PHYSICAL REVIEW B 68, 104428 (2003

Inhomogeneous states in a small magnetic disk with single-ion surface anisotropy
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We investigate analytically and numerically the ground and metastable states for easy-plane Heisenberg
magnets with single-ion surface anisotropy and disk geometry. The configurations with two half vortices at the
opposite points of the border are shown to be preferable for strong anisotropy. We propose a simple analytical
description of the spin configurations for all values of surface anisotropy. The effects of lattice pinning lead to
appearance of a set of metastable configurations.
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The progress of nanotechnology permits creation of en- In real magnets the surface could produce the surface an-
sembles of fine magnetic particleénagnetic dotsof nanom-  isotropy for two reasons. First, the main origin of magnetic
eter scale, see for review Ref. 1. Magnetic dots in the form o&nisotropy can be caused by the anisotropy of spin-spin in-
cylinders or prisms have been made of soft magnetic mateeractions(the case ofexchangeanisotropy. For this case
rials such as Co and permalfoy or highly anisotropic ma- even on an ideal atomically smooth surface the spins have
terials such as Dy and FePt, see Refs. 7,8. Magnetic dots aniifferent coordination numbers than in bulk, and conse-
their arrays are of interest both in the basic and applied magiuently the intensity of the exchange interaction changes.
netism with potential applications including high-density For the surface exchange anisotropy the direction of the cho-
magnetic storage medfa. sen axis is the same as in bulk and has no connection to the

Usually a small magnetic particle is considered as bein@urface. Th_is effect could lead t(_) the nonuniform states in
in the monodomain state with a homogeneous saturated magP™e special cases only, mostly in the presence of an exter-
netization(or Néel vector for antiferromagnetsDuring the &l magnetic field, for example, the surface spin-flop

2425 e
past few years it has been established that the distribution dfansition;™*>and the states caused by the magnetic field for

magnetization within the dots made of soft magnetic materi-e"’l‘e’y""‘xIal ferromagnef@.Se_cond, in real magnets surface
toms have a different environmental symmetry. Thus, the

als can be quite nontrivial; namely, various inhomogeneou . S o
states resulting from the magnetic dipole-dipole interactionsurface dISt.Ol‘tS a crystallme field that_acts on a magnetic ion,
and the anisotropy is changed drastically. It leads to a spe-

appear. In recent years interest in such states for submicro&ric single-ion surface anisotropy for the spins with a pre-

particles ha_s_risen ;ignificantly. A small engugh none”ipTQ‘Oi'ferred axis coinciding with the normal to the surface. This
d_al dot exhibits a single-domain, nearly u?oli%m magnetizaogel is considered by Dimitrov and Wysin for fcc iron
tion state, so-calledlower and leaf states” When in- ¢justers?:?2we would like to investigate this case both ana-
creasing the size of the dot above a critical value, vortex statgically and numerically. Note that the surface effects, in
occurs?**~*'The main property of such states is the nonsatparticular, the surface anisotropy, have been considered by
urating value of the total dot magnetization, nearly zero formany authoré’-?8 but in most of these works the ground
vortex states and nearly saturated, but less than saturated, fiates have been assumed to be homogeneous, and the sur-
leaf and flower states. face terms are only accounted in dynamics. On the other

O'Shea and co-worket%2° have observed nonsaturated hand, it is obvious that for fine magnetic particles the role of
states for the rare-earth ferromagnetic granules with high arthe surface becomes much more important than for bulk ma-
isotropy and the size about of 5 nm. A possible explanatiorierials. The effects caused by the surface considered as a
of this fact is that these particles are in nonuniform stites. defect are proportional t&~ 3 and their role increases
On the other hand, it is clear that the concepts of nonuniformwhen the size of the particle tends to the nanometer scales.
states referred to above and caused by a magnetic dipole Note that similar problems arise in the other domains of
interaction cannot be applied directly to such small particlesondensed-matter physics, where the role of surface is im-
made with highly anisotropic material. In this regard, someportant. These are textures in liquid crystalnd in a super-
other sources of nonuniformity need to be found. fluid 3He, see Ref. 30. For th& phase of*He (*He-A) the

