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Inhomogeneous states in a small magnetic disk with single-ion surface anisotropy
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We investigate analytically and numerically the ground and metastable states for easy-plane Heisenberg
magnets with single-ion surface anisotropy and disk geometry. The configurations with two half vortices at the
opposite points of the border are shown to be preferable for strong anisotropy. We propose a simple analytical
description of the spin configurations for all values of surface anisotropy. The effects of lattice pinning lead to
appearance of a set of metastable configurations.
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The progress of nanotechnology permits creation of
sembles of fine magnetic particles~magnetic dots! of nanom-
eter scale, see for review Ref. 1. Magnetic dots in the form
cylinders or prisms have been made of soft magnetic m
rials such as Co and permalloy2–6 or highly anisotropic ma-
terials such as Dy and FePt, see Refs. 7,8. Magnetic dots
their arrays are of interest both in the basic and applied m
netism with potential applications including high-dens
magnetic storage media.9

Usually a small magnetic particle is considered as be
in the monodomain state with a homogeneous saturated m
netization~or Néel vector for antiferromagnets!. During the
past few years it has been established that the distributio
magnetization within the dots made of soft magnetic mat
als can be quite nontrivial; namely, various inhomogene
states resulting from the magnetic dipole-dipole interact
appear. In recent years interest in such states for submi
particles has risen significantly. A small enough nonellips
dal dot exhibits a single-domain, nearly uniform magneti
tion state, so-calledflower and leaf states.6,10–12 When in-
creasing the size of the dot above a critical value, vortex s
occurs.3,13–17The main property of such states is the nons
urating value of the total dot magnetization, nearly zero
vortex states and nearly saturated, but less than saturate
leaf and flower states.

O’Shea and co-workers18–20 have observed nonsaturate
states for the rare-earth ferromagnetic granules with high
isotropy and the size about of 5 nm. A possible explanat
of this fact is that these particles are in nonuniform state39

On the other hand, it is clear that the concepts of nonunifo
states referred to above and caused by a magnetic d
interaction cannot be applied directly to such small partic
made with highly anisotropic material. In this regard, so
other sources of nonuniformity need to be found.

The appearance of nonuniform states for small bcc ato
clusters by taking into account thesingle-ionsurface anisot-
ropy have been shown numerically by Dimitrov an
Wysin.21,22 Garanin and Kachkachi in the recent work23 in-
vestigated the effective anisotropy caused by such a non
form spin distribution for small magnetic particles. The d
ference of the properties of the spins on the surface an
bulk could be considered as a defect destroying the hom
neity of a sample. It is clear that due to the surface a hom
geneous ordering is distorted or even broken.
0163-1829/2003/68~10!/104428~9!/$20.00 68 1044
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In real magnets the surface could produce the surface
isotropy for two reasons. First, the main origin of magne
anisotropy can be caused by the anisotropy of spin-spin
teractions~the case ofexchangeanisotropy!. For this case
even on an ideal atomically smooth surface the spins h
different coordination numbers than in bulk, and cons
quently the intensity of the exchange interaction chang
For the surface exchange anisotropy the direction of the c
sen axis is the same as in bulk and has no connection to
surface. This effect could lead to the nonuniform states
some special cases only, mostly in the presence of an e
nal magnetic field, for example, the surface spin-fl
transition,24,25and the states caused by the magnetic field
easy-axial ferromagnets.26 Second, in real magnets surfac
atoms have a different environmental symmetry. Thus,
surface distorts a crystalline field that acts on a magnetic
and the anisotropy is changed drastically. It leads to a s
cific single-ionsurface anisotropy for the spins with a pr
ferred axis coinciding with the normal to the surface. Th
model is considered by Dimitrov and Wysin for fcc iro
clusters;21,22 we would like to investigate this case both an
lytically and numerically. Note that the surface effects,
particular, the surface anisotropy, have been considered
many authors,27,28 but in most of these works the groun
states have been assumed to be homogeneous, and th
face terms are only accounted in dynamics. On the ot
hand, it is obvious that for fine magnetic particles the role
the surface becomes much more important than for bulk
terials. The effects caused by the surface considered
defect are proportional toN21/3, and their role increase
when the size of the particle tends to the nanometer sca

Note that similar problems arise in the other domains
condensed-matter physics, where the role of surface is
portant. These are textures in liquid crystals29 and in a super-
fluid 3He, see Ref. 30. For theA phase of3He (3He-A) the
unit-vector order parameterl, l251 is perpendicular to the
surface of a vessel.3He cannot be in equilibrium with its
own vapor; it fills the vessel completely at temperatu
when it is superfluid (T&2 mK). Thus, the vectorl should
be perpendicular to the surface of the3He-A sample. The
analysis shows that the order parameter becomes non
form, and, moreover, it is singular for any simply connect
vessel.30

