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Absence of phase stiffness in the quantum rotor phase glass
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We analyze here the consequence of local rotational-symmetry breaking in the quantum spin~or phase! glass
state of the quantum random rotor model. By coupling the spin glass order parameter directly to a vector
potential, we are able to compute whether the system is resilient~that is, possesses a phase stiffness! to a
uniform rotation in the presence of random anisotropy. We show explicitly that the O~2! vector spin glass has
no electromagnetic response indicative of a superconductor at mean-field and beyond, suggesting the absence
of phase stiffness. This result confirms our earlier finding@Phys. Rev. Lett.89, 027001~2002!# that the phase
glass is metallic, due to the main contribution to the conductivity arising from fluctuations of the supercon-
ducting order parameter. In addition, our finding that the spin stiffness vanishes in the quantum rotor glass is
consistent with the absence of a transverse stiffness in the Heisenberg spin glass found by Feigelman and
Tsvelik @Sov. Phys. JETP50, 1222~1979!#.
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I. INTRODUCTION

Spin glasses are characterized by the freezing of lo
spins along random non-collinear directions. Because e
spin points in a preferred direction, locally spin rotation
symmetry is broken. Nonetheless, globally rotational sy
metry is preserved because spin glasses have no net m
tization. We consider here the O~2! quantum rotor mode
where the exchange interactions are random. As this mod
isotropic in rotor space, a global rotation of all of the roto
is an exact symmetry, even in the glass phase. Nonethe
in the glass state, a global rotation of all of the spins arou
any axis generates a new state which is distinguishable f
the original unrotated state. Because such uniform rotat
are generated by the group SO~2!, the spin glass state break
SO~2! symmetry. All such states are energetically degene
as a result of the inherent isotropy in rotor space. As a re
of the broken SO~2! symmetry, it is reasonable to expect th
a massless bosonic mode should exist.

In the strict sense, a physical system possesses a non
phase rigidity if upon a uniform rotation of the phase, t
free energy increase is of the form

DF5
rs

2 E d2r u¹uu2, ~1!

wherers is the spin or superfluid stiffness andu is the col-
lective phase variable. Consequently a spin-wave mode
a dispersionv56ck would be an experimental signature
a spin stiffness consistent with Eq.~1!. Experimentally, how-
ever, no such mode has ever been found in either neu
scattering or thermal measurements1–4 on spin glasses. This
failure might be attributed to that fact that overdamp
modes and/or low energy excitations conspire to makers
undetectable. Theoretically, in the phenomenological hyd
dynamic account, Halperin and Saslow5 assumed thatrs
Þ0. They did caution the reader that the existence of a s
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ness in a spin glass is subtle and, in all likelihood, doub
as a result of the preponderance of experimental evidence
a large density of low-energy excitations that could ov
damp the spin-wave mode. This conclusion is supported
extensive numerical simulations by Walker and Walste6

who found no evidence for the characteristicv2 vanishing of
the low-energy modes. Two microscopic calculations of
spin stiffness exist. Feigel’man and Tsvelik7 developed a
real-time diagrammatic technique for the Heisenberg s
glass and showed explicitly that the spin stiffness vanish
This result is particularly robust because it follows from
simple permutation symmetry of the spin correlators.7 Within
the replica formalism of a Heisenberg spin glass Kotli
Sompolinsky, and Zippelius8,9 formulated a mean-field de
scription of the single-valley stiffness constant. This limit
relevant at sufficiently short times that the spin glass rema
trapped in a single configuration. In this limit, the stiffne
constant is nonzero.8,9 However, in the full statistical me-
chanical treatment of the problem in which hopping amo
the myriads of valleys in the energy landscape of a spin g
are allowed, the stiffness vanishes.8–10 This result implies
that the spin stiffness is a transient effect approaching zer
the equilibrium or long-time limit. In this limit, a new mass
less mode dispersing asv} ik2 emerges which leads to th
vanishing of the spin stiffness, as in the real-time formalism7

Hence, there is a consilience between the replica and r
time formalisms that the stiffness constant vanishes in
Heisenberg spin glass.

