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Renormalization and damping of dipole-exchange spin waves in ultrathin antiferromagnetic films
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The damping and frequency shift of spin wave modes due to magnon-magnon interactions in ultrathin
antiferromagnetic films are studied in the dipole-exchange regime. We employ a Hamiltonian formalism that
uses a transformation of the spin operators to boson operators in the film geometry and calculate the effects of
the three- and four-magnon interactions on the spin wave spectrum by means of a diagrammatic perturbation
technique. With this formalism we obtain expressions for the damping and energy shift of the discrete spin
wave modes in bcc antiferromagnetic films as a function of wave vector and temperature. Numerical results are
shown for ultrathin films of the antiferromagnet MnF2.
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I. INTRODUCTION

The study of low-dimensional systems is currently one
the most fruitful areas of research in solid state physics. T
is a consequence of the great variety of such systems,
relation with new technological applications~especially in
microelectronics!, and also due to an increasing interest
understanding the basic physical processes in these sys
which, in general, consist of fabricated structures that m
have no natural counterparts. The excitations in lo
dimensional magnetic systems, in particular, can behave
strikingly different way than their three-dimensional~3D!
equivalents. There is an extensive body of work related
the properties of the spin wave~SW! excitations in magnetic
systems of reduced dimensionality, e.g., films, superlatti
wires, and dots.1–3

In this work we present a study of interaction proces
between the SW in ultrathin antiferromagnetic films. Th
description usually corresponds to films with a relatively lo
number of atomic layers~e.g., below 100!. Most previous
studies4–6 of SW modes in ultrathin films have neglecte
higher-order SW effects, which, nevertheless, can beco
significant as the temperature of the system increases.
motivation for the present study is to extend previous cal
lations for the linear SW spectrum in antiferromagneti
films,7 employing a theory for the interaction processes t
builds upon a previous formalism for the study of nonline
processes in ferromagnets.8–10 The formalism is based on
microscopic description of the film, in which the positio
dependence of the magnetic sites in the medium is rea
cally taken into account. Our model includes the short-ra
exchange coupling~which dominates the SW dynamics
short wavelengths! as well as the long-range dipolar intera
tion between localized spins in the magnetic structure~which
are increasingly important at longer wavelengths!. The fact
that the dipolar interaction has a much longer range t
exchange coupling means that these interactions affect
SW dynamics in different ways. Most previousmicroscopic
calculations for SW interactions in films have focused
situations where only the exchange interaction is importa
However, this assumption may be unrealistic, especi
when one is dealing with low-dimensional systems and
0163-1829/2003/68~10!/104429~10!/$20.00 68 1044
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small wave vectors. Existing works on magnetic waves
films with both dipole-dipole and exchange interactions ha
primarily consideredmacroscopicapproximations, which
treat the magnetic medium as an effective continuum~for a
review see, e.g., Ref. 2!. These macroscopic models are e
pected to break down in the case of larger wave vec
and/or very thin films. On the other hand, by using a mic
scopic description one can obtain dispersion relations of
discrete SW modes for ultrathin samples and for the wh
Brillouin zone. The limitations of the macroscopic theori
can also be tested.

In antiferromagnetic films the existence of two sublattic
tends to increase the complexity of the analytical expr
sions, compared with the ferromagnetic case. On the o
hand, it also raises the possibility of a wider variety of no
linear effects. In addition, antiferromagnets usually have
richer spectrum of excitations due to the different spin ord
ing, and the SW frequency range is typically different~i.e., in
the infrared instead of the microwave region!. As we show
below for the case of antiferromagnets with a body-cente
cubic or tetragonal structure, the complexity of the equatio
describing the different SW interaction processes can be
nificantly reduced by means of a simple mathematical tra
formation.

The inclusion of interaction processes in the theory m
result in the occurrence of a frequency shift and damping
the SW modes. These effects can be calculated by mean
a diagrammatic perturbation technique. This method allo
one to include in a rigorous fashion the effects of the diff
ent processes. In this paper we employed such a perturb
technique to obtain the energy shift and the damping
evaluating the proper self-energies for diagrams correspo
ing to three-magnon processes, which arise due to the dip
interaction, as well as for diagrams representing fo
magnon processes, which contain contributions from b
exchange and dipole-dipole couplings. Results are show
a function of temperature and wave vector.

The corresponding treatment of three-magnon and fo
magnon processes in bulk~i.e., effectively infinite! dipolar
antiferromagnets, using a microscopic~or Hamiltonian! ap-
proach, is well known~see, e.g., Refs. 11 and 12!. The es-
sential differences in our present work on thin films ar
©2003 The American Physical Society29-1
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from the quantization of the SW spectra and the truncation
the dipole-dipole interactions due to the surfaces.