The appearance of nonuniform states for small bcc atomianit-vector order parametéy 1°=1 is perpendicular to the
clusters by taking into account tisingle-ionsurface anisot-  surface of a vesseffHe cannot be in equilibrium with its
ropy have been shown numerically by Dimitrov and own vapor; it fills the vessel completely at temperatures
Wysin?1?2 Garanin and Kachkachi in the recent wotin-  when it is superfluid T<2 mK). Thus, the vector should
vestigated the effective anisotropy caused by such a nonunbe perpendicular to the surface of tiele-A sample. The
form spin distribution for small magnetic particles. The dif- analysis shows that the order parameter becomes nonuni-
ference of the properties of the spins on the surface and iform, and, moreover, it is singular for any simply connected
bulk could be considered as a defect destroying the homogeressef®
neity of a sample. It is clear that due to the surface a homo- It is clear that such effects may be observed in all finite
geneous ordering is distorted or even broken. samples of ordered media with vector order parameter and a
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strong surface anisotropy of the forB(m-n)2, wheren is  other chosen direction, a normal to it, and enters a local
the normal to the surfacey is the order parameter, aftlis ~ System of coordinates, in which the ten®y,(i) is diago-
the constant of single-ion surface anisotropy, which orient$1al. We neglect in Hamiltoniafl) a dipole-dipole coupling
m with respect to the surface. For tHele-A, the boundary and a Zeeman interaction with an external magnetic field.
condition could be described as a limit of ifinitely strong We shall use a simple version of Ed) with an uniaxial
surface anisotrop<0, |B|—o, with easy axis perpen- symmetry for the bulk propertiesz(as a chosen axis, for
dicular to the surface. The concept developed fbte-A definitenespand with nearest-neighbor interaction only:
could be a good guide for a theory of fine magnetic particles
with surface anisotropy. On the other hand, the situation for
magnets is more general: the magnitude of the surface an-
isotropy for magnets is finite, and the magnetic moment
could be inclined with respect to the axis of surface anisot- 72 2
ropy. As we will show below, finiteness of anisotropy could - KZZ (S)7+ B; (S/n)*. @
lead to the states with nonuniform spin distributions but
without singularities. HereJis the exchange integral, is the anisotropy parameter
The outline of the paper is as follows. In Sec. | we discus$f the exchange interaction, an@l are the vectors of the
classical models for a small magnetic particle supportingiearest neighbors, the summation overin the last term
simplest nonuniform spin distribution, caused by surface anincludes only the surface sites, where the number of the near-
isotropy, which is planar and two-dimensior@D) model. ~ est neighbors differs from the volume one. In order to more
This means that the spins parallel to one plane and the spidequately compare the lattice and continuum models, we
distribution depends effectively on only two space coordi-assume that the vectaris a normal to the surface, but not a
nates k,y). Section Il is devoted to the planar continuum direction given by the Miller indices.
2D model in the limit case of the infinite surface anisotropy, The sign of the exchange integral plays no role for the
where exact solutions are found and analyzed. In Sec. Il thétatics of nonfrustrated magnets with a bipartite lattice.
same model will be considered for the case of finite anisotMoreover, a model without dipole-dipole coupling is more
ropy. Section IV contains results of direct numerical simula-2dequate for antiferromagnets than ferromagnets. For sim-
tions for the 2D lattice models and the consideration of pin-Plicity, we use below the ferromagnetic representation of
ning effects that can be estimated from the continuum modeBpin distributions, i.e.J>0. The transition to the antiferro-
The analysis of thermal and topological stability is also dongnagnetic case for a bipartite lattice is trivial: we introduce
in this section. The last section, Sec. V, contains the sumsublattices and change the directions of the spins in one of
mary of obtained results and a short discussion of those ithem.

H= _J% (S|XS|X+6+ S¥S¥+6+)\$ZSZ+6)

with other similar systems. The continuum approximation of Eql) is based on a
free-energy functional)] m] that depends on the local nor-
I. MODEL malized magnetizatioom(r), m?=1. Using the standard

smoothing procedure of a lattice model, we write down the

There are two approaches to the analysis of the static anfgnctionalMm] as
dynamic properties of magnetic materials: discrete micro-
scopic and macroscopic. The microscopic approach is based
on a discrete spin Hamiltonian in which the spBs(quan-
tum or treated quasiclassically, as will be done bglane
specified at the lattice sitésIn discrete models the magnetic +KmZ+aB(mn)28(r—rg)}. 3)
anisotropy can be introduced in two different ways: as ) .
single-ion anisotropy and as anisotropy of the exchange intiere  is the volume of the particle, the vectoy param-

teraction. To describe them, the spin Hamiltonian is choseftrizes the surface(r) is the Dirac é function, a is the
in the form lattice spacing, an&is the cross-section area. The solution

