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Renormalization and damping of dipole-exchange spin waves in ultrathin antiferromagnetic films
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The damping and frequency shift of spin wave modes due to magnon-magnon interactions in ultrathin
antiferromagnetic films are studied in the dipole-exchange regime. We employ a Hamiltonian formalism that
uses a transformation of the spin operators to boson operators in the film geometry and calculate the effects of
the three- and four-magnon interactions on the spin wave spectrum by means of a diagrammatic perturbation
technique. With this formalism we obtain expressions for the damping and energy shift of the discrete spin
wave modes in bcc antiferromagnetic films as a function of wave vector and temperature. Numerical results are
shown for ultrathin films of the antiferromagnet MnF
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[. INTRODUCTION small wave vectors. Existing works on magnetic waves in
films with both dipole-dipole and exchange interactions have
The study of low-dimensional systems is currently one ofprimarily consideredmacroscopic approximations, which
the most fruitful areas of research in solid state physics. Thisgreat the magnetic medium as an effective continuon a
is a consequence of the great variety of such systems, thaieview see, e.g., Ref.)2These macroscopic models are ex-
relation with new technological applicatioriespecially in  pected to break down in the case of larger wave vectors
microelectronicy and also due to an increasing interest inand/or very thin films. On the other hand, by using a micro-
understanding the basic physical processes in these systerssppic description one can obtain dispersion relations of the
which, in general, consist of fabricated structures that mayliscrete SW modes for ultrathin samples and for the whole
have no natural counterparts. The excitations in low-Brillouin zone. The limitations of the macroscopic theories
dimensional magnetic systems, in particular, can behave in @n also be tested.
strikingly different way than their three-dimension@D) In antiferromagnetic films the existence of two sublattices
equivalents. There is an extensive body of work related tdaends to increase the complexity of the analytical expres-
the properties of the spin way8W) excitations in magnetic sions, compared with the ferromagnetic case. On the other
systems of reduced dimensionality, e.g., films, superlatticedjand, it also raises the possibility of a wider variety of non-
wires, and dots™® linear effects. In addition, antiferromagnets usually have a
In this work we present a study of interaction processesicher spectrum of excitations due to the different spin order-
between the SW in ultrathin antiferromagnetic films. Thising, and the SW frequency range is typically differérg., in
description usually corresponds to films with a relatively lowthe infrared instead of the microwave regioAs we show
number of atomic layerge.g., below 10D Most previous below for the case of antiferromagnets with a body-centered
studie$~® of SW modes in ultrathin films have neglected cubic or tetragonal structure, the complexity of the equations
higher-order SW effects, which, nevertheless, can becomeéescribing the different SW interaction processes can be sig-
significant as the temperature of the system increases. Thficantly reduced by means of a simple mathematical trans-
motivation for the present study is to extend previous calcuformation.
lations for thelinear SW spectrum in antiferromagnetic The inclusion of interaction processes in the theory may
films,” employing a theory for the interaction processes thatesult in the occurrence of a frequency shift and damping of
builds upon a previous formalism for the study of nonlinearthe SW modes. These effects can be calculated by means of
processes in ferromagnéts® The formalism is based on a a diagrammatic perturbation technique. This method allows
microscopic description of the film, in which the position one to include in a rigorous fashion the effects of the differ-
dependence of the magnetic sites in the medium is realistient processes. In this paper we employed such a perturbative
cally taken into account. Our model includes the short-rangéechnique to obtain the energy shift and the damping by
exchange couplingwhich dominates the SW dynamics at evaluating the proper self-energies for diagrams correspond-
short wavelengthsas well as the long-range dipolar interac- ing to three-magnon processes, which arise due to the dipolar
tion between localized spins in the magnetic strucfuigich  interaction, as well as for diagrams representing four-
are increasingly important at longer wavelengthiighe fact magnon processes, which contain contributions from both
that the dipolar interaction has a much longer range thaexchange and dipole-dipole couplings. Results are shown as
exchange coupling means that these interactions affect the function of temperature and wave vector.
SW dynamics in different ways. Most previouasicroscopic The corresponding treatment of three-magnon and four-
calculations for SW interactions in films have focused onmagnon processes in bulke., effectively infinite dipolar
situations where only the exchange interaction is importantantiferromagnets, using a microscopgar Hamiltonian ap-
However, this assumption may be unrealistic, especiallproach, is well known(see, e.g., Refs. 11 and )1Zhe es-
when one is dealing with low-dimensional systems and/osential differences in our present work on thin films arise
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from the quantization of the SW spectra and the truncation of M
the dipole-dipole interactions due to the surfaces. W

