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Absence of phase stiffness in the quantum rotor phase glass
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We analyze here the consequence of local rotational-symmetry breaking in the quantian ppasé glass
state of the quantum random rotor model. By coupling the spin glass order parameter directly to a vector
potential, we are able to compute whether the system is resilieat is, possesses a phase stiffi¢esa
uniform rotation in the presence of random anisotropy. We show explicitly that @ev@ctor spin glass has
no electromagnetic response indicative of a superconductor at mean-field and beyond, suggesting the absence
of phase stiffness. This result confirms our earlier findiRgys. Rev. Lett89, 027001(2002] that the phase
glass is metallic, due to the main contribution to the conductivity arising from fluctuations of the supercon-
ducting order parameter. In addition, our finding that the spin stiffness vanishes in the quantum rotor glass is
consistent with the absence of a transverse stiffness in the Heisenberg spin glass found by Feigelman and
Tsvelik [Sov. Phys. JETB0, 1222(1979].
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[. INTRODUCTION ness in a spin glass is subtle and, in all likelihood, doubtful
as a result of the preponderance of experimental evidence for
Spin glasses are characterized by the freezing of loca large density of low-energy excitations that could over-
spins along random non-collinear directions. Because eadlamp the spin-wave mode. This conclusion is supported by
spin points in a preferred direction, locally spin rotational extensive numerical simulations by Walker and Walstedt
symmetry is broken. Nonetheless, globally rotational sym-who found no evidence for the characteristi¢ vanishing of
metry is preserved because spin glasses have no net magmige low-energy modes. Two microscopic calculations of the
tization. We consider here the(® quantum rotor model spin stiffness exist. Feige'man and Tsvélideveloped a
where the exchange interactions are random. As this model igal-time diagrammatic technique for the Heisenberg spin
isotropic in rotor space, a global rotation of all of the rotorsglass and showed explicitly that the spin stiffness vanishes.
is an exact symmetry, even in the glass phase. Nonethelesphis result is particularly robust because it follows from a
in the glass state, a global rotation of all of the spins aroundjmple permutation symmetry of the spin correlatovsithin
any axis generates a new state which is distinguishable frofhe replica formalism of a Heisenberg spin glass Kotliar,
the original unrotated state. Because such uniform rotationgompolinsky, and Zippelii$ formulated a mean-field de-
are generated by the group &J the spin glass state breaks scription of the single-valley stiffness constant. This limit is
SQ(2) symmetry. All such states are energetically degeneratgelevant at sufficiently short times that the spin glass remains
as a result of the inherent isotropy in rotor space. As a resulfapped in a single configuration. In this limit, the stiffness
of the broken S@) symmetry, it is reasonable to expect that constant is nonzerd® However, in the full statistical me-
a massless bosonic mode should exist. chanical treatment of the problem in which hopping among
In the strict sense, a physical system possesses a Nonzefe myriads of valleys in the energy landscape of a spin glass
phase rigidity if upon a uniform rotation of the phase, theare allowed, the stiffness vanisHed® This result implies
free energy increase is of the form that the spin stiffness is a transient effect approaching zero in
the equilibrium or long-time limit. In this limit, a new mass-
Ps| ., 5 less mode dispersing asxik? emerges which leads to the
AF= Ef d*r|Vel%, (1) vanishing of the spin stiffness, as in the real-time formalism.
Hence, there is a consilience between the replica and real-
wherepg is the spin or superfluid stiffness amdis the col-  time formalisms that the stiffness constant vanishes in the
lective phase variable. Consequently a spin-wave mode withleisenberg spin glass.
a dispersionw= = ck would be an experimental signature of  For quantum spin glasses, no calculation of the stiffness
a spin stiffness consistent with Ed.). Experimentally, how- exists. Nonetheless, we expect the same physics to be valid.
ever, no such mode has ever been found in either neutroamely, as long as the system can relax and hop among all
scattering or thermal measureménfson spin glasses. This of the configurations of the spin glass, the stiffness should
failure might be attributed to that fact that overdampedvanish. For example, in quantum spin glasses, quantum tun-
modes and/or low energy excitations conspire to make neling among the various local minima in the spin glass
undetectable. Theoretically, in the phenomenological hydrolandscape is permitted, thereby leading to a vanishing of the
dynamic account, Halperin and Sasfowssumed thap,  stiffness. This problem is particularly current because we
+0. They did caution the reader that the existence of a stiffhave recently proposétithat the bosonic excitations arising
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the glassy phase, lead to a metallic conductivity at zero tem- S= E —
. . . . .. i.a 4EC
perature. In the Gaussian approximation, this conductivity '
opes diverges as m* upon approaching the superconducting