of the Euler-Lagrange equation for E() gives spin con-
e w2 - figurations with a preferential direction close to the surface.
H:% J.S'S; +§i: Ka(S) +§i: Bus()S'SC. (1) Itis clear that the measure of inhomogeneity depends on the
J problem parameters and the sample shape. A simple consid-
HereS/" is the projection of a classical spin on the symmetryeration shows that for the fixed shape there are only two
axis a of the bulk crystal. The summation in the first term is relevant parameters. The first one is the characteristic radius
over all the nearest neighbors in the lattidg,is an aniso- R/ro, whererq=aJ/K at \=1 or ro=2a\/(1—\) at
tropic exchange tensor. The consténtand functionB,, 4(i) K=0 is the magnetic length, defined in the same way as for
describe the volume and the surface single-ion anisotroppulk materials’® The second parameter is the ratio of the
energies, respectively. For the crystals with rhombic orexchange integral to the surface anisotr@sy. To simplify
higher symmetry, all tensors describing volume characterisanalysis we consider a model with a purely planar spin dis-
tics can be diagonalized simultaneously. The tensor functiotribution. Such distributions appear for magnetic vortices at
B,s(i) is nonzero only near the surface and abruptly destrong enough easy-axis anisotropys<\., wherex ~0.7
creases in the depth of the sample. The surface creates amhen ro=a.>? In this case we obtain the one-parameter

1 Sa
WIm]= zfg —5 (@ (Vm) %+ (Vmy) 26 (Vm,)?]
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model characterized by the ratyJ. As we will see below, ¢ _
such a model demonstrates a wide set of inhomogeneous R% —bsinZ ¢(p,x)—x]=0. (6)
states and allows complete analytical and numerical investi- p=R

gations. We restrict ourselves to the case of one MOre SiMrpys, this is a problem with a nonlinear boundary condition.
plification, namely, a model which allows 2D spatial spin In the absence of the boundary anisotropy.0, homo-

?vlvsmbu“tcimls\’/ I'rie.'b|such dlstr;]t;uuo'zs W:] Iﬂgl deper;]d onilr)T/] Ongeneous solutiong = const satisfy simultaneously Eq&)
0 spatial variables, say andy. Apparently, such a sim- and(6), and this trivial case is not considered. First of all, we

plification is applicable to an island of a magnetic mono'analyze possible solutions in the limit of strong border an-

at_omic layer shaped as a disk. For_ nume_rical simulation .W?sotropy b=c0, when the problem becomes linear and can be
W'" choose a frag_ment of the two-dlmen_sllonal square If?‘tt'cesolved exactly. The boundary condition leads to two possible
in the form of a disk. However, applicability of the obtained

; o . . . solutions¢ (R, x) = x = 7/2. Such ambiguity of the boundar
results is not limited by this concrete case. It is easy to 'magéonditionﬁ(he)rg di)1€fers from the clas?sicyinternal Neuma):m

gﬁizlrtﬁ?t'rggﬁzvégefstgﬁ Zi;nn? Slgi‘)t:]ael'iv;?]'?émaerzsfpglrgr'ﬁg"_roblem of mathematical physics and the relevant physics
: P 9 ill be discussed below. The solutions in both cases can be

netic particle With the _volume easy-plane anisotropy, haVingl:onstructed via harmonic functions, it can as well be done in
a form of a cylinder with the base parallel to the easy plan‘?Wo—dimensional electrostatic8 The general solution of the

(the x-y plane and with the axis along the axis. If one . . ” .
considers that the surface anisotropy consBamt Eq. (3) is Laplace. equationp can be written via a c.ompliex potential
g(z) of integer charges|, placed at the pointg,:

positive, then the normal to the surface is the hard axis of th
surface anisotropy. It is clear that any planar spin distribution

with S,(i)=0 ensures both the minimum of the volume and é=Im[u(z)], U(Z)ZE aeIn(z—z,) +const.  (7)

the surface anisotropy on the upper and bottom cylinder sur- k

faces. In this case nonuniformity is caused only by the lateral ) ) ) )
cylinder surface, and one can expect that the distribution willl "€S€ charges have a simple physical meaning, they describe

be a spatial-two-dimensional one, with the same character &€!l-known in-plane vortices, which have been repeatedly
for the purely two-dimensional problem. discussed in regard to 2D magnetism. We introduce a com-

plex representation for the coordinate plang z=x+iy.
The functionabM u] is rewritten as

1fRdf dz
2)o " ) ig-piz

II. ASTRONG BORDER ANISOTROPY IN A CONTINUUM

APPROACH

du|?

