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Haldane-gapped spin chains: Exact low-temperature expansions of correlation functions

Robert M. Konik
Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA

~Received 24 October 2002; published 30 September 2003!

We study both the static and dynamic properties of gapped, one-dimensional, Heisenberg, antiferromagnetic,
spin chains at finite temperature through an analysis of the O~3! nonlinear sigma model. Exploiting the
integrability of this theory, we are able to compute an exact low-temperature expansion of the finite tempera-
ture correlators. We do so using a truncated ‘‘form-factor’’ expansion and so provide evidence that this
technique can be successfully extended to finite temperature. As a direct test, we compute the static zero-field
susceptibility and obtain an exact match to the susceptibility derived from the low-temperature expansion of
the exact free energy. We also study transport properties, computing both the spin conductance and the
NMR-relaxation rate, 1/T1. We find these quantities to show ballistic behavior. In particular, the computed spin
conductance exhibits a nonzero Drude weight at finite temperature and zero applied field. The physics thus
described differs from the spin diffusion reported by Takigawaet al. @Phys. Rev. Lett.76, 2173~1996!# from
experiments on the Haldane gap material,AgVP2S6.
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I. INTRODUCTION

The realization that one-dimensional, integer spin, anti
romagnets possess an energy gap1 has made these system
the object of intense study. The model perhaps most c
monly used to explore their properties is the field theore
O~3! nonlinear sigma model~NLSM!.2–7Although the model
has the virtue of being integrable,8,9 its properties are none
theless only partially understood. It is possible to acc
static, thermodynamic quantities while dynamic properti
in particular, transport properties, are in general, unavaila
These latter quantities depend upon knowledge of correla
functions which are generically not exactly computable
integrable models. There are, of course, perturbative te
niques by which correlators in the O~3! NLSM may be ana-
lyzed. But in strongly coupled models, of which the O~3!
NLSM is one, perturbative techniques present a host of
ficulties and so can miss qualitative~never mind quantita-
tive! features in the physics.

The inability to completely understand correlation fun
tions in the fully quantum O~3! NLSM has been at the roo
of a recent controversy in the literature. Takigawaet al.10

demonstrated through measurements of the NMR relaxa
rate, 1/T1, of the Haldane gap compound,AgVP2S6, that at
long wavelengths, the spin–spin correlation functions
diffusive in nature. In an elegant series of papers, Sach
and Damle6,7 developed a semi-classical treatment to atta
the problem and subsequently were able to describe this
fusive behavior. Nonetheless their computation was se
classical leaving open the possibility that a fully quantu
treatment of the O~3! NLSM would lead to different physics
This possibility was hinted at in the work of Fujimoto.11

There the spin conductance was computed using exact
modynamic considerations. Upon subsequent work,12 it be-
came clear that the two treatments produced qualitativ
different results. In particular, the Drude weight of the sp
conductance,D, of the O~3! NLSM was found to be nonva
nishing in the zero field limit11, whereas the correspondin
semi-classical treatment seesD(H50)50. This qualitative
0163-1829/2003/68~10!/104435~27!/$20.00 68 1044
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difference opens up the possibility that diffusive physics
not present in the O~3! NLSM itself but requires some addi
tional mechanism. Such mechanisms might include a s
phonon coupling~as suggested by Ref. 11!, spin anisotropy,
inter-chain coupling~the spin-chains inAgVP2S6 are only
quasi 1-D; there do exist weak couplings in between cha
although the weakness of these couplings seems to prec
this possibility!, or perhaps small generic integrable-breaki
perturbations.13

In this paper we attempt to address this problem by de
onstrating a technique to compute exactly a low-tempera
expansion of correlators in the O~3! NLSM. This expansion
is based upon a ‘‘form-factor’’ expansion. Form-factor e
pansions have a long history in the computation
correlators.14–19 However these expansions have been u
almost exclusively at zero temperature. When they have b
used at finite temperature, they have been used either in
computation of expectation values lacking dynamic
properties20–23 or in the development of distinct nonpertu
bative representations~i.e., Fredholm determinants! of
correlators24,25 where all the terms in the expansion we
kept. In this article we show thattruncatedform-factor ex-
pansions can be used to sensibly describe correlation f
tions at finite temperature. This is distinct from the progra
proposed in26,27 where form-factor expansions were em
ployed but the form factors themselves were recomputed
take direct account of thermal fluctuations. Here we emp
the same form factors used in zero temperature comp
tions.

A form-factor expansion of a correlation function is pred
cated upon some generic properties of integrable mod
Most importantly, the exact eigenfunctions of the mode
fully interacting Hamiltonian are known. With this knowl
edge comes a well-defined notion of ‘‘particles’’ or eleme
tary excitations in the system. The scattering of these p
ticles is completely described by two-body S-matrices.
particular, particle nonconserving processes are disallow
Ultimately this feature is a consequence of a series of n
trivial conservation laws possessed by the integrable mo
©2003 The American Physical Society35-1
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In some sense, an integrable model is a superior version
Fermi liquid: a particle’s lifetime is infinite regardless o
distance from the Fermi surface.

In order to understand these features of the O~3! NLSM,
we begin by providing an overview of the model. The O~3!
NLSM is described by the action,

S5
1

2gE dx dt~]mn ]mn!, ~1.1!

wheren5(nx ,ny ,nz) is a bosonic vector field constrained
live on the unit sphere. This action is arrived at from t
Hamiltonian of the spin chain,

H5J(
i

Si•Si 11 . ~1.2!

In the continuum, large s, limit, the spin operator,Si , is
related to the field,n, via

Si5~21! isni1Mi ,

that is,n(x,t) is the sub-lattice or Ne´el order parameter.M
on the other hand describes the uniform~i.e., wave vector
k;0) magnetization. M is related ton via

M5
1

g
n3] tn,

and so is given in terms of the momentum conjugate ton.
The low energy excitations in the O~3! NLSM take the

form of a triplet of bosons. The bosons have a relativis
dispersion relation given by

E~p!5~p21D2!1/2.

HereD is the energy gap or mass of the bosons related to
bare coupling,g, via D;Je22p/g. The dispersion relation o
all three bosons is identical as the model has a global SU~2!
symmetry. The exact eigenfunctions of the O~3! NLSM
Hamiltonian are then multi-particle states made up of m
tures of the three bosons. Scattering between the boso
described by the S-matrix8

Sa1a2

a3a4~u!5da1a2
da3a4

s1~u!1da1a3
da2a4

s2~u!

1da1a4
da2a3

s3~u!;

s1~u!5
2p iu

~u1 ip!~u2 i2p!
;

s2~u!5
u~u2 ip!

~u1 ip!~u2 i2p!
;

s3~u!5
2p i ~ ip2u!

~u1 ip!~u2 i2p!
. ~1.3!

Here u parameterizes a particle’s energy/momentum viaE
5D cosh(u), P5D sinh(u). The primary advantage of thi
parameterization is the implementation of Lorentz boo
Under such a boost,u→u1a. As such Lorentz invarian
10443
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quantities are invariably functions of differences of rapid
ties. We stress that this relativistic invariance is a natu
feature of the low energy structure of the spin chain.~How-
ever we do point out for spin 1 chains,D;.4J. As J serves
as the cutoff for the theory, the low energy sector of t
theory is not unambiguously defined.!

With the excitation spectrum of the O~3! NLSM in hand,
we return to the form-factor expansion. A finite temperatu
expansion of correlators is given in terms of a trace over
Boltzmann density matrix:

GO~x,t !5
1

Z Tr~e2bHO~x,t !O~0,0!!

5

(
nsn

e2bEsn^n,snuO~x,t !O~0,0!un,sn&

(
nsn

e2bEsn^n,snun,sn&

.

~1.4!

Here the state,un,sn&, denotes a set of n-particles carryin
spin quantum numbers$sn%. Inserting a resolution of the
identity between the two field then leads us to a double s

GO~x,t !

5

(
nsn
msm

e2bEsn^n,snuO~x,t !um,sm&^m,smuO~0,0!un,sn&

(
nsn

e2bEsn^n,snun,sn&

.

~1.5!

We thus have reduced the evaluation of the correlator to
evaluation of a series of matrix elements~known as ‘‘form
factors’’!. In an integrable model like the O~3! NLSM, these
matrix elements are in principle exactly computable. Ho
ever as the number of excitations involved increases,
functional forms of the matrix elements become increasin
unwieldy. This, together with the difficultly in evaluating th
sums,( (n,sn),(m,sm) , ensure in all but a few special cases t
correlators do not admit a closed form expression.

To surmount this we adapt an idea from zero tempera
form-factor expansions. Rather than look at the correlato
real space and time, we examine the~more relevant! related
spectral function,GO(k,v). In computingGO(k,v), only
terms in the form factor sum with a given energy,v, and
momentum,k, contribute to the sum,

GO~k,v!5
1

Z (
nsn
msm

d~v2Esn
1Esm

!d~k2psn
1psm

!

3e2bEsn^n,snuO~0,0!um,sm&

3^m,smuO~0,0!un,sn&, ~1.6!

as enforced by the presence of the two delta functions.
any v,k, this dramatically reduces the number of matrix e
5-2
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ements one must compute.@Here GO is simply the Fourier
transform ofGO(x,t), but similar considerations also app
to the corresponding retarded correlator.# This reduction
nonetheless leaves a difficult computation. However we
exploit the gapped nature of the spin chain to make the p
lem more tractable. Because the theory is gapped~with gap,
D), the correlator admits a low-temperature expansion of
form,

GO~k,v!5(
n

an~k,v!e2nbD. ~1.7!

For the particular correlators of concern in this paper and
the range ofv andk in which we are interested, eachan is
determined by a single matrix element. Because we can c
pute these matrix elements, we obtain anexact low-
temperature expansion.

Our ability to compute such an expansion bears upon
other controversy in the literature. LeClair and Mussard20

argued that it was possible to use the same form-factors
employ here to compute finite temperature correlators. H
ever rather than directly evaluate individual terms in the s
~1.5!, they first conjectured an ansatz involving a resumm
tion of terms in the sum. This is described in more detail
Sec. III. This procedure was criticized in Ref. 21. There
was argued that while this worked for the computation
one-point functions, it was problematic for two-point fun
tions. Rather it was argued it was better in general to att
such problems through the use of form factors compu
against a thermalized vacuum.26–28 However the counterex
ample cited in Ref. 21, a computation involving interacti
quantum Hall edge states, involved a gapless theory, an
is in a different class than the model considered in this pa
~Without a gap, the low-temperature expansion we cons
above ceases to make sense.! This work here shows that it is
possible, at least in certain cases, to make sense of the f
factor expansion of two point functions at finite temperatu
But while we can make sense of this expansion, we can
compare our computations directly to the ansatz posite
Ref. 20. Their ansatz as is applies only to diagonal theo
where scattering does not permute internal quantum n
bers, contrary to the case here.

The outline of the paper is as follows. In Sec. II we su
marize the results of the form-factor computations for th
quantities: the magnetic susceptibility, and two transp
properties, the spin conductance and the NMR relaxa
rate, 1/T1. The details of these computations are found
later sections or in appendices if the reader is so interes
The first quantity, the susceptibility, is compared to the s
ceptibility as derived from a low-temperature expansion
the exact free energy. We see that they match verifying
claim that the form factor expansion can yield an exact lo
temperature expansion.

We compare our transport calculations to the se
classical computations in Refs. 6 and 7. The essence of
method lies in treating the spin-chain as a Maxwe
Boltzmann gas of spins which interact with one anoth
through the low energy limit of the scattering of the O~3!
NLSM,
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cd~u50!52daddcb . ~1.8!

While static properties computed in the two treatments ag
~for the susceptibility, we find that up to temperatures on
order of the gap,T;D, the two computations agree!, we see
differences in transport properties. For the spin conducta
we find, in contradistinction to the semi-classical compu
tion, that the Drude weight of the spin conductance is fin
in the limit of zero external field. Our results for the NM
relaxation rate, 1/T1, indicate a similar discrepancy. We, lik
Ref. 5, find that 1/T1 is characterized by ballistic logarithms
These logarithms are relatively robust: they continue to
pear at higher orders in the low temperature expansion.
do not, however, see diffusive behavior in the relaxation ra
i.e., 1/T1;1/AH, nor does our low-temperature expansi
match the low-temperature expansion of the semi-class
computation of the correlator.

We consider two possibilities in explaining these discre
ancies. We argue that the structure of the conserved qu
ties or charges differs between the O~3! NLSM and its semi-
classical variant and that these differences lead to balli
behavior on the one hand and diffusive behavior on the ot
The other explanation we forward to explain this discrepan
lies in the supra-universality of the low energy S-mat
~1.8!. The low energy limit of this S-matrix is shared b
generic integer spin chains. Indeed it is shown in Ref. 7 t
a two-leg spin-1/2 ladder, expected to share the low ene
behavior of a spin-1 chain, has this exact low-ene
S-matrix. However rather than the supra-universality bein
virtue, it may be that it under-specifies the physics. In t
way the semi-classical treatment, valid in and of itself~par-
ticularly in light of its ability to reproduce experimenta
data!, may capture different physics than that of the O~3!
NLSM. In Sec. II we consider this further in the light of th
sine-Gordon model where a similar phenomena may be
gued to occur.

In the first part of Sec. III we explain in some detail ho
the form-factor expansion is to be understood. In particu
we consider the various technical details of the expans
including how to regulate the infinities that appear gene
cally in the form factors of the double expansion. In seco
part of Sec. III we review the specific form factors of th
O~3! NLSM. And finally in Sec. IV, we review the low-
temperature expansion of the exact free energy, necessar
comparison with the form-factor computation of the susc
tibility.

