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Interplay of quantum and thermal fluctuations in a frustrated magnet
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We demonstrate the presence of an extended critical phase in the transverse field Ising magnet on the
triangular lattice, in a regime where both thermal and quantum fluctuations are important. We map out a
complete phase diagram by means of quantum Monte Carlo simulations, and find that the critical phase is the
result of thermal fluctuations destabilising an order established by the quantum fluctuations. It is separated by
two Kosterlitz-Thouless transitions from the paramagnet on one hand and the quantum-fluctuation driven
three-sublattice ordered phase on the other. Our work provides further evidence that the zero temperature
guantum phase transition is in the three-dimensiofuniversality class.
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[. INTRODUCTION tum frustrated magnet, namely, an Ising model on the trian-
gular lattice in a transverse magnetic field. The manifold of
In geometrically frustrated magnets, the arrangement o€lassical ground states is hugely degenerate, and correlations
the spins on a lattice precludes the establishment of a simpkeveraged over it are criticAlThis model thus enables us to
collinear Nel state. In the absence of such an “obvious” investigate how the two types of fluctuations together estab-
ordering pattern, these magnets are often subject to a lardish and destroy order out of the exponentially large set of
number of competing instabilities. This endows them with aclassical ground states. By changing the values of transverse
rich behavior, manifested in unconventional phases, phadéeld I' and temperaturd, their strengths are in principle
transitions and excitations, a large low-energy density ofeparately experimentally tunable.
states, and unusual dynamical properties. We map out the phase diagram of the Ising model on the
Frustrated magnets usually are not ordered classically dtiangular lattice in the transverse field-temperature plane.
zero temperature. However, both thermal and quantum flucFhe bulk of the paper is devoted to a numerical study based
tuations often generate an ordering transition, a processn a continuous time quantum Monte Carlo algorithm. We
known as order by disordér? In the case of thermal fluc- find that there are three different phases. In the regime where
tuations, the phenomenon of order by disorder can be exquantum fluctuations are weak, yet dominate over thermal
plained as follows. The system at finite temperature minifluctuations, they generate a three-sublattice ordered phase.
mizes its free energy. Thus, at low temperature, the entropypon increasing the strength of thermal fluctuations, it
due to thermal fluctuations can distinguish between the de‘melts” into a critical phase which has a finite extent and
generate ground states. If there are soft fluctuations arourdisplays drifting exponents. This dome-shaped critical phase
some particular ground state then the system spends mudh delineated above and below by Kosterlitz-Thoul€€$)
time fluctuating around this particular state. If the entropy oftransitions at finite temperature. At=0, it terminates in the
this region is much larger than the entropy of the rest of theclassical critical point at zero field and in a quantum phase
ground state manifold then this state will be selected at finitéransition at a finitd"; . At high temperatures and large field
temperatures. Usually such a ground state has some degrsteengths, one retrieves a simple paramagnet—order by dis-
of long-range order. Thus its selection leads to long rangerder is a reentrant phenomenon. We briefly comment on the
order in the system at finitélow) temperatures. Whereas advantages of different diagnostics for the floating KT phase.
guantum order by disorder occurs in a fashion quite analo- The results reported here largely build on the following
gous to the ordering induced by thermal fluctuations, thepieces of work. In Ref. 8, a number of frustrated transverse
nature of the orderingf any) of even some “simple” model field Ising models were studied, and a connection was
systems(such as the Heisenberg magnet on the pyrochlor@ointed out between these models and classical stacked mag-
lattice) in the presence of stronger quantum fluctuations renets in a scaling limit. An influential paper by Blankschtein
mains unclear. and co-worker on stacked triangular magnets derived a
The interplay of thermal and quantum fluctuations has sd.andau-Ginzburg-Wilson theory for these systems, and pre-
far not received a great deal of theoretical attention for frusdicted the stacked problem to be in the universality class of
trated magnets. By contrast, there has been a consideralilee XY model in three dimensions with a six-state clock term,
amount of interest devoted to the real-time dynamics an@ problem which has in turn been studied by Jesal®
transport at finite temperature near quantum critical paints.Collecting these results together led to a conjecture of the
In addition, this combination has even been claimed to prophase diagram we map out in the followiigVe note that,
vide an alternative use of quantum effects for speeding upy adding a continuous degree of freedom to a classical tri-
computation$. angular Ising antiferromagnet, a floating critical phase has
In this publication, we study the combined effect of ther- previously been obtained by Chandreal 1!
mal and quantum fluctuations on possibly the simplest quan- The general validity of the Landau-Ginzburg approach
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has been somewhat called into question by Monte Carlin the third dimension, with the third dimension being of
simulations on the ferromagnetically stacked triangular Isindinite length at nonzero temperature.