For quantum spin glasses, no calculation of the stiffn
exists. Nonetheless, we expect the same physics to be v
Namely, as long as the system can relax and hop amon
of the configurations of the spin glass, the stiffness sho
vanish. For example, in quantum spin glasses, quantum
neling among the various local minima in the spin gla
landscape is permitted, thereby leading to a vanishing of
stiffness. This problem is particularly current because
have recently proposed11 that the bosonic excitations arisin
©2003 The American Physical Society27-1
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from fluctuations of the superconducting order paramete
the glassy phase, lead to a metallic conductivity at zero t
perature. In the Gaussian approximation, this conducti
sbos diverges as 1/m4 upon approaching the superconducti
phase (m is the inverse correlation length of the superco
ducting fluctuations!. A free energy density of the form o
Eq. ~1!, however, leads to a superconducting respon
Hence, should the phase glass itself have a well-defined s
ness, then the bosonic conductivity, though intriguing, wo
be irrelevant as it would be dwarfed by the infinite condu
tivity arising from the excitations related to the glassy ord
parameter. We show here explicitly that this is not the ca
at least at the mean-field level. Rather than attempting
calculate the phase stiffness from the free energy, we c
sider the linear response regime and couple the spin g
order parameter to the appropriate vector potential. Sec
we compute the role of replica symmetry breaking~RSB! on
the bosonic contribution to the conductivity. We show th
weak RSB does not affect the metallic character of the c
ductivity as T→0. Consequently, the Bose metallic pha
found earlier11 is robust and constitutes the only known e
ample of a metallic phase in 2D in the presence of disor

II. PHASE STIFFNESS

The starting point for our analysis is the O~2! quantum
rotor model

H52EC(
i

S ]

]u i
D 2

2(
^ i , j &

Ji j cos~u i2u j2Ai j !, ~2!

where Ai j 5(e* /\)* i
jA•dl (e* 52e). The Josephson cou

plings are assumed to be random and governed by a d
bution

P~Ji j !5
1

A2pJ2
expF2

~Ji j 2J0!2

2J2 G ~3!

with nonzero mean,J0 andJ the variance. When the distri
bution has a nonzero mean, three phases are possible~1!
disordered paramagnet,~2! quantum phase glass, and~3! su-
perconductor. Because the existence of the spin stiffnes
the spin glass can be answered with the simpler model w
zero mean (J050), we utilize this model at the outset. For
random system, the technique for treating disorder is n
standard:~1! replicate the partition function,~2! perform the
average over disorder, and~3! introduce the appropriate
fields to decouple the interacting terms that arise. As
corresponding action has been detailed previously,12,13 we
will provide additional steps that are necessary to determ
how the electromagnetic gauge couples to the spin glass
der parameter. We write the replicated partition function

Zn5E Du iDJi j e
2S, ~4!

where the Euclidean action is given by
10442
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0

b

dtH(
i ,a

1

4EC
S ]u i

a~t!

]t D 2

2(
a

(̂
i j &

Ji j cos@u i
a~t!

2u j
a~t!2Ai j ~t!#J , ~5!

where the superscripta represents the replica index. ForJ0
50, the integration overJi j in Eq. ~4! results in the effective
action

Seff5E
0

b

dt(
i ,a

1

4EC
S ]u i

a

]t
D 2

1
J2

2
(
a,b

(̂
i j &

E
0

bE
0

b

dtdt8
1

4
(

a511,21
exp~ i $u i

a~t!

2au i
b~t8!2@u j

a~t!2au j
b~t8!#

2@Ai j ~t!2aAi j ~t8!#%!1c.c. ~6!

with a511,21. As a result of the sum overa, we see that
the vector potential enters both symmetrically and antisy
metrically. To simplify the notation, we introduce the two
component vector

Sa~t!5@cosua~t!,sinua~t!# ~7!

and the corresponding auxiliary field

Qm n
ab ~t,t8!5^Sm

a ~t!Sn
b~t8!& ~8!

which will be used in decoupling the action and ultimate
determines the Edwards-Anderson order parameter for
quantum spin glass transition. The remaining steps invo
performing the cumulant expansion and taking the c
tinuum limit. The final action can be separated into the lo
and gradient parts:

Seff5Sloc1Sgr , ~9!

where the local part

Sloc5E ddxH 1

kE dt(
a

S r 1
]

]t1

]

]t2
D

3Qmm
aa ~x,t1 ,t2!ut15t25t2

k

3E dt1dt2dt3

3 (
a,b,c

Qmn
ab~x,t1 ,t2!Qnr

bc~x,t2 ,t3!Qrm
ca ~x,t3 ,t1!