This paper is arranged as follows. Section II gives a
scription of the microscopic Hamiltonian formalism, inclu
ing the dipolar and exchange terms. An expansion in term
boson operators is made, generalizing the method descr
in Refs. 9 and 10, and some results for the linear SW sp
trum are briefly discussed. The following sections are
voted to an analysis of the higher-order~nonlinear SW!
terms in the Hamiltonian using a Green’s function diagra
matic formalism. The terms corresponding to three- and fo
magnon processes are discussed in Secs. III and IV, res
tively. In both cases the energy shift and damping of e
discrete SW mode are deduced from the relevant proper
energies. In Sec. V the numerical results with application
MnF2 are discussed, and finally the conclusions are p
sented in Sec. VI.

II. THE HAMILTONIAN

The system consists of a two-sublattice antiferromagn
thin film that hasN atomic layers. The external magnet
field of magnitudeH0 is parallel to the surface, along thez
axis, taken as the axis of sublattice magnetization. We
sume that the film has a bcc or tetragonal structure~e.g., as
for the magnetic ions in MnF2 or FeF2) and that the surface
correspond to a~100! crystal plane. The Hamiltonian is writ
ten as

H5(
i , j

Ji j Si•Sj2gmB(
i

~H01HAi!Si
z

2(
j

gmB~H02HA j!Sj
z1g2mB

2(
a,b

(
l ,m

Dlm
abSl

aSm
b , ~1!

whereJi j is the exchange coupling between nearest-neigh
sites andHAi, j are effective anisotropy fields. Thei ~j! indi-
ces correspond to sites in the sublattice of up~down! spins.
We note that, in this geometry, each layer consists of spin
one sublattice type only~see Fig. 1!. The exchange constan
is assumed to have a valueJ when connecting magnetic site
in the interior of the film, andJS when both interacting site
are located on the surface. The last term in Eq.~1! contains
the contribution of the dipolar interaction. Since this is
long-range coupling, the summations overl andm run over
all the sites. Thea andb indices denote componentsx, y, or
z, while g is the Lande´ factor andmB is the Bohr magneton
The expression for the factorsDlm

ab is

Dlm
ab5

@ ur lmu2dab23r lm
a r lm

b #

ur lmu5
, ~2!

where the vectorr lm5r l2rm connects magnetic sites in th
lattice. This term will be multiplied by1

2 when it involves
pairs of spins on the same sublattice to prevent double co
ing.

The spin Hamiltonian can be rewritten in terms of bos
creation and annihilation operators. This mapping can
10442
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done according to several schemes and in the pre
case we use the Holstein-Primakoff transformation~e.g.,
as in Ref. 10!:

Si
15A2SFA12

ai
†ai

2S Gai , ~3!

Si
25A2Sai

†FA12
ai

†ai

2S G , ~4!

Si
z5S2ai

†ai ~5!

for the Si ~spin-up! operators and

Sj
15A2Sbj

†FA12
bj

†bj

2S G , ~6!

Sj
25A2SFA12

bj
†bj

2S Gbj , ~7!

Sj
z52S1bj

†bj ~8!

for the Sj ~spin-down! operators. The transformed Hami
tonian can then be expanded~apart from a constant! as

H5H (1)1 (2)1H (3)1H (4)1•••, ~9!

whereH (p) ~with p51,2, . . . ) denotes the term involving a
product ofp boson operators. TheH (1) term can be shown to
vanish due to symmetry for the lattice types under consid
ation. The bilinear termH (2) describes the noninteractin
~linear! SW modes in the system while the other terms in
Hamiltonian represent the leading-order contributions
volving SW interactions.

FIG. 1. Schematic view of aN-layer antiferromagnetic film with
body-centered structure, showing the choice of coordinate axe
9-2
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TheH (2) term in the Hamiltonian for the assumed antife
romagnet is given, using a representation in terms o
2D ~in-plane! wave vectork5(kx ,kz) and a layer index
n (51,2, . . . ,N), by

H (2)5 (
k,n,n8

$Mn,n8~k!ckn
† ckn8

1Nn,n8~k!@cknc2kn81ckn
† c2kn8

†
#%, ~10!

where thec operators are defined as

ckn5H akn , n52l 21,

bkn
† , n52l , l 51,2, . . . .

~11!

The c operators must then obey the commutation relation

@ckn ,ck8n8
†

#5~21!n11dn,n8dk,k8 . ~12!