This paper is arranged as follows. Section Il gives a de- y
scription of the microscopic Hamiltonian formalism, includ-

ing the dipolar and exchange terms. An expansion in terms of * > > : "
boson operators is made, generalizing the method describe: o i —1
in Refs. 9 and 10, and some results for the linear SW spec- s
trum are briefly discussed. The following sections are de- (] i. —2
voted to an analysis of the higher-ordémonlinear SW > >
terms in the Hamiltonian using a Green'’s function diagram- 4 / —3
matic formalism. The terms corresponding to three- and four- > >
magnon processes are discussed in Secs. Il and IV, respec PuNgy 4 "y ~ —4
tively. In both cases the energy shift and damping of each A A ‘
discrete SW mode are deduced from the relevant proper self Vel vl Vel — 5
energies. In Sec. V the numerical results with application to N N » -
MnF, are discussed, and finally the conclusions are pre- b \ [N :
sented in Sec. VI.

II. THE HAMILTONIAN N

The system consists of a two-sublattice antiferromagnetic
thin film that hasN atomic layers. The external magnetic
field of magnitudeH, is parallel to the surface, along tlze FIG. 1. Schematic view of B-layer antiferromagnetic film with
axis, taken as the axis of sublattice magnetization. We assody-centered structure, showing the choice of coordinate axes.
sume that the film has a bcc or tetragonal strucferg., as
for the magnetic ions in Mnfor Fek,) and that the surfaces done according to several schemes and in the present
correspond to &100) crystal plane. The Hamiltonian is writ- case we use the Holstein-Primakoff transformati@ng.,
ten as as in Ref. 10

1 al
H=3 3;S-§~0ue2 (HotHa)S s.*;/zs{\/l——azs a, ®
[} i
~ 2 gus(HomHu) S+ 0%ui 2 2 DRSS, (1) S.=staT[ Vi-Te @

whereJ;; is the exchange coupling between nearest-neighbor S=S—a;'a, (5)
sites andH , ; are effective anisotropy fields. Thj) indi- _

ces correspond to sites in the sublattice of(dpwn) spins.  for the S (spin-up operators and

We note that, in this geometry, each layer consists of spins of

one sublattice type onlisee Fig. 1. The exchange constant \/—SqT / b b; } ®)
is assumed to have a valdavhen connecting magnetic sites ZS

in the interior of the film, ands when both interacting sites

are located on the surface. The last term in @g.contains / Tb

the contribution of the dipolar interaction. Since this is a \/—S{ 1—f}b (7)
long-range coupling, the summations oveand m run over

all the sites. Ther and 8 indices denote componemtsy, or 2= —S+b.'h. ®

z, while g is the Landdactor andug is the Bohr magneton. ! 1

The expression for the factofsf‘,f is for the S; (spin-down operators. The transformed Hamil-

tonian can then be expandébart from a constangs
wp Lriml®8ap—3r i fi]
Im ™ 5
|rlm|

’ 2 H=HO4+@ O L & 4. .. 9

whereH® (with p=1,2, . ..)denotes the term involving a
where the vector,,=r,—r,, connects magnetic sites in the product ofp boson operators. THe(*) term can be shown to
lattice. This term will be multiplied bys when it involves vanish due to symmetry for the lattice types under consider-
pairs of spins on the same sublattice to prevent double coungtion. The bilinear termH() describes the noninteracting
ing. (linean SW modes in the system while the other terms in the

The spin Hamiltonian can be rewritten in terms of bosonHamiltonian represent the leading-order contributions in-
creation and annihilation operators. This mapping can beolving SW interactions.