1
1

2E dt(
a

@uQmn
aa~x,t,t!Qmn

aa~x,t,t!

1vQmm
aa ~x,t,t!Qnn

aa~x,t,t!#J
2

y1

6tE ddxE dt1dt2(
a,b

@Qmn
ab~x,t1 ,t2!#4 ~10!

is identical to that derived previously by Read, Sachdev,
Ye13 and the gradient part
7-2
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Sgr5E ddxE
0

b

dt1dt2(
a,b

US ¹2
ie*

\
A~x,t1!

1
ie*

\
A~x,t2! DQ2

ab~x,t1 ,t2!U2

1E ddxE
0

b

dt1dt2(
a,b

US ¹2
ie*

\
A~x,t1!

2
ie*

\
A~x,t2! DQ1

ab~x,t1 ,t2!U2

~11!

in which the vector potential couples both symmetrically a
asymmetrically to combinations of theQ matrices of the
same parity. Using the fact thatQ6

ab(t1 ,t2);^exp$i@ui
a(t)

6ui
b(t8)#%&, the parity combinations of theQ matrices are

defined as follows:

Q6
ab~x,t1 ,t2!5

1

2
@Q11

ab~x,t1 ,t2!7Q22
ab~x,t1 ,t2!#

1
i

2
@Q12

ab~x,t1 ,t2!6Q21
ab~x,t1 ,t2!#.

~12!

It is evident that the vector potential enters in a non-ti
translationally invariant manner. This is a direct conseque
of the fact that theQ-matrices themselves are a function
two independent times, not simply the difference oft1
2t2.

To calculate the conductivity, we need to focus entirely
the gradient part of the action as this is the only part t
couples to the vector potential. The standard Kubo form
for the spin-glass contribution to the longitudinal conduct
ity takes the form

s~ ivn!52
\

vn
lim
n→0

1

nE dd~x2x8!E
0

b

d~t2t8!

3
d2Zn

dAx~x,t!dAx~x8,t8!
eivn(t2t8), ~13!

where we have chosen to orient the vector potential along
x-axis. A bit lengthy variational procedure leads to the f
lowing result:

s~ ivn!5
~e* !2

\vn

1

n (
a,b

E
0

b

d~t2t8!

3eivn(t2t8)H 4E
0

b

dt2~^uQ2
ab~x,t,t2!u2&

1^uQ1
ab~x,t,t2!u2&!d~t2t8!

14~^uQ1
ab~x,t,t8!u2&2^uQ2

ab~x,t,t8!u2&!

2E dd~x2x8!^Jx~x,t!Jx~x8,t8!&J , ~14!

where the currentJx(x,t) is defined as
10442
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J~x,t!5
ie*

\ (
ab

(
a51,2

E
0

b

dt1@Qa
ab~x,t,t1!

3¹@Qa
ab~x,t,t1!#* 2c.c.#. ~15!

In deriving this expression for the current, we considered
relations Q1

ab(x,t2 ,t1)5Q1
ab(x,t1 ,t2) and Q2

ab(x,t2 ,t1)
5@Q2

ab(x,t1 ,t2)#* , that follow from the definition, Eq.~12!.
To evaluate the correlation functions in Eq.~14!, we need to
use the Fourier components of theQ fields

Qmn
ab~x,t1 ,t2!5E ddk

~2p!d

1

b2 (
v1 ,v2

Qmn
ab~k,v1 ,v2!

3e2 i (k•x2v1t12v2t2), ~16!

and take into account the relations betweenQ6
ab and Qmn

ab

given by Eq.~12!. The general ansatz for the Fourier tran
formedQ matrices

Qmn
ab~k,v1 ,v2!5b~2p!ddd~k!dmn@bqabdv1,0dv2,0

1dabdv11v2,0D~v1!#1Q̃mn
ab~k,v1 ,v2!

~17!

consists of the spatially uniform mean-field part and the fl
tuating spatial componentQ̃ab. In Eq. ~17!,

D~v!52uvu/k, ~18!

while the off-diagonal elements ofqab constitute the ultra-
metric Parisi matrix13

q~s!5H ~s/s1!qEA , 0,s,s1 ,

qEA , s1,s,1,

in which s152y1qEAT/k, andqEA is the Edwards-Anderson
order parameter (qaa5qEA).