II. SUMMARY AND DISCUSSION OF RESULTS

A. Zero field, finite temperature susceptibility

In this subsection we present results for the magnetic s
ceptibility arising from several methods of computation:
form-factor evaluation of the magnetization–magnetizat
correlator in the context of a Kubo formula, an exact co
putation of the system’s free energy, and finally, treating
excitations of the O~3! sigma model as noninteracting pa
ticles obeying both a Fermi-Dirac distribution and
Maxwell-Boltzmann distribution in the spirit of the sem
classical approximation of Sachdev and Damle.6,7 We thus
5-3
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will be able to determine the temperature regime over wh
our truncation of the form-factor expansion applies as wel
comparing with other computational techniques.

1. Kubo formula and form factors

The susceptibility,x, at H50 can be computed from th
magnetization-magnetization operator using a Kubo form

x~H50!5C~v50,k50!,

C~v50,k50!5F E
2`

`

dxE
0

b

dteiwnteikx

3^T~M0
3~x,t!M0

3~0,0!!&G
vn→2 iv1d

.

~2.1!

To evaluate this correlator we employ an expansion in te
of the exact eigenfunctions of the theory, i.e., a form-fac
expansion. In particular we write

^M0
3~x,t!M0

3~0,0!&5
1

Z Tr~e2bHO~x,t!O~0,0!!

5

(
nsn

e2bEsn^n,SnuO~x,t!O~0,0!un,Sn&

(
nSn

e2bEsn^n,Snun,Sn&

.

~2.2!

Hereun,Sn& is a state of n excitations with spins described
Sn5$s1 ,•••,sn%. In writing the above we have suppress
sums over the energy and momenta of the excitations. A t
in the thermal trace with n excitations is weighted by a fac
of e2nbD. At low temperatures it is thus a good approxim
tion to truncate this trace. For this computation we keep o
terms with one and two excitations, i.e.,n51,2. To evaluate
the matrix elements appearing in Eq.~2.2! we insert a reso-
lution of the identity in between the two fields. As we on
consider matrix elements involving one and two excitatio
from the thermal trace, we thus have

^s1uM0
3~x,t!M0

3~0,0!us1&5 (
mSm

^s1uM0
3~x,t!umSm&

3^mSmuM0
3~0,0!us1&

5(
s18

^s1uM0
3~x,t!us18&

3^s18uM0
3~0,0!us1&1•••;
10443
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^s1s2uM0
3~x,t!M0

3~0,0!us2s1&5 (
mSm

^s1s2uM0
3~x,t!umSm&

3^mSmuM0
3~0,0!us2s1&

5(
s18s28

^s1s2uM0
3~x,t!us18s28&

3^s28s18uM0
3~0,0!us2s1&

1•••. ~2.3!

In the above we have truncated the sum arising from
resolution of the identity. With the first matrix element of th
thermal trace, we only keep terms from the resolution
identity with one excitation. We are interested in the beh
ior of the susceptibility atv50 and this term provides the
only contribution. Similarly, the only term arising from th
second matrix element of the thermal trace contributing
the dc susceptibility comes from keeping the term from
resolution of the identity involving two excitations. Furthe
details surrounding the methodology of this expansion a
the explicit exact evaluation of the matrix elements are fou
in Sec. III and Appendix A. With such details we can eva
ateC(v50,k50) with the result

C~v50,k50!5C1~v50,k50!1C2~v50,k50!,
~2.4!

whereC1 andC2 are given by

C1~v50,k50!5
2bD

p
K1~bD!;

C2~v50,k50!52
6bD

p
K1~2bD!1

2bD

p E du1du2

3e2bD(cosh(u1)1cosh(u2))cosh~u1!

3
11p212u12

2

u12
4 15p2u12

2 14p4

52
6bD

p
K1~2bD!1

22bD

p3 K0~bD!K1~bD!

1OS T

D
e22bDD , ~2.5!

where u125u12u2 and Kn are standard modified Bess
functions. The first term inC2 is a ‘‘disconnected’’ contribu-
tion related toC1. The second term is a connected contrib
tion and as such is genuinely distinct fromC1. We now
consider such disconnected contributions further.

2. Resummed form factors

In computing the susceptibility, we are able to go beyo
the approximation introduced in truncating the form-fac
sum arising from the thermal trace. It is possible to inclu
‘‘disconnected’’ terms arising from higher particle contrib
tions. Such disconnected terms appear when higher par
5-4
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matrix elements are evaluated. For example when we ev
ate the four excitation matrix element^s28s18uM0

3(0,0)us2s1&,
we obtain a term of the form

^s28s18uM0
3~0,0!us2s1&5•••1ds

28s1
^s18uM0

3~0,0!us2&1•••.

This term is ‘‘disconnected’’ in that it is directly related to
matrix element involving a lesser number~two! of excita-
tions. It arises from the annihilation ofs28 with s1. Such a
term is responsible, as we just indicated, for the first term
C2 above.

What is remarkable is that we are able to sum up overall
possible disconnected pieces arising from arbitrarily h
particle form factors which are proportional to the connec
lower particle matrix elements already computed. This
summation amounts to the evaluation of a geometric se
For example, including all disconnected terms involving t
matrix element going into the evaluation ofC1 modifies it as
follows

C15
bD

p E due2bD cosh(u) cosh~u!

→ bD

p E due2bD cosh(u) cosh~u! (
n50

~23!ne2nbD cosh(u)

5
bD

p E du
e2bD cosh(u) cosh~u!

113e2bD cosh(u)
5

2bD

p
K1~bD!

2
6bD

p
K1~2bD!1O~e23bD!. ~2.6!

We see resumming the disconnected pieces thus reprod
bothC1 and the first term inC2 plus additional terms highe
order ine2bD. The appearance of the factorse2bD cosh(u) in
the geometric series is natural and arises from the Boltzm
weighting of the higher particle terms. The combinator
factor of 3 reflects the three bosons in the system.

In collecting all the disconnected pieces related to
connectedterm in C2, we find something similar

connectedC21disconnected terms

5
bD

p E du1 du2

e2bD(cosh(u1)1cosh(u2))

113e2bD cosh(u1)
~cosh~u1!

1cosh~u2!!
11p212u12

2

u12
4 15p2u12

2 14p4
. ~2.7!

One expects in general that the inclusion of disconnec
terms from arbitrarily high particle number will improve th
accuracy of the calculation. In the case of the susceptibi
the agreement between the form-factor computation and
exact numerical analysis actually becomes slightly wor
However, this should not be taken as indicative of the resu
mation in general. We will comment on this further at t
end of this section.
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3. Gases of free particles

For the purposes of comparison, we compute the sus
tibility of both a free electron gas~or equivalently, a system
of hard-core bosons! as well as a Maxwell-Boltzmann gas
At sufficiently low temperatures both of these quantiti
should be close to the exact value ofx for the O~3! sigma
model. How the susceptibility of the free electron gas de
ates from the exact value ofx gives us an understanding o
the temperature at which interactions become important. A
how the susceptibility of the Maxwellian gas deviates fro
the exact answer marks the temperature at which the s
classical approximation found in Damle and Sachdev6,7 must
begin to breakdown.

These two susceptibilities are given by

x free el.5
bD

p E du
cosh~u!e2bD cosh(u)

~11e2bD cosh(u)!2
5

2bD

p
K1~bD!

1O~e2bD!5A2bD

p
e2bD1OS T

D
e2bDD ;

xMB5A2bD

p
e2bD. ~2.8!

We see that at low temperatures (bD!1) both of these ex-
pressions coincide with the low temperature limit of the fo
factor computation ofx. In particular, the terms ofO(e2bD)
are identical.

4. Thermodynamic Bethe Ansatz

It is possible in the case of the O~3! sigma model to arrive
at exact expressions~in the form of coupled integral equa
tions! for the zero-field susceptibility.29,30These equations, in
their most compact form, appear as

x~H50!52
D

2pE du cosh~u!
]H

2 e~u!uH50

11ebe(u)
;

e~u!5D cosh~u!2TE du8 log~11ebe2(u8)!s~u2u8!;

en~u!5TE du8s~u2u8!$ log~11eben21(u8)!

1 log~11eben11(u8)!1d2n log~11ebe(u8)!%

H5 lim
n→`

en~l!

n
~2.9!

We will show results from the exact numerical evaluation
these equations in the next section. However these equa
admit a closed form low-temperature expansion. The det
of this expansion may be found in Sec. IV. Here we just g
the final results
5-5
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x5
2bD

p
K1~bD!2

6bD

p
K1~2bD!

1
2bD

p E du1 du2e2bD(cosh(u1)1cosh(u2)) cosh~u1!

3
11p212u12

2

u12
4 15p2u12

2 14p4
. ~2.10!

Remarkably, we see this expansion agrees exactly with
corresponding expression derived with the aid of form f
tors. Thus the form-factor expansion at finite temperat
passes an important test.

5. Comparison of methodologies

In this section we compare the various methods of co
puting the susceptibility of the O~3! sigma model. In Fig. 1
are plotted the susceptibilities computed via an exact num
cal analysis of the TBA equations, a low-temperature exp
sion of the same equations, and a computation based u
the two and four particle form factors. We see that as in
cated previously that the form-factor computation and
low-temperature expansion match exactly. Moreover th
two computations track the exact susceptibility over a c
siderable range of temperatures despite the fact these
putations are truncated low-temperature expansions.

In Fig. 2 we compare both the exact TBA susceptibil
and the form-factor computation ofx with the susceptibility
of a classical Maxwellian gas. We see the results track
another for temperatures,T<D. For temperatures beyondD,
however, the Maxwellian susceptibility differs marked
This is then roughly the temperature at which the se
classical approximation found in Refs. 6 and 7 should
expected to break down.

In Fig. 3 are plotted the exact results for the susceptibi
together with the susceptibility from the resummed form fa
tors. We see that the resummed susceptibility is somew

FIG. 1. Plots of the zero-field susceptibility computed both fro
the TBA equations and from the form-factor expansions. The firs
these is an exact numerical solution of the TBA equations for
O~3! sigma model. The second is arrived from a small tempera
expansion in powers ofe2bD of these same equations. The fin
plot gives the form-factor computation of the susceptibility. W
have truncated the form-factor expansion at the four particle le
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higher that the exact numerics atT;5D and disagrees a
roughly the 10% level whereas the susceptibility compu
using the unresummed form factors sees better agreeme
these same temperatures. At lower temperaturesT
;2 –3D) the disagreement between the exact numerics
the two form-factor computations is roughly the same.
general then, the resummation does not improve the accu
of the computation of the susceptibility.

B. Spin conductance

In this section we compute the spin conductivity,ss . The
spin conductivity gives the response of the spin chain t
spatially varying magnetic field. It is defined via

j 1~x,t !5ss¹H, ~2.11!

and so can be expressed in terms of a Kubo formula,

Ress~k,v!52
1

kE dx dteikx1 ivt Im^ j 0~x,t ! j 1~0,0!& retarded.

~2.12!

f
e
re

l.

FIG. 2. The zero-field susceptibility of a Maxwellian gas
compared here to both the exact susceptibility of the O~3! NLSM
and the susceptibility of the O~3! NLSM computed via a form-
factor expansion.

FIG. 3. The zero-field susceptibility of the O~3! NLSM as com-
puted using a resummed form-factor expansion is compared
with the exact result coming from the TBA equations and the un
summed form-factor susceptibility.
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In the notation used in this paper the spin currentj 1 is syn-
onymous withM1, the Lorentz current counterpart of th
uniform magnetization,M0[ j 0. We will focus primarily on
computing the Drude weight, D, of Ress , i.e., computing
the term inss(k,v) of the form

ss~k50,v!5Dd~v!. ~2.13!

However we are able to computess for generalk,v. We find
that for v!2D, k50, the spin conductivity is describe
solely by the Drude weight. In particular, we find no indic
tion of a regular contribution toss(k50,v).

To evaluatess , we employ the identical form-factor ex
pansion to that used in computing the susceptibility. And l
the susceptibility, our result is an exact low-temperature
pansion ofD,

D5(
n

Dne2nbD.

Here we will computeD1 andD2 exactly. As the details of
the computation are nearly identical to that of the susce
bility, we merely write down the results:

D~H50!5bDE due2bD cosh(u)
sinh2~u!

cosh~u!
~123e2bD cosh(u)!

12bDE du1 du2e2bD(cosh(u1)1cosh(u2))

3
sinh2~u2!

cosh~u2!

11p212u12
2

u12
4 15p2u12

2 14p4
1O~e23bD!

5e2bDA2p

bDS 11OS T

D D D2e22bDA 1

bD

3S 3

2
Ap2

11

p
AT

D
1OS T

D D D 1O~e23bD!. ~2.14!

This expression involves only the two and four particle fo
factors. If we also include all higher order disconnect
terms related to those above we find instead~akin to the
susceptibility!,

D~H50!5bDE due2bD cosh(u)
sinh2~u!

cosh~u!

1

113ebD cosh(u)

12bDE du1 du2e2bD(cosh(u1)1cosh(u2))

3
sinh2~u2!

cosh~u2!

11p212u12
2

u12
4 15p2u12

2 14p4

3
1

2S 1

113ebD cosh(u1)
1

1

113ebD cosh(u2)D . ~2.15!

We plot these two results in Fig. 4 as a function ofT/D. Akin
to the susceptibility, the result does not differ greatly if t
resummed disconnected terms are included.
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We observe thatD(H50)Þ0. This is in accordance with
Ref. 11 whereD is computed using an argument involvin
the finite size scaling of the thermodynamic Bethe ans
equations.~We do note that the computation ofD at H50 in
Ref. 11 appears only as a note added in proof and s
decidedly sketchy. However, the equations governingD de-
veloped in Ref. 11 are manifestly positive with the cons
quenceD cannot vanish.! But our results do differ from the
semi-classical computation of Ref. 12 where it was fou
thatD vanishes atH50. We find as well no additional regu
lar contributions toss(v,k50) nearv50—only the Drude
term is present in contrast to Refs. 6 and 7.~There will,
however, be regular contributions at higher frequencies
particular forv.2D, which persist even in the zero tem
perature limit!.