phase [ is the inverse correlation length of the supercon- — 0?( 7)—A”-(r)]], (5)

ducting fluctuations A free energy density of the form of

Eg. (1), however, leads to a superconducting responseyhere the superscrit represents the replica index. Fay

Hence, should the phase glass itself have a well-defined stiff= o the integration oved;; in Eq. (4) results in the effective
ness, then the bosonic conductivity, though intriguing, wouldacnon

be irrelevant as it would be dwarfed by the infinite conduc-

tivity arising from the excitations related to the glassy order 962\ 2
parameter. We show here explicitly that this is not the case, Seﬁ:f dr>, ( )
at least at the mean-field level. Rather than attempting to 0 iadkc
calculate the phase stiffness from the free energy, we con-
sider the linear response regime and couple the spin glass + — f f deT — 2 exp(i{6%(7)
order parameter to the appropriate vector potential. Second, ab y a=+1-1

we compute the role of replica symmetry breakiR§$B) on b, a b,
the bosonic contribution to the conductivity. We show that abi(r')—[0j(1)—abj(1')]

weal_< _RSB does not affect the metallic character of the con- —[A;(1)— A (7)) +c.c. (6)
ductivity as T—0. Consequently, the Bose metallic phase

found earliet! is robust and constitutes the only known ex- With @=+1,—1. As a result of the sum over, we see that

ample of a metallic phase in 2D in the presence of disordethe vector potential enters both symmetrically and antisym-
metrically. To simplify the notation, we introduce the two-

component vector

from fluctuations of the superconducting order parameter in JB (
dr
0

_g <|EJ> JIICOS{G?(T)

ar

Il. PHASE STIFFNESS

— a H a
The starting point for our analysis is the(Z) quantum S(r)=[cos6™(7),sin%(7)] ()
rotor model and the corresponding auxiliary field
Q% (7,7)=(SM(7)S)(7")) 8)

J 2
H= _ECZ (60_0') _%‘4) Jijcog 6= 0= Aij), (2 \which will be used in decoupling the action and ultimately
determines the Edwards-Anderson order parameter for the

where Aij=(e*/ﬁ)ffA-d| (e* =2€). The Josephson cou- quantum spin glass transition. The remaining steps involve

plings are assumed to be random and governed by a distr@erform[ng_ the cgmulanf[ expansion and takl_ng the con-
bution tinuum limit. The final action can be separated into the local

and gradient parts:

P(,) 1 ( (Jij=Jo)” 0) 3 Setr= Sioct Sy, 9
)= ex

2w d? 232 where the local part

with nonzero mean), andJ the variance. When the distri- S :J dx E dr> [r+ — i)

bution has a nonzero mean, three phases are possible: o¢ K a dT1 dTp

disordered paramagné€g) quantum phase glass, af®) su-

perconductor. Because the existence of the spin stiffness in % 0@ (x _ EJ' drdrd

the spin glass can be answered with the simpler model with QX172 7= 5= T8T2ETs
zero mean Jp=0), we utilize this model at the outset. For a

random system, the technique for treating disorder is now X D> Q2 (x, 74, 79)QPY(X, Ty, T3) Q%2 (X, T3, 1)
standard{1) replicate the partition functior(2) perform the prt e T2l wpt T T2 T pul T 13 T
average over disorder, an@®) introduce the appropriate 1