RS e
Wu]=JS iz

We shall start from the simplest model to describe effects
of surface anisotropy. Consider a disk-shaed cylinder-

shaped, see abovmagnet, withx-y plane as an easy plane, b dz (§2-1)?
and assume a 2D spin distribution. We assume that the mag- + 8 |z\:RE & ' ®
netization is a two-dimensional unit vector, in a polar map-
ping: m,=0 andm, =e,cos$+g,sin¢, where €,,,,6,) is  where
the basis in the spin space agd= ¢(x,y) is the angle be-
tweenm ande,. The magnetic energy of the disk takes the *
form & 9 oy §2=?exp(u—u*). 9
1 . . . .
=] _f ds(v z+bf d 2d—1)|. (4 _ In _the contlnuum approxmathn the enerMu_] is loga-
M¢] 2o V) r xcos(é=x)|. (4 rithmically divergent, close to points where the in-plane vor-

) ) . _ tices(charge$ q, are placed. To describe these singular so-
Here() is the area of our disk-shaped magnet with the radiustjons in the continuum model, we have to introduce a
R, the contour” is the border circle, ando(x) are the polar  cytoff parameter of the order of the lattice spacing. Singu-
coordinates in the plane of magnet. The parametsrpro-  |ayities cost much energy, and one could expect that configu-
portional to the constant of a border anisotropy; (B/J) rations with a global minimum oiA[u] should be sought

x(R/a). We chooseb=0, and the preferential surface di- among the nonsingular functiongz) in the area or func-
rections are tangent. This choice is motivated above; onfons with a small number of singularities.

more reason is that such an effective term can be used to
model the magnetic dipole interactidh. The function

#(p,x) may have singularities inside the diék. Minimal A. Vortexlike configurations

configurations for the energy) are constructed from solu- The simplest solution with one singularity is a centered
tion of the respective Euler-Lagrange equations, which is theortex, see Fig. 1, generated by the functiersinz=in/2
scalar Laplace equation with the energy
VZ¢=0, (5 R
, N Eszsza-rIn(—>, (10)
with the boundary condition gi=R, le
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T T The first term coincides to a proper energy of the vortex

given by Eq.(10), and the second term is the energy of the

ST NN interaction between the vortex and the border; it is a repul-
sive one. Besides it another force acts on the vortex: the
vortex tends to escape from a finite area in order to decrease
|[Vm|, and thereby being attracted to the border. In the case

of b= the repulsive force prevails, the vortex is stabilized
at the farthest point from the border, and the second term in

N

v\

-

j l Eqg. (12) is absent.
/)

Ve

B. Configurations with two half vortices on the border

The above considered vortexlike distributions are some of

the simplest spin distributions, minimizing surface anisot-

\ -~ / - 3 i
\ ™ “ / ropy, not only for the circle shape but also for a border in the
T e form of any simple contour. Indeed, going around a simple

closed contour, the normalto it turns to 360°. This means
that the topological characteristic of the planar unit vector,

ST —= N \L so-calledvorticity,®! q equals to* 1 for the vectom. Obvi-
ously, those magnetic vortices having the vortidty 1 are
/ / / / / ~ N\ \ quite probable candidates to realize the energy minimum.
/1 /( f f T \ AN / l \ Nevertheless, vortices with amy# 0 admittedly possess sin-
gularities inside the sample. The analysis of such distribu-
f T T ’\ \ N~ )/ l tions where magnetization has no singularities in the bulk is
of interest. A simple analysis demonstrates that in this case,
ﬁ \ \ \ N ™ ~— / l as well as for®He-A, singularities should appear on the bor-
~— der.
\ \ \ \ ™ < / / To explain this, consider the behavior of the vector field
\ NN S~ 7 / mzéxcos¢+éy sin¢ on the border circld™. The boundary
NN S e condition requires that the vector be parallel to the border.

It can be presented in two wayst may be parallel or anti-
parallel to the tangent vectar=nxe,. Assuming tham is
FIG. 1. Numerically calculated vortexlike states for the discreteNonsingular inside(), the circlel" can be divided into an
model(2) with A\=0, K,=0 andR=>5a. even number of alternating regions: in half of themhas to
rotate clockwise and in the others counterclockwise. Thus,
wherer , is a cutoff parameter for vortex states of the orderbesides the above considered vortexlike solutions, there exist
of the lattice spacing. Besides these solutions the others arg’€gular configurations inside the cirdieand with singulari-

noncentered vortices for infinite, see Fig. 1, generated by (€S on the border, see Fig(c2. (Such singularities in the
three-dimensional case are referretf @s vortex lines.The

simplest two-singularity solutions can be written as

L — —

R?\ =
u(z)=In(z—zp)+Inl z——| +i=, where |z5|<R,
z 2

5 u(z)=|n(z—Ré‘*‘l)+ln(z—Ré¢2)+iwiig. (13)

(11)

. . . This is a field created by two charges placed at the border
with the vortex placed at the poiaf. They also satisfy the . - - . .
P poiih y o pointsRe?t andRe?2. It is easy to check that the condi-

conditions¢= y = w/2 on the borded’. As seen from Eq. ~ — /2 isfied he bord h
(11), the interaction between the vortex and the border:[Ions ¢=x*tml2 are satsfied on the border wherever

which may be considered as a consequence of the boundafitR:X) is defined. To calculate the energy thoroughly, we
condition (6), is equivalent to the coupling between the vor- "ave to introduce the cutoff parametgrand integrate over
tex and the image vortex placed outside the disk at the inthe disk() except two half circles of radius, centered at the
verse symmetric point with respect to the border circle. Thecharges. Under the condition that the cutoff regions do not
calculation of the energy covers only the a@aand the overlap,R(¢;— ¢;)>a, the energy of the configurations are
singularity of the reflected charge gives no effect. The energy