Also, in Eq. ~10!, we define

Mn,n8~k!5H gmBH (n)1SFvn,n11~0!1vn,n21~0!

1(
n9

~21!n2n9~gmB!2Dn,n9
zz

~0!G J dn,n8

1SFvn,n21~k!dn8,n211vn,n11~k!dn8,n11

2
1

2
~gmB!2Dn,n8

zz
~k!G ~13!

and

Nn,n85
1

4
S~gmB!2@Dn,n8

xx
~k!2Dn,n8

yy
~k!22iD n,n8

xy
~k!#,

~14!

where H (n)5H02(21)nHA , vn,n61(k)54J cos(kxa/2)
3cos(kza/2), andDn,n8

ab (k) are Fourier transforms of the d
polar interactions defined in Eq.~2!.

The next step, before proceeding to include the high
order Hamiltonian terms, is to diagonalizeH (2). By analogy
with Refs. 9 and 10, this will have the effect of ‘‘projectin
out’’ the linear SW modes. We recall that in an antiferroma
netic film with N layers there areN SW modes, and thes
occur in doubly degenerate pairs. We assign an in
n (51,2, . . . ,N) to each SW mode with energyen(k) at 2D
wave vectork, and then we perform a simple canonic
transformation on thec operators that diagonalizes the bilin
ear part of the Hamiltonian as a function of boson creat
and annihilation operators~see the Appendix!. TheH (2) part
of the Hamiltonian can then be rewritten as a function of
transformed operators~denoted bya† anda) as
10442
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H (2)52
1

2 (
k,n

@Mn,n8~k!~21!n2«~k!#dn,n8

1(
k,n

en~k!ak,n
† ak,n . ~15!

Thus the linear SW spectrum can be found by evaluating
en(k) factors. Some results for the linear SW spectrum
bcc antiferromagnetic thin films have been publish
previously.7 We now focus on the higher-order terms in th
expansion of the Hamiltonian.

III. THREE-MAGNON PROCESSES

The terms that contain products of three boson opera
are specifically due to the dipolar interaction, and origin
from spin products of the typesSxSz, SySz, etc., in the origi-
nal Hamiltonian. Their contribution can be written, in term
of the in-plane wave vector and layer indices, as

H (3)5
1

2 (
k,q,n,n8

Fnn8~k!~ckncqn8
† cq2kn81ckn

† cq2kn8
† cqn8!,

~16!

where

Fnn8~k!5~21!n811~gmB!2~2S!1/2@Dnn8
xz

~k!2 iD nn8
yz

~k!#.
~17!

This equation has a form similar to that in Ref. 10 for t
simple cubic ferromagnet. In the present case the informa
relating to the two-sublattice structure is implicit in our e
pression for the interaction potential.

It is now necessary to rewrite Eq.~16! in terms of thea
and a† operators that diagonalize the bilinear part of t
Hamiltonian, as described previously. Under this transform
tion the H (3) term is found to contain four differen
combinations of products of these operators, and can
expressed as

H (3)5
1

2 (
l 1l 2l 3k•q

@V1ak,l 1
† aq2k,l 2

† aq,l 3
1V2aq,l 1

† aq2k,l 2
ak,l 3

1V3ak,l 1
† aq2k,l 2

† a2q,l 3
† 1V4a2q,l 1

aq2k,l 2
ak,l 3

#.

~18!

The Vi ( i 51,2,3,4) coefficients are the canonically tran
formed interaction potentials for each term. They are giv
formally by the same expressions as in Ref. 10@but using the
redefinedFnn8(k) and canonical transformation matrices f
the antiferromagnetic case#, and so will not be quoted here
These coefficients~and likewise those in the next section fo
the four-magnon processes! are the analogs of coefficient
introduced by L’vov12 for bulk antiferromagnets. However
they depend on additional indices due to the discrete na
of the SW spectrum.

The terms inH (3) lead to a renormalization~i.e., an en-
ergy shift and damping! of the SW modes. The processes c
be represented diagrammatically by closely following the n
tation and procedure used recently for ultrathin ferrom
9-3
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netic films.10 The corresponding diagrammatic vertices co
sist an interactionVi and two SW lines entering or leaving
The lines represent the Green’s functions for the propaga
of a linear SW from any branch and with any 2D wa
vector: in our case they can be deduced from Eq.~15! for the
noninteracting HamiltonianH (2) in its diagonalized form.
The SW modes that are involved in theH (3) interaction ver-
tices may be from the same or different branches. Since th
terms have an odd number of operators, the leading-o
contributions to the required proper self-energies~to renor-
malize the SW Green’s functions! are necessarily of secon
order in theVi factors@see Fig. 2~a!, where the topologica
form of the self energy diagrams are illustrated#. The SW
energy shift and damping are related to the real and im
nary parts, respectively.10 In the case of antiferromagneti
films we eventually obtain the following expression for t
energy shift due to three-magnon processes:

Deq,l5P (
q8 l 8 l 9

H ~Wa1Wb!
n0~eq8,l 8!

eq,l 9

1Wc

n0~Eq8 l 8!1n0~e2q2q8,l 9!11

e2q2q8,l 91eq8,l 81eq,l

1Wd

n0~eq8 l 8!1n0~eq2q8,l 9!11

eq2q8,l 91eq8,l 82eq,l

1We

n0~eq8,l 8!2n0~eq1q8,l 9!

eq1q8,l 92eq8,l 82eq,l
J , ~19!

whereP indicates that the principal value is taken in a su
mation and the formal definitions of theW factors are as in
Ref. 10. The above result refers to the energy shift for

FIG. 2. Topological form of the proper self-energy diagram
resulting from ~a! three-magnon and~b! four-magnon interaction
processes in leading order.
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discrete SW corresponding to model and in-plane wave vec
tor k, and the temperature dependence arises through
Bose factorsn0(eq8,l 8) representing the number of thermal
excited SW with energyeq8,l 8 .

The corresponding three-magnon damping contribut
for the SW modes is found to be

Gq,l52p (
q8 l 8 l 9

$Wd@n0~eq8,l 8!1n0~eq2q8,l 9!11#

3d~eq2q8,l 91eq8,l 82eq,l !1We@n0~eq8,l 8!

2n0~eq1q8,l 9!#d~eq1q8,l 92eq8,l 82eq,l !%, ~20!

where the terms proportional to the Dirac delta functio
d(eq2q8,l 91eq8,l 82eq,l) andd(eq1q8,l 92eq8,l 82eq,l) corre-
spond to three-magnon splitting and confluence proces
respectively.

In the low-temperature limit ofT→0, the above results
simplify because the Bose factors terms vanish leaving

Deq,l~T50!5P (
q8 l 8 l 9

S Wc

e2q2q8,l 91eq8,l 81eq,l
D ~21!

and

Gq,l~T50!52p (
q8 l 8 l 9

Wdd~eq2q8,l 91eq8,l 82eq,l !.

~22!

In particular, only the three-magnon splitting processes c
tribute to the SW damping in the low-temperature limit.

IV. FOUR-MAGNON PROCESSES

We next consider the terms in the Hamiltonian contain
products of four creation or annihilation operators, followin
a similar procedure to that in the previous section. So
four-magnon terms occur even in the special case o
Heisenberg antiferromagnet, but additional contributions
our case come from the dipolar interactions. TheH (4) term,
when written in the representation with in-plane~2D! wave
vectors and layer indices, becomes

H1
(4)5

1

2 (
k1 ,k2 ,q,n,n8

@Mn,n8
(4)

~k1!ck2 ,n
† cq2k2 ,n

† cq2k1 ,nck1 ,n8

1Mn,n8
(4)

~2k2!ck2 ,n8
† cq2k2 ,n

† cq2k1 ,nck1 ,n8

22M 8n,n8
(4)

~k12k2!ck2 ,n8
† cq2k2 ,n

† cq2k1 ,nck1 ,n8

1F8n,n8
(4)

~k1!cq,n
† cq2k12k2 ,nck2 ,nck1 ,n8

1G8n,n8
(4)

~2k1!ck1 ,n8
† ck2 ,n

† cq2k12k2 ,n
† cq,n#, ~23!

where
9-4
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Mn,n8
(4)

~k1!52
1

2 Fvn,n21~q!dn,n211vn,n11~q!dn,n11

2mn,n8

~gmB!2

4
Dn,n8

zz
~q!G

M 8n,n8
(4)

~k1!52Fvn,n21~q!dn,n211vn,n11~q!dn,n11

2~21!mn,n8
~gmB!2

2
Dn,n8

zz
~q!G

F8n,n8
(4)

~k1!5
mn,n8

8
~gmB!2@Dn,n8

xx
~q!

2Dn,n8
yy

~q!22iD n,n8
xy

~q!#

G8n,n8
(4)

~k1!5
mn,n8

8
~gmB!2@Dn,n8

xx
~q!

2Dn,n8
yy

~q!12iD n,n8
xy

~q!#, ~24!

and we have defined the function

mn,n8[
31~21!n2n8

2
. ~25!