It is clear that such effects may be observed in all fin
samples of ordered media with vector order parameter an
©2003 The American Physical Society28-1
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V. E. KIREEV AND B. A. IVANOV PHYSICAL REVIEW B 68, 104428 ~2003!
strong surface anisotropy of the formB(m•n)2, wheren is
the normal to the surface,m is the order parameter, andB is
the constant of single-ion surface anisotropy, which orie
m with respect to the surface. For the3He-A, the boundary
condition could be described as a limit of aninfinitely strong
surface anisotropyB,0, uBu→`, with easy axis perpen
dicular to the surface. The concept developed for3He-A
could be a good guide for a theory of fine magnetic partic
with surface anisotropy. On the other hand, the situation
magnets is more general: the magnitude of the surface
isotropy for magnets is finite, and the magnetic mom
could be inclined with respect to the axis of surface anis
ropy. As we will show below, finiteness of anisotropy cou
lead to the states with nonuniform spin distributions b
without singularities.

The outline of the paper is as follows. In Sec. I we discu
classical models for a small magnetic particle support
simplest nonuniform spin distribution, caused by surface
isotropy, which is planar and two-dimensional~2D! model.
This means that the spins parallel to one plane and the
distribution depends effectively on only two space coor
nates (x,y). Section II is devoted to the planar continuu
2D model in the limit case of the infinite surface anisotrop
where exact solutions are found and analyzed. In Sec. III
same model will be considered for the case of finite anis
ropy. Section IV contains results of direct numerical simu
tions for the 2D lattice models and the consideration of p
ning effects that can be estimated from the continuum mo
The analysis of thermal and topological stability is also do
in this section. The last section, Sec. V, contains the s
mary of obtained results and a short discussion of thos
with other similar systems.

I. MODEL

There are two approaches to the analysis of the static
dynamic properties of magnetic materials: discrete mic
scopic and macroscopic. The microscopic approach is ba
on a discrete spin Hamiltonian in which the spinsSi ~quan-
tum or treated quasiclassically, as will be done below! are
specified at the lattice sitesi. In discrete models the magnet
anisotropy can be introduced in two different ways:
single-ion anisotropy and as anisotropy of the exchange
teraction. To describe them, the spin Hamiltonian is cho
in the form

H5(̂
i j &

JaSi
aSj

a1(
i

Ka~Si
a!21(

i
Bab~ i !Si

aSi
b . ~1!

HereSi
a is the projection of a classical spin on the symme

axisa of the bulk crystal. The summation in the first term
over all the nearest neighbors in the lattice,Ja is an aniso-
tropic exchange tensor. The constantKa and functionBab( i )
describe the volume and the surface single-ion anisotr
energies, respectively. For the crystals with rhombic
higher symmetry, all tensors describing volume characte
tics can be diagonalized simultaneously. The tensor func
Bab( i ) is nonzero only near the surface and abruptly
creases in the depth of the sample. The surface create
10442
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other chosen direction, a normal to it, and enters a lo
system of coordinates, in which the tensorBab( i ) is diago-
nal. We neglect in Hamiltonian~1! a dipole-dipole coupling
and a Zeeman interaction with an external magnetic field

We shall use a simple version of Eq.~1! with an uniaxial
symmetry for the bulk properties (z as a chosen axis, fo
definiteness! and with nearest-neighbor interaction only:

H52J(
i ,d

~Si
xSi 1d

x 1Si
ySi 1d

y 1lSi
zSi 1d

z !

1Kz(
i

~Si
z!21B(

i 8
~Si 8n!2. ~2!

HereJ is the exchange integral,l is the anisotropy paramete
of the exchange interaction, andd are the vectors of the
nearest neighbors, the summation overi 8 in the last term
includes only the surface sites, where the number of the n
est neighbors differs from the volume one. In order to mo
adequately compare the lattice and continuum models,
assume that the vectorn is a normal to the surface, but not
direction given by the Miller indices.

The sign of the exchange integral plays no role for t
statics of nonfrustrated magnets with a bipartite latti
Moreover, a model without dipole-dipole coupling is mo
adequate for antiferromagnets than ferromagnets. For s
plicity, we use below the ferromagnetic representation
spin distributions, i.e.,J.0. The transition to the antiferro
magnetic case for a bipartite lattice is trivial: we introdu
sublattices and change the directions of the spins in on
them.