fields to decouple the interacting terms that arise. As the +_J dr>, [uQ(x,7,7)Q%3(x,7,7)
corresponding action has been detailed previotfsi§,we 2 (1R (X7 M (X 7,

will provide additional steps that are necessary to determine

how the electromagnetic gauge couples to the spin glass or- +00Q% (x,7,7)Q%(x, 7,7)]

der parameter. We write the replicated partition function as pp S

_ & d f ab 4
[ oomaes “ o[ 4 dnanS Q.m0
is identical to that derived previously by Read, Sachdev, and
where the Euclidean action is given by Ye'® and the gradient part
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a [P ie*
sgr=f d xfodrldr% V- ——AXT)

in% 2

+ 7A(X,7'2)

) Qib(xl T1, 7-2)

B
+f ddxf drdr,
0 a,b

ie*

- 7A(X, ’7'2)

ie*
(V_ 7A(X, 7'1)

2

) Qib(xv T1, TZ) (11)

: . : : b —
in which the vector potential couples both symmetrically and Qf‘w(x, T1,72)=

asymmetrically to combinations of th®@ matrices of the
same parity. Using the fact th@?3°(r;,7,)~ (expli[ (")
+ ()]}, the parity combinations of th€ matrices are
defined as follows:

ab — E ab — Aab
Qt (XlTlvTZ) 2[Qll(xr71172)+Q22(X17117-2)]

i
+51Q83(x, 71, 7) = Q51(x, 71, 72)].

12
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>

a=+,—

ie* B
axm)= > fo dr[QZ°(x,7,7)

XV[Q3(x,7,7,)]* —c.cl.

(15

In deriving this expression for the current, we considered the
relations Q2°(x,7,,71) =Q3(X,71,7,) and Q*°(x,7,,77)
=[Q?(x,1,,7,)]*, that follow from the definition, Ec(12).

To evaluate the correlation functions in EG4), we need to
use the Fourier components of tiefields

d% 1
= >

(2m)9 2 wro

X e—i(k~x— “’lTl_“’ZTZ),

Q20K w1, w,)
2

(16)

and take into account the relations betwé@i_lb and QZ?,
given by Eq.(12). The general ansatz for the Fourier trans-
formed Q matrices

Q20(K, w1, )= B(2m)96%(K) 8, B4, 0800
+ 5ab5w1+m2,oD(w1)] + Q2K w1, 02)

17

It is evident that the vector potential enters in a non-timeconsists of the spatially uniform mean-field part and the fluc-
translationally invariant manner. This is a direct consequenceuating spatial componei@2®. In Eq. (17),

of the fact that theQ-matrices themselves are a function of
two independent times, not simply the difference of
- T9.

To calculate the conductivity, we need to focus entirely on

D(w)=—|ol|/k, (18

while the off-diagonal elements @f2® constitute the ultra-
metric Parisi matriX

the gradient part of the action as this is the only part that

couples to the vector potential. The standard Kubo formula

for the spin-glass contribution to the longitudinal conductiv-

ity takes the form
1 B
—f dd(X—X’)f d(7—17")
n 0

82z"
X
SA(X, T) SAL(X,T")

, ho
O'(Iwn): - w—“m
Nn—0

jwp(7—7")

13

where we have chosen to orient the vector potential along th

x-axis. A bit lengthy variational procedure leads to the fol-
lowing result:
B
J d(r—17")
0

>

a,b

e* 2
U(iwn)=%

n

1
n

+(|Q%®(x, 7,7)[2) 8(7—7')
+4((|Q%°(x, 7,72 — (| Q*°(x, 7, 7')[?))

—fdd(x—x’)<JX(x,r)JX(x’,T’))], (14)
where the currend,(x,7) is defined as

10442

0<s<sy,
51<s<1,

(s/s1)0ea,

Qea

a(s)
in which s;=2y,qeaT/k, andqg, is the Edwards-Anderson
order parameterg®®=qga).