We substitute then this ansatz into Eq.~14! and obtain that
s( ivn) consists of three parts,

s~ ivn!5s (1)~ ivn!1s (2)~ ivn!1s (3)~ ivn!. ~19!

The parts (1)( ivn) contains only the contribution from th
glassy order parameterqab, while s (2)( ivn) arises, once the
gapless frequency-dependent fieldD(v) that characterizes
quantum dynamics is taken into account. The contribut
s (3)( ivn) describes the role of the spatially-fluctuating pa
of the Q matrices in Eq.~17!.

s (1)( ivn) is given by

s (1)~ ivn!5
16e2

\vn

4qEADq

3
P~ ivn!, ~20!

where

P~ ivn!5E
0

b

dteivnt@bd~t!21#. ~21!

In the derivation above, we used the res
(1/n)(a,bqabqab5(4/3)qEADq , whereDq5qEA2*0

1q(s)ds
7-3
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5qEAs1/2 is the broken ergodicity parameter, that vanish
linearly with temperature. Note, had we assumed that
vector potential entered in a time-translationally invaria
manner, the factor of21 in Eq. ~21! would not be present
As a result, the conductivity would diverge atvn50 as in a
superconductor. Ins (2)( ivn) we collect the terms that con
tain D(vn):

s (2)~ ivn!5
16e2

\vn
S T(

vm

D2~vm!2T(
vm

D~vm!D~vm1vn!

22qEAD~vn! D . ~22!

The remaining terms (3)( ivn) arises from the spatially de
pendent partQ̃mn

ab(k,v1 ,v2) of the Q matrices. Writing the
expression for the current~15! in two parts

J1~x,t!52
2e*

\ (
ab

E ddk

~2p!d

1

b2

3 (
v1 ,v2

kS bqabdv2,01
1

b (
v2

D~v2! D
3@Q̃2

ab~k,v1 ,v2!ei (k•x2v1t2v2t)1c.c.#, ~23!

J2~x,t!52
2e*

\ (
ab

b (
a56

E ddk1

~2p!d

ddk2

~2p!d

1

b3

3 (
v1 ,v2 ,v3

~k11k2!Q̃a
ab~k1 ,v1 ,v3!

3@Q̃a
ab~k2 ,v2 ,v3!#* ei (k22k1)•xei (v12v2)t,

~24!

we observe that the contribution fromJ1(x,t) vanishes as a
result of integration overdd(x2x8). The remaining part
leads to the result that

s (3)~ ivn!5
4~e* !2

\vn

b

n (
a,b

(
a51,2

E ddk

~2p!d

1

b2

3 (
v1 ,v2

@G a
ab~k,v1 ,v2!

24kx
2Ga

ab~k,v1 ,v2 ;vn!

3G a
ab~k,v1 ,v2!G a

ab~k,v1 ,v21vn!#.

~25!

In Eq. ~25!

G 6
ab~k,v1 ,v2!5^Q̃6

ab~k,v1 ,v2!Q̃6
ab~2k,2v1 ,2v2!&

5
1

4 (
m,n51,2

G mn
ab~k,v1 ,v2!, ~26!

is the exact propagator for the fluctuations of theQ̃ fields.
The first term is the diamagnetic contribution, while the s
10442
s
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ond is paramagnetic and can be formally represented by
standard bubble diagrams14 and Ga

ab(k,v1 ,v2 ;vn) is the
corresponding vertex function.

We discuss first the contributions (1)(vn). The explicit
frequency dependence of this part is given simply by
prefactor P( ivn)/vn . Should a phase stiffness exist, th
prefactor would be simply proportional to 1/vn , which when
analytically continued would yield the standard electroma
netic response for the conductivity of a superconduc
However, this is not the case here. The integral in Eq.~21! is
simply b(12dvn,0) effectively removing thus the divergenc
at zero frequency, unlike what would be the case had
assumed that the vector potential entered the action
time-translationally invariant manner. Note that such an
pression although not analytic atvn50 does not violate cau
sality because it is, nonetheless, analytic in either the up
or lower half planes. Hence, the O~2! quantum phase glas
has a vanishing stiffness in the limitvn50, which of course
is the physically relevant regime for the dc conductivity. It
in this limit that explorations of all available minima ar
possible.