The continuum approximation of Eq.~1! is based on a
free-energy functionalW@m# that depends on the local no
malized magnetizationm(r), m251. Using the standard
smoothing procedure of a lattice model, we write down t
functionalW@m# as

W@m#5
1

2EV

Sdr

a3
$Ja2@~“mx!

21~“my!21l~“mz!
2#

1Kmz
21aB~mn!2d~r2rs!%. ~3!

Here V is the volume of the particle, the vectorrs param-
etrizes the surface,d(r) is the Diracd function, a is the
lattice spacing, andS is the cross-section area. The solutio
of the Euler-Lagrange equation for Eq.~3! gives spin con-
figurations with a preferential direction close to the surfa
It is clear that the measure of inhomogeneity depends on
problem parameters and the sample shape. A simple con
eration shows that for the fixed shape there are only
relevant parameters. The first one is the characteristic ra
R/r 0, where r 05aAJ/K at l51 or r 052aAl/(12l) at
K50 is the magnetic length, defined in the same way as
bulk materials.31 The second parameter is the ratio of t
exchange integral to the surface anisotropyB/J. To simplify
analysis we consider a model with a purely planar spin d
tribution. Such distributions appear for magnetic vortices
strong enough easy-axis anisotropy,l,lc , wherelc;0.7
when r 0.a.32 In this case we obtain the one-parame
8-2
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INHOMOGENEOUS STATES IN A SMALL MAGNETIC . . . PHYSICAL REVIEW B68, 104428 ~2003!
model characterized by the ratioB/J. As we will see below,
such a model demonstrates a wide set of inhomogene
states and allows complete analytical and numerical inve
gations. We restrict ourselves to the case of one more s
plification, namely, a model which allows 2D spatial sp
distributions, i.e., such distributions which depend only
two spatial variables, say,x and y. Apparently, such a sim
plification is applicable to an island of a magnetic mon
atomic layer shaped as a disk. For numerical simulation
will choose a fragment of the two-dimensional square latt
in the form of a disk. However, applicability of the obtaine
results is not limited by this concrete case. It is easy to im
ine situations where the same spatial-two-dimensional di
bution is realized. As an example one can regard a ferrom
netic particle with the volume easy-plane anisotropy, hav
a form of a cylinder with the base parallel to the easy pla
~the x-y plane! and with the axis along thez axis. If one
considers that the surface anisotropy constantB in Eq. ~3! is
positive, then the normal to the surface is the hard axis of
surface anisotropy. It is clear that any planar spin distribut
with Sz( i )50 ensures both the minimum of the volume a
the surface anisotropy on the upper and bottom cylinder
faces. In this case nonuniformity is caused only by the late
cylinder surface, and one can expect that the distribution
be a spatial-two-dimensional one, with the same characte
for the purely two-dimensional problem.

II. A STRONG BORDER ANISOTROPY IN A CONTINUUM
APPROACH

We shall start from the simplest model to describe effe
of surface anisotropy. Consider a disk-shaped~or cylinder-
shaped, see above! magnet, withx-y plane as an easy plane
and assume a 2D spin distribution. We assume that the m
netization is a two-dimensional unit vector, in a polar ma
ping: mz50 andm'5êxcosf1êysinf, where (êx ,êy ,êz) is
the basis in the spin space andf5f(x,y) is the angle be-
tweenm and êx . The magnetic energy of the disk takes t
form

W@f#5JS2F1

2EV
dS~“f!21bE

G
dx cos2~f2x!G . ~4!

HereV is the area of our disk-shaped magnet with the rad
R, the contourG is the border circle, and (r,x) are the polar
coordinates in the plane of magnet. The parameterb is pro-
portional to the constant of a border anisotropy,b5(B/J)
3(R/a). We chooseb>0, and the preferential surface d
rections are tangent. This choice is motivated above;
more reason is that such an effective term can be use
model the magnetic dipole interaction.33 The function
f(r,x) may have singularities inside the diskV. Minimal
configurations for the energy~4! are constructed from solu
tion of the respective Euler-Lagrange equations, which is
scalar Laplace equation

“

2f50, ~5!

with the boundary condition atr5R,
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]f

]r U
r5R

2b sin 2@f~r,x!2x#50. ~6!

Thus, this is a problem with a nonlinear boundary conditio
In the absence of the boundary anisotropy,b50, homo-

geneous solutionsf5const satisfy simultaneously Eqs.~5!
and~6!, and this trivial case is not considered. First of all, w
analyze possible solutions in the limit of strong border a
isotropy,b5`, when the problem becomes linear and can
solved exactly. The boundary condition leads to two poss
solutionsf(R,x)5x6p/2. Such ambiguity of the boundar
conditions here differs from the classic internal Neuma
problem of mathematical physics and the relevant phys
will be discussed below. The solutions in both cases can
constructed via harmonic functions, it can as well be done
two-dimensional electrostatics.34 The general solution of the
Laplace equationf can be written via a complex potentia
u(z) of integer chargesqk placed at the pointszk :

f5Im@u~z!#, u~z!5(
k

qkln~z2zk!1const. ~7!

