
PHYSICAL REVIEW B 68, 104409 ~2003!
Interplay of quantum and thermal fluctuations in a frustrated magnet
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We demonstrate the presence of an extended critical phase in the transverse field Ising magnet on the
triangular lattice, in a regime where both thermal and quantum fluctuations are important. We map out a
complete phase diagram by means of quantum Monte Carlo simulations, and find that the critical phase is the
result of thermal fluctuations destabilising an order established by the quantum fluctuations. It is separated by
two Kosterlitz-Thouless transitions from the paramagnet on one hand and the quantum-fluctuation driven
three-sublattice ordered phase on the other. Our work provides further evidence that the zero temperature
quantum phase transition is in the three-dimensionalXY universality class.
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I. INTRODUCTION

In geometrically frustrated magnets, the arrangemen
the spins on a lattice precludes the establishment of a sim
collinear Néel state. In the absence of such an ‘‘obviou
ordering pattern, these magnets are often subject to a l
number of competing instabilities. This endows them with
rich behavior, manifested in unconventional phases, ph
transitions and excitations, a large low-energy density
states, and unusual dynamical properties.1

Frustrated magnets usually are not ordered classicall
zero temperature. However, both thermal and quantum fl
tuations often generate an ordering transition, a proc
known as order by disorder.2–4 In the case of thermal fluc
tuations, the phenomenon of order by disorder can be
plained as follows. The system at finite temperature m
mizes its free energy. Thus, at low temperature, the entr
due to thermal fluctuations can distinguish between the
generate ground states. If there are soft fluctuations aro
some particular ground state then the system spends m
time fluctuating around this particular state. If the entropy
this region is much larger than the entropy of the rest of
ground state manifold then this state will be selected at fi
temperatures. Usually such a ground state has some de
of long-range order. Thus its selection leads to long ra
order in the system at finite~low! temperatures. Wherea
quantum order by disorder occurs in a fashion quite an
gous to the ordering induced by thermal fluctuations,
nature of the ordering~if any! of even some ‘‘simple’’ model
systems~such as the Heisenberg magnet on the pyroch
lattice! in the presence of stronger quantum fluctuations
mains unclear.

The interplay of thermal and quantum fluctuations has
far not received a great deal of theoretical attention for fr
trated magnets. By contrast, there has been a conside
amount of interest devoted to the real-time dynamics
transport at finite temperature near quantum critical poin5

In addition, this combination has even been claimed to p
vide an alternative use of quantum effects for speeding
computations.6

In this publication, we study the combined effect of the
mal and quantum fluctuations on possibly the simplest qu
0163-1829/2003/68~10!/104409~9!/$20.00 68 1044
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tum frustrated magnet, namely, an Ising model on the tri
gular lattice in a transverse magnetic field. The manifold
classical ground states is hugely degenerate, and correla
averaged over it are critical.7 This model thus enables us t
investigate how the two types of fluctuations together est
lish and destroy order out of the exponentially large set
classical ground states. By changing the values of transv
field G and temperatureT, their strengths are in principle
separately experimentally tunable.

We map out the phase diagram of the Ising model on
triangular lattice in the transverse field-temperature pla
The bulk of the paper is devoted to a numerical study ba
on a continuous time quantum Monte Carlo algorithm. W
find that there are three different phases. In the regime wh
quantum fluctuations are weak, yet dominate over ther
fluctuations, they generate a three-sublattice ordered ph
Upon increasing the strength of thermal fluctuations,
‘‘melts’’ into a critical phase which has a finite extent an
displays drifting exponents. This dome-shaped critical ph
is delineated above and below by Kosterlitz-Thouless~KT!
transitions at finite temperature. AtT50, it terminates in the
classical critical point at zero field and in a quantum pha
transition at a finiteGc . At high temperatures and large fiel
strengths, one retrieves a simple paramagnet—order by
order is a reentrant phenomenon. We briefly comment on
advantages of different diagnostics for the floating KT pha

The results reported here largely build on the followi
pieces of work. In Ref. 8, a number of frustrated transve
field Ising models were studied, and a connection w
pointed out between these models and classical stacked
nets in a scaling limit. An influential paper by Blankschte
and co-workers9 on stacked triangular magnets derived
Landau-Ginzburg-Wilson theory for these systems, and p
dicted the stacked problem to be in the universality class
theXYmodel in three dimensions with a six-state clock ter
a problem which has in turn been studied by Joseet al.10

