APPENDIX B: COMPUTATION OF THE CORRELATOR
FOR THE NMR RELAXATION RATE, 1 /T,

In order to compute I/; we must evaluate the correlator,

cuzowzoy:fde%MaonMaQQy (B1)

The lowest order contribution arising from the evaluation o

the thermal trace takes the form

<M (%(Ovt) M é(oao»lowest order

do de,

=G0=] 2222

X efﬁAcosh(e)E e itA(cosh(@q) 7cosh((9))+it(Hsalf Hsa)
aa;

X e#1%a( A, (0)|M§(0,0)[Aq (61))

H<T<A. This permits setting?"a to 1, provided we are
willing to tolerate errors ofO(H/T). Performing then the
sums,Z, , over the different types of excitations leaves us

with

% % ef,BAcosh(a)ef itA(cosh(@1) —cosh(9))
2m 2T

cawz—zf

Ml . VIS .
xcogHt) X, 2(0—im, 0,)f,0(0,—im,6)

X (1+O(HIA)). (B3)

1
sSubstituting the expression for the form—factof'%"go, from

Sec. Il into the above, and then performing the necessary
Fourier transform, leaves us with

2A e~ FAcoshl) costt( 6)
Ci(w=0)=—/| db
w 2H
sint?( 6) + Tcosk{ )
X (1+O(H/A)+O(H/T)). (B4)
For T<A this reduces to Cyiy(w=0)

~2A/mwe PA(log(4T/H)—7v), where y is Euler’s constant.

104435-23



ROBERT M. KONIK PHYSICAL REVIEW B 68, 104435 (2003

This is the result found in Ref. 5—a logarithmic dependence dé, do, dé,
on H indicative of ballistic transport. Cou)=7 D> | 5= 5= 5@ PAlcoshly+coshty))
. . . . 4 a-a-a 27 27 2w
The next order in the computation, essentially computing 19258
terms ofO(e~2£%), is of the form X g ItA(cosh@3) ~cosh(B2)) cog Ht)
x| Mo O3—im,6,—im 6,0

Cy(t)=— E %%%% ;3;1'31'32( 3= 1m0, 01, 62)e

4 ajajasay 27 2w 2w 27

VIS .
X (Aq,(01)Aq,(02)[M(0)| A (03) Az, (6)) Xt (02— 03)

X{Aqs,(04)A4.(05)|M3(0,0)|A, (02)A4 (61)) » /o
toC S + 2 SRS 0

=Cpy(t) + Copl(t) + Coz(t) + Cput) + Cos(t) + Cog(t). 348183
(B5) VIS , )
X fgzo,glya4ﬁ3( 01_ |, 03_ 177, 02 , Hl)c
Here we have introduced the same notation employed to i
evaluate the second order contribution to the susceptibility. XE=0 (6,—im,03)+ (0 63) . (B8)
The definitions ofC,; are the same as those in E414) but 848
. 3 1 g .
for changingMj to Mg and shifting energies by a Zeeman 14 gyajuate this expression we must again regulate the four
term. As in the susceptibility computatioB,(t) is an ill-  harticle form factors appearing in the above by removing the

defined term proportional t@(0), but is cancelled off by  gjngularities arising when two rapidities equal one another.
similar terms coming from the partition function. Similarly, For example, we regulate the first four particle form factor
C,2 andCpz are disconnected terms relatedd. They give  gppearing in the above via

a contribution of the form

M . .
fgog a a (03_|7T,01_|7T,91,62)C
C22(w=0)+C23(a)=0) 311 T2
77_3
2A e~ Aacoshl) costt( 9) =7¢(932—iw)[cosf( 01)(H ¢>
——| de
m . 2H Ml ) )
sink(6) + Tcosk( 6) X Ggso!gl'al'aZ( O3—im,0,—im, 6,,6,)
< _3e—ﬂA cosh(®) . i
( ) +(sinh( 6,)—sinh(65))0_,| | TT o
6 264 277( (ZT .
=——Ae" \/—| log| —|—7v]|. B6 M . ) .
. BA 9 hl 7 (B6) XGZOE . a(93—|7T,01—|7T,01—|77,02)>], (B9)
30919192

where Il = ¢(031) h(031 — i + i 9) (01— 17) h(017
—in). Regulating the other form-factors similarly, we find
after a long computation

If we were to add similarly disconnected terms coming from
matrix elements with a greater number of particle numbers
we would find a resummation of the form:

A
C =0)= — | d@, dg,e BA(cosh@:)+cosh@,))
Capy(@=0)+Coo @=0)+ Cpz @=0) 24 ©=0) 256f 1892

+ higher order disconnected terms

1 . .
x{(m(smﬂ 0,) —sinh(63))

2A e~ PAcosh0) cosi( 9)
=" de
T 2H 2
: - 023COtH(6,3/2)
\/smk?(0)+ X cosh 6) x{ze’(agsﬁ [ 126,5cosh 6;)
1
X ——— (B7)

+12(sinh{ 6) — SinK 93»(0—1% Y1z %)]

— BA cosh@) ’
1+3e 01, 013

This type of resummation was discussed in Sec. Il A.
The remaining terms are connectd@,,(t) is given by X (1+O( 82392+ O( 015+ O( 013)2))
(we again set terms of the fore A" to 1)

65=cosh™1(cosh(@,) +H)
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-HHH—Hﬂ
1A Lo 2w (4T
= 3,38 7\ 5| lod | 7|+ O(HIM)+O(T/A)).