We substitute then this ansatz into Et@) and obtain that
o(iw,) consists of three parts,

o(ioy)=cViw,)+cDiw,)+cC(iw,). (19

Ihe parte™(iw,) contains only the contribution from the
glassy order parametef®, while o'?)(i w,,) arises, once the
gapless frequency-dependent fidddw) that characterizes
quantum dynamics is taken into account. The contribution
o®)(iw,) describes the role of the spatially-fluctuating part
of the Q matrices in Eq(17).

oB(iw,) is given by

16e? 4qgpA
(1) ¢j = q i
g (I wn) ﬁwn 3 H(I ‘Un)a (20)
where
) B .
H(|wn)=f dre'“nTB8(7)—1]. (21
0
In the derivation above, we used the result

(1) =4 ,9%°9%°= (4/3)geal g, Where A =qea—f3a(s)ds
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=(QgaS1/2 is the broken ergodicity parameter, that vanisheond is paramagnetic and can be formally represented by the

linearly with temperature. Note, had we assumed that thgtandard bubble diagraffsand Fib(k,wl,wz;wn) is the

vector potential entered in a time-translationally invariantcorresponding vertex function.

manner, the factor of-1 in Eq.(21) would not be present. We discuss first the contribution)(w,). The explicit

As a result, the conductivity would diverge @,=0 as ina frequency dependence of this part is given simply by the

superconductor. lr®)(iw,) we collect the terms that con- prefactorI1(iw,)/w,. Should a phase stiffness exist, this

tain D(wp): prefactor would be simply proportional todl{, which when
analytically continued would yield the standard electromag-

2 _ netic response for the conductivity of a superconductor.

(TE D(wm) T2 D(@n)D(@ntwy) However, this is not the case here. The integral in @4) is

simply B(1— 5%0) effectively removing thus the divergence

—ZQEAD(wn))- (22) at zero frequency, unlike what would be the case had we
assumed that the vector potential entered the action in a
time-translationally invariant manner. Note that such an ex-
pression although not analytic @t,=0 does not violate cau-
sality because it is, nonetheless, analytic in either the upper
or lower half planes. Hence, the(®) quantum phase glass
has a vanishing stiffness in the limit,=0, which of course

2

. 16e
0'(2)(| wp) = .

n

The remaining ternv®)(i w,,) arises from the spatially de-
pendent parQ2’(k,w;,w,) of the Q matrices. Writing the
expression for the curreril5) in two parts

* d
Ji(X,7)=— 2 J & 1 is the physically relevant regime for the dc conductivity. It is
i & (2m)9 B2 in this limit that explorations of all available minima are
possible.
% 2 k<ﬂqab5w2 ot = E D w2)> Tq see t_hls resglt more_systemancally, we analytically
w1,0) continueIl(iw,) using a Hilbert transformation. The de-

= ab (kX1 w7) nominator of Eq(20) can be analytically continued trivially,
X[QT(K, w1, w;)€ c1rme2itcec], (239 jw,—w+in, wherey is a positive infinitesimal. We write
the numerator as

Ao, dik, 1
Jo(X,7)=— i3 B
P& ] emianip H(iwn)=J drel“nI(7),
0
X 2 (ki tko)Q3 (kg w1,03)
®1,0p,03 [I(7)=B6(7)—1=I14(7)—115(7). (27)
X[Q°(Ky, w5, wq)]* €Kz ka) Xl (1= w2)7, AlthoughTI,(7) is not an analytic function, we can construct

(24) its analytical continuation using the conformal invariance

condition &6(7)= é(7+ B). Performing the integration over

we observe that the contribution frod(x, 7) vanishes as a  the first term in Eq(27), we obtain thall,(w)= 3. Because
result of integration oved(x—x"). The remaining part [[,(7)=1 is an analytic function, we adopt the spectral rep-