These charges have a simple physical meaning, they des
well-known in-plane vortices, which have been repeate
discussed in regard to 2D magnetism. We introduce a c
plex representation for the coordinate planexy, z5x1 iy .
The functionalW@u# is rewritten as

W@u#5JS2F1

2E0

R

rdrE
uzu5r

dz

iz Udu

dzU
2

1
b

8Euzu5R

dz

iz

~j221!2

j2 G , ~8!

where

j25
z*

z
exp~u2u* !. ~9!

In the continuum approximation the energyW@u# is loga-
rithmically divergent, close to points where the in-plane v
tices ~charges! qk are placed. To describe these singular s
lutions in the continuum model, we have to introduce
cutoff parameter of the order of the lattice spacing. Sing
larities cost much energy, and one could expect that confi
rations with a global minimum ofW@u# should be sought
among the nonsingular functionsu(z) in the areaV or func-
tions with a small number of singularities.

A. Vortexlike configurations

The simplest solution with one singularity is a center
vortex, see Fig. 1, generated by the functionsu5 lnz6ip/2
with the energy

Ev5JS2p lnS R

r e
D , ~10!
8-3
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V. E. KIREEV AND B. A. IVANOV PHYSICAL REVIEW B 68, 104428 ~2003!
wherer e is a cutoff parameter for vortex states of the ord
of the lattice spacinga. Besides these solutions the others a
noncentered vortices for infiniteb, see Fig. 1, generated by

u~z!5 ln~z2z0!1 lnS z2
R2

z0*
D 6 i

p

2
, where uz0u<R,

~11!

with the vortex placed at the pointz0. They also satisfy the
conditionsf5x6p/2 on the borderG. As seen from Eq.
~11!, the interaction between the vortex and the bord
which may be considered as a consequence of the boun
condition~6!, is equivalent to the coupling between the vo
tex and the image vortex placed outside the disk at the
verse symmetric point with respect to the border circle. T
calculation of the energy covers only the areaV and the
singularity of the reflected charge gives no effect. The ene
of noncentered vortex for infiniteb ~fixed boundary condi-
tions f5x6p/2 on the border! is given by

Ev
(d)5JS2pF lnS R

r e
D2 lnS 12

uz0u2

R2 D G . ~12!

FIG. 1. Numerically calculated vortexlike states for the discr
model ~2! with l50, Kz50 andR55a.
10442
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The first term coincides to a proper energy of the vor
given by Eq.~10!, and the second term is the energy of t
interaction between the vortex and the border; it is a rep
sive one. Besides it another force acts on the vortex:
vortex tends to escape from a finite area in order to decre
u“mu, and thereby being attracted to the border. In the c
of b5` the repulsive force prevails, the vortex is stabiliz
at the farthest point from the border, and the second term
Eq. ~12! is absent.

B. Configurations with two half vortices on the border

The above considered vortexlike distributions are some
the simplest spin distributions, minimizing surface anis
ropy, not only for the circle shape but also for a border in t
form of any simple contour. Indeed, going around a sim
closed contour, the normaln to it turns to 360°. This means
that the topological characteristic of the planar unit vect
so-calledvorticity,31 q equals to61 for the vectorn. Obvi-
ously, those magnetic vortices having the vorticityq51 are
quite probable candidates to realize the energy minimu
Nevertheless, vortices with anyqÞ0 admittedly possess sin
gularities inside the sample. The analysis of such distri
tions where magnetization has no singularities in the bulk
of interest. A simple analysis demonstrates that in this ca
as well as for3He-A, singularities should appear on the bo
der.

To explain this, consider the behavior of the vector fie
m5êx cosf1êy sinf on the border circleG. The boundary
condition requires that the vectorm be parallel to the border
It can be presented in two ways:m may be parallel or anti-
parallel to the tangent vectort̂5n3êz . Assuming thatm is
nonsingular insideV, the circleG can be divided into an
even number of alternating regions: in half of themm has to
rotate clockwise and in the others counterclockwise. Th
besides the above considered vortexlike solutions, there e
regular configurations inside the circleV and with singulari-
ties on the border, see Fig. 2~c!. ~Such singularities in the
three-dimensional case are referred to30 as vortex lines.! The
simplest two-singularity solutions can be written as

u~z!5 ln~z2Reif1!1 ln~z2Reif2!1 ip6 i
p

2
. ~13!