We have only given the spin conductivity atH50. How-
ever, it is extremely straightforward to generalize the fo
factor computation to finite H. As H couples to the total sp
a conserved quantity, the form factors,f O(x,t), of an opera-
tor, O(x,t), carrying spin s, are altered via the rule

f O~ t !→eiHstf O~ t !.

~In the case of the spin conductance, the spin currentsj m

5Mm
3 , carry no spin and so are not altered at all.! The only

remaining change induced by a finite field is to the Bol
mann factor appearing in the thermal trace. If an excitat
with rapidity,u, carries spin s, its Boltzmann factor becom

e2b(D cosh(u)2sH).

For example, we findD as a function ofH ~to O(e2bD)) to
be

D~H !5bD cosh~bH !E due2bD cosh(u)
sinh2~u!

cosh~u!
.

~2.16!

Again this in agreement with Ref. 11. Indeed Ref. 11 co
putesD(H) at largeH/T ~but H!D) to be

FIG. 4. In this plot we present the form-factor computation
the Drude weight,D, of the spin conductance. As with the susce
tibility, both the unresummed and resummed computation g
roughly the same answer.
5-7
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D5
bD

4p
ebHE du

sinh2~u!

cosh~u!
e2bD cosh(u)1O~e22bD!.

~2.17!

Up to a factor of 2p, this expression is in exact agreeme
with Eq. ~2.16!. In this particular case our derivation o
D(H) agrees with the semi-classical computation12 ~pro-
vided T!H!D). The symmetries in the semi-classic
model that leadD(H50) to vanish are broken for finite H

C. NMR correlators

In this section we compute the NMR relaxation rate, 1/T1.
We are interested in computing this rate in order to comp
it to the experimental data found in Ref. 10 on the relaxat
rate of the quasi one-dimensional spin chain,AgVP2S6. For
temperatures in excess of 100 K~the gap,D, in this com-
pound is on the order of 320 K!, the experimental data10

shows the relaxation rate to have an inverse depend
uponAH:

1/T1}
1

AH
.

This dependence is nicely reproduced by the semi-class
methodology in Refs. 6 and 7. Moreover, the semi-class
computation reproduces the activated behavior of 1/T1 in this
same temperature regime:

1/T1}e23bD/2.

We are interested in determining whether a calculation in
fully quantum O~3! NLSM can reproduce these results. T
this end we compute 1/T1 using a form factor expansion
Sagi and Affleck5 have already done such a computation
lowest order ine2bD. But they do not find the above beha
ior. Rather they see

1/T1} log~H !; 1/T1}e2bD.

We continue this computation one further step, computing
O(e22bD). Given the behavior, 1/T1;H21/2, appears only
as T is increased beyond 100 K~i.e., T/D;1/3), it is not
unreasonable to suppose higher order terms in a l
temperature expansion of 1/T1 are needed to see this sing
larity.

To proceed with the computation of 1/T1, we review its
constituent elements. 1/T1 can be expressed in terms of th
spin–spin correlation function:5

1/T15 (
a51,2

b51,2,3

E dk

2p
Aab~k!Aag~2k!^M0

bM0
g&~k,vN!,

~2.18!

wherevN5gNH is the nuclear Lamour frequency withgN
the nuclear gyromagnetic ratio and theAab are the hyperfine
coupling constants. In the above we assume H is aligne
the 3-direction. The above integral is dominated by values
k near 0.5 Moreover in the relevant experiment, the hyperfi
couplings are such that onlŷM0

1M0
1& contributes. Hence
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1/T1}^M0
1M0

1&~x50,vN;0!. ~2.19!

We now proceed to computêM0
1M0

1&.
To computê M0

1M0
1&, we again employ a form-factor ex

pansion. Akin to the computation of the susceptibility a
the spin conductance, this computation amounts to a l
temperature expansion of^M0

1M0
1&,

^M0
1M0

1&5a1e2bD1a2e22bD1•••,

where we are able to computea1 anda2. We place the de-
tails of this computations in Appendix B, here merely quo
ing results:

^M0
1M0

1&~x50,v50!5S 2D

p
e2bDS logS 4T

H D2g D
2

6D

p
e22bDS logS 2T

H D2g D
1De22bDS logS 4T

H D2g DA2p

bDS 24p1
17

p3D D
3~11O~H/T!1O~T/D!!, ~2.20!

whereg50.577 . . . isEuler’s constant. We are interested
the regimeH!T!D ~the regime where it is expected sp
diffusion produces singular behavior in 1/T1). The terms that
we have dropped do not affect this behavior. In princip
there is no difficulty in writing down the exact expression@to
O(e22bD)]; it is merely unwieldy. This expression for 1/T1
is plotted in Fig. 5 for a variety of values of the ratioT/D.

We see that we do not obtain the same behavior as fo
in Refs. 6 and 7. Going to the next order inO(e22bD) pro-
duces a behavior in 1/T1 as H→0 identical to the lower
order computation ofO(e2bD): we again find a logarithmic
behavior consistent with ballistic transport. An alternati
comparison we might make to the results of Refs. 6 and
to perform a low-temperature expansion~in O(e2bD)) of the

FIG. 5. In this log-linear plot we present the form factor com
putation of the NMR relaxation rate, 1/T1, as a function of H for a
variety of temperatures. We plot a normalized rate, the ratio
1/T1(H) with 1/T1(H5D/36).
5-8
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semi-classical computation of^M0
1M0

1&(x50,v50). Doing
so by treatingTe2bD/H as a small parameter, we find

^M0
1M0

1&~x50,v50!}De2bDS logS 4T

H D
2g1S p

4
2

1

2D T2

pH2e22bD1O~e23bD! D .

~2.21!

We see that the low-temperature expansion of the se
classical result agrees to leading order with our computa
but afterward differs.~We have already seen that this occu
with the computation of the susceptibility.! It possesses no
term of O(e22bD). The next term rather appears
O(e23bD) and possesses a 1/H2 divergence. That the sma
H behavior should be 1/AH does suggest the importance
summing up terms. But the lack of a term ofO(e22bD) in
the semi-classical result nonetheless hints that the two re
are genuinely different.

D. Discussion

We have demonstrated that it is possible to compute e
low-temperature expansions of correlators using form f
tors. Moreover, we have done so in a nontrivial theory wh
particle scattering sees the exchange of quantum numb
An important question to answer concerns the breadth of
applicability of our techniques. Our ability to carry out the
computations was partially predicated upon the particu
correlators we studied. For example, the fact that onl
single matrix element contributes atO(e2bD) andO(e22bD)
in the computation of the susceptibility is related to the m
netization operator in the O~3! NLSM model being a Lorentz
current density. Because of these particular details, we
expect that exact low-temperature expansions of correla
will not be available in all theories.

The computation of correlators is done in the context o
grand canonical partition function. Specifically, we do n
work at fixed particle number but include matrix elemen
involving an arbitrary number of particles or excitations@see
Eq. ~1.5! for example#. This differs from the treatment foun
in Ref. 28. There correlators are computed in a canon
ensemble using form factors at some fixed particle num
N. A thermodynamic limit is then taken,N,L→` holding
N/L ~i.e., the particle density! fixed. On a technical leve
these methods may seem ostensibly different. In particula
this paper we end up computing correlators using form f
tors involving a small finite number of particles whereas R
28 computes correlators using form factors involving a
verging number of particles. It might appear then that we
somehow missing information that arises in working a
finite particle density. This would seem crucial in computi
transport properties where a finite particle density is nec
sarily determinant.

However, this difference is only apparent. The N parti
form factors used by Ref. 28 include disconnected ter
These disconnected terms are equivalent to form factors
volving small numbers of particles. The~large! N-particle
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form factors then contain the same information we use in
representation of the correlators. Moreover, we can make
identification precise. Our use of form factors in the gra
canonical ensemble involving some few number of particl
n, is predicated upon the small parameter,e2nDb. But the
disconnected terms of an N-particle form factor involvingn
particles ~with n,N) are similarly weighted by the sam
small parameter,e2bDn. More generally, the presence of
gap, D, thus means we can in principle create an expl
map between the two approaches.

The semi-classical method found in Refs. 6 and 7 is si
lar to the approach taken in Ref. 28 in that it uses a canon
ensemble. It is an interesting question whether a grand
nonical ensemble approach can be developed in this s
semi-classical approach. The answer is not obvious.
method works~at least at the technical level! because we can
readily identify disconnected terms. It is not clear whethe
similar identification can be made semi-classically.

We do want to emphasize a caveat to our methodolog
discussed in some detail in Sec. III. It is unclear whether i
possible to compute quantities that show nonanalyticities
T→0. For example, it is not obvious how to compute t
thermal broadening present in the single particle spec
function. At T50 it takes the form

^nn&~v,k!;d~v2Ak21D2!, ~2.22!

but is expected to broaden into a Gaussian-like peak at fi
T. To see this in a form-factor expansion would likely requ
a resummation of terms. However, it may well be feasible
deduce the necessary resummation from the lower o
terms in the form-factor expansion.

We have also discussed using a resummation of hig
order ‘‘disconnected’’ terms to improve the form-factor com
putation. For the quantities considered, it turned out the
summation did not provide a real improvement to the ori
nal computation. Nevertheless we would guess that
general, the resummed form factors will provide a more
liable answer as the temperature is increased. It is an art
of the above cases that they do not do so here. For exam
we see that at extremely high temperatures, the susceptib
as computed by either of the form-factors methods satur
to a constant. As such, errors in either method are cutoff—
these expressions atT5` do not differ greatly from their
low T values, any potential error is bounded. If instead
computed the finite field magnetization~where at lowest or-
der we would expect a linearT dependence—providedbH is
kept constant!, the differences between the two form-fact
computations would be comparatively magnified.

To come to some sort of judgement between the for
factor and the semi-classical approaches, an understandi
needed of the differences between our computations of
spin conductance and the NMR relaxation rate. In the cas
the first quantity, it is likely this difference is real and not a
artifact of our methodology. The data that go into the sp
conductance is identical to that needed to compute the
ceptibility and we know that we can match the low
temperature expansion of the susceptibility with a simi
expansion coming from the exact free energy. Moreover,
5-9
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ROBERT M. KONIK PHYSICAL REVIEW B68, 104435 ~2003!
know that the Drude weight ofss(H50) has been found to
be finite from an approach11 independent of ours.

In generic systems the Drude weight,D, of a conductivity
at finite temperatures will be zero. It is then the integrabil
of the O~3! NLSM and the attendant existence of an infin
number of conserved quantities that leads to a finite wei
The existence of these quantities can be directly related
finite D. As discussed in Ref. 31,D is bounded from below
via an inequality developed by Mazur:

D>c(
n

^JQn&

^Qn
2&

, ~2.23!

where J is the relevant current operator,Qn are a set of
orthogonal conserved quantities, i.e.,^QnQm&5dnm^Qn

2&,
and c is some constant. For a finite Drude weight we th
require that at least one matrix element,^JQn&, does not
vanish. While we do no direct computations, we can obt
an indication of whether the matrix elements vanish by
amining the symmetries of the model. Under the discr
(Z2) symmetries of the O~3! NLSM, the spin current,J,
transforms via

Z2~J!→6J.

In order that the matrix element,^JQn&, not vanish we re-
quire that

Z2~Qn!→6Qn .

The Z2 symmetries in the O~3! NLSM include na→2na ,
a51,2,3, parity, and time reversal. The spin current we
interested in transforms under rotations as a pseudo-ve
Thus any charge,Qn , coupling to the current must als
transform as such. From the work by Lu¨scher,32 there is at
least one conserved pseudo-vectorial quantity such
^JQn& does not vanish due to the action of one of the ab
Z2 symmetries. For the sake of completeness we exhibi
Rewriting the magnetization and spin current,M0,1, explic-
itly as antisymmetric tensors,

Mm
ab5na]mnb2nb]mna, m50,1;

the conserved quantity, takes the form,

Qab~ t !5(
c
E dx1 dx2 sgn~x12x2!M0

ac~ t,x1!M0
cb~ t,x2!

2E dxM1
ab~ t,x!.

While the first term ofQab does not contribute to the matri
element,^JQab&, as it is bilinear in the currents,Mab, the
second term does. We point out thatQab is an exotic object
inasmuch as it is anonlocalconserved quantity. As pointe
out in Ref. 32, it is the first in a series of nonlocal charge

While the structure of the conserved quantities in the O~3!
NLSM seem to be consistent with the existence of a fin
Drude weight, this is not the case in the semi-classical
proach. The dynamics of the semi-classical approxima
used in Refs. 6 and 7 also admit an infinite number of c
served quantities. Importantly, however, these are differ
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than those appearing in the fully quantum model. In parti
lar, the semi-classical approximation does not admit nonlo
conserved quantities. As shown in Refs. 6 and 7, the st
ture of theZ2 symmetries in the semi-classical approach
such that all matrix elements,^JQn&, vanish. It would thus
seem the absence of a Drude weight in the semi-class
case is a consequence of differences in the symmetries
tween the semi-classical and fully quantum models.

To understand the discrepancies in the case of the N
relaxation rate, 1/T1, is not as simple. However, if we be
lieve that the spin conductance demonstrates finite temp
ture ballistic behavior, it is hardly surprising to find the NM
relaxation rate characterized by ballistic logarithms. Aga
the difference between the fully quantum treatment and
semi-classical approach will lie in the differences betwe
the models’ conserved quantities. Nonetheless one possib
that we must consider is that merely going toO(e22bD) in
the computation of 1/T1 is insufficient. It is possible that we
need to perform some resummation of contributions from
orders to see the desired singular behavior, 1/T1;1/AH.
While this would belie our experience with computing th
susceptibility and the spin conductance via the correlat
the data that goes into the two computations is not exa
identical. Thus the possibility that the low-temperature e
pansion of 1/T1 is not well controlled cannot be entirel
ruled out.