( R) $1— 2

Inf —]—=In2—In
rE

of noncentered vortex for infinite (fixed boundary condi- Ep,=JSm i . (9
)] Here r_ is the corresponding cutoff parameter. The con-

tions ¢= x =+ 7/2 on the borderis given by 2
(12) tinuum approximation does not provide a relation between

R Z0/?
E0=3S7 In(—)—ln 1—% ) : .
le R andr. and we used numerical calculations for the lattice
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Thus, the interaction of surface charges with each other is
also repulsive. Comparing the expressi¢b8) and(15), we

see that the energies for both configurations are logarithmi-
cally diverged and differing by the constant. Thus, the con-
figuration with two half vortices at the opposite points of the
border is preferable to the single vortex #6i¥ model.

IIl. FINITE VALUES OF A SURFACE ANISOTROPY

In this section we consider the case of a finite surface
anisotropy. Atb<<co, the boundary conditiof6) is nonlinear.

It is easy to see that the only centered vortex from all con-
figurations with the vortex inside the sample is an exact so-
lution for any finite valuesh. A noncentered vortex is not a
solution to our problem at finite<<oc. Such states are absent
in the continuum model, but they become metastable in the
discrete model because of lattice pinning. The numerical cal-
culations show that their energies depend weakly on the sur-
face anisotropy constant. This class will be considered in
Sec. V.

The solutions with two half vortices on the bord&s) for
finite anisotropyb<e transform to nonsingular solutions
with two vortices placedoutside the disk at the opposite
pointsz, and —z,, where|zo|>R. This distribution is gen-
erated by the function

u(z)=In(z—zy) +In(z+zp) +imximl2. (16

The particular exact solutions of problert® and (6) with

an arbitraryb have been found by Burylov and RaikFefor

a distribution of the vector director near the surface of a
cylindrical solid particle embedded in a monodomain nem-
atic liquid crystal. Using of the boundary conditig6) for

the function(16) gives the value og, in the form

|20|2=R?(1+ \1+b?)/b. (17

For such valueg,, the boundary conditiori6) satisfy ex-
actly. The energy of the configuration is equal to

1++/1+b2 b2
En(b)=3F7|IN——+b— ————
2 1+\1+b?
bo
—2J§f X tanxdx. (18
0

The latter term arises due to the cutoff close to the half
vortices which are introduced fojz,|—R<r., and ¢,

FIG. 2. Minimal nontopological configurations for the discrete = &rcCo$(|zo| —R)/r]. Its contribution is important for a

model (2) with \=0, K,=0, andR=5a for different values of high enough surface anisotrof=J only, see Fig. &).
border anisotropy. It is easy to see that for any finite the energy of the

two-charge configuration is lower than its limit valg&5),

model to find it out. These calculations show with a good@nd it decreases monotonically with decreasmginother
accuracy that .=r/, and we will assume that in the follow- imit case of small surface anisotrofy—0 leads to the al-
ing. The minimum of Eq(14) is achieved for charges placed MoSt homogeneous distributian, see Fig. 2a), with the

1 -
at the opposite points of the border, it is given by nearly zero energg=JS wb. Whenb increases, the vector
field m is curved to the diametrically pair of points, and the
R
In( —) —In2
rE

energy increases, see FigcR These features are in good
_ (15)  agreement with that obtained numerically for discrete finite

O _
system. The dependency B, versus the surface anisotropy
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10 T T T T T T T 30 T T T T T

E/JS?
E/JS?

0 1 1 1 1 1 1 1
0 5 10 135 20 25 30 35 40

B/J

FIG. 3. The dependence of the energy of the minimal configu- FIG. 4. Metastable configurations for tiie=8a disk. Shown
ration vs the surface anisotropy for the disk with the radRis are approximately 3 10* dots. Regions “1” and “2” are shown in
=10a. The thin line is a two-charge approximation; the thick line is Figs. 5 and 6.

a numerically calculated result for the lattice model.

we observe that this procedure converges to one of the stable
for continuum model4). The discrepancy of the curves is configurations. The configuration appearing during minimi-

connected with the discreteness effects, which are importaf@ion energy process was mainly dictated by the choice of

for small samples, for larger system raditise value ofR ill the initial configuration. . ) .
R=30a has been usedin the case ofb—oo the vortex In order to explore all metastable minimal configurations

energy is higher than the two-charge configuration energy fol! ;h?n:??&ﬁgartri]ggeé?)c\;\ga?e: (Tn ﬁif;gg;@gdwrﬂﬁriﬁgage-