This is a field created by two charges placed at the bor
points Reif1 and Reif2. It is easy to check that the cond
tions f5x6p/2 are satisfied on the border wherev
f(R,x) is defined. To calculate the energy thoroughly, w
have to introduce the cutoff parameterr e8 and integrate over
the diskV except two half circles of radiusr e8 centered at the
charges. Under the condition that the cutoff regions do
overlap,R(f12f2)@a, the energy of the configurations ar

Ehv5JS2pF lnS R

r e8
D 2 ln 22 lnUsin

f12f2

2 UG . ~14!

Here r e8 is the corresponding cutoff parameter. The co
tinuum approximation does not provide a relation betweenr e

and r e8 and we used numerical calculations for the latti

e

8-4
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INHOMOGENEOUS STATES IN A SMALL MAGNETIC . . . PHYSICAL REVIEW B68, 104428 ~2003!
model to find it out. These calculations show with a go
accuracy thatr e5r e8 , and we will assume that in the follow
ing. The minimum of Eq.~14! is achieved for charges place
at the opposite points of the border, it is given by

Ehv
min5JS2pF lnS R

r e
D2 ln 2G . ~15!

FIG. 2. Minimal nontopological configurations for the discre
model ~2! with l50, Kz50, andR55a for different values of
border anisotropy.
10442
Thus, the interaction of surface charges with each othe
also repulsive. Comparing the expressions~10! and~15!, we
see that the energies for both configurations are logarith
cally diverged and differing by the constant. Thus, the co
figuration with two half vortices at the opposite points of t
border is preferable to the single vortex forXY model.

III. FINITE VALUES OF A SURFACE ANISOTROPY

In this section we consider the case of a finite surfa
anisotropy. Atb,`, the boundary condition~6! is nonlinear.
It is easy to see that the only centered vortex from all c
figurations with the vortex inside the sample is an exact
lution for any finite valuesb. A noncentered vortex is not a
solution to our problem at finiteb,`. Such states are abse
in the continuum model, but they become metastable in
discrete model because of lattice pinning. The numerical
culations show that their energies depend weakly on the
face anisotropy constant. This class will be considered
Sec. IV.

The solutions with two half vortices on the border~13! for
finite anisotropyb,` transform to nonsingular solution
with two vortices placedoutside the disk at the opposite
pointsz0 and2z0, whereuz0u.R. This distribution is gen-
erated by the function

u~z!5 ln~z2z0!1 ln~z1z0!1 ip6 ip/2. ~16!

The particular exact solutions of problems~5! and ~6! with
an arbitraryb have been found by Burylov and Raikher35 for
a distribution of the vector director near the surface o
cylindrical solid particle embedded in a monodomain ne
atic liquid crystal. Using of the boundary condition~6! for
the function~16! gives the value ofz0 in the form

uz0u25R2~11A11b2!/b. ~17!

For such valuesz0, the boundary condition~6! satisfy ex-
actly. The energy of the configuration is equal to

Ehv~b!5JS2pF ln
11A11b2

2
1b2

b2

11A11b2G
22JS2E

0

f0
x tanxdx. ~18!

The latter term arises due to the cutoff close to the h
vortices which are introduced foruz0u2R<r e , and f0
5arccos@(uz0u2R)/r e#. Its contribution is important for a
high enough surface anisotropy,B*J only, see Fig. 2~c!.

It is easy to see that for any finiteb the energy of the
two-charge configuration is lower than its limit value~15!,
and it decreases monotonically with decreasingb. Another
limit case of small surface anisotropyb→0 leads to the al-
most homogeneous distributionm, see Fig. 2~a!, with the
nearly zero energyE5JS2pb. Whenb increases, the vecto
field m is curved to the diametrically pair of points, and th
energy increases, see Fig. 2~c!. These features are in goo
agreement with that obtained numerically for discrete fin
system. The dependency ofEhv versus the surface anisotrop
8-5
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V. E. KIREEV AND B. A. IVANOV PHYSICAL REVIEW B 68, 104428 ~2003!
B from Hamiltonian~2! is plotted in Fig. 3 together with tha
for continuum model~4!. The discrepancy of the curves
connected with the discreteness effects, which are impor
for small samples, for larger system radius~the value ofR till
R530a has been used!. In the case ofb→` the vortex
energy is higher than the two-charge configuration energy
XY model, and the vortex states are also metastable for
finite b.