*\2 d
(e ):4(8 "B d’k 1 1 (= e ™5(e)de
" hen N ap oSF 2m)d g2 n (T):_f 1 _eBe (28)
n a, = ( ) B 2 mT) - 1—e Be
X > [G(k,01,w)) valid for Bose systems, wher&l,(e)=1II,(¢e)+ill5(¢€).
w102 This representation is most convenient for constructing the
— 4K2T2P(K, @y, 3} @p) analytical continuation®> Once we knowlI,(€), we can ob-
) ) tain both the real and the imaginary parts for real frequencies
X G8 (K w1,02) G5 (K, 01,y wp)]. using the Hilbert transformation
(29
dell5(e)
In Eq. (25) My(0)= = f R (29
e—w—i0

P(k,01,02) =(Q2(K,01,02)Q(—k, — w1, ~
et e <Q—( wred QUm0 T g g Bq.(28) with T1,(7)=1 yields

7 2 Gk, (26) B
4 wi=12 [15(e) =2m5(€)sinh—- = wBed(e). (30)

is the exact propagator for the fluctuations of Qefields.
The first term is the diamagnetic contribution, while the sec-The real part is determined by the principal value
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, 0=0,

= Beo(e)de
-0 , wF0.

1
i130)=P Bl(w)=B| G2k w1,07)= =Go(k,w1,02),

(33

— o0

k?+ ||+ | w,]

Obtained in this fashion, the real and imaginary parts of
II,(w) formally satisfy the Kramers-Kronig relations. How-
ever, both are not regular functions. Hence, it is more conand hence is indepedent of replica and spatial indices. Sub-
venient to treat the real and imaginary partsIbf(w) as stitution of this simple replica-symmetric propagator into Eq.
limits of two analytic functions. For example, from the regu- (25) leads to the zeroth-order result fof* () as a result of

lar function the replica summation. Because the renormalization group
equations for the coefficients in the acti@tD) lead to run-
7? o away to strong coupling fod<d.=8, it is not possible to
Io)=B| 5 ——ti—H——] (3D analyze the behavior af®(w=0) for the relevant dimen-
Nt 7t sionalities. However, the structure of E@5) allows us to

whose real and imaginary parts Satisfy the Kramers-Kronig’nake the COI’]C'USi'On that the supercpnducting contribution
relations, we obtain the correct limit féf,(w=0)=1 sim-  of the typeps5(w) is not expected. This can be proven for-
ply from g(w=0)=1, and foro#0 the limiting procedure, Mally by integrating by parts the diamagnetic term and em-
lim, o0(w)=1I,(w#0)=0. As a result, the limitsw ploymg_the Ward identity. After Fhe analytlcgl continuation
=0,7—0 and 7=0,0—0 do not commute, a fact which @n— —iw, we expand the ensuing expression ower\We
must be considered when we construct ée 0 conductiv-  Obtain that the zero-frequency conductivity obeys the scaling
ity. The correct order of limits is;—0,0=0. Nonetheless, form

the advantage of writingll,(w) in this fashion is that for any

nonzeron, the regl and imaginary parts of_tf‘gi;s{w) obey _ e2(T\92 [ qgea
the Kramers-Kronig relations. Combining this representation o (w=0)= —(—) F(— , (34
with I1;(w) =1 andiw,— w+i 8, we obtain the analytically h\f T
continued form for the frequency dependence of the conduc-
tivity albeit the precise form of the functidn(x) and, hence, the
corresponding temperature dependence cannot be deter-
M(iw,) w?’(n+6) i 03— ndw mined.
- We have obtained an important result that there is no real
@n (PP +0?) (P +0®)  (9*+0?)(5+w) contribution to the conductivity proportional {2.6(w). The
0=0, lim vanishing of the stiffness is tied to the nature of the vector
0, 6—0,7—0 potential coupling to the glassy order parameter. The vector
=\ w£0. lim . potential couples in a nontime translationally invariant man-
iBlw, ' 50,70 ner to the spin glass order parameter. If, however, the system