104429-2



RENORMALIZATION AND DAMPING OF DIPOLE-. .. PHYSICAL REVIEW B 68, 104429 (2003
TheH® term in the Hamiltonian for the assumed antifer-
romagnet is given, using a representation in terms of a

1
H®= =5 > M (K)(=1)"=&(K) 13,
2D (in-plane wave vectork=(k,,k,) and a layer index "

n(=12,...N), by

H®@= > My (K)ChiCrn

k,n,n’

+Np (K [CknCknr + ChnC " 1 (10)

where thec operators are defined as

akn! n:2|_1,
= 11
“nTlpf . n=2, 1=12,... . ()

The ¢ operators must then obey the commutation relation

[Ckn Chrn 1= (= D)™ 18, 1 Sy - (12)

Also, in Eq.(10), we define

M n,n’(k) = [ g/UvBH(n)"' S Un,n+1(o) +Un,n71(0)

+2 (—1)““”(gMBVDﬁ?n"(mH O

+S

Un,nfl(k)5n’,nfl+vn,n+1(k) 5n’,n+1

1 zZ
- §<guB>ZDn,n,<k>} (13

and

No o= 3 Qs LD (K)~ D2, ()~ 2D 2%, ()],
(14)

where H=Ho—(—1)"Ha, vnn-1(k)=4J coska/2)

X cosk,a/2), andDﬁﬁ,(k) are Fourier transforms of the di-

polar interactions defined in EQ).

+2 e (K)a) ., (15)
K,v ' '

Thus the linear SW spectrum can be found by evaluating the
€,(k) factors. Some results for the linear SW spectrum in

bcc antiferromagnetic thin films have been published
previously! We now focus on the higher-order terms in the

expansion of the Hamiltonian.

Ill. THREE-MAGNON PROCESSES

The terms that contain products of three boson operators
are specifically due to the dipolar interaction, and originate
from spin products of the type&'S?, S, etc., in the origi-
nal Hamiltonian. Their contribution can be written, in terms
of the in-plane wave vector and layer indices, as

1
t t
HO=Z 3 Frn (K) (CknCinrCq-kn’ + ChknCey s Can’)
k,q,n,n’
(16)

where

Fon(K)=(=1)" "X(gugs)%(29) "D, (k) =iD}s (K)].
17

This equation has a form similar to that in Ref. 10 for the
simple cubic ferromagnet. In the present case the information
relating to the two-sublattice structure is implicit in our ex-
pression for the interaction potential.

It is now necessary to rewrite E(L6) in terms of thea
and o' operators that diagonalize the bilinear part of the
Hamiltonian, as described previously. Under this transforma-
tion the H® term is found to contain four different
combinations of products of these operators, and can be
expressed as

H(3):1 >
2 1,153k q

t t t
[Viay aq-1,aq1, T Voaq dq—k 1,1,
+Via), af TtV

3%k, ¥q—k,1,%—q,l4 4a7q,llaqfk,lzak,l3]-
(18

The V; (i=1,2,3,4) coefficients are the canonically trans-

The next step, before proceeding to include the higherformed interaction potentials for each term. They are given

order Hamiltonian terms, is to diagonalizé?). By analogy

formally by the same expressions as in Ref[l0t using the

with Refs. 9 and 10, this will have the effect of “projecting redefinedr,, (k) and canonical transformation matrices for
out” the linear SW modes. We recall that in an antiferromag-the antiferromagnetic cakeand so will not be quoted here.
netic film with N layers there aréN SW modes, and these These coefficientéand likewise those in the next section for
occur in doubly degenerate pairs. We assign an indexhe four-magnon processeare the analogs of coefficients

v (=1,2,...N) to each SW mode with energy, (k) at 2D

introduced by L'vo#? for bulk antiferromagnets. However,

wave vectork, and then we perform a simple canonical they depend on additional indices due to the discrete nature
transformation on the operators that diagonalizes the bilin- of the SW spectrum.
ear part of the Hamiltonian as a function of boson creation The terms inH®) lead to a renormalizatiofi.e., an en-

and annihilation operatoisee the Appendjx TheH?) part

ergy shift and dampingof the SW modes. The processes can

of the Hamiltonian can then be rewritten as a function of thebe represented diagrammatically by closely following the no-

transformed operatorglenoted bya' and«) as

tation and procedure used recently for ultrathin ferromag-
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discrete SW corresponding to moldand in-plane wave vec-
tor k, and the temperature dependence arises through the

Bose factormo(sw,) representing the number of thermally

excited SW with energy, /.