We then apply the canonical transformation~see Sec. II!
to reexpress the above in terms of thea and a† operators,
giving

H (4)5
1

2 (
l 1l 2l 3l 4k,k8,q

$L1ak8 l 1

† aq2k8,l 2

† aq2k,l 3
ak,l 4

1L2aql 1
† aq2k2k8,l 2

ak8,l 3
ak,l 4

1L3ak
18

†
ak8,l 2

† aq2k2k8,l 3

† aq,l 4
in
ti

ou

10442
1L4ak8 l 1

† aq2k8,l 2

† ak2q,l 3
† a2k,l 4

†

1L5a2k8 l 1
ak82q,l 2

aq2k,l 3
ak,l 4

%, ~26!

where the amplitude factors, denoted byL i ( i
51,2, . . . ,5), associated with each operator term a
again formally defined as in the ferromagnetic film case10

These terms can be represented diagrammatically and
contrast with the three-magnon case, the four-magnon in
actions vertices have an even number~four! incoming
and outgoing SW Green’s function lines. In general, t
interactionsL i involve both dipolar and exchange contrib
tions.

The leading-order contribution of the four-magnon pr
cesses to the self-energy comes from a diagram that is of
order in one of the interaction vertices, as shown in Fig. 2~b!.
It is found to be real for all values of the SW energy, a
hence it provides a renormalization of the SW energy of e
branch~but no damping term!. Following Ref. 10, the energy
shift associated with SW branchl at wave vectorq is found
to be

Deq,l5(
q8 l 8

Qan0~eq8,l 8!, ~27!

where the weighting termQa are related to a combination o
the L1 vertices, as specified in Ref. 10.

In order to calculate the damping~which is related to the
imaginary part of the self-energy!, it is necessary to conside
the contributions that are of second order in the four-mag
L i vertices. Following the same formal procedure as for f
romagnetic films,10 the final result for the damping of SW
branchl due to four-magnon processes is
Gq,l52p (
q8,q9 l 8 l 9 l-

$Qb$n
0~eq82q,l 8!@n0~eq9,l 9!11#2n0~eq82q9,l-!@n0~eq9,l 9!2n0~eq82q,l 8!#%d~eq9,l 9

1eq82q9,l-2eq82q,l 82eq,l !1Qc$n
0~eq9,l 9!n

0~eq82q9,l-!1@n0~eq9,l 9!11#@n0~eq9,l 9!1n0~eq82q9,l-!11#%

3d~eq9,l 91eq2q8,l 81eq82q9,l-2eq,l !1Qd$n
0~eq82q,l 8!@n0~eq9,l 9!11#

2n0~eq82q,l 8!@n0~eq9,l 9!2n0~eq82q,l 8!#%d~eq81q9,l-2eq9,l 92eq82q,l 82eq,l !%. ~28!
tile-

. In
, ex-
wn

,
t

Here the weighting factorsQa,b,c,d , are formally identical to
the ones described in Ref. 10.

V. NUMERICAL APPLICATIONS

We now present numerical calculations for the damp
and renormalization of the SW modes in antiferromagne
thin films, based on expressions obtained in the previ
g
c
s

sections. We employ parameters appropriate to the ru
structure antiferromagnet MnF2 (TN568 K, S5 5

2 ), where
the magnetic ions form a body-centered tetragonal lattice
this case the parameters of the sublattice magnetization
change constant, and effective anisotropy field are kno
from previous work.6 For relatively largeN ~whereN is the
total number of magnetic layers! of the order of 100 or more
the predictions for thel inear SW spectrum are consisten
9-5
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J. MILTON PEREIRA, JR. AND M. G. COTTAM PHYSICAL REVIEW B68, 104429 ~2003!
with those carried out for films using a continuum dipo
exchange approach6 with Maxwell’s equations describing th
dipolar terms. For ultrathin films the discrete nature of t
SW spectrum becomes apparent and also there is a symm
difference depending on whetherN is odd or even. In the
former case there are more layers of one sublattice type
the other, giving a net magnetization field. However, whenN
is even, the static magnetizations of the two sublattices c
cel out. This leads to a greater splitting between modes in
case ofN odd. Figures 3 and 4 show examples of the line
spectrum of the dipole-exchange SW modes for ultrat
MnF2 films with seven and eight layers, respectively.

In order to evaluate numerically the SW energy shift a
damping from three-magnon processes, the wave ve
summations in Eqs.~19!–~22! are performed over discret

FIG. 3. Dipole-exchange SW dispersion relations for a Mn2

antiferromagnetic film with seven atomic layers.