explores only one of the myriad of configurations in the

Recall, the correctv=0 limit is recovered by setting=0  glassy landscape, a stiffness appears in agreement with the
and then taking the limity—0. We find then that the con- work of Kotliar et al® However, certainly within a single
tribution of o™ (w) to the conductivity is purely imaginary. configuration, the origin of time is irrelevant. In this case the
The absence of the real part and, as a result, a formal violaime translationally invariant coupling of the vector potential
tion of the Kramers-Kronig relations here is tied to the pres-would be appropriate. But this is not the most general case.
ence of the nonanalytic functiod(7) in Eq. (21). Such  Quantum mechanically tunneling to all minima is permitted.
nonanalyticity atw=0 is permissible because the require-In this case, the stiffness vanishes in agreement with the
ment of causality is analyticity in either the upper or lower resulf*° on the Heisenberg spin glass that the spin stiffness is
half planes. a transient and hence should vanish once tunneling between

To evaluate thev—0 limit of o(®(w) we must analyti- all minima is present. This result is robust and expected to
cally continue the difference of the first two terms in Eq. hold beyond the mean-field theory. For example, the vanish-

(22). Using Eq.(18) we obtairt®!’ that ing of the spin stiffness follows directly from the form of the
propagator of the spatially varying part of the spin glass or-

@ 16e? [ 2Qen 2 (A, z der parameter. From E¢33), we see that this propagator is
o (w=0)=— o 7n<2f0 zcothz=dz|, strictly diffusive. Coupled with the fact the propagator at the

(32 mean-field level in the spin glass phase is independent of
momentum, we deduce that the massless mode is determined
and is some regular function of the infrared cutaff, and  entirely from the spatially fluctuating part of the order pa-
temperature. We see that the contributid?(w=0) is non-  rameter and hence given hy=ik2. The fact that the real
critical and metallic. part of the dispersion relationship vanishes implies that the
Proceeding to the third term®)(w), we first notice that  spin stiffness identically vanishes. This argument reinforces
the exact calculation of the propaga@)i?,(k,wl,wz), based our previous conclusion as well as that of otfiérthat the
on the action Eq(10) is not possible. However, at the quan- vanishing of the spin stiffness is tied to the emergence of a
tum critical point in the Gaussian approximatton diffusive mode.

104427-5
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l1l. BOSONIC CONDUCTIVITY: 2(e* )2 a2k
REPLICA SYMMETRY BREAKING oliow)= T f GOk, w5
( n) nhwn abron, (277)2[ ab( m) ab

Now we generalize our earlier result for the bosonic con-
ductivity. Such a contribution arises only in the case of non- —2k2G (K, ) G (K, 0+ wp) ], (39)
zero meanJy# 0. In this case an ordered phase exists which . .
in the O(2) case is a superconductor. Hence, in the presenc?alt depends entirely on the Gaussian propagator fowthe

of nonzero mean, a new order parameter ields. To evaluate this quantity, we need to invert BY).
' This calculation is difficult to perform for the general type of

W (k,7)=(S2(k,7)) (355  RSB. However, it can be readily done using the rules devel-

oped by Mezard and Part&ifor inverting an ultrametric ma-
which is determined by the expectation value of the rotorrix having a one-step RSB:

spin. On the spin glass side of the phase diagram, the bosonic

excitations of the superconductor develop a masshich is o, S<S¢,

equivalent to the inverse correlation length for phase coher- q(s)= q s<s<1

ence. In the presence of bosonic excitations, the free energy b '

contains the additional terms To apply the inversion formula detailed in Appendix Il of