The corresponding three-magnon damping contribution

for the SW modes is found to be

Fq'|: - E {Wd[nO(Equr)+n0(6q,q/1|u)+ 1]
qllflﬂ

0
X 8 €q-qr 17+ €q 17— €q) +Weln%( gy 1)

- no( 5q+q’,|”)] S( €q+q' 1" €qr 11 Eq’|)}, (20)

where the terms proportional to the Dirac delta functions

b)

\"4

FIG. 2. Topological form of the proper self-energy diagrams
resulting from(a) three-magnon andb) four-magnon interaction
processes in leading order.

netic films2° The corresponding diagrammatic vertices con-
sist an interactiorV; and two SW lines entering or leaving.
The lines represent the Green'’s functions for the propagatio
of a linear SW from any branch and with any 2D wave
vector: in our case they can be deduced from&§) for the
noninteracting HamiltoniarH® in its diagonalized form.
The SW modes that are involved in th#®) interaction ver-

O(€q—qr,1nt €qr1r— €q,1) and S(€q g, 1n— €qr 11 — €q,1) COITE-
spond to three-magnon splitting and confluence processes,
respectively.

In the low-temperature limit of —0, the above results
simplify because the Bose factors terms vanish leaving

W
E,q,qry|u+ Eq’,l’+ Eq‘|

Aeg (T=0)=P X,
qullﬂ

(21)

and

n
Fq,|(T= 0)= — 17 z Wd‘s(fq—q’,l”—'_ Eqr'|r_ fq’|).

q/IIIN
(22

In particular, only the three-magnon splitting processes con-

tices may be from the same or different branches. Since the?ﬁbute to the SW damping in the low-temperature limit.
terms have an odd number of operators, the leading-order

contributions to the required proper self-energigsrenor-
malize the SW Green'’s functiopare necessarily of second
order in theV; factors[see Fig. ?a), where the topological
form of the self energy diagrams are illustratedihe SW
energy shift and damping are related to the real and imag
nary parts, respectively. In the case of antiferromagnetic
films we eventually obtain the following expression for the
energy shift due to three-magnon processes:

nO(E ’ |r)
Aeg =P >, [(vva+wb)—q’
g1’ qul,,
nO(Eqr|r)+n0(€,q,q/'|n)+1

c

E_q_qr’|u+ €qr‘|r+ éq'|

0 0
n (Eq/|/)+n (Eq,q/'|u)+l

|

whereP indicates that the principal value is taken in a sum-
mation and the formal definitions of th& factors are as in

+Wy

quq’,l”+ 60]'," - qu|

0 0
n (Eq/1|/)_n (€q+q/‘|//)

+ W, (19

€q+q11|u_ Eq/’| r— eq’|

IV. FOUR-MAGNON PROCESSES

We next consider the terms in the Hamiltonian containing

iproducts of four creation or annihilation operators, following

a similar procedure to that in the previous section. Some
four-magnon terms occur even in the special case of a
Heisenberg antiferromagnet, but additional contributions in
our case come from the dipolar interactions. Fé) term,
when written in the representation with in-pla(2D) wave
vectors and layer indices, becomes

+

(4) T
M Ck2,an—kz,an—kl,anl,n’

n,n’

>

kq.,ko,q,n,n’

(4)
+M,

n

HEO=3 [Mpin (ko)

T T
r( - kz)ckz,nrcqsz,anfkl,anl,n’
1 (4) T T
— 2M n,n’(kl_ kz)ckz’n,Cq_kZ’an_klanlenr

1(4)
+F',

.
0 (K1)Cq.nCq—k; —ky,nCky nCky 1

(4) t t t
+ GIn,n’( - k1)Ckl,n/ckz,an—kl—kz,an,n]a (23

Ref. 10. The above result refers to the energy shift for thevhere
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T T T T
+A4ak,|laq_k,’lzafk_q’lsa_k’u