XY model, and the vortex states are also metastable for anyJ ) ” ; . .
finite b. cribed scheme. Initial configurations and the surface anisot-

ropy B are chosen randomly. The obtained energy values are
presented by dots on the plar®/(,E/JS%), see Fig. 4, the
system size is chosen small enough to show a discrete nature
For our model with rather strong volume and surface anof the possible states. Such an analysis allows to judge both
isotropy, the characteristic size [§¥m|~a~?, and it is not the energy absolute minimum for a givétJ and the pres-
obvious that effects of discreteness can be neglected. An egnce of metastable states. It is seen that in some plane re-
act analysis of the discrete model requires numerical calcugions(marked as “1” and “2”) the dots are grouped in more
lations, but some qualitative results can be obtained using ther less well-defined lines, which obviously correspond to the
lattice potential method. For a direct numerical simulationmost stable states and describe the dependence of their ener-
we basically used th&Y model withA\=0, i.e., with an gies onb. The characteristic regions are present in Figs. 5
extremely strong easy-plane anisotrofspme results con- and 6. The regiorimarked as “3’), in which the dots are

B from Hamiltonian(2) is plotted in Fig. 3 together with that

IV. NUMERIC SIMULATION AND LATTICE EFFECTS

cerning the finitex will be discussed in Sec. )V distributed practically randomlyin fact, there the dots are
also fitted by lineg corresponds to high-energy states. They
A. Numerical simulation are not subjects of interest. To classify the spin states the

. ) . positions of singularities of the functiog(x,y) have been
For numerical galculatlon o_f thg equilibrium states We gnalyzed numerically and the positions of polesrtices,
started from the discrete Hamiltonian for the magnetic enyyhich are placed inside of a disk or on its border, have been
ergy (2). Calculations have been performed starting from ayptained. Such an analysis demonstrated the presence of all
random initial configuration or from a configuration given by states described above, including noncentered vortices and
Eq. (7) with constantsz,, q appropriate for a considered states with nonsymmetrically placed surface singularities,
problem. The energy minimization has been performedy;t yet some less favorable states, namely, antivortices with

through a Seidel-like algorithm with the successive exacthe distribution like 6= — x+const, wherey is the polar
solution of the local equilibrium equation for a fixed site that

can be obtained from the following one-site energy:

8
B T
EL =~ SH+ 5 (S0~ 2§, (19 Al
« 5F
[¥5)
where u is a Lagrange multiplier for the conditiofs|=1 % 4t
and H=J3,(S'e+S’'e,+\S%,) is the effective field cre- 3r 1
ated by the nearest neighbors of the fixed site. The term with 2r 1
B is present for the border spins only. In a simple cBse 1 7
=0 we obtainS=H/|H|. WhenB#0 a more complicated s 05 T 5 5 s 3
analysis of the roots of the equilibrium conditiatE, /dS B/J
=0 is needed. Among these ro@&s;,, we choose the value
that gives the deepest minimumBf . For all minimizations FIG. 5. Minima with two half vortices for th&=8a disk.
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17 Vs _
165 /f 1

NS 16 (jz//" i
S ssf - .
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FIG. 6. Vortex minima close t8=0 for the R=8a disk.
FIG. 7. The energy of a noncentered vortex vs its displacement

. . _ . . for three values of surface anisotrofg) B/J=0.4> B, (attraction
coordinate, instead op= y+const, characteristic of vorti- = center (b) B/J=0.04~B, (equilibrium), and (¢) B/J

ces. Letus diSCUSS_ the obtain.ed reSUltS-_ =0.004<B, (repulsion from the centgrRadius of the disk is 30
First of all, the given analysis has confirmed that the Sym-The radius of the pinning regiorRj,~ 24) is maximal for the larg-
metrical states with two singularities possess the minimakst value o8 and decreases for lower values.

energy. In the region of the small anisotropy and endggy

=4.0 (here and after energy values are presented in units groportional to the system size. The values found numeri-

JSZ).onIy sta.te With syr_nmeltric half vortices are present, se ally for R=(5-30)a can be extrapolated by the dependence
details of this region in Fig. 5. AB/J=0.5 other well- o 5 4 2@/R)
c . .

defined lines of dots appear, which also correspond to states
with two half vortices, however, with broken symmetry.
These states have higher energy and they are unstable
small B, but at largeB they become metastable due to sur-
face pinning effects. With increasirigjthe pinned states ap-
pear in the vicinity of nonregular regions of a surface, which
result from cutting out a disk from the square lattice. With
further increase oB/J=1.5-2, the number of asymmetric B. Lattice effects and vortex stability
states grows.