antiferromagnet, with several groups presenting evidence in

favor of critical behavior in the three-dimensional universal-

ity class, while others found a different, possibly new, uni- B. LGW analysis

versality class to be a more likely scenatfc:® Our work Blankschteinet al® have identified a compleXY order
here lends further support to the Landau-Ginzburg approacharameter for a stacked triangular antiferromagnet: the am-
which is independent of the previous numerical S|mulat|onsplitude and phase of the Fourier modeGat = (+ 41/3,0),

Y.=mexp(xif). They have obtained the following LGW
Il. MODEL Hamiltonian(see below:

Possibly the simplest model which has both a high clas-
sical ground state degeneracy and a nontrivial quantum dy-
namics is the transverse magnetic field antiferromagnetic H, ., => (r+qg?)m?+u,m*+ugm®+vm°cog66).

Ising model on the triangular lattice. The model has the fol- q
lowing Hamiltonian: (4)
H=JD, o'izo'jz—rz al, (1)  Asixfold clock anisotropy thus appears at sixth orderrin
(L) i The sixfold clock term is irrelevant at=3 so that the tran-

whereJ>0 is nearest-neighbor exchange couplings Brig ~ Sition into a phase with nonzera should be in thel=3 XY
the magnetic field strength. universality class. This applies both to the zero temperature
The classical model triangular Ising magnet is obtained irfflu@ntum phase transition as we vdfyand to the corre-
the absence of a transverse fidld=0. Its solution is well ~Sponding transition in a stacked Ising magnet. With the clock
known? it is disordered at any finite temperature, and critical®rm being dangerously irrelevant, the transition is immedi-
at T=0, where it retains an extensive zero point entrdpy ately into a state with a broken clock symmetry, the details of
with S/N=0.32%g, whereN is the number of spins arig; ~ Which depend on the sign of; (see below. . _
denotes the Boltzmann constant. Upon application of an in- At finite temperatures the triangular transverse field Ising
finitesimal transverse fiel#f =0* at T=0, the magnet or- Model maps onto a stacked magnet of finite dizein the

ders into a three sublatticg3 3 pattern with a sublattice temporal direction, which is effectively two dimensional as
magnetization patterfl,0—1).2 the temporal correlation length. exceedd. , close to a con-

tinuous phase transition. The two-dimensional six-state clock
model, studied by Joset al.*° has a remarkable phase dia-
gram consisting of three phases: a disordered phase, an ex-
Using the Suzuki-Trotter formalisiii;*® one can map the tended intermediate KT phase, and an ordered phase. The
d-dimensional quantum model onto the« 1)-dimensional extended KT phase owes is existence to the fact that in
classical problem. The partition function of the quantum=2, the clock term does not become relevant immediately
Hamiltonian[Eq. (1)], Trexp(=AH), is equivalent to the fol-  below the KT transition of th&XY model; instead, the cou-
lowing partition function: pling needs to be increased further until the clock term is
sufficiently strong to assert itself. Jos¢ all® have found
Z=Trexp(—Sq), that the critical exponent; is equal to 1/4 at the upper
boundary of the KT phase and 1/9 at the lower phase bound-
= KT : ary.
= KO%T 5K IE; St @ One of the central objectives of this paper is to establish
the presence of this floating KT phase as a finite-temperature
induced dimensional crossover in the«2)-dimensional
quantum Ising magnet on the triangular lattice. In our con-
text, the presence of such a phase would be the result of an
XY order parameter generated by frustration and stabilized
by quantum fluctuations, together with destabilizing fluctua-
tions provided by the finite temperature.
Details of the ordered state depend on the sigr &f
H gw is minimized byM =|M|exp(®), with ® =n=/3 and
It is in this formulation that the dimensional crossover be-® =(n+1/2)7/3 for vg<0 andv>0, respectively, witm
tween the high temperatud=2 and the low temperature =1,...,6. Thereal space configurations of the ordered
d=3 behavior is most transparent. In addition to providingphases can be obtained by Fourier transforming these modes.
an efficient Monte Carlo algorithnisee beloy, the above In the case ob <0, Fourier transforming yields the follow-
mapping also allows us to make contact with the literature oring magnetizations assigned to the three sublattices of the
stacked triangular magnet$from which our problem can be triangular lattice:|M|(1,—1/2,— 1/2). We depict this phase
obtained in the scaling analysis of infinite coupling strengthas (+ ——). In the case og>0, we have the following