Collecting these results together led to a conjecture of
phase diagram we map out in the following.8 We note that,
by adding a continuous degree of freedom to a classical
angular Ising antiferromagnet, a floating critical phase h
previously been obtained by Chandraet al.11

The general validity of the Landau-Ginzburg approa
©2003 The American Physical Society09-1
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has been somewhat called into question by Monte C
simulations on the ferromagnetically stacked triangular Is
antiferromagnet, with several groups presenting evidenc
favor of critical behavior in the three-dimensional univers
ity class, while others found a different, possibly new, u
versality class to be a more likely scenario.12–16 Our work
here lends further support to the Landau-Ginzburg appro
which is independent of the previous numerical simulatio

II. MODEL

Possibly the simplest model which has both a high cl
sical ground state degeneracy and a nontrivial quantum
namics is the transverse magnetic field antiferromagn
Ising model on the triangular lattice. The model has the f
lowing Hamiltonian:

H5J(
^ i , j &

s i
zs j

z2G(
i

s i
x , ~1!

whereJ.0 is nearest-neighbor exchange couplings andG is
the magnetic field strength.

The classical model triangular Ising magnet is obtained
the absence of a transverse fieldG50. Its solution is well
known:7 it is disordered at any finite temperature, and critic
at T50, where it retains an extensive zero point entropyS,
with S/N50.323kB , whereN is the number of spins andkB
denotes the Boltzmann constant. Upon application of an
finitesimal transverse fieldG501 at T50, the magnet or-
ders into a three sublatticeA33A3 pattern with a sublattice
magnetization pattern~1,0,21!.8

A. Mapping to a stacked magnet

Using the Suzuki-Trotter formalism,17,18 one can map the
d-dimensional quantum model onto the (d11)-dimensional
classical problem. The partition function of the quantu
Hamiltonian@Eq. ~1!#, Tr exp(2bH), is equivalent to the fol-
lowing partition function:

Z5Tr exp~2Scl!,

Scl5K (
^ i , j &,t

Si ,tSj ,t2Kt(
i ,t

Si ,tSi ,t11 , ~2!

whereSi ,t are classical Ising spins taking values 1 or21; t
is the index in the imaginary time direction and runs from
to N, N5b/e is the number of slices in the imaginary tim
direction, ande is the imaginary time step;K5Je and Kt

52 1
2 ln tanheG. The mapping becomes exact in the scali

limit e→0,Kt→`, while maintaining

e22Kt
5eG. ~3!

It is in this formulation that the dimensional crossover b
tween the high temperatured52 and the low temperatur
d53 behavior is most transparent. In addition to providi
an efficient Monte Carlo algorithm~see below!, the above
mapping also allows us to make contact with the literature
stacked triangular magnets,16 from which our problem can be
obtained in the scaling analysis of infinite coupling stren
10440
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in the third dimension, with the third dimension being
finite length at nonzero temperature.

B. LGW analysis

Blankschteinet al.9 have identified a complexXY order
parameter for a stacked triangular antiferromagnet: the
plitude and phase of the Fourier mode atQW 65(64p/3,0),
c65m exp(6iu). They have obtained the following LGW
Hamiltonian~see below!:

HLGW5(
qW

~r 1q2!m21u4m41u6m61v6m6cos~6u!.

~4!

A sixfold clock anisotropy thus appears at sixth order inm.
The sixfold clock term is irrelevant atd53 so that the tran-
sition into a phase with nonzerom should be in thed53 XY
universality class. This applies both to the zero tempera
quantum phase transition as we varyG and to the corre-
sponding transition in a stacked Ising magnet. With the clo
term being dangerously irrelevant, the transition is imme
ately into a state with a broken clock symmetry, the details
which depend on the sign ofv6 ~see below!.

At finite temperatures the triangular transverse field Is
model maps onto a stacked magnet of finite sizeLt in the
temporal direction, which is effectively two dimensional
the temporal correlation lengthjt exceedsLt close to a con-
tinuous phase transition. The two-dimensional six-state cl
model, studied by Joseet al.,10 has a remarkable phase di
gram consisting of three phases: a disordered phase, an
tended intermediate KT phase, and an ordered phase.
extended KT phase owes is existence to the fact that id
52, the clock term does not become relevant immediat
below the KT transition of theXY model; instead, the cou
pling needs to be increased further until the clock term
sufficiently strong to assert itself. Joseet al.10 have found
that the critical exponenth is equal to 1/4 at the uppe
boundary of the KT phase and 1/9 at the lower phase bou
ary.