1
Mgfri'(kl): - 5 Un,nfl(Q) 5n,n71+vn,n+1(Q) 5n,n+1

5 T Asa_ o, a0 - g1,k 1,0 1, (26)
(Qug)* _,,
_/Ln,n’ 4 Dn’n’(q)

where the amplitude factors, denoted bw; (i

L (4) _ =1,2,...,5), associated with each operator term are
M’ nr(ka) Unn-1(8)hn-1FVnn+2(A) dnnrs again formally defined as in the ferromagnetic film cHse.
) These terms can be represented diagrammatically and, by
—(= 1)""v”’—(g'uB) D2 ( )} contrast with the three-magnon case, the four-magnon inter-
2 nn actions vertices have an even numb@our) incoming
and outgoing SW Green’s function lines. In general, the
F E:‘%r(kl): r18n (QMB)Z[D;XW(Q) L?;(;;actlonsAl involve both dipolar and exchange contribu
_p» _2ip¥ The leading-order contribution of the four-magnon pro-
nn (@) =205 ()] cesses to the self-energy comes from a diagram that is of first
order in one of the interaction vertices, as shown in F{g).2
G’E:lr)w(kl): M(Q#B)Z[Dﬁxnr(Q) It is found to be real for all values of the SW energy, and
' 8 ' hence it provides a renormalization of the SW energy of each
. branch(but no damping term Following Ref. 10, the energy
_nYY xy
D (@+2iD5 0 ()], (24 shift associated with SW brandhat wave vectoq is found
and we have defined the function to be
3+(—1)" "
Mnpn' = f (25)

_ _ Aegi=2 0.n%eq ), (27)
We then apply the canonical transformati@ee Sec. ) q'l’

to reexpress the above in terms of theand «' operators,

ivin
gnving where the weighting terrd) , are related to a combination of
% f g the A, vertices, as specified in Ref. 10.
HO=Z X {Alakqlaq_kr,|2aq—k,|3ak,|4 In order to calculate the dampir@hich is related to the

l1l2l3lakok’q imaginary part of the self-energyit is necessary to consider
the contributions that are of second order in the four-magnon
A, vertices. Following the same formal procedure as for fer-
romagnetic films? the final result for the damping of SW
branchl due to four-magnon processes is

.
tAzag, ag-k—k 1,0 1,2,

Tttt
+A3a’kiak’,Izaq—k—k’,l3aq,|4

Fq'|: — 1T ) ,,El,l,,l,,, {@b{nO(Eqr_qJr)[nO(Eqrr’|u)+1]_nO(Eqr_unw)[no(6qrr‘|u)_no(fqr_qu)]}g(Eunu
q.q

0 0 0 0 0
+Eqr,unm_qu,q'|1_6q'|)+®c{n (Eanu)n (Eqr,q/”m)‘i‘[n (Eqr/y|rr)+l][n (Eq//‘w)‘l‘n (Eq/,q//Jm)“l‘l]}
X 6( Eq”,l"+ GQ*q'J r+ Eq/,q//’w//_ eq’|) + @d{no( eq,,q’| /)[no( 6C|",|") + 1]

- no( Eq/ —q.l /)[no( Eq//’|//) - no( Eq/ —q.l /)]}5(Eq/+q//’|m_ Eq//’|/1_ Gq/ —ql’— Eq‘|)}. (28)

Here the weighting factor®, , . 4, are formally identical to ~ sections. We employ parameters appropriate to the rutile-

the ones described in Ref. 10. structure antiferromagnet MpR Ty=68 K, S=3), where
the magnetic ions form a body-centered tetragonal lattice. In
V. NUMERICAL APPLICATIONS this case the parameters of the sublattice magnetization, ex-

change constant, and effective anisotropy field are known
We now present numerical calculations for the dampingrom previous worl For relatively largeN (whereN is the
and renormalization of the SW modes in antiferromagnetidotal number of magnetic layeref the order of 100 or more,
thin films, based on expressions obtained in the previouthe predictions for théinear SW spectrum are consistent
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FIG. 5. Three-magnon dampiricelative toSJ) versus reduced
FIG. 3. Dipole-exchange SW dispersion relations for a MnF wave vector of the second-lowest SW brantk 2) in an ultrathin
antiferromagnetic film with seven atomic layers. film with seven layers.

with those carried out for films using a continuum dipole- values in the 2D Brillouin zone. Specifically, the wave-vector
exchange approatith Maxwell's equations describing the labels are taken from a lattice bf< L points in the Brillouin
dipolar terms. For ultrathin films the discrete nature of thezone. In our case, a typical calculation employed lattices
SW spectrum becomes apparent and also there is a symmetjth 200<200 points, for wave vectors ranging from
difference depending on wheth#t is odd or even. In the —m/a to +a/a in both thex andz components of the in-
former case there are more layers of one sublattice type thaiane wave vector. The weighting factors are obtained by
the other, giving a net magnetization field. However, when numerically evaluating the elements of the transformation
is even, the static magnetizations of the two sublattices carmatrix Sy at each point in the lattice. This procedure involves
cel out. This leads to a greater splitting between modes in théhe direct inversion of al>x 2N matrix. The final results for
case ofN odd. Figures 3 and 4 show examples of the lineathe damping and energy shift shown below are then calcu-
spectrum of the dipole-exchange SW modes for ultrathidated as a function of the external wave vector choseq as
MnF, films with seven and eight layers, respectively. =(q,,0). Other propagation directions far may similarly