To see this result more systematically, we analytica
continue P( ivn) using a Hilbert transformation. The de
nominator of Eq.~20! can be analytically continued trivially
ivn→v1 ih, whereh is a positive infinitesimal. We write
the numerator as

P~ ivn!5E
0

b

dteivntP~t!,

P~t!5bd~t!21[P1~t!2P2~t!. ~27!

AlthoughP1(t) is not an analytic function, we can constru
its analytical continuation using the conformal invarian
condition d(t)5d(t1b). Performing the integration ove
the first term in Eq.~27!, we obtain thatP1(v)5b. Because
P2(t)51 is an analytic function, we adopt the spectral re
resentation

P2~t!5
1

pE2`

` e2teP29~e!de

12e2be
~28!

valid for Bose systems, whereP2(e)5P28(e)1 iP29(e).
This representation is most convenient for constructing
analytical continuation.15 Once we knowP29(e), we can ob-
tain both the real and the imaginary parts for real frequenc
using the Hilbert transformation

P2~v!5
1

pE deP29~e!

e2v2 i01
. ~29!

Solving Eq.~28! with P2(t)51 yields

P29~e!52pd~e!sinh
eb

2
5pbed~e!. ~30!

The real part is determined by the principal value
7-4
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P28~v!5PE
2`

` bed~e!de

e2v
5b f ~v!5bH 1, v50,

0, vÞ0.

Obtained in this fashion, the real and imaginary parts
P2(v) formally satisfy the Kramers-Kronig relations. How
ever, both are not regular functions. Hence, it is more c
venient to treat the real and imaginary parts ofP2(v) as
limits of two analytic functions. For example, from the reg
lar function

g~v!5bS h2

h21v2
1 i

hv

h21v2D , ~31!

whose real and imaginary parts satisfy the Kramers-Kro
relations, we obtain the correct limit forP2(v50)51 sim-
ply from g(v50)51, and forvÞ0 the limiting procedure,
limh→0g(v)5P2(vÞ0)50. As a result, the limitsv
50,h→0 and h50,v→0 do not commute, a fact which
must be considered when we construct thev50 conductiv-
ity. The correct order of limits ish→0,v50. Nonetheless
the advantage of writingP2(v) in this fashion is that for any
nonzeroh, the real and imaginary parts of thisg(v) obey
the Kramers-Kronig relations. Combining this representat
with P1(v)51 andivn→v1 id, we obtain the analytically
continued form for the frequency dependence of the cond
tivity

P~ ivn!

vn
→bF v2~h1d!

~h21v2!~h21v2!
1 i

v32hdv

~h21v2!~d21v2!
G

5H 0, v50, lim
d→0,h→0

,

ib/v, vÞ0, lim
d→0,h→0

.

Recall, the correctv50 limit is recovered by settingv50
and then taking the limit,h→0. We find then that the con
tribution of s (1)(v) to the conductivity is purely imaginary
The absence of the real part and, as a result, a formal v
tion of the Kramers-Kronig relations here is tied to the pr
ence of the nonanalytic functiond(t) in Eq. ~21!. Such
nonanalyticity atv50 is permissible because the requir
ment of causality is analyticity in either the upper or low
half planes.

To evaluate thev→0 limit of s (2)(v) we must analyti-
cally continue the difference of the first two terms in E
~22!. Using Eq.~18! we obtain16,17 that

s (2)~v50!5
16e2

\ S 2qEA

k
1

2

pk2E0

Lv
z coth

z

2T
dzD ,

~32!

and is some regular function of the infrared cutoffLv and
temperature. We see that the contributions (2)(v50) is non-
critical and metallic.