The differences in the nature of the conserved quanti
between the O~3! NLSM and the semi-classical model o
Refs. 6 and 7 suggest the latter is not equivalent to the O~3!
NLSM, even at low energies. An indication of this lack
equivalency may lie in the universal nature of the ultra lo
energy S-matrix. This quantity is the primary input of th
semi-classical model. The semi-classical model imagine
set of classical spins interacting via

Sab
cd~u50!52daddcb ,

i.e., in the scattering of two spins, the spins exchange t
quantum numbers. However this specification may be ins
ficient to adequately describe the O~3! NLSM. Even beyond
the quantum interference effects which are neglected by
semi-classical treatment, it is not clear that the ze
momentum S-matrix is enough to determine the model.

In this light it is instructive to consider the sine-Gordo
model in its repulsive regime. The sine-Gordon model
given by the action

S5
1

8pE dx dt~]mF ]mF1l cos~ b̂F!!, ~2.24!

whereb̂5b/A4p. The model is generically gapped. Its r
pulsive regime occurs in the range, 4p,b2,8p. The mod-
el’s spectrum then consists solely of a doublet of solito
carrying U~1! charge. It is repulsive in the sense that t
solitons have no bound states. The sine-Gordon model h
similar low energy S-matrix to the O~3! NLSM,

Sab
cd~u50!52daddcb ,
5-10
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where here the particle indices range over6, the two soli-
tons in the theory. Thus we might expect that sine-Gord
model to possess identical low energy behavior over its
tire repulsive regime.

This is likely to be in general untrue. For example, w
might consider the behavior of the single particle spec
function. We might thus want to compute a correlator of t
form

^c1~x,t !c2~0,0!&,

wherec6 are Mandelstam fermions given by

c6~x,t !5expS 6
i

2 S 1

b̂
1b̂ DfL~x,t !7

i

2 S 1

b̂
2b̂ DfR~x,t ! D ;

fL/R5
1

2 S F~x,t !6 i E
2`

x

dy ] tF~y,t ! D . ~2.25!

As these fields depend explicitly uponb̂, it is hard to see
how the properties of the above correlator, even at low e
gies could be independent of this same quantity. More g
erally, b̂ determines the compactification radius of the bos
in the model and so is related in a fundamental way to
model’s properties.

It is useful to point out that Mandelstam fermions are t
unique fields that create/destroy solitons that carry Lore
spin 1/2, i.e., a spin that is independent ofb̂. They would
then be the only fields with a chance of matching any se
classical computation. However there are other soliton c
ation fields, for example,

e6 ifL,R /b̂,

for which one could determine the corresponding spec
density. As these fields carry spin that varies as a functio
b̂, their spectral functions will depend upon more than
ultra low energy soliton S-matrix. In general, the sem
classical treatment of the sine-Gordon model cannot cap
its full quantum field content.

As with the O~3! NLSM, the conductance of the fully
quantum model differs from that of the semi-classical tre
ment. If one were to compute the conductance at finite te
perature in the sine-Gordon model one would again fin
finite Drude weight,D, while the semi-classical approac
yields D50.13 The notion of under-specificity appears he
again. The semi-classical approach for the sine-Gor
model equally well describes the Hubbard model at h
filling ~the solitons are replaced by particle/hole excitatio
in the half-filled band!. But it fails to give the correct Drude
weight. An analysis of finite size corrections to the free e
ergy in the presence of an Aharonov–Bohm flux33 again
finds a finite Drude weight in the half-filled Hubbard mod
at finite temperature.

Interestingly, however, there are certain properties at
energies that seem to be independent ofb̂. For example, if
one were to compute the low-temperature static charge
ceptibility, the term ofO(e2bD) would be independent ofb̂.
However, at the next order,O(e22bD), this would almost
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certainly cease to be true. And the energy/temperature ra
we are interested in exploring do not permit dropping ter
of O(e22bD).

It is important to stress we do not question the agreem
between the semi-classical model and experiment. What
do question is whether the fully quantum O~3! NLSM exhib-
its spin diffusivity. If we are then to understand spin diffu
sion in terms of the O~3! NLSM, it is possible we need to
include additional physics such as an easy axis spin an
ropy ~weakly present in the experimental syste
AgVP2S6), inter-chain couplings, or a spin-phonon couplin
~as done in Ref. 11!.

Beyond these, another mechanism that might lead to
fusive behavior are small integrable breaking perturbati
of the O~3! NLSM. Generically any physical realization of
spin chain will possess such perturbations, even if arbitra
small. Such perturbations may introduce the necessary
godicity into the system, ergodicity that is absent in the
tegrable model because of the presence of nontrivial c
served charges, and so lead to diffusive behavior.
discussed in the semi-classical context by Garst and Ros13

such perturbations introduce an additional time scale,T, gov-
erning the decay of conserved quantities in the problem.
times, t,T, the behavior of the system is ballistic and th
original conserved quantities do not decay. For times,t.T,
the behavior is then diffusive. Consequently the Dru
weight in the purely integrable model is transformed into
peak ins(v) at v;1/T.

Now the difference in the physics between the O~3!
NLSM and its semi-classical variant is not that of integrab
breaking perturbations. As demonstrated in Refs. 6 and
their semi-classical model is classically integrable. Howev
as discussed above the models do possess different
served charges. It might then seem for certain transport qu
tities, the semi-classical model cures the lack of ergodic
present in its quantum counterpart.

III. COMPUTATION OF FINITE TEMPERATURE
CORRELATORS

Here we present the general method by which we co
pute the correlators at low but finite temperature and fie
form-factor expansions. In the first part of this section w
consider the general form of these expansions and why
expect them to be applicable at finite temperature. In
latter parts of this section, we review the exact expressi
for the form factors in the O~3! sigma model together with
the necessary regulation of said form factors at finite te
perature.

A. General methodology

To compute two-point correlation functions, we employ
form-factor expansion. At finite temperature, such correlat
take the form
5-11
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GO~x,t !5
1

Z Tr~e2bHO~x,t !O~0,0!!

5

(
nsn

e2bEsn^n,snuO~x,t !O~0,0!un,sn&

(
nsn

e2bEsn^n,snun,sn&

. ~3.1!
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Here t can be real or imaginary time and the sum(nsn
is over

all possible eigenstates of the Hamiltonian. Each eigens
is characterized by the number of particles,n, in the state
together with a set of internal quantum numbers,$sn%, in this
case the value ofSz carried by each particle. The form
factor representation of the correlator is then arrived at
inserting a resolution of the identity between the tw
fields:
GO~x,t !5

(
nsn
msm

e2bEsn^n,snuO~x,t !um,sm&^m,smuO~0,0!un,sn&

(
nsn

e2bEsn^n,snun,sn&

. ~3.2!
pon

ing
s.
der
At zero temperature, the representation ofGO reduces to one
involving a single sum,(m,sm

.

Thus the computation ofGO amounts to the evaluation o
a set of matrix elements. These matrix elements can be c
puted in principle for arbitraryn,m from a knowledge of the
two-body S-matrix together with various constraints com
m-

from the analytic dependence of the matrix elements u
energy-momentum. However, with increasingn and m the
evaluation of these matrix elements and the correspond
evaluation of the sums,(n,sn

, becomes increasingly arduou
We are, however, in a better position when we consi

the spectral function corresponding toGO:
GO~x,v!5

(
nsn
msm

e2bEsn2pd~v2Esm
1Esn

!^n,snuO~x,0!um,sm&^m,smuO~0,0!un,sn&

(
nsn

e2bEsn^n,snun,sn&

. ~3.3!
our
t-
ll
t
lu-
the

ty
rix

-
se
We see then that only certain terms, those meeting
matching condition,v5Esm

2Esn
, contribute to the spectra

function.
In this paper we are concerned in particular with mass

or gapped theories. Gapped theories are particularly a
nable to this sort of computation as they admit a notion
thresholds. First imagine fixingn,sn in the sum above. In a
massive theory the intermediate states have a finite energ
particular in the O~3! sigma model, the energy of a
m-particle state has a minimum threshold ofmD. And so
states withEsm

exceedingv1Esn
do not contribute to the

sum. For example ifv1Esn
is below the three particle

threshold, 3D, states withm>3 do not make a contribution
At zero temperature, i.e.,Esn

50, the notion of thresholds
leads to a situation where only a finite number of mat
elements needs to be computed in order to obtain anexact
result at a given energy,v. In contrast, at finite temperatur
we in general would need to compute an infinite number
matrix elements in order to arrive at an exact result. Ho
e

e
e-
f

In

f
-

ever, here the massiveness of the theory again comes to
aid. With increasingn, the terms are weighted with the Bol
zmann factor,e2bEsn,e2bnD. Thus at temperatures sma
relative to the gap,D, we expect in general only the firs
terms to make a significant contribution. We can thus eva
ate the correlator in a controlled fashion, expanding it as
sum,

GO~x,v!5(
n

cn~x,v!e2nbD.

Moreover, while the evaluation of this sum in its entire
would require the evaluation of an infinite number of mat
elements, each individual coefficient,cn , depends only upon
a finite number of matrix elements~at least in the cases con
sidered in this paper!. As such we are able to compute the
coefficients exactly.
5-12
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While the ability to do so results from eachcn being
determined by a small, finite number of matrix elements, t
feature will not be found in all theories. However form fact
expansions in massive theories have in general found to
strongly convergent.14,16–18 Specifically, matrix elements
^n,snuO(0,0)um,sm&, where n and m are large have bee
found to be relatively small. Even in massless theories wh
there are no explicit thresholds, convergence is good p
vided the engineering dimension of the operatorO matches
its anomalous dimension. Thus even if eachcn were deter-
mined by a large~even infinite! number of matrix elements i
would be possible nonetheless to arrive at a reasonable
proximation for the coefficient.

There are, however, certain situations where we do
expect to be able to truncate the sum,(n,sn

e2bEsn. In certain
circumstances, a physical quantity will see a transition as
limit of zero temperature is taken that is non-analytic in n
ture. To be concrete consider the single particle spec
function of the staggered component of the spin field:

S~x,v!5^n~x,v!n~0,0!&. ~3.4!

At zero temperature, we expect that for energies,v,3D,
S(x,v) takes the form of ad-function:

S~x,v!5cd~v2D!, v,3D, T50. ~3.5!

However, at finite temperatures thisd-function is broadened
We then do not expect to be able to see this broaden
unless we evaluate the sum,(n,sn

e2bEsn, in its entirety. In-

deed, computingS(x,v) through the truncation of this sum
at any finiten leads to

S~x,v!5cd~v2D!1•••, T.0. ~3.6!

Only through the resummation of the higher order terms
the d-function replaced by a broadened peak. However
may well be possible to guess at the resummation on
basis of the first terms in the series.

Rather than consider such situations, we want to fo
upon quantities that possess a smoothT→0 transition. As
such consider the behavior of the staggered field spe
function, S(x,v), for energies below the gapv,D. At T
50 we have

S~x,uvu,D!50, ~3.7!

while at TÞ0

S~x,uvu,D!5O~e2bD!. ~3.8!

Thus theT→0 limit behaves in a smooth fashion.
This method is markedly different than that developed

Refs. 26–28. In our method we employ the basis of eig
states,un,sn&, that arises from the zero temperature proble
There a new basis is adopted that takes into direct acc
the thermalization of the vacuum state. Letu0T& be the state
with a representation of the particle content of the system
equilibrium at finiteT and let u(n,sn)T& be states that are
excitations above this thermalized ground state.~In contrast,
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un,sn& are excitations above the empty vacuum state.! With
such a basis, the correlators have the following form fac
representation:

^O~x,t !O~0,0!&5(
n,sn

^0TuO~x,t !u~n,sn!T&

3^~n,sn!TuO~0,0!u0T&. ~3.9!

This method involves considerable technical complicatio
In general, it is a challenge to compute the new vacuum s
u0T& as well as the excitations aboveu0T&, never mind the
form factors^0TuO(x,t)u(n,sn)T&. These difficulties are only
enhanced by the nondiagonal scattering present in the O~3!
sigma model, i.e., the two-body S-matrix is other th

Sab
a8b85daa8dbb8 , where no internal quantum number are e

changed. This method was developed in particular for th
ries that are massless. However, in our case the theor
gapped. It thus makes sense to exploit the control over
sum, (n,sn

e2bEsn, that the low-temperature regime afford
us.

In some sense our approach is similar to that of LeC
and Mussardo.20 There they begin with the form-factor sum
as in Eq.~3.1!. However they recast the sum of the therm
trace through introducing a set of hole excitations comp
mentary to the particles. Hole excitations appear naturally
terms of the form factors. A typical form factor that needs
be evaluated for a finite T correlator looks as follows:

^s1 ,es1
uO~x,t !us2 ,es2

&, ~3.10!

where we have explicitly labeled the energy of the sta
Using crossing symmetry, this matrix element can be rew
ten as

^O~x,t !us2 ,es2
; s̄1 ,2es1

&, ~3.11!

provided e15e2 , s15s2 does not hold. Heres̄1 is the
‘‘charge conjugate’’ ofs1. The excitation, (s̄1 ,2Es1

), can be
thought of as a new type of excitation, a hole. Thus
double sum of a two point correlator was recast in Ref. 20

^O~x,t !O~0,0!&5 (
mp ,sp ;mh ,sh

)
p

f ~esp
!)

h
f ~esh

!

3^O~x,t !ump ,sp ;mh ,sh&

3^mh ,sh ;mp ,spuO~0,0!&. ~3.12!