In order to evaluate numerically the SW energy shift andbe studied.
damping from three-magnon processes, the wave vector In the case of the three-magnon SW damping, the sum-
summations in Eqs(19)—(22) are performed over discrete mations in Eq(19) must take into account the energy and 2D
wave vector conservation conditions implicit in tlefunc-
tions. For the numerical evaluations the delta functions were

1900 approximated by sharply peaked Lorentzian functions. For
] the calculation of the energy shift, where there are /o
function terms, it was found to be important to include the
1200 contributions fromall the different processdse., the terms
representing all combinations bf andl” SW branch labe)s

T in determining the principal part of the summations. For a

600 ] film with N layers, that means that the energy shift corre-
/ sponds to the sum i different contributions. However, in

the case of damping we find that only a relatively faw (")
terms contribute significantly, because of the restrictions due
to the & functions.

In Fig. 5 we show some results for the damping due to the
dominant three-magnon processes in MnR the low-
temperature limit. This calculation is for SW branch(\2e
00 02 o4 o8 o8 10 label the modes in increasing magnitude in terms of their

Knla frequencies atj=0) for an ultrathin film with seven atomic
- layers. The graph shows the relative dampiti®Jin terms

FIG. 4. Dipole-exchange SW dispersion relations for a MnF of the in-plane wave-vector componemy, for SW’s propa-

antiferromagnetic film with eight atomic layers. gating along thex crystallographic directiorisee Fig. 1 for

SW Frequency (GHz)

400

o
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718 FIG. 7. Contributions to the three-magnon energy dhétative

to SJ of some individual interaction processes in the casé\of
=7 and branchl=1: (1,1)—solid line, (1,2)—dotted line,
(3,3)—dot-dashed line, and (4,4)—dashed line.

FIG. 6. Three-magnon energy shifelative toSJ) versus re-
duced wave vector of the two lowest frequency branchesl
(solid line) andl =2 (dashed ling in a thin film with seven layers.

the contributions from some individual’(l”) processes to

the film geometry. The main contribution to the damping, in the energy shift of branch 1, namely, proces&gd), (1,2,
this case, comes from thé=1"= 1 temperature-independent (3,3), and(4,4).
splitting process. This corresponds to the terms multiplied by Our results point to a strong effect on the damping of the
the weighting factoiV, in Eq. (20). The contribution of the SW modes depending on whethdris even or odd. This is
confluence processes is found to be negligibleTfed T, in particularly apparent for the damping of the lowest two
this example. This can be explained by the small magnitudéranches wheiN is relatively small. It is related to our ear-
of the Bose occupation factors in the expressions for thdier discussion of the linear SW spectsee Figs. 3 and 4 for
confluence processes, in that temperature range. The graphequal to 7 and 8, respectivelyFor small wave vectors the
shows that the damping has its maximum in a small waveesulting imbalance in the sublattice magnetizatiomisenN
vector region, with a cut-off for larger values qgf, (for N is odd leads to larger splitting of the lowest SW branches
=7, the cutoff happens aja/m~0.25). This(and other ~compared with the eveN case. A consequence is that the
sharp features in the graph, are a consequence af thec-  S-function conditions, requiring energy and 2D-momentum
tions in the expressions for the damping. Théseinctions,  conservation, for the three-magnon splitting processes are
which express the frequency and momentum conservatiomore readily satisfied wheN is odd. We have already illus-
conditions, impose restrictions on the interaction processesated this with the damping for mode 2 in the caseNof
that are allowed to contribute to the damping, and are alse=7 in Fig. 5. In contrast, wheiN is small and ever{for
responsible for the existence of peaks and structural featurexample,N=8 as in Fig. 4, we find that the damping of
in the results, as can be seen in the figures. We also foundraode 2 is very much smalléby a factor of at least J0due
decrease in the magnitude of the damping as the number &6 the much smaller splitting between SW modes 1 and 2 in
layers in the film is increased. Both of these effects may behis case. These differences between the even and odd cases
attributed to the fact that, for largét, the modes are closer tend to become negligible for thicker filmaN{~), as
together, thereby influencing how the delta functions can bexpected.
satisfied. Next we briefly consider the four-magnon interaction pro-