FIG. 4. Dipole-exchange SW dispersion relations for a Mn2

antiferromagnetic film with eight atomic layers.
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values in the 2D Brillouin zone. Specifically, the wave-vec
labels are taken from a lattice ofL3L points in the Brillouin
zone. In our case, a typical calculation employed lattic
with 2003200 points, for wave vectors ranging from
2p/a to 1p/a in both thex and z components of the in-
plane wave vector. The weighting factors are obtained
numerically evaluating the elements of the transformat
matrixSq at each point in the lattice. This procedure involv
the direct inversion of a 2N32N matrix. The final results for
the damping and energy shift shown below are then ca
lated as a function of the external wave vector chosen aq
5(qx,0). Other propagation directions forq may similarly
be studied.

In the case of the three-magnon SW damping, the su
mations in Eq.~19! must take into account the energy and 2
wave vector conservation conditions implicit in thed func-
tions. For the numerical evaluations the delta functions w
approximated by sharply peaked Lorentzian functions.
the calculation of the energy shift, where there are nod
function terms, it was found to be important to include t
contributions fromall the different processes~i.e., the terms
representing all combinations ofl 8 andl 9 SW branch labels!
in determining the principal part of the summations. Fo
film with N layers, that means that the energy shift cor
sponds to the sum ofN2 different contributions. However, in
the case of damping we find that only a relatively few (l 8,l 9)
terms contribute significantly, because of the restrictions
to thed functions.

In Fig. 5 we show some results for the damping due to
dominant three-magnon processes in MnF2 in the low-
temperature limit. This calculation is for SW branch 2~we
label the modes in increasing magnitude in terms of th
frequencies atq50) for an ultrathin film with seven atomic
layers. The graph shows the relative dampingG/SJ in terms
of the in-plane wave-vector componentqx , for SW’s propa-
gating along thex crystallographic direction~see Fig. 1 for

FIG. 5. Three-magnon damping~relative toSJ) versus reduced
wave vector of the second-lowest SW branch (l 52) in an ultrathin
film with seven layers.
9-6
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the film geometry!. The main contribution to the damping, i
this case, comes from thel 85 l 951 temperature-independen
splitting process. This corresponds to the terms multiplied
the weighting factorWd in Eq. ~20!. The contribution of the
confluence processes is found to be negligible forT!Tc in
this example. This can be explained by the small magnit
of the Bose occupation factors in the expressions for
confluence processes, in that temperature range. The g
shows that the damping has its maximum in a small w
vector region, with a cut-off for larger values ofqx ~for N
57, the cutoff happens atqxa/p'0.25). This ~and other
sharp features in the graph, are a consequence of thed func-
tions in the expressions for the damping. Thesed functions,
which express the frequency and momentum conserva
conditions, impose restrictions on the interaction proces
that are allowed to contribute to the damping, and are a
responsible for the existence of peaks and structural feat
in the results, as can be seen in the figures. We also fou
decrease in the magnitude of the damping as the numbe
layers in the film is increased. Both of these effects may
attributed to the fact that, for largerN, the modes are close
together, thereby influencing how the delta functions can
satisfied.

The corresponding energy shifts due to three-magnon
cesses for the two lowest (l 51 andl 52) modes in the same
seven-layer film are shown in Fig. 6. The results are plot
in terms ofDe/SJ versus wave vector. Although the relativ
energy shift for mode 2~broken line! is smaller than that for
mode 1~solid line! at small wave vectors, the energy shif
tend to become the same for larger wave vectors. This
havior occurs because the splitting between SW branch
and 2 ~see Fig. 3! becomes less important for larger wa
vectors. The results shown in Fig. 6 are the sum of the c
tributions from all the processes~49 in this case!, which are
associated with the different combinations ofl 8 and l 9 inter-
nal branch labels. This is illustrated in Fig. 7 where we sh

FIG. 6. Three-magnon energy shift~relative toSJ) versus re-
duced wave vector of the two lowest frequency branches,l 51
~solid line! and l 52 ~dashed line!, in a thin film with seven layers
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the contributions from some individual (l 8,l 9) processes to
the energy shift of branch 1, namely, processes~1,1!, ~1,2!,
~3,3!, and~4,4!.