Notice that the partition function,Z, is absent from Eq.
~3.12! while new factors,) f , have been added to the expre
sion. Eachf (es) is the occupation number of the excitatio
~in this case assumed to be fermionic!, s, with energye:

f ~es!5
1

11ees /T
.

These modifications represent an ansatz put forward in R
20, and are argued to come from the regulation of the ma
elements,
5-13
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^s1 ,e1uO~x,t !us2 ,e2&, ~3.13!

in the cases15s2 , e15e2.
Although this ansatz is supported in the case of one p

functions~i.e., expectation values of the energy or spin!,20–22

it has come under criticism for the computation of two-po
functions in Ref. 21. There the allied case of current–curr
correlators in the quantum Hall edge problem atT50 but
finite voltage was examined and it was found that their
satz did not seem to reproduce the correct results.

What relevance does this critique have for our approa
We do not and cannot use the ansatz of LeClair and M
sardo as scattering in our theory is nondiagonal and t
ansatz only makes sense in the case of theories that ar
agonal. However, might the critique in Ref. 21 still ha
bearing upon our results? We do not think so. The correla
considered in Ref. 21 is computed in a massless the
whereas our results depend upon the gapped nature o
O~3! sigma model producing a series of thresholds. Mo
over, we already expect to run into difficulties whenev
there is nonanalytic behavior atT50 near a threshold as i
the behavior of the staggered field spectral function neav
;D. Thus we do not expect to capture the physics of
conflation of all the thresholds in a massless theory.

B. Form factors in the O„3… sigma model

1. Constraints upon form factors

The form factors of a fieldO are defined as the matri
elements of the field with some number of particles,Aa(u):

f a1•••an

O ~u1 ,•••,un!5^O~0,0!Aan
~un!•••Aa1

~u1!&.
~3.14!

The Aa(u) are Faddeev–Zamolodchikov operators wh
create and destroy the elementary excitations of the theou
is the rapidity which encodes the energy-momentum car
by the excitation,

p5D sinh~u!; E5D cosh~u!. ~3.15!

The form of f a1•••an

O is determined by a combination of two

body scattering, Lorentz invariance, analyticity, and herm
ticity.

The constraint from scattering is derived from the co
mutation relations of Faddeev–Zamolodchikov operators

Aa1
~u1!Aa2

~u2!5Sa1a2

a3a4~u12u2!Aa4
~u4!Aa3

~u3!;

Aa1

† ~u1!Aa2

† ~u2!5Sa1a2

a3a4~u12u2!Aa4

† ~u4!Aa3

† ~u3!;

Aa1

† ~u1!Aa2
~u2!5da1a2

d~u12u2!

1Sa2a4

a3a1~u12u2!Aa3
~u4!Aa4

† ~u3!.

~3.16!

S, the two-body S-matrix, gives the amplitude of the proc
by which particles$a1 ,a2% scatter into$a3 ,a4%. It is solely a
function of u12u2[u12 by Lorentz invariance. In our case
scattering between magnons in the O~3! model, the S-matrix
is given by
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Sa1a2

a3a4~u!5da1a2
da3a4

s1~u!1da1a3
da2a4

s2~u!

1da1a4
da2a3

s3~u!;

s1~u!5
2p iu

~u1 ip!~u2 i2p!
;

s2~u!5
u~u2 ip!

~u1 ip!~u2 i2p!
;

s3~u!5
2p i ~ ip2u!

~u1 ip!~u2 i2p!
. ~3.17!

As u→0, the S-matrix reduces toSa1a2

a3a452da1a4
da2a3

. This

is the approximation underlying the semi-classical analy
of Damle and Sachdev.6,7 For the form factor to be consisten
with two body scattering we must then have

f a1 ,•••,ai 11 ,ai ,•••,an

O ~u1 ,•••,u i 11 ,u i ,•••,un!

5S
aiai 11

ai8 ,ai 118
~u i2u i 11! f a1 ,•••,a

i8 ,a
i 118 ,•••,an

O

3~u1 ,•••,u i ,u i 11 ,•••,un!. ~3.18!

This relation is arrived at by commuting thei th and i 11th
particle.

A second constraint upon the form factor can be thou
of as a periodicity axiom. In continuing the rapidity,u, of a
particle tou22p i , the particle’s energy-momentum is un
changed. However, the form factor is not so invariant. W
instead have

f a1 ,•••,an

O ~u1 ,•••,un!5 f an ,a1 ,•••,an21

O

3~un22p i ,u1 ,•••,un21!. ~3.19!

This constraint is derived from crossing symmetry.20 It im-
plicitly assumes that the fieldO is local: if O is nonlocal
additional braiding phases appear in the above relation.34–36

Another condition related to analyticity that a form fact
must satisfy is the annihilation pole axiom. This conditio
arises in form factors involving a particle and its an
particle. Under the appropriate analytical continuation, su
a combination of particles are able to annihilate one anot
As such this condition relates form factors withn particles to
those with n22 particles. In the case of the O~3! sigma
model it takes the form

i resun5un211p i f ~u1 ,•••,un!a1 ,•••,an

5 f ~u1 ,•••,un22!a
18 ,•••,a

n228 dana
n218

3~d
a1

a18d
a2

a28
•••d

an22

an228
d

an21

an218

2S
t1a1

an218 a18~un211!St2a2

t1a28~un212!•••S
tn23an23

tn24an238
~un21n23!

3S
an21an22

tn23an228
~un21n22!!. ~3.20!

Here res refers to the residue of the pole in the form fac
when two particles are allowed to annihilate, i.e.un is taken
5-14
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to un211 ip.This relation as written assumes that we a
normalizing our particle states as^uuu8&52pd(u2u8).

The form factor must also satisfy constraints coming fro
Lorentz invariance. In general, the form factor of a field,O,
carrying Lorentz spin, s, must transform under a Lore
boost,u i→u i1a, via

f a1•••an

O ~u11a,•••,un1a!5esa f a1•••an

O ~u1 ,•••,un!.

~3.21!

The particular fields we will be interested in are the mag
tization density,M0(x,t), as well its corresponding con
served current,M1(x,t). Together they form a Lorentz two
current. ~Here 0,1 are Lorentz indices. Spin indices ha
been suppressed.! As this current is topological we may re
write it in terms of a Lorentz scalar field,m(x,t):

Mm~x,t !5emn]nm~x,t ! ~3.22!

The form factors are then determined for the fieldm(x,t)
which obeys Eq.~3.21! with s50 while the corresponding
form factors ofMm(x,t) are related to those ofm(x,t) by

f a1•••an

Mm ~u1 ,•••,un!5emnPn~u i ! f a1•••an

m ~u1 ,•••,un!,

~3.23!

whereP05( iD cosh(ui) andP15( iD sinh(ui).
These conditions do not uniquely specify the form facto

It is easily seen that iff (u1 ,•••,un)a1 ,•••,an
satisfies these

axioms then so does

f ~u1 ,•••,un!a1 ,•••,an

Pn~cosh~u i j !!

Qn~cosh~u i j !!
, ~3.24!

where Pn and Qn are symmetric polynomials in cosh(uij),
1< i , j <n, and are such that

Pnuun5un211p i5Pn22 ; Qnuun5un211p i5Qn22 .
~3.25!

To deal with this ambiguity, we employ a minimalist axiom
We choosePn and Qn such thatPn /Qn has the minimal
number of poles and zeros in the physical strip, Re (u ) 5 0,
0,Im u,2p. Additional poles are only added in acco
dance with the theory’s bound state structure, an unneces
complication in our case as the O~3! sigma model has no
bound states. Using this minimalist ansatz, one can de
mine Pn /Qn up to a constant.

To determine this constant we rely upon the action of
conserved charge

Sz5E dxM0
3~x,0!,

upon the single particle states. We expect
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^u,Sz51uSzuu8,Sz51&52pd~u2u8!. ~3.26!

Thus from the knowledge of the two particle form factor, w
can fix the overall normalization. To check this normalizati
we will compare the form-factor computations with the r
sults of other techniques. For example we will compute
magnetic susceptibility using both form factors and the th
modynamic Bethe ansatz. Through comparing theT→0, H
→0 results, we see that the normalization has indeed b
consistently computed.

As yet another check we can fix the phase of this cons
using hermiticity. For this purpose it is sufficient to consid
2-particle form factors. Hermiticity then gives us

^O~0,0!Aa2
~u2!Aa1

~u1!&* 5^Aa1

† ~u1!Aa2

† ~u2!O †~0,0!&

5^O †~0,0!Aā1
~u12 ip!

3Aā2
~u22 ip!&, ~3.27!

where the last line follows from crossing and so

f a1a2

O ~u1 ,u2!* 5 f ā2ā1

O †

~u22 ip,u12 ip!. ~3.28!

C. Review of O„3… sigma model form factors

From Eqs.~3.22! and ~3.23! it is sufficient to give the
form factors for the scalar operator,m(x,t). These have been
computed by both Smirnov15 and Balog and Niedermaier.37

However, Ref. 37 presents them in a more amenable fo
possible in this particular case because of the simple st
ture of the S-matrix of the O~3! sigma model.

Using the axioms as presented in the previous sect
Ref. 37 thus finds for the two and four particle form facto

f a1a2

ma ~u1 ,u2!5 i
Dp2

4
eaa1a2c~u12!,

c~u!5
tanh2~u/2!

u

ip1u

2p i 1u
;

f a1a2a3a4

ma ~u1 ,u2 ,u3 ,u4!

52
p5D

8 )
i , j

c~u i j !Ga1a2a3a4

ma

52
p5D

8 )
i , j

c~u i j !~da4a3eaa2a1g1~u i !

1da4a2eaa3a1g2~u i !1da4a1eaa3a2g3~u i !

1da3a2eaa4a1g4~u i !1da3a1eaa4a2g5~u i !

1da2a1eaa4a3g6~u i !!;
5-15
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1
g1~u i !

g2~u i !

g3~u i !

g4~u i !

g5~u i !

g6~u i !

2 5 i 1
2 ip~u32

21u31
22 ipu322 ipu3112p2!

~u322 ip!u31~u312 ip!

~u322 ip!~u321 i2p!~ ip2u31!

u32u31~3p i 2u31!

u32~u322 ip!u31

2p i ~ ip2u32!u31

2
1 i ~u432 ip!

31
24p22 ip~u321u31!2~u322u31!

2

22p223p iu311u31
2

24p21 ip~u3222u31!2u32
2

2p21 ip~u3212u31!22u32u31

2 ip~2u321u31!12u32u31

22p21 ip~u3223u31!

2
1 i ~u432 ip!21

0

0

0

2u32

u3122p i

u322u31

2 . ~3.29!

We have checked that these form factors do indeed sa
the necessary axioms and found that the results of Ref. 37
without typographical error. The reader should note howe
that we use a different particle normalization than Ref.
and so the results differ by an overall multiplicative consta

The two particle form factor differs from that appearing
Affleck and Weston’s work3 on the O~3! sigma model. The
two particle form factor Affleck and Weston use is given

f
a1a2

M0
3

~u1 ,u2!}~cosh~u1!

2cosh~u2!!e3a1a2
tanh~u12/2!

u12

ip1u12

2p i 1u12
.

This differs from our form in that it has a different Loren
structure and lacks an extra factor of tanh(u12/2). The differ-
ent structure of the two particle form factor is a result of t
constraint the annihilation pole axiom places on form fact
of different particle numbers. If one only computes the tw
particle form factor, as done in Ref. 38, this constraint can
unsatisfied. However, in terms of the low energy behav
~i.e.,u1 ,u2→0), the two forms forf a a

ma are nearly identical.

1 2
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D. Regularization of form factors

We end this section with a discussion of the regularizat
of form factors that appear in the evaluation of thermal c
relators. Form factors with all particles either to the right
the left of the field such as

f a1 ,•••,an

O ~u1 ,•••,un!5^O~0,0!Aan
~un!•••Aa1

~u1!&

do not pose any such problems. However, the form fac
encountered in the evaluation of finite temperature corre
tors are of the form

^Abm
~ ũm!•••Ab1

~ ũ1!O~0,0!Aan
~un!•••Aa1

~u1!&.

To understand such an object we must contend with the p
sibility that ũ i5u j , ai5bj for somei , j . From the algebra of
the Fadeev–Zamolodchikov operators~3.16!, we know the
commutation relations involved-functions, i.e.,

Aai

† ~ ũ i !Abj
~u j !52pd~ũ i2u j !daibj

1•••. ~3.30!

It is crucial to include the contributions of thed-functions to
the correlators. In particular they contribute pieces wh
cancel off otherwise ill-defined terms arising from the par
tion function. To do so we must understand the above fo
factor to equal

^Abm
~ ũm!•••Ab1

~ ũ1!O~0,0!Aan
~un!•••Aa1

~u1!&

5 (
$ai %5A1øA2
$bi %5B1øB2

SA,A1
SB,B1

^B1uA1&^B2uO~0,0!uA2&connected.

~3.31!

The sum in the above is over all possible subsets of$ai% and
$bi%. The S-matrixSA,A1

arises from the commutations ne

essary to rewriteAan
(un)•••Aa1

(u1)u0& as A2A1u0& and

similarly for SB,B1
. The matrix element̂B1uA1& is evaluated

using the Fadeev–Zamolodchikov algebra. In this way~ill-
defined! terms proportional tod(0) are produced but which
cancel similarly ill-defined terms arising from the evaluati
of the partition function.

The ‘‘connected’’ form factor appearing in the above e
pression is to be understood as follows. Using crossing s
metry, the form factor can be rewritten as

^B2uO~0,0!uA2&connected5^Ab
i k
8 ~ ũ i k

!•••Ab
i 1
8 ~ ũ i 1

!O~0,0!