Ref. 12, it is expedient to make the following definitions:
AFWQl= X (K+wi+m?) Wik oy

a,u,k on 1

1 K2+ 7| wn| +m?’
- d a
KJ d xf drldfza’%‘,wqfﬂ(x,ﬁ)

~ 1
X[WH(X,72)]* QEN(X, 71,72) 97 2t o]+ 3 ) (Rt g+ m2)’
u
+§f drX, {Wa(x, [P (x,7)]*}4. Sp=mPt By, Xp=Sc(d1— o). (40
o (36 Application of the inversion formul4 results in the diagonal
At the Gaussian level, with the mean-field spin glass ansatz G=g+86 Elal_sc +Bqod, G2 (41)
(17), the effective Gaussian propagator for the bosonic de- “no Sc “no
grees of freedom has the form and the off-diagonal elements
Foause k24 w2+ +m?) | W3k, 0,)|? ~0(s—s)
™ 2 (K4 ot plonl + ) (K ) G(5)=Bdod,, o+ By, Z10—— (42
! ’ C
-89 > 5, oVak, 0[PPk, wn)]*. of the propagator. In this representation of the Parisi matrices
abko, " on the interva[ 0,1], the replica indices are absent. Nonethe-

37) less, a well-defined formuld

As we have pointed out previously, the term proportional to 1 ~— 1

g2 in FgaussCannot be rewritten as an effective mass term - TrAB=ab— fo dsa(s)b(s) (43
because this term explicitly couples fields with different

replica indices. In the case of replica symmetry, thag®®,  exists for taking the trace of a product of two ultrametric

=q for all a andb, we have shown that the resultant con- matricesA andB, wherea andb are the diagonal elements
ductivity is nonzero and given by of A andB, respectively, ané andb are the corresponding
off-diagonal elements in the continuous representation. Let
39) us consider here only a simple case of the weak BSB
<m?, assuming thas,~T. Substitution of Eqs(41) and
(42) into Eq.(39), and expanding oveBS. ; /m? results in the
which smoothly crosses over to= in the superconducting  following correction to the static conductivity due to the rep-
state (n=0). That the bosonic contribution to the conduc- lica symmetry breaking

tivity should be nonzero is immediately obvious from thg

4 %70,
Opod w=0,T—0)= 3 -

term in the action. This term arises entirely due to the glass nep. 2(ex )2 1-s. (= xdx
degrees of freedom that naturally provide for dissipation to S0™= 7P >
generate a metallic state. ¢ Jo (x+m)

We now generalize this result to include replica symmetry 4 e?
breaking. Application of the Kubo formula in this case re- =3 —— 7(q1—Go)(1—So). (44)
sults in a conductivity hm

104427-6
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Combining this with Eq(38), we obtain finite. As we have demonstrated clearly, the spin glass order

parameter does not provide a superconducting contribution

ot to the conductivity at mean field and beyond. Our calculation
Thosons™ 3 W[Qlﬂqo_ql)sc] (49 of the phase stiffness seems to be the first based on a direct

coupling of the vector potential to the spin glass order pa-

as our total contribution for the bosonic conductivity.slf = rameter which does not assume time translational invariance

=1, we recover our previous replica symmetric result. Forat the beginning. The physical mechanism underlying the

the quantum @) spin glass, howeves =T, and hence, the vanishing of the spin stiffness appears to be the exploration

correction withs. vanishes aff=0. Settings.=0 requires  of all configuration minima as a result of quantum tunneling.

that gq(s)=q,. Hence, replica symmetry breaking adds aln addition, we have found that replica symmetry breaking

simple benign constant to the conductivity which smoothlyprovides a small correction to bosonic conductivity. Hence,

crosses over to the replica symmetric result. While the matrithe bosonic metallic state we have found here is robust and

inversion beyond one-step replica symmetry breaking is arrepresents a clear example of a metallic state in the presence

duous, we suspect that in this case as well replica symmetryf disorder in two dimensions.

breaking does not lead to any spurious contribution to the

conductivity. Our primary reason for this belief is the fact

that quantum mechanically replica symmetry breaking van- ACKNOWLEDGMENTS

ishes in theT—0 limit.
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