One of the central objectives of this paper is to estab
the presence of this floating KT phase as a finite-tempera
induced dimensional crossover in the (211)-dimensional
quantum Ising magnet on the triangular lattice. In our co
text, the presence of such a phase would be the result o
XY order parameter generated by frustration and stabili
by quantum fluctuations, together with destabilizing fluctu
tions provided by the finite temperature.

Details of the ordered state depend on the sign ofv6 .
HLGW is minimized byM5uM uexp(iF), with F5np/3 and
F5(n11/2)p/3 for v6,0 andv6.0, respectively, withn
51, . . . ,6. Thereal space configurations of the order
phases can be obtained by Fourier transforming these mo
In the case ofv6,0, Fourier transforming yields the follow
ing magnetizations assigned to the three sublattices of
triangular lattice:uM u(1,21/2,21/2). We depict this phase
as (122). In the case ofv6.0, we have the following
9-2
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INTERPLAY OF QUANTUM AND THERMAL . . . PHYSICAL REVIEW B 68, 104409 ~2003!
sublattice magnetizations:uM u(A3/2,0,2A3/2). We depict
this phase as (102). There are six degenerate states
both v6,0 andv6.0.

It is difficult to determine the sign ofv6–in particular, in
the effective Hamiltonian, its value may drift and eve
change sign.9,19The partition functionZ5exp(2(ijsiKijsj) of
the Ising modelH5(1/b)( i j siKi j sj is equivalent to the fol-
lowing partition function~see, e.g., Ref. 20!:

Z}E Dc exp~2L!5E Dc expH 2(
i j

c iKi j c j

1(
i

ln coshS (
j

2Ki j c j D J , ~5!

The first term is the interaction matrix, which determin
the soft modesc6 to be located atQ6 @Eq. ~7!#. Performing
the Fourier transform and expanding ln cosh(x)5x2/2
2x4/121x6/45217x8/25201•••, we obtain the following
expression for the contribution of the nonlinear term toL:

Lnl522(
k

K~k!K~2k!c~k!c~2k!

1
4

3 (
ki

F)
i 51

4

@K~k i !c~k i !#d8~k11•••1k4!G
2

64

45 (
ki

F)
i 51

6

@K~k i !c~k i !#d8~k11•••1k6!G•••.

~6!

The interactions for the stacked triangular antiferromag
are written in Fourier representation as

K~k!5J@cos~kx!1cos~kx/21A3ky/2!1cos~kx/2

2A3ky/2!#2J8cos~kz!, ~7!

where the sum is over the hexagonal Brillouin zone. T
LGW Hamiltonian is thus constructed in terms of the co
ficients m exp(6iu), varying slowly in space, of the ‘‘soft’’
modesc6 .

The primed delta functions indicate that the wave vect
k i need to add up to a reciprocal lattice vector. This requ
ment leads to theXY nature of the effective theory at low
order. At sixth order,c1

3 c2
3 and c1

6 1c2
6 occur, the latter

being the clock term,m cos(6u). v6,0 at this order. How-
ever, the cos(6u) term appears at higher orders as well, e
c1c2(c1

6 1c2
6 ) at eighth order. Since the terms in the s

ries have alternating sign and large coefficients, one can
reliably determine the sign ofv6 near the transition this way

III. MONTE CARLO METHOD

A. The quantum Monte Carlo algorithm

The (211)-dimensional classical problem obtained th
way has only positive weights—there is no ‘‘sign problem
It can therefore be studied reasonably straightforwardly
Monte Carlo simulations. We thus simulate the classi
10440
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problem defined by Eq.~2!. However, it is difficult to simu-
late the discretized version of Eq.~2! because of the scaling
limit @Eq. ~3!#: in order to avoid discretisation errors, one h
to take a very large ferromagnetic coupling in the imagina
time directionKt→` at the same time increasing the heig
of the system exponentially ase2Kt

.
In order to avoid this problem, we use a continuous tim

algorithm.21–23 The basic idea behind this algorithm is tha
in the scaling limit, the density of domain walls in the imag
nary time direction becomes exponentially sparse and i
thus more efficient to keep track of the location of the d
main walls, using exp(2Kt) as a unit of length. Thus, the
height of the system,N/exp(2Kt)5b/@e exp(2Kt)#5bG, mea-
sured in units of exp(2Kt), remains fixed in the continuum
limit.