3Aa
j q
8 ~u j q

!•••Aa
j 1
8 ~u j 1

!&connected

5^O~0,0!Aa
j q
8 ~u j q

!•••Aa
j 1
8 ~u j 1

!Ab̄
i k
8

3~ ũ i k
2 ip!•••Ab̄

i 1
8 ~ ũ i 1

2 ip!&connected

5 f b̄
i 1
8 •••b̄

i k
8 a

j 1
8 •••a

j q
8

O
~ ũ i 1

2 ip,•••,ũ i k

2 ip,u j 1
,•••,u j q

!connected, ~3.32!
5-16
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where the last relation holds provided we do not haveu i

5 ũ j , ai5bj for any i , j . If this does occur we see from th
annihilation pole axiom that the form factor is not well d
fined, having a pole atu i5 ũ j . In such cases the form facto
requires regulation.

To regulate the form factor, we employ a scheme s
gested by Balog39 and used by LeClair and Mussardo20. We
define

f b̄
i 1
8 •••b̄

i k
8 a

j 1
8 •••a

j q
8

O
~ ũ i 1

2 ip1 ih1 ,•••,ũ i k
2 ip

1 ihk ,u j 1
,•••,u j q

!connected

5finite piece of lim
h i→0

f b̄
i 1
8 •••b̄

i k
8 a

j 1
8 •••a

j q
8

O
~ ũ i 1

2 ip

1 ih1 ,•••,ũ i k
2 ip1 ihk ,u j 1

,•••,u j q
!. ~3.33!

In taking the finite piece off O, we discard terms propor
tional toh i

2p as well as terms proportional toh i /h j . In this
way the connected piece is independent of the way the v
ous limits h i→0 are taken. Balog39 has already used thi
prescription to compute one point functions and successf
compare them to TBA calculations. In Ref. 39 it was argu
that the delta functions leading to such terms arise from
use of infinite volume wave functions. If such wavefunctio
are replaced instead with finite volume counterparts,
delta functions are regulated. For example, a pole inh is
changed as follows:

1

ih
5E du

d~u!

u1 ih
→E du

f ~u!

u1 ih
, ~3.34!

where f (u) is some sharply peaked function aboutu50
which in the infinite volume limit evolves into ad-function.
However, the principal value of this regularized integral
zero. Thus discarding the pole terms is justified in this sen
For terms that are ratios of infinitesimals, Balog also dem
strates that such terms, once regularized, disappear in
infinite volume limit.

IV. THERMODYNAMIC BETHE ANSATZ AT FINITE
TEMPERATURE AND FINITE FIELD

In this section we review the derivation of the equatio
describing the exact free energy~and hence the susceptibi
ity! of the O~3! sigma model together with its low
temperature expansion. The exact description of the ther
dynamics of the O~3! sigma model takes the form of a set
quantization conditions for the momenta,pa , of the excita-
tions in the ground state. Withpa5D sinh(ua), we have the
following condition:30

eiD sinh(ua)5 )
b51

N
ua2ub1 ip

ua2ub2 ip )
g51

M
ua2lg2 ip

ua2lg1 ip
;

)
b51

N
ub2la1 ip

ub2la2 ip
52 )

g51

M
lg2la1 ip

lg2la2 ip
. ~4.1!
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Here ub are the rapidities of the other excitations in th
ground state while thel ’s mark out spin excitations above a
originally polarized ground state.~The Bethe ansatz con
struction begins with a completely polarized ground state
spin 1 excitations above which one then creates s
excitations—marked out by thel ’s—in order to give the
ground state the desired spin polarization.! N is the total
number of excitations in the ground state whileM is the
number of spin excitations. The quantum number,Sz , is then
given bySz5N2M . The total energy of the ground state
a magnetic field is then equal to

E5D (
a51

N

cosh~ua!2H~N2M !.

Analysis of these equations proceeds using the string hyp
esis. The solutions of the above equations take the form

ua are real;

la
n,k5la

n1 ip~n1122k!/2, k51,2, . . . ,n; ~4.2!

that is thel ’s are organized into ‘‘complexes’’ which share
real part,la

n , the center of the complex.
In computing the free energy, we are interested in

continuum limit of the above equations. To arrive at th
limit, we introduce densities per unit length,r(u) and
sn(l), of, respectively, theua’s, and the centers,la

n , of the
complexes. We further introduce particle and hole densi
by writing r5rh1rp andsn5snh1snp . A particle density
gives the probability that the ground state contains an e
tation at a given rapidity,u/l, while the hole density gives
the converse probability that the excitation at the rapidity
not found in the ground state. Equations describing th
densities can be arrived at in a standard fashion~see Section
8.3 of Ref. 40 for an analogous derivation in the case of
Anderson model!:

rp~u!1rh~u!5
D

2p
cosh~u!1~s* s2h!~u!;

smp~l!1smh~l!5d2ms* rp~l!1s* ~sm11,h1sm21,h!~l!,
~4.3!

wheres(x)5@p cosh(x)#21 and f * g denotes the convolution
of these two functions:

f * g5E dl8 f ~l2l8!g~l8!.

From these equations the free energy per unit length,V, can
be derived~again see Ref. 40 for details of an analogo
derivation!:

V52
TD

2pE du cosh~u!log~11e2be(u)!;

e~u!5D cosh~u!2Ts* log~11ebe2!~u!;
5-17



t
n
he
f.
n

en

in

in

-

f

s-

n
r-

ROBERT M. KONIK PHYSICAL REVIEW B68, 104435 ~2003!
en~l!5Ts* log~11eben21!~11eben11!~l!

1d2nTs* log~11e2be!~l!;

lim
n→`

en

n
5H. ~4.4!

Here we have expressed the free energy of the system
terms of the dressed energies~or pseudo-energies!, e/en , of
the excitations. These functions give the energetic cos
making an excitation at a given rapidity taking into accou
the excitation’s interactions with the other particles in t
ground state. These equations are in agreement with Re
where they were first written down and correct typos fou
in Ref. 11.

To derive the low temperature expansion of the free
ergy, we follow Ref. 29. We solve the above Eqs.~4.4!
through iteration. We write for each pseudo-energy,en

11eben(u)5 (
m50

`

r nm~T,u!. ~4.5!

This expansion is such thatr nm is of O(e2mbD). On the
basis of Eq.~4.5! we can write the free energy as a series
e2mbD:

V5 (
m51

`

cm~T!e2mbD. ~4.6!

We will compute them51,2 terms of this expansion.
Them50 term of Eq.~4.5! is arrived at by neglecting the

term involving log(11e2be) in the equation foren . If this is
done, these equations reduce to

en~l!5
T

2
log~11eben21!~11eben11!;

lim
n→`

en

n
5H. ~4.7!

They are then algebraic in nature and admit the follow
solution:

11eben5r n05f2~n!;

f~n!5

sinhS H

2T
~n11! D

sinhS H

2TD . ~4.8!

At this order of the iteration,e(u) becomes

e~u!5D cosh~u!2T logf~2!, ~4.9!

and so

V52
TD

2pE du cosh~u!log~113e2bD cosh(u)!.

~4.10!

Clearly V is of O(e2bD).
The next coefficient in the series~4.5!, r n1, is found by

substituting Eq.~4.9! into the equations foren :
10443
in

of
t

29
d

-

g

en5Ts* log~11eben21!~11eben11!

1d2nTs* log~11f~2!e2bD cosh(u)!;

lim
n→`

en

n
5H. ~4.11!

To the order ine2bD to which we are working, these equa
tions reduce to

f2~n!

f~n21!f~n11!
r n15~r n21,11r n11,1!* s

1d2nlog~11e2bD cosh(u)!* s.

~4.12!
As can be directly checked, they admit the solution

r n15
f~1!

f~2!f~n!
~f~n11!an2f~n21!an12!* s21*

3 log~11f~2!e2bD cosh(u)!;

an~x!5
2n

4x21n2p2 . ~4.13!

With this, e(u) to O(e2bD) takes the form

e~u!5D cosh~u!2T logf~2!2T
f~1!

f~2!
~f~3!a2

2f~1!a4!* e2bD cosh(u)1O~e22bD!. ~4.14!

We can continue this procedure, obtainingr nm ,m>2. In-
deed Ref. 29 goes on to computer n2 and so corrections o
O(e22bD) to e(u).

The zero field susceptibility is given by

x~H50!52]H
2 VUH50

52
D

2pE du cosh~u!
]H

2 e~u!

11ebe(u)U
H50

.

~4.15!

Using e(u) in Eq. ~4.14! and expanding the above expre
sion toO(e22bD), we find

x~H50!5
bD

pTE du cosh~u!e2bD cosh(u)~123e2bD cosh(u)!

1
2bD

p E du1du2 cosh~u1!

3e2bD(cosh(u1)1cosh(u2))

3
2u12111p2

u12
4 15p2u12

2 14p4
1O~e23bD!, ~4.16!

whereu125u12u2. This agrees exactly with the derivatio
of x coming from the computation of the two and four pa
ticle form factors.
5-18
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APPENDIX A: COMPUTATION OF MAGNETIC
SUSCEPTIBILITY USING FORM FACTORS

To compute the correlator,̂M0
3(x,t)M0

3(0,0)&, we first
consider the action of the thermal trace:

C~x,t!5^M0
3~x,t!M0

3~0,0!&

5

(
sn ,n

e2bEsn^n,snuM0
3~x,t!M0

3~0,0!un,sn&

(
sn ,n

e2bEsn^n,snun,sn&

.

~A1!
Keeping the first two terms leads us to

^M0
3~x,t!M0

3~0,0!&

5S E du

2p
e2bDcosh(u)

3(
a

^Aa~u!uM0
3~x,t!M0

3~0,0!uAa~u!&

1
1

2E du1

2p

du2

2p
e2bD(cosh(u1)1cosh(u2))

3 (
a1a2

^Aa1
~u1!Aa2

~u2!uM0
3~x,t!

3M0
3~0,0!uAa2

~u2!Aa1
~u1!& D Y

S 11(
a
E du

2p
e2bDcosh(u)^Aa~u!uAa~u!& D . ~A2!

Expanding the denominator then gives us

C~x,t!5E du

2p
e2bDcosh(u)(

a
^Aa~u!uM0

3~x,t!

3M0
3~0,0!uAa~u!&3S 12(

a
E du

2p
e2bDcosh(u)

3^Aa~u!uAa~u!& D 1
1

2E du1

2p

du2

2p

3e2bD(cosh(u1)1cosh(u2))3 (
a1a2

^Aa1
~u1!Aa2

~u2!

3uM0
3~x,t!M0

3~0,0!uAa2
~u2!Aa1

~u1!&. ~A3!

The term arising from the partition function is ill-defined
the state normalization is given bŷAa(u)uAa1

(u1)&
52pdaa1

d(u2u1). However, this term will be cancele
by disconnected terms arising from
^Aa1

(u1)Aa2
(u2)uM0

3(x,t)M0
3(0,0)uAa2

(u2)Aa1
(u1)&.
10443
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To evaluate this expression we begin by computing
first term of the tracê Aa(u)uM0

3(x,t)M0
3(0,0)uAa(u)& by

inserting a resolution of the identity between theM3’s:

^Aa~u!uM0
3~x,t!M0

3~0,0!uAa~u!&

5 (
n51

`

(
a1 ,•••,an

1

n! E du1

2p
•••E dun

2p

3^Aa~u!uM0
3~x,t!uAan

~un!•••Aa1
~u1!&

3^Aa1
~u1!•••Aan

~un!uM0
3~0,0!uAa~u!&. ~A4!

We only need to keep the lowest order term,n51, in this
expansion;all other terms make no contribution to the su
ceptibility. The terms corresponding to n even are identica
zero~by parity!; the remainingn.1 odd terms vanish in the
low energy-low momentum limit of the corresponding spe
tral function.~We will return to this is a moment.! Given that
we can thus compute the entire contributio
^Aa(u)uM0

3(x,t)M0
3(0,0)uAa(u)& makes to the susceptibility

we will able to find an exact correspondence between
form-factor computation and a low-temperature expansion
the exact free energy. With then51 term we then have

^Aa~u!uM0
3~x,t!M0

3~0,0!uAa~u!&

5(
a1

E du1

2p
^Aa~u!uM0

3~x,t!uAa1
~u1!&

3^Aa1
~u1!uM0

3~0,0!uAa~u!&;

5(
a1

E du1

2p
e2tD(cosh(u1)2cosh(u))1 ixD(sinh(u1)2sinh(u))

3^M0
3~0,0!uAa1

~u1!Aa~u2 ip!&

3^M0
3~0,0!uAa~u!Aa1

~u12 ip!&;

5(
a1

E du1

2p
e2tD(cosh(u1)2cosh(u))1 ixD(sinh(u1)2sinh(u))

3 f
aa1

M0
3

~u2 ip,u1! f
a1a

M0
3

~u12 ip,u!. ~A5!

We have used crossing symmetry in the second line. F

Sec. III C, the form factorf
aa1

M0
3

(u,u1) is given by

f
aa1

M0
3

~u,u1!5 i
p2D

4
e3aa1~sinh~u!1sinh~u1!!c~u2u1!.

~A6!

Then the lowest order contribution,C1(x,t), to the spin–
spin correlator,C(x,t), is given by

C1~x,t!522E du

2pE du1

2p
e2bDcosh(u)

3e2tD(cosh(u1)2cosh(u))1 ixD(sinh(u1)2sinh(u))

3 f
21
M0

3

~u2 ip,u1! f
21
M0

3

~u12 ip,u!. ~A7!
5-19
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Fourier transforming inx and t and continuingvn→2 iv
1d yields,

C1~v50,k50!5
bD

p E du cosh~u!e2bD cosh(u)

5
2bD

p
K1~bD!, ~A8!

where K1 is a modified Bessel function. This has the e
pected small temperature behavior,C1(v50,k50)
;T21/2e2bD.