A. Mapping to a stacked magnet

where§; , are classical Ising spins taking values 1-ot; 7

is the index in the imaginary time direction and runs from 0
to N, N=B/e is the number of slices in the imaginary time
direction, ande is the imaginary time ste@=Je and K~

= — 1 Intanhel’. The mapping becomes exact in the scaling
limit e—0,K™— o, while maintaining

e &K'=, (3)
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sublattice magnetizationgM|(y/3/2,0~3/2). We depict problem defined by Eq2). However, it is difficult to simu-
this phase as40—). There are six degenerate states forlate the discretized version of E(?) because of the scaling
bothvg<0 andvg>0. limit [Eq. (3)]: in order to avoid discretisation errors, one has

It is difficult to determine the sign afg—in particular, in  to take a very large ferromagnetic coupling in the imaginary
the effective Hamiltonian, its value may drift and eventime directionK™—c at the same time increasing the height
change sigii:"® The partition functiorz = exp(-=;;sK;;s) of  of the system exponentially a&2¥".

the Ising modeH = (1/8) 2;;siKj;s; is equivalent to the fol- In order to avoid this problem, we use a continuous time
lowing partition function(see, e.g., Ref. 20 algorithm?'=2 The basic idea behind this algorithm is that,
in the scaling limit, the density of domain walls in the imagi-

7« | Dyexa -7 :f D exp — Kb nary time dirgc_tion becomes exponentially sparse and it is
J yexp—L) v p[ %: vikii ¥ thus more efficient to keep track of the location of the do-

main walls, using exp®’) as a unit of length. Thus, the
+2 In cosi‘( 2 2K;; (/,j) . (5 height _of thg systenN/exp(ZKUz_ﬂl[e_exp(_2<’)]=,81“, mea-
i ] sured in units of exp@R"), remains fixed in the continuum
limit.
the soft modeg).. to be located aQ-- [Eq. (7)]. Performing 4 cluster algorithrif ~2°in the space directions as one could
the4 Founeer transgorm and expanding Incogk(x /2  for the case of unfrustrated magnets; however, we can use a
—X'/124x°/45—17x%/2520+ - - -, we obtain the following  cjyster algorithm in the time direction. The algorithm works
expression for the contribution of the nonlinear term_to as follows(for more details, see Ref. 23Ne pick a random
site on the triangulat. X L lattice and build a cluster on
Lo=—22, K(KK(=K) (k) g(—k) that site in the imaginary time direc'Fi_on. Its Ie_:ngt_h's dis-

k tributed according to the probability distributio®(7)
«exp(—I"7)—this prescription eliminates a “freezing” of the
algorithm due to the diverging temporal coupling. A given
cluster is flipped using the Metropolis prescription in the
spatial direction, i.e., we flip the cluster with probability
=min[1,exp(-AE)], whereAE is the(spatia) energy differ-
ence between the original configuration and the configuration
with a flipped cluster. One check of our Monte Carlo algo-
(6 rithm consisted of comparing it with the diagonalization of a

The interactions for the stacked triangular antiferromagnef < 3 Iart]nce, and we hhave found excellent agreement be-
are written in Fourier representation as tween the two approaches.