IV. NUMERIC SIMULATION AND LATTICE EFFECTS

For our model with rather strong volume and surface
isotropy, the characteristic size isu“mu;a21, and it is not
obvious that effects of discreteness can be neglected. An
act analysis of the discrete model requires numerical ca
lations, but some qualitative results can be obtained using
lattice potential method. For a direct numerical simulati
we basically used theXY model with l50, i.e., with an
extremely strong easy-plane anisotropy~some results con
cerning the finitel will be discussed in Sec. V!.

A. Numerical simulation

For numerical calculation of the equilibrium states w
started from the discrete Hamiltonian for the magnetic
ergy ~2!. Calculations have been performed starting from
random initial configuration or from a configuration given b
Eq. ~7! with constantszk , q appropriate for a considere
problem. The energy minimization has been perform
through a Seidel-like algorithm with the successive ex
solution of the local equilibrium equation for a fixed site th
can be obtained from the following one-site energy:

EL52SH1
B

2
~Sn!22

m

2
S2, ~19!

wherem is a Lagrange multiplier for the conditionuSu51
and H5J(^&(S

xêx1Syêy1lSzêz) is the effective field cre-
ated by the nearest neighbors of the fixed site. The term w
B is present for the border spins only. In a simple caseB
50 we obtainS5H/uHu. When BÞ0 a more complicated
analysis of the roots of the equilibrium conditiondEL /dS
50 is needed. Among these rootsSmin , we choose the value
that gives the deepest minimum ofEL . For all minimizations

FIG. 3. The dependence of the energy of the minimal confi
ration vs the surface anisotropy for the disk with the radiusR
510a. The thin line is a two-charge approximation; the thick line
a numerically calculated result for the lattice model.
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we observe that this procedure converges to one of the st
configurations. The configuration appearing during minim
zation energy process was mainly dictated by the choice
the initial configuration.

In order to explore all metastable minimal configuratio
in the lattice model~2! with l50, we performed more than
107 minimization procedures in accordance with the d
scribed scheme. Initial configurations and the surface ani
ropy B are chosen randomly. The obtained energy values
presented by dots on the plane (B/J,E/JS2), see Fig. 4, the
system size is chosen small enough to show a discrete na
of the possible states. Such an analysis allows to judge b
the energy absolute minimum for a givenB/J and the pres-
ence of metastable states. It is seen that in some plane
gions~marked as ‘‘1’’ and ‘‘2’’! the dots are grouped in mor
or less well-defined lines, which obviously correspond to
most stable states and describe the dependence of their
gies onb. The characteristic regions are present in Figs
and 6. The region~marked as ‘‘3’’!, in which the dots are
distributed practically randomly~in fact, there the dots are
also fitted by lines!, corresponds to high-energy states. Th
are not subjects of interest. To classify the spin states
positions of singularities of the functionf(x,y) have been
analyzed numerically and the positions of poles~vortices!,
which are placed inside of a disk or on its border, have b
obtained. Such an analysis demonstrated the presence
states described above, including noncentered vortices
states with nonsymmetrically placed surface singulariti
but yet some less favorable states, namely, antivortices
the distribution likef52x1const, wherex is the polar

- FIG. 4. Metastable configurations for theR58a disk. Shown
are approximately 33104 dots. Regions ‘‘1’’ and ‘‘2’’ are shown in
Figs. 5 and 6.

FIG. 5. Minima with two half vortices for theR58a disk.
8-6



-

m
a

s
e

at
y.
le
r

-
ich
ith
ic

y

he
ny
e
ng

a
ot
om
m

rt

tio

u
el
e
a
es

y

eri-
ce

rgy

we

ar
in-
t-
um
ing

ef-
of
po-

s
ne
in

h
ter

ts

e

f
6,

are
di-

n

ent

INHOMOGENEOUS STATES IN A SMALL MAGNETIC . . . PHYSICAL REVIEW B68, 104428 ~2003!
coordinate, instead off5x1const, characteristic of vorti
ces. Let us discuss the obtained results.

First of all, the given analysis has confirmed that the sy
metrical states with two singularities possess the minim
energy. In the region of the small anisotropy and energyE
&4.0 ~here and after energy values are presented in unit
JS2) only state with symmetric half vortices are present, s
details of this region in Fig. 5. AtB/J*0.5 other well-
defined lines of dots appear, which also correspond to st
with two half vortices, however, with broken symmetr
These states have higher energy and they are unstab
small B, but at largerB they become metastable due to su
face pinning effects. With increasingB the pinned states ap
pear in the vicinity of nonregular regions of a surface, wh
result from cutting out a disk from the square lattice. W
further increase ofB/J>1.5–2, the number of asymmetr
states grows.