(B10)
We perform a similar procedure d@ys. As with the suscep-

PHYSICAL REVIEW B 68, 104435 (2003

 @itH (Sa, " Sa,~Sa,~Sa)

1

X fo (y—im+iey,0,—im+iel, 04,05
;251’&4’% 2 lmTl€x, 01— 1TTT1€1,04,03)c
1

XN (Ga—imties, Ou—imties,0y,0,)
az.,3,,3;,3, 3 3:Y4 4,Y1,V2)c-

(B11)

tibility, C,5 must and does generate an identical contribution

to Cyy.
The remaining term to evaluate G,¢. This term made

Again we must regulate this expression by discarding terms
proportional to the %'s. To exhibit such terms we deform

no contribution to the susceptibility but does make a contrithe contoursd; and 6, via

bution to the relaxation rate, T{. C,¢ takes the form

03—) 03+ i T,
cty=t o, do; dos doy .
26 4 a1a2a3a4 27 2@ 27w 2w 04— Oy +i.
% @~ BA(cosh() +cosh(l)) In doing so, we deform through a series of poles whose
residues we thus pick up. Taking these into account, we end
xXe~ itA(cosh(@3) + cosh(@,) — cosh(@1) —cosh(@,)) up with
Cog(t)=— |—5 2 dg, de.d 64e—ﬂA(COSh(01)+cosh(02))e—iAt cosh(@,) cog Ht)
8m ajasasay
ml . . . .
f*of (02_|7T+|62,01_|7T+|61,04,03)
% { gt cosh@,) 82:81:84,83 R
Y(O3—iT+iey) et
3 1
ml . . . .
—0_ (02_|7T+|€2,01_|7T+|61,04,03)
Mo i+ P iAt cosh(py) 22913483
;3;4@1 a2(01_|7T+|63,04_|7T+|€4,91,02)+e 1 1/1(023—i77+i62)
03=10,
ml . . . .
f—o0_ (O,—im+ies,0—im+ies,01,0,) ([ — == d6; d@, dgge PA(COshOL) +cosh@z)) gitA cosh@s) cog Ht)
a3.84.31,3, 8w 31323334
Ml ) ) . . . .
f*of (02_|7T+|62,01_|7T+|61,64,63+|7T_|€3)
%\ @it coshy) 22:91:84:9 .
(014~ imtie) 0,= 0,
Ml . . . . . .
Ml goga a(02_|7T+|62,01_|7T+|El,94,03+|77_|€3)
Mo + + gltA cosh@;) 2°71:94°3 : :
PP a2(03,91 im+ie,,01,0,)+€ W O i 7+ €3) .
4= 02
Ml
X f—0_ O3,0,—im+ies,01,0,) [+ fda d6, d;dg,e PA(coshE) +cosh@z)
a3,a4,al,a2( 3,02 4,01,05) 6472 a1a2a3a4 1062003004

X eltA(cosh(al) +cosh(@,) + cosh(@3) +cosh(@,)) COS( Ht) f— 0
a.a

5
E;cmm

(02 i, 01— 1,0, +im, 03+|7T)f¥

1

— (03,04,01,0)

3:84.81,8;

(B12)
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As we are interested i€,4(w~0), we immediately see that the last three ter@g; to C,g5, may be neglected as they are

only non-zero for frequenciesy, in excess of A (providedH<A).
Focusing then upoR,¢;, we obtain upon performing the necessary regulation

A273
CZ6l(t) =i 58 f d 01 d 02 d94e7,8A(cosh(el)+cosh(02))

1
Mo_

X cog Ht) e~ 1At(cosha) —cosh2) i (sink 6,) —sinh( 6,))| [ & (0y—im,0,—im, 04,07
1 82.81.84.83

X cosrwl)(];[ zﬁ)Gm‘l) (61—i77,04—i77,01,02)+(sink(az)—sinr(04))a_ie<(1;[ lﬂ)

az,a,,a,ay

X G0 _ a(01—i77+ie,04—iﬁ.01,92))}

H W= (020 Y( Oaq— 1 ) Y( Ogy— 1 ) P( O14— 1 ) P 649),
1;[ Y= Oytie)h(O—im+i€)h( 04— i) h(Ogo— i) h(612). (B13)

To evaluate the above expression, we first Fourier transform which then leads us to consider the following expressions:

1 1
my my (B s— )=
(IZ[ l/’)(l;[ lr/j) ;2;1'34'336;354@1'32 (6 6)=0.

+ (0 —06)

Mo Mo
0 9 G0
(1:[ ¢) 82:81,84,83 IE((I;[ lﬁ) 83,8481,
m mg
= G- G- J_;
(I:I dl) ay.a1.38,,83 a3,a4,a1,a2( IE(I;I 4

2
(1+0(62)+O(62) + O(63))). (B14)

+(9i<—>_9i)>

_ 03,cottt( 6,4/2)
=il2n| —————
(O34 m2)

Putting everything together then yields

A37°
0261( 0= O) — 5 f d 01 d 02e—BA(cosh(01) +cosh(@@,))

62, cott( 024/2)] 2

1 ) ] )
X[(lsinl‘(04)|(3m“02) sinh(6,)) x[ (6§4+772)

X(1+O(024)2+O(912)2"‘0(014)2)) +(H<—>_H)]

2
_ —2pA 4 |
12wAe BA

The evaluation ofC,4, yields an identical contribution to the relaxation time.

6,=cosh™1(cosh@,) +H)

|og<T_|—T)—y)(1+ O(HIT)+ O(TIA)). (B15)
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