Proceeding to the third terms (3)(v), we first notice that
the exact calculation of the propagatorG mn

ab(k,v1 ,v2), based
on the action Eq.~10! is not possible. However, at the qua
tum critical point in the Gaussian approximation13
10442
f

-

g

n
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-
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G mn
ab~k,v1 ,v2!5

1

k21uv1u1uv2u
[G0~k,v1 ,v2!,

~33!

and hence is indepedent of replica and spatial indices. S
stitution of this simple replica-symmetric propagator into E
~25! leads to the zeroth-order result fors (3)(v) as a result of
the replica summation. Because the renormalization gr
equations for the coefficients in the action~10! lead to run-
away to strong coupling ford,dc58, it is not possible to
analyze the behavior ofs (3)(v50) for the relevant dimen-
sionalities. However, the structure of Eq.~25! allows us to
make the conclusion that the superconducting contribu
of the typersd(v) is not expected. This can be proven fo
mally by integrating by parts the diamagnetic term and e
ploying the Ward identity. After the analytical continuatio
vn→2 iv, we expand the ensuing expression overv. We
obtain that the zero-frequency conductivity obeys the sca
form

s (3)~v50!5
e2

\ S T

\ D d22

FS qEA

T D , ~34!

albeit the precise form of the functionF(x) and, hence, the
corresponding temperature dependence cannot be d
mined.

We have obtained an important result that there is no
contribution to the conductivity proportional torsd(v). The
vanishing of the stiffness is tied to the nature of the vec
potential coupling to the glassy order parameter. The ve
potential couples in a nontime translationally invariant ma
ner to the spin glass order parameter. If, however, the sys
explores only one of the myriad of configurations in t
glassy landscape, a stiffness appears in agreement with
work of Kotliar et al.9 However, certainly within a single
configuration, the origin of time is irrelevant. In this case t
time translationally invariant coupling of the vector potent
would be appropriate. But this is not the most general ca
Quantum mechanically tunneling to all minima is permitte
In this case, the stiffness vanishes in agreement with
result7,9 on the Heisenberg spin glass that the spin stiffnes
a transient and hence should vanish once tunneling betw
all minima is present. This result is robust and expected
hold beyond the mean-field theory. For example, the van
ing of the spin stiffness follows directly from the form of th
propagator of the spatially varying part of the spin glass
der parameter. From Eq.~33!, we see that this propagator
strictly diffusive. Coupled with the fact the propagator at t
mean-field level in the spin glass phase is independen
momentum, we deduce that the massless mode is determ
entirely from the spatially fluctuating part of the order p
rameter and hence given byv5 ik2. The fact that the rea
part of the dispersion relationship vanishes implies that
spin stiffness identically vanishes. This argument reinfor
our previous conclusion as well as that of others7,8 that the
vanishing of the spin stiffness is tied to the emergence o
diffusive mode.
7-5
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III. BOSONIC CONDUCTIVITY:
REPLICA SYMMETRY BREAKING

Now we generalize our earlier result for the bosonic co
ductivity. Such a contribution arises only in the case of no
zero mean,J0Þ0. In this case an ordered phase exists wh
in theO(2) case is a superconductor. Hence, in the prese
of nonzero mean, a new order parameter

Cm
a ~k,t!5^Sm

a ~k,t!& ~35!

which is determined by the expectation value of the ro
spin. On the spin glass side of the phase diagram, the bos
excitations of the superconductor develop a mass,m which is
equivalent to the inverse correlation length for phase coh
ence. In the presence of bosonic excitations, the free en
contains the additional terms

DF@C,Q#5 (
a,m,k,vn

~k21vn
21m2!uCm

a ~k,vn!u2

2
1

ktE ddxE dt1dt2 (
a,b,m,n

Cm
a ~x,t1!

3@Cn
b~x,t2!#* Qmn

ab~x,t1 ,t2!

1
U

2 E dt(
a,m

$Cm
a ~x,t!@Cm

a ~x,t!#* %4.

~36!

At the Gaussian level, with the mean-field spin glass ans
~17!, the effective Gaussian propagator for the bosonic
grees of freedom has the form

FGauss5 (
a,k,vn

~k21vn
21huvnu1m2!uCa~k,vn!u2

2bq (
a,b,k,vn

dvn,0C
a~k,vn!@Cb~k,vn!#* .

~37!

As we have pointed out previously, the term proportional
qab in FGausscannot be rewritten as an effective mass te
because this term explicitly couplesc fields with different
replica indices. In the case of replica symmetry, that is,qab

5q0 for all a andb, we have shown that the resultant co
ductivity is nonzero and given by

sbos~v50,T→0!5
4

3

e2hq0

hm4
~38!

which smoothly crosses over tos5` in the superconducting
state (m50). That the bosonic contribution to the condu
tivity should be nonzero is immediately obvious from theuvu
term in the action. This term arises entirely due to the gl
degrees of freedom that naturally provide for dissipation
generate a metallic state.