The second interesting region of plane at the energE
;10 corresponds to vortex states. Its details at smallB/J are
depicted in Fig. 6. It is worth noting that according to t
analytical consideration the centered vortex presents at aB
and its energy does not depend onB. Besides that state ther
exist noncentered vortices stabilized by the lattice pinni
Since the state with noncentered vortex at finiteb is not an
exact solution~unlike the nonsingular case!, they will be
analyzed numerically in the following subsection with
simple qualitative model of pinning. At large enough anis
ropy the energies of noncentered vortices are higher c
pared to the state with the centered vortex. However, at s
anisotropy (B/J<0.2 for the system sizeR58a used for
Figs. 4–6! an interesting effect emerges: noncentered vo
ces become more favorable than the centered one~the corre-
spondent region marked as ‘‘a’’ !. This effect could be de-
scribed as a change of the sign of the effective interac
between the vortex and the border at some valueB5Bc .
~Let us remind that the caseB5` corresponds to fixed
boundary conditions, while the caseB50 corresponds to
free boundary conditions, which are associated with rep
sion and attraction of the vortex to the border, respectiv
see Ref. 31.! This effect is present also for big values of th
radius, see Fig. 7, in which is plotted the vortex energy c
culated in model~2! versus its displacement for three valu
of surface anisotropy and the radiusR532a. The character-
istic value of the surface anisotropyBc decreases inversel

FIG. 6. Vortex minima close toB50 for theR58a disk.
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proportional to the system size. The values found num
cally for R5(5 –30)a can be extrapolated by the dependen
Bc /J;1.2(a/R).

At B50 the vortex and antivortex have the same ene
and in the region of extremely smallB antivortices are also
reliably observable, see Fig. 6, region ‘‘b. ’’ However, when
B increases, the energy of antivortices grows rapidly and
do not discuss them.

B. Lattice effects and vortex stability

For nonuniform states the lattice pinning of singul
points in the spin distribution both vortices and surface s
gularities~half vortices! play an essential role. It is interes
ing to discuss such points in more details. The continu
model neglects a discrete nature of crystals and the pinn
effects. The simplest way to describe analytically lattice
fects and, in particular, to investigate the local stability
metastable states, is to introduce an effective periodical
tential ~Peierls-Nabarro potential! into the continuum model.
Schnitzer shows,36 see also Ref. 31, that for in-plane vortice
this potential is independent of the values of out-of-pla
anisotropy parameters~for l,0.8) and can be presented
the simplest form as UPN(x,y)5kJS2p@sin2(xp/a)
1sin2(yp/a)#, where the origin is chosen at the point whic
is equidistant from lattice sites, and the numeric parame
k.0.200.36 The potential minima are attained at all poin
like r5nex1mey , where m, n are integers,uexu5ueyu5a,
and the saddle points are at (n11/2)ex1mey and nex1(m
11/2)ey . A metastable state with a vortex shifted from th
center to the pointr exists only when the sumE(r)
5Ev(r,b)1UPN(r) has a minimum at this point. The loss o
stability manifests itself as ruptures of lines in Figs. 5 and
see also Fig. 7.

Then it is easy to show that the noncentered vortices
held by the pinning potential and are stable if their coor
nates are inside the circle of radiusRp . The radius of the
pinning regionRp is determined from the explicit expressio
~12! for the energy of the vortex placed at the pointr 0 as

FIG. 7. The energy of a noncentered vortex vs its displacem
for three values of surface anisotropy:~a! B/J50.4@Bc ~attraction
to the center!, ~b! B/J50.04.Bc ~equilibrium!, and ~c! B/J
50.004!Bc ~repulsion from the center!. Radius of the disk is 30a.
The radius of the pinning region (Rp;24) is maximal for the larg-
est value ofB and decreases for lower values.
8-7
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a
dEvor

(d)~r 0!

dr0
U

r 05Rp

5
pk

a
, ~20!

and the casea!R leads toRp5R2a/k.
Thus the vortices can be pinned everywhere inside

sample except the thin strip close to the border. Their e
gies relative to the zero level of the centered vortex lie in
band of the width;Jln(R/a). Such states are frequently ob
served in numeric simulations for the discrete model wh
initial configurations for the minimization are chosen ra
domly.