Our results point to a strong effect on the damping of
SW modes depending on whetherN is even or odd. This is
particularly apparent for the damping of the lowest tw
branches whenN is relatively small. It is related to our ear
lier discussion of the linear SW spectra~see Figs. 3 and 4 for
N equal to 7 and 8, respectively!. For small wave vectors the
resulting imbalance in the sublattice magnetizations~whenN
is odd! leads to larger splitting of the lowest SW branch
compared with the evenN case. A consequence is that th
d-function conditions, requiring energy and 2D-momentu
conservation, for the three-magnon splitting processes
more readily satisfied whenN is odd. We have already illus
trated this with the damping for mode 2 in the case ofN
57 in Fig. 5. In contrast, whenN is small and even~for
example,N58 as in Fig. 4!, we find that the damping o
mode 2 is very much smaller~by a factor of at least 10! due
to the much smaller splitting between SW modes 1 and 2
this case. These differences between the even and odd c
tend to become negligible for thicker films (N→`), as
expected.

Next we briefly consider the four-magnon interaction pr
cesses. Some results for the four-magnon energy shift
function of wave vector are presented in Fig. 8 for Mn2
films with three different thicknesses:N57 ~solid line!,
N58 ~dashed line!, and N59 ~dot-dashed line!. Again, in
this case, one can observe an even-odd property whereb
number of layers also influences the energy shift, with
results forN58 being much smaller than for eitherN57 or
N59 over a wide range of wave vectors. These results
deduced from Eq.~27! for a fixed value of temperature. W
have also considered the effect of varying the temperature
the renormalization of the SW modes. Figure 9 shows
calculated temperature dependence of the four-magnon
ergy shift for two different values of the in-plane wave ve

FIG. 7. Contributions to the three-magnon energy shift~relative
to SJ) of some individual interaction processes in the case oN
57 and branch l 51: (1,1)—solid line, (1,2)—dotted line
(3,3)—dot-dashed line, and (4,4)—dashed line.
9-7
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tor component:kx50.1p/a and kx50.5p/a. Due to the
thermal population factor in Eq.~27!, the energy shift in-
creases rapidly with temperature, especially ifkBT starts to
become comparable withSJ ~implying that T approaches
TN , which is beyond the range of validity of the theory!.
However, even then, the contributions are still small co
pared to the three-magnon results~see Fig. 6!, which in turn
are dominated by the temperature-independent contribu
Likewise, the four-magnon contribution to the damping

FIG. 8. Four-magon energy shift~relative toSJ) versus reduced
wave vector for the lowest SW branchl 51 of films with seven
~solid line!, eight ~dot-dashed line!, and nine~dashed line! atomic
layers. The temperature corresponds tokBT/SJ50.5.

FIG. 9. Four-magnon energy shift~relative toSJ) for the lowest
SW branchl 51 versus temperature for a film with seven layers a
two different wave vectors:kxa/p50.5 ~solid line! and kxa/p
50.1 ~dotted line!.
10442
-
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estimated to be small compared to the three-magnon co
bution in the case of ultrathin MnF2 films. This is mainly
because of the double wave-vector summations in Eq.~28!,
together with the thermal factors.

VI. CONCLUSIONS

We have developed a diagrammatic perturbation form
ism for the Green’s functions that describe the dipo
exchange SW dynamics in antiferromagnetic ultrathin film
This Hamiltonian-based microscopic formalism was o
tained as an extension of a previous calculation for ferrom
netic films, and allowed us to find results for the dampi
and energy shift of magnons due to three-magnon and f
magnon interaction processes involving combinations of
discrete SW modes. Qualitative differences compared to
case of bulk materials11,12 occur because of this discrete a
pect of the SW spectrum, e.g., the appearance of additi
peaks and structure in the three-magnon damping resul
Sec. V. The formalism was applied to ultrathin films of th
rutile MnF2 antiferromagnet. The results point to a stro
dependence of the nonlinear processes on the number of
ers in the films. In particular, both the damping and ren
malization of the SW frequencies can be significantly infl
enced by the even-odd aspect of the total number of lay
This effect certainly is a consequence of the nonequivale
of the sublattices that occurs in films with an odd number
layers. It could, in principle, be investigated by experimen
techniques such as inelastic light scattering.13,14An interest-
ing theoretical extension of the present work would be
investigate antiferromagnets with other crystal structures
well as films with different crystal orientations.15

There are, of course, other processes, apart from the th
and four-magnon interactions, that may contribute to the
tal SW damping in antiferromagnets. For example, these
clude damping due to impurities and defects~in the surface
or bulk of the film! and spin-phonon interactions. To som
extent the different processes might be distinguished exp
mentally from one another by their different behavior wi
respect to varying the 2D in-plane wave vector, temperat
and applied magnetic field.
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APPENDIX