At B=0 the vortex and antivortex have the same energy
and in the region of extremely smdl antivortices are also
r%ﬁiably observable, see Fig. 6, regiob.” However, when

B increases, the energy of antivortices grows rapidly and we
do not discuss them.

For nonuniform states the lattice pinning of singular

The second interesting region of plane at the endfgy el S ) .
~ 10 corresponds to vortex states. Its details at sBillare points in the spin distribution both vortices and surface sin-
gularities(half vorticeg play an essential role. It is interest-

depicted in Fig. 6. It is worth noting that according to the: 0 di h Doints i details. Th i
analytical consideration the centered vortex presents aBanyIng 0 dISCUSS Such poInts In more detais. -1he continuum

and its energy does not depend BrBesides that state there model neglect_s a discrete nature O.f crystals_and the pinning
. . . . . .~ effects. The simplest way to describe analytically lattice ef-
exist noncentered vortices stabilized by the lattice pinning

. . e fects and, in particular, to investigate the local stability of
Since the state with noncentered vortex at fituites not an P 9 y

luti ke th inaul h il b metastable states, is to introduce an effective periodical po-
exact solution(unlike the nonsingular casethey will be o piia| (Peierls-Nabarro potentiainto the continuum model.

analyzed numerically in the following subsection with & gchnitzer shows® see also Ref. 31, that for in-plane vortices
simple qualitative model of pinning. At large enough anisot-this potential is independent of the values of out-of-plane
ropy the energies of noncentered vortices are higher comypisotropy parameter$or A <0.8) and can be presented in
pared to the state with the centered vortex. However, at smajhe  simplest form as Upy(X,y) = kJ o[ sird(xa/a)
anisotropy B/J=<0.2 for the system siz&=8a used for  +sir’(yn/a)], where the origin is chosen at the point which
Figs. 4-6 an interesting effect emerges: noncentered vortiis equidistant from lattice sites, and the numeric parameter
ces become more favorable than the centeredibecorre-  «=0.2003° The potential minima are attained at all points
spondent region marked as™). This effect could be de- like r=ne+me,, wherem, n are integers|e|=|g|=a,
scribed as a change of the sign of the effective interactiomnd the saddle points are ai« 1/2)e,+me, and ng,+(m
between the vortex and the border at some vaueB,. +1/2)e,. A metastable state with a vortex shifted from the
(Let us remind that the casB=« corresponds to fixed center to the pointr exists only when the sunkE(r)
boundary conditions, while the cag=0 corresponds to =E,(r,b)+Upy(r) has a minimum at this point. The loss of
free boundary conditions, which are associated with repulstability manifests itself as ruptures of lines in Figs. 5 and 6,
sion and attraction of the vortex to the border, respectivelysee also Fig. 7.

see Ref. 31.This effect is present also for big values of the  Then it is easy to show that the noncentered vortices are
radius, see Fig. 7, in which is plotted the vortex energy calheld by the pinning potential and are stable if their coordi-
culated in mode(2) versus its displacement for three valuesnates are inside the circle of radi&, . The radius of the

of surface anisotropy and the radis-32a. The character- pinning regionR, is determined from the explicit expression
istic value of the surface anisotrof8; decreases inversely (12) for the energy of the vortex placed at the paigtas
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dE\(,g)r(fo) K vortex decay is the following. The vortex moves to the near-
T = (200 est point on the border and its counterpart also moves to it.
0 Trp=R, The point, where they merge, is a saddle point of the path
with the energyE,~JS*7In(R/e) over the centered vortex
and the casa<R leads toR,=R—a/«. energy. This state is referred adaojumor fountainin the

Thus the vortices can be pinned everywhere inside théHe theory)>” where it is a true minimum. Further, the
sample except the thin strip close to the border. Their enefmerged charges decouple and move along the border:
gies relative to the zero level of the centered vortex lie in theone—in the clockwise direction and another—in the counter-
band of the width~JIn(R/a). Such states are frequently ob- clockwise direction to the most distant positions. Thus, the
served in numeric simulations for the discrete model whergnergdyEsaqis the barrier height between the two classes of
initial configurations for the minimization are chosen ran-configurations, and it can be used for the analysis of a ther-
domly. mal (or quantum tunneling, for low temperaturdecay of