4 4
t32 [Il:[l [K(ki) (ki) ]o" (Kt - - - +kq)

64 6
45 H [K(k) (k)] (ki+ - -+ +Kkg)
3 i=1

K(k)=J[ cogk,) + cogk,/2+ \/§ky/2) +cogk,/2 B. Parameters of the simulations

_ \/§ky/2)]—J’cos(kZ), (7) We impose periodic bqundary condition on the triangular
lattice and performed simulations on lattices of size
where the sum is over the hexagonal Brillouin zone. The=9,12,15,18,24,30,36,48,60,75. We have estimated the cor-
LGW Hamiltonian is thus constructed in terms of the coef-relation timer, for different parameters. We perform usually
ficients mexp(xif), varying slowly in space, of the “soft” 500r, Monte Carlo stepsMCS) for equilibration and from

modesi .. . 10%7, to 5X 10°7, MCS for averaging.
The primed delta functions indicate that the wave vectors
k; need to add up to a reciprocal lattice vector. This require- IV SCALING ANALYSIS
ment leads to th&Y nature of the effective theory at low
order. At sixth ordery> ¢2 and ¢ +¢° occur, the latter In this section, we outline the quantities useful for detect-

being the clock termmcos(&). vg<0 at this order. How- ing a possible floating KT phase and the adjacent KT phase
ever, the cos(@) term appears at higher orders as well, e.g.transitions as well as the ordered phase.

Py w,(zpiJr #°) at eighth order. Since the terms in the se-

ries have alternating sign and large coefficients, one cannot A. Order parameters

reliably determine the sign afg near the transition this way. The complexXY order parameter deduced from the LGW

analysis is given by
I1l. MONTE CARLO METHOD
j0_ (4713 i(—4m/3
A. The quantum Monte Carlo algorithm me = (m;+m,e'“™3)+ mye!(~47)/ /3, (8)

The (2+1)-dimensional classical problem obtained thiswhere them; are the magnetizations of the three sublattices,
way has only positive weights—there is no “sign problem.” andm s real and positivem s close to 1 in the limit of zero
It can therefore be studied reasonably straightforwardly byemperature and vanishing transverse field. It equals zero for
Monte Carlo simulations. We thus simulate the classicathe disordered and KT phases, vanishing exponentially and
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algebra|cally in the I|m_|t .t_he system size—o. There, the 0.6 . . . T, from'scaling ¢
corresponding susceptibility is T, fromn e
05 | T, from'scaling & 1
X=LAm?)T. ) PM phase ; T
To detect clock symmetry breaking, we consider 041 % 4 |
6 2 03F % 1
_(m°cog60)) 10 =Y ¢ KT phase
=—————.
(m®) 02t g . : ;
! [ ]
It is easy to check thatg equals zero for disordered and KT n .
phasesgcg equals—1 for the (+0—) phase, andg equals 1 01T o - clock phase *
for the (+——) phase. We have chosen not directly to aver- 0 . .

age cos(6) as its value fluctuates most strongly wheans

. . . . 60 02 04 06 08 1 12 14 16 18
small, that is to say, the ordering we are trying to determine

the details of is weakest. The exponeft has been chosen, N
Somewhat(sarb'tgar'ly'eas the corresponding term in the LGW FIG. 1. The phase diagram of the transverse field Ising model on
action isy + > =m>cos(&). the triangular lattice. A floating KT phase separates the ordered
clock phase from the paramagr@M). QCP denotes the location
B. Binder cumulant of the quantum critical point.
The appropriate Binder cumulantis . .
m =L""mo(&/L), xL=L"xo(&/L), 13
4
m : .
U=1— { 2>2, (1) wheremg andy, are unknown universal functions abdnd
3(m?) c are constants. It follows from Eq12) that in the infinite

The Binder cumulant has a scaling dimension of zero. It thu$YSe™ S1Z€ limit, we have= 5/2 andc=2—#. Therefore,
L9 at a critical point, one has
has the advantage of not requiring fitting an unknown lead-

ing exponent. In the limilL—c, the Binder cumulant has m, oc L~ 72 (14)
the following behavior:U, —0 at disordered phasé), - '

* " .
—2/3 at ordered phase, atl] —U* at a critical point. For L2 (15)

an extended critical phase, the valuelf can drift, so that

its value depends on the precise location within the criticalt \ve have an extended critical phase, these relations should

phase. _ ) ) _ hold over finite temperature range from the upper critical
Since the Binder cumulant has a scaling dimension ofemperatureT, to the lower critical temperatur@,. The

zero, the curves for different system sizes at a critical CoUgyitical exponenty should vary continuously frorf, to T.