The H (2) term in the Hamiltonian is given by Eq.~10! in
the (k,n) representation where layer indexn51,2, . . . ,N.
We now define the followingN31 matrices (N being the
number of layers in the film!:

ck
†5S ck1

†

ck2
†

A

ckN
†

D , ck5S ck1

ck2

A

ckN

D . ~A1!d
9-8
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Thus, we can rewrite the Hamiltonian term as

H (2)5(
k

$c̃k
†M ~k!ck1 c̃kN~k!c2k1 c̃k

†N~k!c2k
† %,

~A2!

where M (k) and N(k) are N3N matrices with elements
Mn,n8(k) andNn,n8(k), respectively, and the tilde represen
the transpose. We also define column matrices with 2N com-
ponents

C k
†5S ck

†

c2k
D , Ck5S ck

c2k
† D . ~A3!

After some straightforward but lengthy algebra,H (2) may be
rewritten in a more compact form as

H (2)52
1

2 (
k,n

Mn,n~k!~21!n1
1

2
H (2), ~A4!

where

H (2)5(
k

C̃k
†x~k!Ck ~A5!

andx(k) is a 2N32N matrix:

x~k!5S M ~k! 2N~k!

2N~2k! M̃ ~2k!
D . ~A6!

The next step~before developing a diagrammatic pertu
bation method! is to simplify H (2) by transforming to a rep-
resentation in which the matrixx(k) is diagonalized. This
will have the effect of ‘‘picking out’’ the linear SW modes
We recall that in the antiferromagnetic film withN layers
there areN SW modes, and these occur in doubly degene
pairs in our 2N32N matrix representation. We assign a
index n (51,2, . . . ,N) to each mode energyen , and then
perform a simple canonical transformation on the boson
ation and annihilation operators that diagonalizeH (2). The
required transformation~to new boson operators! is defined
by

C k
†5Sk* Ak

† ,

Ck5SkAk , ~A7!

with the notation

Ak
†5S ak

†

a2k
D , Ak5S ak

a2k
† D . ~A8!

We seek a diagonalized Hamiltonian with the form

H (2)5(
k

~ ãk
† ã2k! S «~k! 0

0 «~k!
D S ak

a2k
† D , ~A9!

where theN3N diagonal matrix«(k) of SW energies is
10442
te

e-

«~k!5S e1~k! . . . 0

A � A

0 . . . eN~k!
D . ~A10!

In other words, we want to find a transformedx(k) as

x~k!→S «~k! 0

0 «~k!
D , ~A11!

whereupon we can then rewrite Eq.~A5! as

H (2)5(
k

Tr@«~k!#12(
k

ãk
†«~k!ak , ~A12!

and the original Hamiltonian~A4! becomes

H (2)52
1

2 (
k,n

@Mn,n8~k!~21!n2«~k!#dn,n8

1(
k,n

en~k!ak,n
† ak,n . ~A13!

Finally, we specify how the transformation matrixSk
can be calculated. From Eqs.~A7! and ~A11! we have
the requirement that the transformedx(k) matrix
satisfies

S̃k* x~k!Sk5S «~k! 0

0 «~k!
D . ~A14!

We also use the property that thea and a† operators obey
boson commutation relations, which in matrix form is e
pressed as

AkÃk
†2~Ak

† Ã̃k!5S I 0

0 I D , ~A15!

whereI is theN3N unit matrix. We thus obtain

SkS I 0

0 2I D S̃k* 5S u 0

0 2u D , ~A16!

where u is the N3N diagonal matrix with elements
un,n85(21)ndn,n8 . Equation~A14! may then be rewritten
as

S u 0

0 2u D x~k!Sk5SkS «~k! 0

0 2«~k!
D . ~A17!

This result allows us to obtain theSk matrix providedx(k)
and «(k) are known. WritingSk5(Sk,1 ,Sk,2 , . . . ,Sk,2N),
where eachSk, j is a column matrix, we obtain

S u 0

0 2u D x~k!~Sk,1 ,Sk,2 , . . . ,Sk,2N!

5~Sk,1 ,Sk,2 , . . . ,Sk,2N!S «~k! 0

0 2«~k!
D , ~A18!
9-9
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which implies

S uM ~k! 2uN~k!

22uN~2k! 2u ˜M ~2k!
DSk, j56e j~k!Sk, j .

~A19!
.

er
,

p

10442
The plus sign is used here forj P$1, . . . ,N% and theminus
sign for j P$N11, . . . ,2N%. By solving Eq.~A19! for Sk, j
one can find the transformation matrixSk and thereby diag-
onalize theH (2) part of the Hamiltonian. This can be conve
niently carried out numerically.
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