Although a detailed analysis of thermal fluctuations a
decay of metastable states is beyond the scope of this w
their role can be discussed on the basis of the previous
mates. The above introducedRp is the radius of the region
where pinning disappears, i.e., atr→Rp the barrier height
separating states with a vortex placed in adjacent lattice s
becomes to zero. It is also reasonable to introduce the fu
tion Rp(E), such that atr ,Rp(E) the barrier height betwee
these two states is higher than some valueE. Naturally,
Rp(E)→Rp at E→0, Rp(E)→0 at E→Eb

max, whereEb
max

5kJS2p is the maximal pinning energy. For intermediate r
gion E!Eb

max, a simple calculation yields

2Rp~E!5
a

k

Eb
max

Eb
max2E

, ~21!

and for all values ofEb
max2E;Eb

max the value ofRp(E) is
again nearR. Thus, the role of thermal fluctuations atkBT
!Eb

max can be considered as negligently small, and the ab
described metastable states may be manifest as long-
ones even for finite temperature. On the other hand atkBT
>Eb

max metastable states such as the noncentered vortex
not be manifest and only the centered vortex should be c
sidered.

For two-charge configurations the lattice potential a
creates other metastable configurations with higher ener
than the energy of configurations with maximally separa
charges. Their analysis is similar to the one that has b
performed for the case of a noncentered vortex. Two pin
charges on the border can be approached only down to
angle fp5uf12f2u.pa/kR. Consideration of therma
fluctuations can be done for noncentered vortices as well
it leads to the similar results, practically all such states
metastable.

In conclusion of this section we discuss the stability
vortices as a topologically nontrivial configuration und
transformation to nontopological one. Inside of two topolo
cally different classes of states—with vortex or with tw
surface singularities—effective relaxation to the most fav
able state inside the given class is possible. However,
previous results show that the vortexlike configurations w
the centered vortex have higher energy than the two-ch
configuration, and are metastable. Therefore, the state
centered vortex may relax toward the most profitable s
with two surface singularities. The simplest scenario of
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vortex decay is the following. The vortex moves to the ne
est point on the border and its counterpart also moves t
The point, where they merge, is a saddle point of the p
with the energyEsad5JS2p ln(R/e) over the centered vortex
energy. This state is referred as aboojumor fountain in the
3He theory,30,37 where it is a true minimum. Further, th
merged charges decouple and move along the bor
one—in the clockwise direction and another—in the count
clockwise direction to the most distant positions. Thus,
energyEsad is the barrier height between the two classes
configurations, and it can be used for the analysis of a th
mal ~or quantum tunneling, for low temperature! decay of
vortex states. Note that the barrier is nothing to do with
pinning potential. Its value does not contain the parametek,
but it is proportional to ln(R/a) and is much higher than th
exchange energyJS2. Thus, vortex states can be stable ev
at high enough temperature comparing with the Curie te
peratureTc;JS2, and the probability of the decay of th
vortex state is very low even at the temperatures compar
with Tc .

V. CONCLUDING REMARKS

A strong surface anisotropy for easy-plane Heisenb
magnets destructs the homogeneous ordering and leads t
two types of static structures: the vortex state and the s
with pair of half vortices on the surface. For finite anisotro
the latter state becomes nonsingular. This state is ener
cally favorable for all finite values of surface anisotropy. T
energy gap between it and the vortex state is of the orde
the exchange energy, but the energy barrier is much hig
than the exchange energy. The strong bulk anisotropy le
to well-pronounced effects of lattice pinning, and large nu
ber of metastable states appears as well.

It is interesting to compare these results to those wh
have been obtained for fine particles made with soft m
netic materials such as permalloy magnetic dots, where
nonuniform states are caused by the magnetic dipole inte
tion. The common point for these cases is not only the pr
ence of the vortex state but also the presence of nontopo
cal nonuniform states, leaf or flower states.6,10–12 The
distinction consists in the fact that for soft magnetic partic
there are nonsingular vortices with the out-of-plane mag
tization component while in our problem with the stron
bulk anisotropy the only in-plane vortices with a singular
are present. It is likely that in virtue of this for permallo
particles there is a very much pronounced transition from
vortex state to the nontopological one with the system s
decreasing, while in our problem the vortex state is alwa
less favorable energetically. It is worth noting that our p
liminary numerical data indicate the appearance of suc
transition at a weak easy-plane anisotropy; an extended
cussion of this problem is beyond the scope of the pres
work.

It is also interesting to note that the spin distribution in t
nonsingular state of our 2D problem resembles the distri
tion having axial symmetry and the plane of symmetry p
pendicular to the axis obtained by Dimitrov and Wysin21,22

for 3D particles where both the volume and surface aniso
8-8
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pies are presented. Recently, the stable three-dimens
analog of vortices, hedgehog configuration has been dis
ered for a ball-shaped particle with strong normal bor
anisotropy by numeric calculations.38 On the other hand, for
the superfluid3He-A, which is defined in terms of our mode
by use of the infinitely strong surface anisotropy and isot
pic volume properties, the true minimum constitutes le
symmetric state~boojum or fountain! with one surface sin-
gularity and without the symmetry plane.30,37 In our case the
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