Due to the frustrated nature of our problem we cannot
a cluster algorithm24–26 in the space directions as one cou
for the case of unfrustrated magnets; however, we can u
cluster algorithm in the time direction. The algorithm wor
as follows~for more details, see Ref. 23!. We pick a random
site on the triangularL3L lattice and build a cluster on
that site in the imaginary time direction. Its lengtht is dis-
tributed according to the probability distributionP(t)
}exp(2Gt)—this prescription eliminates a ‘‘freezing’’ of the
algorithm due to the diverging temporal coupling. A give
cluster is flipped using the Metropolis prescription in t
spatial direction, i.e., we flip the cluster with probabilityp
5min@1,exp(2DE)#, whereDE is the~spatial! energy differ-
ence between the original configuration and the configura
with a flipped cluster. One check of our Monte Carlo alg
rithm consisted of comparing it with the diagonalization o
333 lattice, and we have found excellent agreement
tween the two approaches.

B. Parameters of the simulations

We impose periodic boundary condition on the triangu
lattice and performed simulations on lattices of sizeL
59,12,15,18,24,30,36,48,60,75. We have estimated the
relation timetc for different parameters. We perform usual
500tc Monte Carlo steps~MCS! for equilibration and from
104tc to 53105tc MCS for averaging.

IV. SCALING ANALYSIS

In this section, we outline the quantities useful for dete
ing a possible floating KT phase and the adjacent KT ph
transitions as well as the ordered phase.

A. Order parameters

The complexXYorder parameter deduced from the LG
analysis is given by

meiu[~m11m2ei (4p/3)1m3ei (24p/3)!/A3, ~8!

where themi are the magnetizations of the three sublattic
andm is real and positive.m is close to 1 in the limit of zero
temperature and vanishing transverse field. It equals zero
the disordered and KT phases, vanishing exponentially
9-3
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S. V. ISAKOV AND R. MOESSNER PHYSICAL REVIEW B68, 104409 ~2003!
algebraically in the limit the system sizeL→`. There, the
corresponding susceptibility is

x5L2^m2&/T. ~9!

To detect clock symmetry breaking, we consider

c65
^m6 cos~6u!&

^m6&
. ~10!

It is easy to check thatc6 equals zero for disordered and K
phases,c6 equals21 for the ~102! phase, andc6 equals 1
for the ~122! phase. We have chosen not directly to av
age cos(6u) as its value fluctuates most strongly whenm is
small, that is to say, the ordering we are trying to determ
the details of is weakest. The exponentm6 has been chosen
somewhat arbitrarily, as the corresponding term in the LG
action isc1

6 1c2
6 5m6cos(6u).

B. Binder cumulant

The appropriate Binder cumulant is27

U512
^m4&

3^m2&2
. ~11!

The Binder cumulant has a scaling dimension of zero. It t
has the advantage of not requiring fitting an unknown le
ing exponent. In the limitL→`, the Binder cumulant has
the following behavior:UL→0 at disordered phase,UL
→2/3 at ordered phase, andUL→U* at a critical point. For
an extended critical phase, the value ofU* can drift, so that
its value depends on the precise location within the criti
phase.

Since the Binder cumulant has a scaling dimension
zero, the curves for different system sizes at a critical c
pling should fall on a line of points whereUL5UL8 ~at least
in the region where corrections to scaling are small!. As we
describe below, this criterion in fact provides an overestim
of the size of the critical phase.

C. Locating the KT transitions

Here, we briefly describe the finite-size scaling analy
appropriate for KT transitions. This analysis follows th
used by Challa and Landau.28 In order to determine the pres
ence of a KT phase, we check if we can fit our simulations
the scaling forms predicted by KT theory.29 This has the
advantage of restricting the number of fitting paramete
which in the most general case~allowing for critical expo-
nents different from the KT ones! would be too large to be
practical.

In particular, the correlation lengthj and the susceptibility
x behave as

j}exp~at21/2!, x}j22h, m}j2h/2, ~12!

wherea is a nonuniversal constant,t5(T2Tc)/Tc is a re-
duced temperature, andTc is a critical temperature.