The corresponding energy shifts due to three-magnon prazesses. Some results for the four-magnon energy shift as a
cesses for the two lowest 1 andl =2) modes in the same function of wave vector are presented in Fig. 8 for MnF
seven-layer film are shown in Fig. 6. The results are plottediims with three different thicknessedN=7 (solid line),
in terms ofA e/ SJ versus wave vector. Although the relative N=8 (dashed ling and N=9 (dot-dashed linge Again, in
energy shift for mode 2broken ling is smaller than that for this case, one can observe an even-odd property whereby the
mode 1(solid line) at small wave vectors, the energy shifts number of layers also influences the energy shift, with the
tend to become the same for larger wave vectors. This baesults forN=8 being much smaller than for eithdr=7 or
havior occurs because the splitting between SW branchesN=9 over a wide range of wave vectors. These results are
and 2(see Fig. 3 becomes less important for larger wave deduced from Eq(27) for a fixed value of temperature. We
vectors. The results shown in Fig. 6 are the sum of the conhave also considered the effect of varying the temperature on
tributions from all the processé49 in this casg which are  the renormalization of the SW modes. Figure 9 shows the
associated with the different combinationsl bfand!” inter-  calculated temperature dependence of the four-magnon en-
nal branch labels. This is illustrated in Fig. 7 where we showergy shift for two different values of the in-plane wave vec-
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FIG. 8. Four-magon energy shiftelative toSJ) versus reduced
wave vector for the lowest SW brandk-1 of films with seven
(solid line), eight (dot-dashed ling and nine(dashed ling atomic

&a/n

layers. The temperature correspond&id/SJ=0.5.

tor component:k,=0.17/a and k,=0.57/a. Due to the
thermal population factor in E¢27), the energy shift in-
creases rapidly with temperature, especiallkdf starts to
become comparable wit8J (implying that T approaches
Ty, Which is beyond the range of validity of the thepry

PHYSICAL REVIEW B58, 104429 (2003

estimated to be small compared to the three-magnon contri-
bution in the case of ultrathin MpHilms. This is mainly
because of the double wave-vector summations in(£8),
together with the thermal factors.

VI. CONCLUSIONS

We have developed a diagrammatic perturbation formal-
ism for the Green’s functions that describe the dipole-
exchange SW dynamics in antiferromagnetic ultrathin films.
This Hamiltonian-based microscopic formalism was ob-
tained as an extension of a previous calculation for ferromag-
netic films, and allowed us to find results for the damping
and energy shift of magnons due to three-magnon and four-
magnon interaction processes involving combinations of the
discrete SW modes. Qualitative differences compared to the
case of bulk materials'? occur because of this discrete as-
pect of the SW spectrum, e.g., the appearance of additional
peaks and structure in the three-magnon damping results in
Sec. V. The formalism was applied to ultrathin films of the
rutile MnF, antiferromagnet. The results point to a strong
dependence of the nonlinear processes on the number of lay-
ers in the films. In particular, both the damping and renor-
malization of the SW frequencies can be significantly influ-
enced by the even-odd aspect of the total number of layers.
This effect certainly is a consequence of the nonequivalence
of the sublattices that occurs in films with an odd number of
layers. It could, in principle, be investigated by experimental
techniques such as inelastic light scattefindf An interest-
ing theoretical extension of the present work would be to
investigate antiferromagnets with other crystal structures, as

However, even then, the contributions are still small com-Well as films with different crystal orientatioris.

pared to the three-magnon resukge Fig. 6, which in turn

There are, of course, other processes, apart from the three-

are dominated by the temperature-independent contributio@nd four-magnon interactions, that may contribute to the to-
Likewise, the four-magnon contribution to the damping istal SW damping in antiferromagnets. For example, these in-

3.0

AslSJ (100
N
o
1

-
o
l

0.0

0.3

FIG. 9. Four-magnon energy shifelative toSJ) for the lowest
SW brancH =1 versus temperature for a film with seven layers and
two different wave vectorsk,a/7=0.5 (solid line) and k,a/w
=0.1 (dotted ling.