pling should fall on a line of points whetd, =U,, (at least  pjoting Infm,) or In(x,) versus In(), we can find the critical

in the region where corrections to scaling are smals we  oynonenty at any point of the extended critical phase.
describe below, this criterion in fact provides an overestimate \ye can rewrite Eq(13) as

of the size of the critical phase.
m, LP=my[L *expat~1?)], (16)
C. Locating the KT transitions
Here, we briefly describe the finite-size scaling analysis xtL %= xo[L T expat™ 3] (17)
appropriate for KT transitions. This analysis follows that Equation(16) is valid for T<T, and Eq.(17) is valid for

used by Challa and Land&®iIn order to determine the pres- o1 F iately oh rof T
ence of a KT phase, we check if we can fit our simulations to 2. FOr an appropriately chosen set of paramedecsT

- -1 —1/
the scaling forms predicted by KT thed®.This has the the plot of y, L ¢ versusL " exp@t ") should collapse

advantage of restricting the number of fitting parametersf)mO a universal curve for different system sizeJhe same

b -1 ~1/
which in the most general casallowing for critical expo- should h_°|d for a plot ofn, L versu_sl__ exp@at ). From
nents different from the KT ongsvould be too large to be such a fit, the upper and lower critical temperatures can be

practical. determined.
In particular, the correlation lengthand the susceptibility
x behave as V. RESULTS
gxexpat1?), yoc£271 mocg 72, (12) In Fig. 1 we present t_he phase diagram that we find
from Monte Carlo simulations. There are three phases: a
wherea is a nonuniversal constarnt=(T—T.)/T. is a re- disordered phase at high temperatur€s-() or large mag-
duced temperature, ariq. is a critical temperature. netic field strengthd’>J, an extended KT phase at inter-
The finite-size scaling form of order parameter and susmediate temperatures, and &A0—) ordered phase at low
ceptibility is given by temperatures.
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A. The KT phase atI'/J=0.4

Our most complete data set was taken F@d=0.4, for
which we describe our analysis in detail in the next few
paragraphs. We have chosen this valug¢ ek a compromise
between the following requirements. First, we want to stay
well clear of the zero temperature critical pointd'at0 and
largerI'=T". and concomitant possible crossover phenom-
ena. Secondly, a high transition temperature is needed to al- 05
low us to simulate systems with only moderate extent in the 9 12
imaginary time direction. Thirdly, as our algorithm slows
down as the density of domain walls in the imaginary time
direction increases, we would like to choose weak quantum FIG. 3. The order parameten versus system size at various
fluctuations, that is to say, small valueslafI'/J=0.4, lo- temperatures. The lines connect the points to guide the eye.
cated left of center of the KT dom@ig. 1) thus appears to
be a sensible choice. (17)] for the upper transition. The data scales very well with

First, Fig. 2 shows the behavior of the order parameter the following set of parameters:3,J=3.5a=5.36¢
as a function of inverse temperatq&for different System =1.736. Thus we can conclude that the System has a transi-
sizes. One can notice easily that the order parameter hdi®n between the disordered phase and KT phas@,dt
strong dependence on the system size in wide range of 3.5=0.2. The critical exponent;=0.2630.015 at the
temperatures—it decreases with increasing system size. transition point. This value of the critical exponents close

Figure 3 is a doubly logarithmic plot of the behavior of to the theoretical prediction 1/4, and the overestimate ap-
the order parameter as a function of the system size. At higRears to be part of a systematic trend discussed below.
temperatures, it extrapolates to zero, whereas it levels out to
a constant at low temperatures. For a wide range of tempera
tures in between, the data points display linear behavior 10
(without any evidence of logarithmic correctionbeginning
at 8J=2.8 down to3J=9.0. The exponent varies con- .l
tinuously from 0.323 aBJ=2.8 to 0.092 ajBJ=9.0.

This is indeed close to the range expected from KT finite-¢
size scaling(15), although there is an overestimate of the = 01
size of the KT phase when compared to the expected rang
of critical exponents, which is between 1/4 and 1/9. As in the
case of the Binder cumulant below, this is a simple conse-
guence of the fact that the difference between the orderec
and the critical phase is indiscernible when the size of the g gp1 . )
system is much less than the correlation length. As the lattel 0.1 10 1000 100000 1e+07
grows near the transition, increasingly Iarg_e_ finite-size sys- L exp(at "’2)
tems in the ordered phase appear to be critical.