The finite-size scaling form of order parameter and s
ceptibility is given by
10440
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mL5L2bm0~j/L !, xL5Lcx0~j/L !, ~13!

wherem0 andx0 are unknown universal functions andb and
c are constants. It follows from Eq.~12! that in the infinite
system size limit, we haveb5h/2 andc522h. Therefore,
at a critical point, one has

mL}L2h/2, ~14!

xL}L22h. ~15!

If we have an extended critical phase, these relations sh
hold over finite temperature range from the upper criti
temperatureT2 to the lower critical temperatureT1. The
critical exponenth should vary continuously fromT2 to T1.
Plotting ln(mL) or ln(xL) versus ln(L), we can find the critical
exponenth at any point of the extended critical phase.

We can rewrite Eq.~13! as

mLLb5m0@L21 exp~at21/2!#, ~16!

xLL2c5x0@L21 exp~at21/2!#. ~17!

Equation~16! is valid for T,T1 and Eq.~17! is valid for
T.T2. For an appropriately chosen set of parametersa,c,T1
the plot of xLL2c versusL21 exp(at21/2) should collapse
onto a universal curve for different system sizesL. The same
should hold for a plot ofmLLb versusL21 exp(at21/2). From
such a fit, the upper and lower critical temperatures can
determined.

V. RESULTS

In Fig. 1 we present the phase diagram that we fi
from Monte Carlo simulations. There are three phases
disordered phase at high temperatures (T@J) or large mag-
netic field strengthsG@J, an extended KT phase at inte
mediate temperatures, and an~102! ordered phase at low
temperatures.

FIG. 1. The phase diagram of the transverse field Ising mode
the triangular lattice. A floating KT phase separates the orde
clock phase from the paramagnet~PM!. QCP denotes the location
of the quantum critical point.
9-4
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A. The KT phase at GÕJÄ0.4

Our most complete data set was taken forG/J50.4, for
which we describe our analysis in detail in the next fe
paragraphs. We have chosen this value ofG as a compromise
between the following requirements. First, we want to s
well clear of the zero temperature critical points atG50 and
larger G5Gc and concomitant possible crossover pheno
ena. Secondly, a high transition temperature is needed t
low us to simulate systems with only moderate extent in
imaginary time direction. Thirdly, as our algorithm slow
down as the density of domain walls in the imaginary tim
direction increases, we would like to choose weak quan
fluctuations, that is to say, small values ofG. G/J50.4, lo-
cated left of center of the KT dome~Fig. 1! thus appears to
be a sensible choice.

First, Fig. 2 shows the behavior of the order parametem
as a function of inverse temperatureb for different system
sizes. One can notice easily that the order parameter
strong dependence on the system size in wide range
temperatures—it decreases with increasing system size.

Figure 3 is a doubly logarithmic plot of the behavior
the order parameter as a function of the system size. At h
temperatures, it extrapolates to zero, whereas it levels ou
a constant at low temperatures. For a wide range of temp
tures in between, the data points display linear beha
~without any evidence of logarithmic corrections!, beginning
at bJ52.8 down tobJ59.0. The exponenth varies con-
tinuously from 0.323 atbJ52.8 to 0.092 atbJ59.0.

This is indeed close to the range expected from KT fin
size scaling~15!, although there is an overestimate of t
size of the KT phase when compared to the expected ra
of critical exponents, which is between 1/4 and 1/9. As in
case of the Binder cumulant below, this is a simple con
quence of the fact that the difference between the orde
and the critical phase is indiscernible when the size of
system is much less than the correlation length. As the la
grows near the transition, increasingly large finite-size s
tems in the ordered phase appear to be critical.

To check whether this critical region is indeed delinea
by KT transitions, in Fig. 4 we show the data collapse@Eq.

FIG. 2. The order parameterm versusbJ for different system
sizes.
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~17!# for the upper transition. The data scales very well w
the following set of parameters:b2J53.5,a55.36,c
51.736. Thus we can conclude that the system has a tra
tion between the disordered phase and KT phase atb2J
53.560.2. The critical exponenth50.26360.015 at the
transition point. This value of the critical exponenth is close
to the theoretical prediction 1/4, and the overestimate
pears to be part of a systematic trend discussed below.