A|though a detailed ana|ysis of thermal fluctuations and\/ortex states. Note that the barrier is nothing to do with the
decay of metastable states is beyond the scope of this worRinning potential. Its value does not contain the parameter
their role can be discussed on the basis of the previous estput it is proportional to Inia) and is much higher than the
mates. The above introducd}, is the radius of the region €xchange energyS’. Thus, vortex states can be stable even
where pinning disappears, i.e., @t>R, the barrier height at high enough temperature comparing with the Curie tem-
separating states with a vortex placed in adjacent lattice siteBeratureT,~JS", and the probability of the decay of the
becomes to zero. It is also reasonable to introduce the fund/ortex state is very low even at the temperatures comparable
tion R,(E), such that at <R,(E) the barrier height between with T.
these two states is higher than some vakieNaturally,
Ry(E)—R, at E~0, Ry(E)—0 at E-Eg™, where Eg"™
=kJS 7 is the maximal pinning energy. For intermediate re-
gion E<E}'® a simple calculation yields A strong surface anisotropy for easy-plane Heisenberg
magnets destructs the homogeneous ordering and leads to the
two types of static structures: the vortex state and the state
with pair of half vortices on the surface. For finite anisotropy
the latter state becomes nonsingular. This state is energeti-
cally favorable for all finite values of surface anisotropy. The
. energy gap between it and the vortex state is of the order of
and for all values ofEg®—E~E™ the value ofRy(E) is  the exchange energy, but the energy barrier is much higher
again neaR. Thus, the role of thermal fluctuations §T  than the exchange energy. The strong bulk anisotropy leads
<Ep® can be considered as negligently small, and the abovg well-pronounced effects of lattice pinning, and large num-
described metastable states may be manifest as long-livaskr of metastable states appears as well.
ones even for finite temperature. On the other hanklzat It is interesting to compare these results to those which
=Ey® metastable states such as the noncentered vortex witiave been obtained for fine particles made with soft mag-
not be manifest and only the centered vortex should be cometic materials such as permalloy magnetic dots, where the
sidered. nonuniform states are caused by the magnetic dipole interac-

For two-charge configurations the lattice potential alsotion. The common point for these cases is not only the pres-
creates other metastable configurations with higher energiemnce of the vortex state but also the presence of nontopologi-
than the energy of configurations with maximally separatectal nonuniform states, leaf or flower stafd§-'2 The
charges. Their analysis is similar to the one that has beedistinction consists in the fact that for soft magnetic particles
performed for the case of a noncentered vortex. Two pinnethere are nonsingular vortices with the out-of-plane magne-
charges on the border can be approached only down to th&ation component while in our problem with the strong
angle ¢,=|¢1— ¢,|=ma/kR. Consideration of thermal bulk anisotropy the only in-plane vortices with a singularity
fluctuations can be done for noncentered vortices as well andre present. It is likely that in virtue of this for permalloy
it leads to the similar results, practically all such states argoarticles there is a very much pronounced transition from the
metastable. vortex state to the nontopological one with the system size

In conclusion of this section we discuss the stability ofdecreasing, while in our problem the vortex state is always
vortices as a topologically nontrivial configuration underless favorable energetically. It is worth noting that our pre-
transformation to nontopological one. Inside of two topologi-liminary numerical data indicate the appearance of such a
cally different classes of states—with vortex or with two transition at a weak easy-plane anisotropy; an extended dis-
surface singularities—effective relaxation to the most favor-cussion of this problem is beyond the scope of the present
able state inside the given class is possible. However, theork.
previous results show that the vortexlike configurations with It is also interesting to note that the spin distribution in the
the centered vortex have higher energy than the two-chargeonsingular state of our 2D problem resembles the distribu-
configuration, and are metastable. Therefore, the state wittion having axial symmetry and the plane of symmetry per-
centered vortex may relax toward the most profitable statpendicular to the axis obtained by Dimitrov and WySif?
with two surface singularities. The simplest scenario of thefor 3D particles where both the volume and surface anisotro-

V. CONCLUDING REMARKS

a Ep™
—Ry(E)= ;%, (21
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pies are presented. Recently, the stable three-dimensionlabojumlike distribution appears only for nonstable saddle
analog of vortices, hedgehog configuration has been discopoint, which separates the vortex and nonsingular states.
ered for a ball-shaped particle with strong normal border )

anisotropy by numeric calculatiod$On the other hand, for ~ The authors thank C. E. Zaspel, A. Yu. Galkin, and A. K.
the superfluid®He-A, which is defined in terms of our model Kolezhuk for fruitful discussions and help. This work was
by use of the infinitely strong surface anisotropy and isotro-supported by the INTAS, Grant No. 97-31311 and partially
pic volume properties, the true minimum constitutes lesy Volkswagen Stiftung, Grant No. 1/75895. One of (&sl.)
symmetric statgboojum or fountaih with one surface sin- thanks the Montana State University for kind hospitality
gularity and without the symmetry plai®®’ In our case the (NFS Grants No. DMR-9974273 and No. DMR-9972507
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