Let us consider further why the above computation giv
the sole contribution tô Aa(u)uM0

3(x)M0
3(0)uAa(u)&. The

next potential contribution to this matrix element takes
form

E du1 du2 du3^Aa~u!uM0
3~x!uAa1

~u1!Aa2
~u2!Aa3

~u3!&

3^Aa3
~u3!Aa2

~u2!Aa1
~u1!uM0

3~0!uAa~u!&. ~A9!

Upon evaluation this expression produces two types
terms. The first is associated with the disconnected piece
the matrix elements appearing in the above. An example
this type of term is

E du1 du2^M0
3~x!uAa1

~u1!Aa2
~u2!&

3^Aa~u!Aa2
~u2!Aa1

~u1!uM0
3~0!uAa~u!&

5E du1du2eiDx(sinh(u1)1sinh(u2))~sinh~u1!1sinh~u2!!

3~ term regular inu1 andu2!. ~A10!
As M0

3 is a Lorentz current, the term„sinh(u1)1sinh(u2)…
appears in the above. Thus when the Fourier transfo
*eikx, is taken followed by the limit,k→0, this term van-
ishes identically.

The second type of term we must deal with in evaluat
Eq. ~A9! takes the form

E du1du2du3eixD(sinh(u1)1sinh(u2)1sinh(u3)2sinh(u))

3 f
āa3a2a1

M0
3

~u2 ip1 i e,u3 ,u2 ,u1!

3 f
ā1ā2ā3a

M0
3

~u12 ip1 i e1 ,u22 ip1 i e2 ,u32 ip1 i e3 ,u!,

~A11!
and arises from the connected pieces of the matrix elem
appearing in Eq.~A9!. To evaluate this term we deform th
contoursu1,2,3 via

u1,2,3→u1,2,31 ip.

~In doing so we assume that time is real, not imaginary. T
does not pose a problem as we could as well directly ev
ate the retarded correlators as opposed to evaluating them
an analytical continuation of imaginary time-ordered corre
tors.! We then deform through a number of poles whose re
dues we will pick up. Evaluating these residues we ag
obtain something of the form~A10!. As such, Fourier trans
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forming and taking thek50 limit forces the term to vanish
and Eq.~A9! ends up making no contribution to the susce
tibility. In the same way, it is easy then to convince ones
that terms involving an even greater number of partic
similarly do not contribute to the static susceptibility.

We now go ahead and compute the second term ari
from performing the thermal trace
^Aa1

(u1)Aa2
(u2)uM0

3(x,t)M0
3(0,0)uAa2

(u2)Aa1
(u1)&. We

evaluate it as before by inserting a resolution of the iden
between the two fields. In this case the only term that c
tributes is then52 term:

^Aa1
~u1!Aa2

~u2!uM0
3~x,t!M0

3~0,0!uAa2
~u2!Aa1

~u1!&

5
1

2 (
a3a4

E du3

2p

du4

2p

3^Aa1
~u1!Aa2

~u2!uM0
3~x,t!uAa3

~u3!Aa4
~u4!&

3^Aa4
~u4!Aa3

~u3!uM0
3~0,0!uAa2

~u2!Aa1
~u1!&.

~A12!

Allowing for the presence of disconnected terms, the ma
elements in the above expression take the form

^Aa1
~u1!Aa2

~u2!uM0
3~x,t!uAa3

~u3!Aa4
~u4!&

5da1a4
2pd~u12u4! f

ā2 ,a3

M0
3

~u22 ip,u3!1da
38a

28
2p

3d~u32u2!Sa1a2

a18a28~u12!Sa3a4

a38a48~u34! f
ā

18 ,a
48

M0
3

~u12 ip,u4!

1da
28a4

2pd~u22u4!Sa1a2

a18a28~u12! f
ā

18 ,a3

M0
3

~u12 ip,u3!

1da1a
38
2pd~u12u3!Sa3a4

a38a48~u34! f
ā2 ,a

48

M0
3

~u22 ip,u4!

1 f
ā2 ,ā1 ,a4 ,a3

M0
3

~u22 ip,u12 ip,u4 ,u3!c , ~A13!

wheref c refers to a connected form factor. We now substitu
Eq. ~A13! into Eq.~A12! and obtain the following after som
lengthy but straightforward algebra:

1

4 (
a1a2a3a4

E du1

2p

du2

2p

du3

2p

du4

2p

3^Aa1
~u1!Aa2

~u2!uM0
3~x,t!uAa3

~u3!Aa4
~u4!&

3^Aa4
~u4!Aa3

~u3!uM0
3~0,0!uAa2

~u2!Aa1
~u1!&

[C211C221C231C241C251C26;
5-20
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C2152pd~0! (
a1a2a3

E du1

2p

du2

2p

du3

2p
e2bD(cosh(u1)1cosh(u2))

3e2tD(cosh(u3)2cosh(u2))2 ixD(sinh(u3)2sinh(u2)) f
ā3 ,a2

M0
3

~u32 ip,u2! f
ā2 ,a3

M0
3

~u22 ip,u3!;

C22523E du1

2p

du2

2p
e22bD cosh(u1)e2tD(cosh(u2)2cosh(u1))2 ixD(sinh(u2)2sinh(u1))

3 (
a1a2

f
ā1 ,a2

M0
3

~u22 ip,u1! f
ā2 ,a1

M0
3

~u12 ip,u2!;

C23523E du1

2p

du2

2p
e2bD(cosh(u1)1cosh(u2))e2tD(cosh(u1)2cosh(u2))2 ixD(sinh(u1)2sinh(u2))

3 (
a1a2

f
ā1 ,a2

M0
3

~u12 ip,u2! f
ā2 ,a1

M0
3

~u22 ip,u1!;

C245
1

4 (
a1a2a3

E du1

2p

du2

2p

du3

2p
e2bD(cosh(u1)1cosh(u2))e2tD(cosh(u3)2cosh(u2))2 ixD(sinh(u3)2sinh(u2))

3H f
ā3 ,ā1 ,a1 ,a2

M0
3

~u32 ip,u12 ip,u1 ,u2!cf ā2 ,a3

M0
3

~u22 ip,u3!1 (
a4a18a28a48

S
a4a3

a48a28~u21!Sa2a1

a28a18~u13!

3 f
ā2 ,ā1 ,a4 ,a3

M0
3

~u12 ip,u32 ip,u2 ,u1!cf ā
48 ,a

18

M0
3

~u22 ip,u3!1~u2↔u3!J ;

C255
1

4 (
a1a2a3

E du1

2p

du2

2p

du3

2p
e2bD(cosh(u1)1cosh(u2))e2tD(cosh(u3)2cosh(u2))2 ixD(sinh(u3)2sinh(u2))

3H (
a4a48

S
a4a3

a48a1~u21! f
ā2 ,ā1 ,a4 ,a3

M0
3

~u32 ip,u12 ip,u2 ,u1!c f
ā

48 ,a2

M0
3

~u22 ip,u3!1 (
a4a18

S
a2a1

a4a18~u13!

3 f
ā2 ,ā1 ,a4 ,a3

M0
3

~u12 ip,u32 ip,u1 ,u2!c f
ā3 ,a

18

M0
3

~u22 ip,u3!1~u2↔u3!J ;

C265
1

4 (
a1a2a3a4

E du1

2p

du2

2p

du3

2p

du4

2p
e2bD(cosh(u1)1cosh(u2))

3e2tD(cosh(u3)1cosh(u4)2cosh(u1)2cosh(u2))2 ixD(sinh(u3)1sinh(u4)2sinh(u1)2sinh(u2)) f
ā3 ,ā4 ,a1 ,a2

M0
3

~u32 ip,u42 ip,u1 ,u2!c

3 f
ā2 ,ā1 ,a4 ,a3

M0
3

~u22 ip,u12 ip,u4 ,u3!c . ~A14!

Although appearing exceedingly complicated, these terms dramatically simplify once we Fourier transform.
The first term,C21, on the r.h.s. of Eq.~A14! involves d(0) and so is ill-defined. However it precisely cancels the te

arising from the evaluation of the partition function in Eq.~A3!,

E du1

2p

du2

2p (
a1a2

e2bD(cosh(u1)1cosh(u2))^Aa1
~u!uM0

3~x,t!M0
3~0,0!uAa1

~u!&^Aa2
~u!uAa2

~u!& ~A15!
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as is evident if a resolution of the identity is inserted betwe
the two fields,M0

3, in the above and then truncated at t
one-particle level.

Having canceled off thed(0)-terms we now look at term
that make a genuine contribution to the spin–spin correla
We first consider the completely disconnected terms. Fou
transformingC22 and C23 in time and space and then an
lytically continuing,vn→2 iv1d, leads to

C22~v50,k50!1C23~v50,k50!

523
bD

p E
2`

`

du cosh~u!e22bD cosh(u)

526
bD

p
K1~2bD!, ~A16!

where againK1 is a standard Bessel function.
To computeC24 we need to evaluate the connected fo

particle form factor. To do so we add small imaginary piec
to the rapidities where potential poles lurk and take only
finite piece. For example, the first term ofC24 upon Fourier
transforming reduces to

C24~v50,k50!52
b

8p2DE du1 du2e2bD(cosh(u1)1cosh(u2))

3cosh21~u2!3 f
21
M0

3

~u22 ip,u2!

3(
a1

f
1ā1a12

M0
3

~u22 ip,u12 ip,u1 ,u2!c

1three other terms. ~A17!

Then to evaluate the connected form factor in this expres
we write

f
1ā1a12

M0
3

~u22 ip,u12 ip,u1 ,u2!c5finite part of

3 f
1ā1a12

M0
3

~u22 ip,u12 ip,u12 ih,u22 id!

~A18!

We evaluate this matrix element using the discussion in S
III D, throwing away any poles inh or d together with terms
of the formh/d. Expanding the form factor on the r.h.s.
Eq. ~A18! in h andd by using Eq.~3.29! leads to

(
a1

f
1ā1a12

M0
3

~u22 ip,u12 ip,u12 ih,u22 id!

52
Dp5

8

16

p4S cosh~u1!

id
1

cosh~u2!

ih D
3S) cUd50,h50DG

1ā1a12

m3 ~u22 ip,u12 ip,u1 ,u2!

2
Dp5

8

16

p4H cosh~u1!]2 idS S) c D
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n
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c.

3G
1ā1a12

m3 ~u22 ip,u12 ip,u12 ih,u22 id! DU
h50
d50

1cosh~u2!]2 ihS S) c D
3G

1ā1a12

m3 ~u22 ip,u12 ip,u12 ih,u22 id! DU
h50
d50

J ,

~A19!

where)c is given in this case by

) c5c~u21!c~u212 ip1 ih!c~u122 ip1 id!

3c~u122 ih1 id!.

Discarding the pole terms@the first set of terms on the r.h.s
of Eq. ~A19!# and evaluating the remainder leaves us w
the desired connected form factor

(
a1

f
1ā1a12

M0
3

~u22 ip,u12 ip,u1 ,u2!c

5 i2pD
6p2 cosh~u1!1~5p212u12

2 !cosh~u2!

~4p21u12
2 !~p21u12

2 !
.

~A20!

Combining Eqs.~A20! and ~A6! with ~A17! we find

C24~v50,k50!5
bD

4p E du1 du2e2bD(cosh(u1)1cosh(u2))

3
6p2 cosh~u1!1~5p212u12

2 !cosh~u2!

~4p21u12
2 !~p21u12

2 !

1 three other terms5
11Db

4p3 K0~bD!K1~bD!

1OS T

D
e2bDD1three other terms. ~A21!

To arrive at the last line we have dropped terms polynom
in u12. This leads to errors ofO((T/D)e2bD). The remain-
ing three terms make equal contributions toC24. We thus
finally have

C24~v50,k50!5
bD

p E du1 du2e2bD(cosh(u1)1cosh(u2))

3
6p2 cosh~u1!1~5p212u12

2 !cosh~u2!

~4p21u12
2 !~p21u12

2 !
. ~A22!

We note that in regulating the form factor forC24 we do not
allow the infinitesimal imaginary pieces to affect the spat
dependence of the form factor, i.e., we do not write

f
1ā1a12

M0
3

~u22 ip,u12 ip,u11 ih,u21 id,x!

5eiDx( id cosh(u2)1 ih cosh(u1))~••• !
5-22
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If we were to do so we would find an additional term comi
from expanding exp(iDx•••) in h and d. However, generi-
cally such terms lead to a violation of translation invarian
and as such should not be included. We moreover know
such terms would violate the equivalence of the form-fac
computation with the expression for the susceptibility co
ing the thermodynamic Bethe ansatz.

We go through a similar procedure withC25 and find an
identical result:C25(v50,k50)5C24(v50,k50). That we
do so is significant. We might have approached the calc
tion equally validly by ordering the in and out states in t
a
rm
he
to

ill,
te

r,

o
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thermal trace and resolution of identity such thatu1,u2 and
u4,u3 @and correspondingly multiplying the expressions
Eq. ~A14! by 4#. If we had done so we would find that in thi
caseC2550 and C24 is twice its current value. Of cours
both approaches must yield the same answer. But to do s
needC25(v50,k50)5C24(v50,k50). Given the regular-
ization of the form factors one must do to computeC25, it is
not a priori that this will be the case. That it is is a nontrivi
check of our regularization procedure.

The final term we must evaluate isC26. Fourier trans-
forming as before we find
C26~v50,k50!5
1

4D2E du1

2p

du2

2p

du3

2p

du4

2p
32pd~sinh~u3!1sinh~u4!2sinh~u2!2sinh~u1!!