FIG. 3. The order parameterm versus system sizeL at various
temperatures. The lines connect the points to guide the eye.

FIG. 4. Data collapse of the susceptibility for the upp
transition.
9-5
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In Fig. 5, we show the lower temperature scaled data@see
Eq. ~16!#. The data scales quite well~but not perfectly, and
over a narrower range than for the upper transition! with the
following set of parameters:b1J58.0,a51.2,c50.105. The
error in determining the critical temperature is larger than
the high temperature case. We can conclude that the sy
has a transition between the KT phase and the ordered p
at b1J58.061.0. The critical exponenth50.10560.02 at
the transition point. This value of the critical exponenth is
again close to the theoretical prediction 1/9.

To determine the nature of the ordered phase, we cons
the behavior of cos~6u! @Eq. 10#. The plot of cos~6u! as a
function of the inverse temperatureb is shown in Fig. 6.
cos~6u! goes to21 as the temperature approaches zero. T
implies the existence of the~102! phase at low tempera
tures forG/J50.4.

We can also determine the lower transition temperatureT1
from the criterion ofh51/9 at the lower transition point
which yields b1J57.560.5. At the transition temperatur
thus determined, one finds a crossing of cos~6u! as a function
of b for different system sizes.30

FIG. 5. Data collapse of the order parameterm for the lower
transition.

FIG. 6. The order parameter cos(6u) versusbJ for different
system sizes.
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Next, we consider the flow diagram of the Binder cum

lant, depicted in Fig. 7. In the high~low! temperature phase
its value approaches 0~2/3! asL→`, whereas it levels off to
a valueU* in the KT phase which depends on the strength
the coupling. Challa and Landau28 proposed to use this lev
elling off as a diagnostic for the KT phase. We do inde
observe such a leveling over a wide range of temperatur
G/J50.4J.

This diagnostic again systematically overestimates the
tent of the critical phase. This is evidenced by the upperm
curves in Fig. 7. There is an inflection point at large syst
size where the value ofUL , having apparently leveled off
starts increasing again. As one approaches the transition
the ordered phase, this point of inflection wanders to incre
ingly larger system sizes and hence beyond the scope o
simulations.

B. Other values of G

We now describe what we have found for other values
G. At small G/J!1, T/J!1, the boundaries of the KT
phase appear to be well described by straight lines. We e
mate their slopes to beTKT

l /G50.4160.05 for the lower
transition, and for the upper:TKT

u /G50.8660.09
The higher temperature data collapse does not alw

give the critical exponentsh at critical temperatures close t

FIG. 7. The Binder cumulantUL versus system sizeL at various
temperatures.G/J50.4. Note the different scales for the ordinate
9-6
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1/4, especially for largeG. For example, we get the following
upper set of critical temperatures and critical exponentsh:
bcJ55.8(6),h50.287(25) at G/J50.2, bcJ53.5(2),h
50.263(15) at G/J50.4, bcJ52.6(2),h50.230(20) at
G/J50.8, and bcJ53.0(3),h50.203(25) at G/J51.2.
For G/J50.2, the high-temperature data scales very w
over a wide range of temperatures. Thus it is difficult
determine the precise value of the upper transition temp
ture at thisG.

The systematic trend of decreasingh with increasingG is
in accordance with the fact thath at the zero temperatur
transition at largeG is different. For thed53 XYuniversality
class,h is in fact close to 0,31 so that the increasing proxim
ity of this fixpoint should be expected to show up in a co
rection of this kind. One can account for the systematic tre
of increasingh with decreasingG in the same way. Indeed
the frustrated triangular Ising model has a critical point
T50, whereh51/2.32

Probably related to this crossover is the fact that, aG
increases, the plots of the Binder cumulant as a function
system size fail to display the clear flattening visible in F
7 for G/J50.4 until a system size which is substantia
larger; this is displayed forG/J50.8 in Fig. 8.

The lower transition at largerG poses a problem for the
alogorithm we use. Since we used linked lists to store
location of the domain walls in the temporal direction, t

FIG. 8. The Binder cumulantUL versus system sizeL at various
temperatures.G/J50.8. Note the different scales for the ordinate
10440
ll
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-
d

t

of
.

e

algorithm slows down considerably asG increases. Togethe
with the increasingly slowly decaying correlations in th
space direction as the temperature is lowered, this leads
considerable increase in the correlation times of our al
rithm. As a result, the data we were able to obtain were
noisy to permit a useful data collapse. We can, nonethel
try to identify the location of the transition by tracking whe
h crosses 1/9~Fig. 1!