k,T/SJ

clude damping due to impurities and defe@tsthe surface

or bulk of the film and spin-phonon interactions. To some
extent the different processes might be distinguished experi-
mentally from one another by their different behavior with
respect to varying the 2D in-plane wave vector, temperature,
and applied magnetic field.
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APPENDIX

The H® term in the Hamiltonian is given by E10) in
the (k,n) representation where layer index=1,2,... N.
We now define the followingNx 1 matrices N being the
number of layers in the film

+

Ck1 Ck1
.
Cko Ck2
a=| .| a=| .| (A1)
CEN CkN
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Thus, we can rewrite the Hamiltonian term as e(k) ... 0
e(k)= : : . (A10)
HE =23 {EGM (k)G GN(K)e i+ GN(K)eL 0 ... ek
(A2) In other words, we want to find a transformg¢k) as
where M (k) and N(k) are NXN matrices with elements K 0
M, n/ (k) andN, . (k), respectively, and the tilde represents X(k)ﬁ( e(k) ) (A11)
the transpose. We also define column matrices wiNhc@m- 0 ek’
onents
P whereupon we can then rewrite E@\5) as
+
ei=| ¥, | & A3 ~
=le ) Gl ) (A3) HO= Te(]+23 aleka, (AL
After some straightforward but lengthy algebkd?) may be and the original HamiltoniaA4) becomes
rewritten in a more compact form as
1
1 1 H(2)=_— M /k _1 n_ k 5 ’
H(Z):__E Mnn(k)(—l)n+—7‘((2), (A4) 2% [ n,n (k)( ) £( )] n,n
2 k,n ! 2
where +k§‘, e (Kaj ., (A13)
HPD=D Clx(k)Cy (AB5) Finally, we specify how the transformation matri
k can be calculated. From Eq$A7) and (All) we have

the requirement that the transformegi(k) matrix

and x(k) is a 2N X 2N matrix: satisfies
M (k) 2N(k)

XO=1on—k) f(—k))"

ky 0
(A6) z [

Sx0s=| o0 o) (A14)
The next stegbefore developing a diagrammatic pertur- We also use the property that theand o' operators obey
bation methoglis to simplify H®) by transforming to a rep- boson commutation relations, which in matrix form is ex-
resentation in which the matriy(k) is diagonalized. This pressed as

will have the effect of “picking out” the linear SW modes.

We recall that in the antiferromagnetic film wit layers . = 0
there areN SW modes, and these occur in doubly degenerate ArA— (A Al = 0o 1/ (A15)
pairs in our NX2N matrix representation. We assign an
index v (=1,2,... N) to each mode energy,, and then wherel is theNXN unit matrix. We thus obtain
perform a simple canonical transformation on the boson cre-
ation and annihilation operators that diagonaliz&”). The o\, (6 O
required transformatioto new boson operatorss defined Sk | Sk = 0 9]’ (A16)
by
where 6 is the NXN diagonal matrix with elements
Cl=Sf<‘Al, 0,0 =(—1)"6, . Equation(A14) may then be rewritten
as
Ck=S A, A7
k= oKk (A7) 0 0 e(k) 0
with the notation 0 —p X (K)S= Sk 0 —ek)) (A17)
T al @ This result allows us to obtain th$, matrix providedy(k)
Ax= a) A= at, (A8)  and e(k) are known. Writing Sy=(S¢1,S¢2, - - - Sk.2n)

where eacls, j is a column matrix, we obtain
We seek a diagonalized Hamiltonian with the form

6 O
S(k) 0 ay (0 _ 0) X(k)(sk,lisk,Zv e 1Sk,2N)
Ji2) o

e(k) £(k)
:(Sk,luSk,Zv ce vSk,ZN)< 0

no=3 (& w)|

—s<k>)’ (A1

where theN X N diagonal matrixe(k) of SW energies is
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which implies The plus sign is used here fpe {1, ... N} and theminus
sign forje{N+1,...,N}. By solving Eq.(A19) for S,
oM(k) 20N(k) S =*e(K)S one can find the transformation mat& and thereby diag-
I =€ '

—2O0N(—k) —60M(—k) onalize theH ) part of the Hamiltonian. This can be conve-

(A19) niently carried out numerically.
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