3
e2bD(cosh(u3)1cosh(u4))~12e2bD(cosh(u3)1cosh(u4)2cosh(u1)2cosh(u2))!

cosh~u1!1cosh~u2!2cosh~u3!2cosh~u4!

3 (
a1a2a3a4

f
ā3ā4a1a2

M0
3

~u32 ip,u42 ip,u1 ,u2!c3 f
ā2ā1a4a3

M0
3

~u22 ip,u12 ip,u4 ,u3!c . ~A23!
,
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As the 4-particle form factors are proportional to„sinh(u3)
1sinh(u4)2sinh(u2)2sinh(u1)…—the Lorentz pre-factor for
the matrix element—one might believe it is immediate th
this expression vanishes once the Fourier transfo
limk→0*dxeikx, is taken and so makes no contribution to t
susceptibility. However the need to regulate the form fac
leaves this ambiguous. Nevertheless, after the regulationC26
ends up making no contribution to the susceptibility. It w
however, make a contribution to the NMR relaxation ra
Hence some of the details needed to computeC26 will be
dealt with in the context of that computation~see Appendix
B and Sec. II C!.

APPENDIX B: COMPUTATION OF THE CORRELATOR
FOR THE NMR RELAXATION RATE, 1 ÕT1

In order to compute 1/T1 we must evaluate the correlato

C~x50,v50!5E dteivt^M0
1~0,t !M0

1~0,0!&. ~B1!

The lowest order contribution arising from the evaluation
the thermal trace takes the form

^M0
1~0,t !M0

1~0,0!& lowest order

[C1~ t !5E du

2p

du1

2p

3e2bDcosh(u)(
aa1

e2 i tD(cosh(u1)2cosh(u))1 i t (Hsa1
2Hsa

)

3ebHsa^Aa~u!uM0
1~0,0!uAa1

~u1!&
t
,

r

.

f

3^Aa1
~u1!uM0

1~0,0!uAa~u!&, ~B2!

whereSa is the spin of particlea. We have assumed the field
H, is aligned along the 3-direction. Although we perform t
calculation at finite H, the form factors themselves reta
their H50 form, a feature of the model’s underlying integr
bility. Finite H merely breaks the degeneracy of the trip
state with the consequent energy shifts seen above. Fo
purposes of this computation, we are interested in the reg
H!T!D. This permits settingebHsa to 1, provided we are
willing to tolerate errors ofO(H/T). Performing then the
sums,(aa1

, over the different types of excitations leaves
with

C1~ t !522E du

2p

du1

2p
e2bDcosh(u)e2 i tD(cosh(u1)2cosh(u))

3cos~Ht !3 f
23
M0

1

~u2 ip,u1! f
23
M0

1

~u12 ip,u!

3~11O~H/D!!. ~B3!

Substituting the expression for the form-factors,f
23
M0

1

, from
Sec. III into the above, and then performing the necess
Fourier transform, leaves us with

C1~v50!5
2D

p
E du

e2bDcosh(u) cosh2~u!

Asinh2~u!1
2H

D
cosh~u!

3~11O~H/D!1O~H/T!!. ~B4!

For T!D this reduces to C1(v50)
'2D/pe2bD(log(4T/H)2g), where g is Euler’s constant.
5-23
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This is the result found in Ref. 5—a logarithmic dependen
on H indicative of ballistic transport.

The next order in the computation, essentially comput
terms ofO(e22bD), is of the form

C2~ t ![
1

4 (
a1a2a3a4

E du1

2p

du2

2p

du3

2p

du4

2p

3^Aa1
~u1!Aa2

~u2!uM0
1~0,t !uAa3

~u3!Aa4
~u4!&

3^Aa4
~u4!Aa3

~u3!uM0
1~0,0!uAa2

~u2!Aa1
~u1!&

[C21~ t !1C22~ t !1C23~ t !1C24~ t !1C25~ t !1C26~ t !.

~B5!

Here we have introduced the same notation employed
evaluate the second order contribution to the susceptib
The definitions ofC2i are the same as those in Eq.~A14! but
for changingM0

3 to M0
1 and shifting energies by a Zeema

term. As in the susceptibility computation,C21(t) is an ill-
defined term proportional tod(0), but is cancelled off by
similar terms coming from the partition function. Similarl
C22 andC23 are disconnected terms related toC1. They give
a contribution of the form

C22~v50!1C23~v50!

5
2D

p
E du

e2bDcosh(u) cosh2~u!

Asinh2~u!1
2H

D
cosh~u!

3~23e2bD cosh(u)!

52
6

p
De22bDA2p

bD
S logS 2T

H
D 2g D . ~B6!

If we were to add similarly disconnected terms coming fro
matrix elements with a greater number of particle numbe
we would find a resummation of the form:

C21~v50!1C22~v50!1C23~v50!

1higher order disconnected terms

5
2D

p
E du

e2bDcosh(u) cosh2~u!

Asinh2~u!1
2H

D
cosh~u!

3
1

113e2bD cosh(u)
. ~B7!

This type of resummation was discussed in Sec. II A.
The remaining terms are connected.C24(t) is given by

~we again set terms of the forme6bH to 1!
10443
e

g

to
y.

s,

C24~ t !5
1

4 (
a1a2a3

E du1

2p

du2

2p

du3

2p
e2bD(cosh(u1)1cosh(u2))

3e2 i tD(cosh(u3)2cosh(u2)) cos~Ht !

3H f
ā3 ,ā1 ,a1 ,a2

M0
1

~u32 ip,u12 ip,u1 ,u2!c

3 f
ā2 ,a3

M0
1

~u22 ip,u3!

1 (
a4a18a28a48

S
a4a3

a48a28~u21!Sa2a1

a28a18~u13!

3 f
ā2 ,ā1 ,a4 ,a3

M0
1

~u12 ip,u32 ip,u2 ,u1!c

3 f
ā

48 ,a
18

M0
1

~u22 ip,u3!1~u2↔u3!J . ~B8!

To evaluate this expression we must again regulate the
particle form factors appearing in the above by removing
singularities arising when two rapidities equal one anoth
For example, we regulate the first four particle form fac
appearing in the above via

f
ā3 ,ā1 ,a1 ,a2

M0
1

~u32 ip,u12 ip,u1 ,u2!c

5
p3

2
c~u322 ip!H cosh~u1!S) c D

3G
ā3 ,ā1 ,a1 ,a2

M0
1

~u32 ip,u12 ip,u1 ,u2!

1~sinh~u2!2sinh~u3!!]2 ihS S) c D
3G

ā3 ,ā1 ,a1 ,a2

M0
1

~u32 ip,u12 ip,u12 ih,u2! D J , ~B9!

where )c 5 c(u31)c(u312 ip 1 ih)c(u122 ip)c(u12
2 ih). Regulating the other form-factors similarly, we fin
after a long computation

C24~v50!5
Dp

256E du1 du2e2bD(cosh(u1)1cosh(u2))

3H S 1

usinh~u3!u ~sinh~u2!2sinh~u3!!

3F u23coth2~u23/2!

~u23
2 1p2!

G 2H 12u23cosh~u1!

112~sinh~u2!2sinh~u3!!S u13

u12
1

u12

u13
2

1

6D J
3~11O~u23!

21O~u12!
21O~u13!

2! DU
u35cosh21(cosh(u2)1H)
5-24
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1~H↔2H !J
5

17D

2p3 e22bDA2p

bDS logS 4T

H D2g D (11O~H/T!1O~T/D!).

~B10!
We perform a similar procedure onC25. As with the suscep-
tibility, C25 must and does generate an identical contribut
to C24.

The remaining term to evaluate isC26. This term made
no contribution to the susceptibility but does make a con
bution to the relaxation rate, 1/T1 . C26 takes the form

C26~ t !5
1

4 (
a1a2a3a4

E du1

2p

du2

2p

du3

2p

du4

2p

3e2bD(cosh(u1)1cosh(u2))

3e2 i tD(cosh(u3)1cosh(u4)2cosh(u1)2cosh(u2))
10443
n

i-

3eitH (Sa3
1Sa4

2Sa1
2Sa2

)

3 f
ā2 ,ā1 ,a4 ,a3

M0
1

~u22 ip1 i e2 ,u12 ip1 i e1 ,u4 ,u3!c

3 f
ā3 ,ā4 ,a1 ,a2

M0
1

~u32 ip1 i e3 ,u42 ip1 i e4 ,u1 ,u2!c .

~B11!

Again we must regulate this expression by discarding te
proportional to the 1/e ’s. To exhibit such terms we deform
the contoursu3 andu4 via

u3→u31 ip;

u4→u41 ip.

In doing so, we deform through a series of poles who
residues we thus pick up. Taking these into account, we
up with
C26~ t !52
i

8p5 (
a1a2a3a4

E du1 du2du4e2bD(cosh(u1)1cosh(u2))e2 iDt cosh(u4) cos~Ht !

3H eiDt cosh(u2)
f

ā2 ,ā1 ,a4 ,a3

M0
1

~u22 ip1 i e2 ,u12 ip1 i e1 ,u4 ,u3!

c~u132 ip1 i e1!
U

u35u1

3 f
ā3 ,ā4 ,a1 ,a2

M0
1

~u12 ip1 i e3 ,u42 ip1 i e4 ,u1 ,u2!1eiDt cosh(u1)
f

ā2 ,ā1 ,a4 ,a3

M0
1

~u22 ip1 i e2 ,u12 ip1 i e1 ,u4 ,u3!

c~u232 ip1 i e2!
U

u35u2

3 f
ā3 ,ā4 ,a1 ,a2

M0
1

~u22 ip1 i e3 ,u42 ip1 i e4 ,u1 ,u2!J 2
i

8p5 (
a1a2a3a4

E du1 du2 du3e2bD(cosh(u1)1cosh(u2))eitD cosh(u3) cos~Ht !

3H eiDt cosh(u2)
f

ā2 ,ā1 ,a4 ,a3

M0
1

~u22 ip1 i e2 ,u12 ip1 i e1 ,u4 ,u31 ip2 i e3!

c~u142 ip1 i e1!
U

u45u1

3 f
ā3 ,ā4 ,a1 ,a2

M0
1

~u3 ,u12 ip1 i e4 ,u1 ,u2!1eitD cosh(u1)
f

ā2 ,ā1 ,a4 ,a3

M0
1

~u22 ip1 i e2 ,u12 ip1 i e1 ,u4 ,u31 ip2 i e3!

c~u242 ip1 i e2!
U

u45u2

3 f
ā3 ,ā4 ,a1 ,a2

M0
1

~u3 ,u22 ip1 i e4 ,u1 ,u2!J 1
1

64p4 (
a1a2a3a4

E du1 du2 du3 du4e2bD(cosh(u1)1cosh(u2))

3eitD(cosh(u1)1cosh(u2)1cosh(u3)1cosh(u4)) cos~Ht ! f
ā2 ,ā1 ,a4 ,a3

M0
1

~u22 ip,u12 ip,u41 ip,u31 ip! f
ā3 ,ā4 ,a1 ,a2

M0
1

~u3 ,u4 ,u1 ,u2!

[(
i 51

5

C26i~ t !. ~B12!
5-25
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As we are interested inC26(v;0), we immediately see that the last three terms,C263 to C265, may be neglected as they a
only non-zero for frequencies,v, in excess of 2D ~providedH!D).

Focusing then uponC261, we obtain upon performing the necessary regulation

C261~ t !5 i
D2p3

128 E du1 du2 du4e2bD(cosh(u1)1cosh(u2))

3cos~Ht !e2 iDt(cosh(u4)2cosh(u2))3~sinh~u4!2sinh~u2!!S)
1

c DG
ā2 ,ā1 ,a4 ,a3

m0
1

~u22 ip,u12 ip,u4 ,u1!

3H cosh~u1!S)
2

c DG
ā3 ,ā4 ,a1 ,a2

m0
1

~u12 ip,u42 ip,u1 ,u2!1~sinh~u2!2sinh~u4!!]2 i eS S)
2

c D
3G

ā3 ,ā4 ,a1 ,a2

m0
1

~u12 ip1 i e,u42 ip,u1 ,u2! D J
)

1
c5c~u21!c~u242 ip!c~u212 ip!c~u142 ip!c~u41!,

)
2

c5c~u141 i e!c~u122 ip1 i e!c~u412 ip!c~u422 ip!c~u12!. ~B13!

To evaluate the above expression, we first Fourier transform which then leads us to consider the following expressi

S)
1

c D S)
2

c DG
ā2 ,ā1 ,a4 ,a3

m0
1

G
ā3 ,ā4 ,a1 ,a2

m0
1

2~u i↔2u i !50,

S)
1

c DG
ā2 ,ā1 ,a4 ,a3

m0
1

]2 i eS S)
2

c DG
ā3 ,ā4 ,a1 ,a2

m0
1 D 1~u i↔2u i !

5S)
1

c DG
ā2 ,ā1 ,a4 ,a3

m0
1

G
ā3 ,ā4 ,a1 ,a2

m0
1 S ]2 i eS)

2
c D 1~u i↔2u i ! D

5 i12pF u24
2 coth4~u24/2!

~u24
2 1p2!

G 2

~11O~u14
2 !1O~u12

2 !1O~u24
2 !!. ~B14!

Putting everything together then yields

C261~v50!5
D3p5

16 E du1 du2e2bD(cosh(u1)1cosh(u2))

3H S 1

usinh~u4!u ~sinh~u2!2sinh~u4!!23F u24
2 coth4~u24/2!

~u24
2 1p2!

G 2

3~11O~u24!
21O~u12!

21O~u14!
2!D U

u45cosh21(cosh(u2)1H)

1~H↔2H !J
512pDe22bDA2p

bDS logS 4T

H D2g D ~11O~H/T!1O~T/D!!. ~B15!

The evaluation ofC262 yields an identical contribution to the relaxation time.
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