We now generalize this result to include replica symme
breaking. Application of the Kubo formula in this case r
sults in a conductivity
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s~ ivn!5
2~e* !2

n\vn
T (

a,b,vm

E d2k

~2p!2
@Gab

(0)~k,vm!dab

22kx
2Gab

(0)~k,vm!Gab
(0)~k,vm1vn!#, ~39!

that depends entirely on the Gaussian propagator for thc
fields. To evaluate this quantity, we need to invert Eq.~37!.
This calculation is difficult to perform for the general type
RSB. However, it can be readily done using the rules dev
oped by Mezard and Parisi18 for inverting an ultrametric ma-
trix having a one-step RSB:

q~s!5H q0 , s,sc ,

q1 , sc,s,1.

To apply the inversion formula detailed in Appendix II o
Ref. 12, it is expedient to make the following definitions:

g5
1

k21huvnu1m2
,

g̃5
1

~k21huvnu1Sm!~k21huvnu1m2!
,

Sm5m21bS1 , S15sc~q12q0!. ~40!

Application of the inversion formula18 results in the diagona

G̃5g1bdvn,0
S1g̃

12sc

sc
1bq0dvn,0

g2 ~41!

and the off-diagonal elements

G~s!5bq0dvn,0
1bdvn,0

S1g̃
u~s2sc!

sc
~42!

of the propagator. In this representation of the Parisi matri
on the interval@0,1#, the replica indices are absent. Noneth
less, a well-defined formula18

1

n
Tr AB5ãb̃2E

0

1

dsa~s!b~s! ~43!

exists for taking the trace of a product of two ultramet
matricesA andB, whereã and b̃ are the diagonal element
of A andB, respectively, anda andb are the corresponding
off-diagonal elements in the continuous representation.
us consider here only a simple case of the weak RSBbS1
!m2, assuming thatsc;T. Substitution of Eqs.~41! and
~42! into Eq.~39!, and expanding overbS1 /m2 results in the
following correction to the static conductivity due to the re
lica symmetry breaking

dsRSB5
2~e* !2

h
hS1

12sc

sc
E

0

` xdx

~x1m2!4

5
4

3

e2

hm4
h~q12q0!~12sc!. ~44!
7-6
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Combining this with Eq.~38!, we obtain

sbosons
tot 5

4

3

e2h

hm4
@q11~q02q1!sc# ~45!

as our total contribution for the bosonic conductivity. Ifsc
51, we recover our previous replica symmetric result. F
the quantum O~2! spin glass, however,sc}T, and hence, the
correction withsc vanishes atT50. Settingsc50 requires
that q(s)5q1. Hence, replica symmetry breaking adds
simple benign constant to the conductivity which smoot
crosses over to the replica symmetric result. While the ma
inversion beyond one-step replica symmetry breaking is
duous, we suspect that in this case as well replica symm
breaking does not lead to any spurious contribution to
conductivity. Our primary reason for this belief is the fa
that quantum mechanically replica symmetry breaking v
ishes in theT→0 limit.

IV. SUMMARY

We have considered here two separate questions:~1! does
the O~2! vector spin glass have a nonvanishing phase s
ness and~2! what is the role of replica symmetry breaking
the bosonic contribution to the conductivity. If the answer
the first question were yes, then the answer to the sec
would be irrelevant as the overall conductivity would be
pl

rk

y

10442
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finite. As we have demonstrated clearly, the spin glass o
parameter does not provide a superconducting contribu
to the conductivity at mean field and beyond. Our calculat
of the phase stiffness seems to be the first based on a d
coupling of the vector potential to the spin glass order
rameter which does not assume time translational invaria
at the beginning. The physical mechanism underlying
vanishing of the spin stiffness appears to be the explora
of all configuration minima as a result of quantum tunnelin
In addition, we have found that replica symmetry breaki
provides a small correction to bosonic conductivity. Hen
the bosonic metallic state we have found here is robust
represents a clear example of a metallic state in the pres
of disorder in two dimensions.
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