We note that the classical six-state clock model, wh
has a phase diagram very similar to the one we find here,
been studied by many authors.28,33 As is the case for us
almost all the authors report that it is much more difficult
get data collapse at the lower KT transition than at
higher. Only in a recent paper, Tomita and Okabe,34 using a
‘‘probability-changing cluster algorithm,’’ have found th
lower transition easily. Given the frustrated and higher
mensional nature of our spin model, such a cluster algorit
is not available to us.

The nature of the ordered phase at lowG is of the~102!
type. There is in principle the possibility of a change of si
of v6 for entropic reasons as the couplings are varied.9,19 As
G increases, it becomes increasingly hard to determine
sign of cos~6u! for the system sizes available to us. Th
largestG for which we can confidently state that the low
KT transition is into the~102! phase isG/J51.2. Although
this difficulty may be in part due to a decrease in the stren
of v6, there is no supporting numerical evidence that the s
of v6 ever changes.

C. The quantum critical point

We now turn to the properties of the quantum critic
point, i.e., to the zero temperature transition from the clo
symmetry broken ordered phase to the paramagnet. We
determine its approximate location to be atGc /J51.65
60.05. For largeG, the magnet is in a quantum parama
netic phase with a size-independent susceptibility.

We have not directly attempted to determine the prop
ties of this transition as extensive previous simulations on
classical stacked magnet exist. At the time, there were s
suggestions that the observed critical exponents were in
not those of ad53 XY model14 and perhaps altered due t
the presence of another instability.12,13

The structure of our phase diagram lends support to
d53 XYuniversality class scenario via an independent rou
By inducing a dimensional crossover through switching o
finite temperature, we find that the highly nontrivial pha
diagram is that predicted by the same Landau theory wh
gives thed53 XY universality class. This diagnostic is pe
haps more robust than a direct determination of the crit
exponents, which can be influenced by corrections to sca
or the proximity of other instabilities.

The shape of the phase boundary near the quantum c
cal point follows from the knowledge of the critical expo
nents of the quantum phase transition.35 The boundaries of
the KT phase nearGc follow the trajectoryTKT}uG2Gcunz,
where, for the present case, the dynamical critical expon
z51 andn is close to 2/3.31
9-7
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The upper and lower boundaries of the KT phase go
zero at a common value ofGc /J51.65 since according to
the LGW analysis of the stacked magnet the clock term
dangerously irrelevant ind53. That means that the quantu
transition atT50 is immediately into an ordered phase wit
out an intermediate KT phase.

VI. CONCLUSION

We have demonstrated that the common action of ther
and quantum fluctuations in the triangular lattice transve
field Ising model generate an interesting fluctuation-driv
phase diagram including an extended critical phase bord
by a pair of KT transitions. We have employed several di
nostics for the presence of the KT phase and our results
consistent in considerable detail with what one would exp
from an analysis based on a (211)-dimensionalXY sym-
metric action with a sixfold clock anisotropy for a tempor
dimension of tunable extent. This provides indirect supp
for theXYnature of the quantum critical point. The dynam
cal properties of the critical phase in close proximity to t
quantum critical point are a subject worthy of a study in th
own right.

The agreement between numerics and theory, howeve
not complete. There are some deviations from the predic
critical exponents, which are probably due to a crossove
the zero temperature critical points. As we have used sev
diagnostics to determine the nature and location of pha
and transitions, we are in a position to compare their rela
R

r,

hy

.

ys
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reliability and find that, for the phase transitions in particul
considering the system size independence of the Binder
mulant and the power-law dependence of the magnetiza
on system size systematically overestimate the extent of
critical phase.

In summary, the results we have obtained demonst
once again that frustrated magnets provide a good star
point for finding unconventional phases and phase diagra
In this particular case, by using a tunable combination
thermal and quantum fluctuations, we have managed to r
ize a standard model from statistical mechanics, theXY
model with sixfold clock anisotropy,10 in dimensionsd52
andd53, in terms of another one, namely, the Ising mod
on the triangular lattice. Given other magnets in this cla
realize unusual order parameters,8 this approach should pro
vide more opportunities for studying exotic phase diagra
based on simple model spin systems.
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