To check whether this critical region is indeed delineated FIG. 4. Data collapse of the susceptibility for the upper
by KT transitions, in Fig. 4 we show the data collappg®. transition.
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I/J=0.4 2b=0.105 a=1.2 B J=8 0.6666 [ ‘ ' ‘ "pJ=7

A
T T %o J=8 X
o L=24 ~ 06664 1 W © oo o B§=10 9
113 =30 x "am g g O BJ=12 O
112 | L=36 % 0.6662 r 0o 0o o o u =14 [ ]
' L=48 © 9 W=16 og
111 ¢ L=60 n 0.666 | XK K ¥ % X x O
— *
a, 11y L=75 o =S 06658 | .
£ 1.09
108 | 08656 [ X % x x  x i« y .
107 - 0.6654 r
1.06 | i I . 06652 | ttT v+ o+ 4 o+ 4 .
L + EQ
1.05 KX 4 0.665 ‘ ) ‘ ) )
1.04 : : 0 0.02 004 006 008 01 012
0.1 1 10 B
L exp(at 2
Pt ™) 0.662
FIG. 5. Data collapse of the order parameteffor the lower ce o o o . ;
transition. 0.66 1 ;; co o © O© o -
TR R m = ; =
In Fig. 5, we show the lower temperature scaled {is¢e 0.658 | opoo o o "¢ y *
Eq. (16)]. The data scales quite welbut not perfectly, and = Lx oxx %X * X
over a narrower range than for the upper transjtieith the 0.656 | L X Bj=2 4 47
following set of parameterg3;J=8.0a=1.2¢=0.105. The ’ ax XX p=26
error in determining the critical temperature is larger than in Lt - BJEJQ_-g é
the high temperature case. We can conclude that the syster 0.654 r Lt BJ=32 =
has a transition between the KT phase and the ordered phas + Bj=§-é f
at 8,J=8.0+1.0. The critical exponeny=0.105-0.02 at 0.652 - - ' =36
the transition point. This value of the critical exponepts 0 062 004 008 008 01 012
again close to the theoretical prediction 1/9. L
To determine the nature of the ordered phase, we consider ) . .
the behavior of cd$6) [Eq. 10. The plot of co$66) as a FIG. 7. The Binder cumulan, versus system siZeat various

function of the inverse temperatug is shown in Fig. 6. temperaturesl’/J=0.4. Note the different scales for the ordinate.

cog66) goes to—1 as the temperature approaches zero. This

implies the existence of thé+0—) phase at low tempera- Next, we consider the flow diagram of the Binder cumu-

tures forI’/J=0.4. lant, depicted in Fig. 7. In the higthow) temperature phase,
We can also determine the lower transition temperafyre its value approaches(@/3) asL —, whereas it levels off to

from the criterion of =1/9 at the lower transition point, avalueU* inthe KT phase which depends on the strength of

which yields 8,J=7.5+0.5. At the transition temperature the coupling. Challa and Land®proposed to use this lev-

thus determined, one finds a crossing of(6@sas a function ~ elling off as a diagnostic for the KT phase. We do indeed

of B for different system size¥. observe such a leveling over a wide range of temperature at
r/3=0.4J.
0 This diagnostic again systematically overestimates the ex-
g tent of the critical phase. This is evidenced by the uppermost
-0.05% @ curves in Fig. 7. There is an inflection point at large system
-0.1 ¢ [ . size where the value dfi_, having apparently leveled off,
cog -0.15 A % % % starts increasing again. As one approaches the transition from
Y a0t 4 5 u the ordered phase, this point of inflection wanders to increas-
& 005 | =9 2 E ingly larger system sizes and hence beyond the scope of the
& T L2 x simulations.
Q 03} L=15 x A
< L=18 O
E 03524 m
v L=30 © B. Other values of I
V4136 o .
045 | L=4g8 & We now describe what we have found for other values of
L=60 4 I'. At small I'/J<1, T/J<1, the boundaries of the KT
-0.5 : : : : . . . .
5 6 7 8 9 10 phase appear to be well described by straight lines. We esti-
BJ mate their slopes to b&/I'=0.41+0.05 for the lower
transition, and for the uppefx;/T"=0.86+0.09
FIG. 6. The order parameter cosf6versusBJ for different The higher temperature data collapse does not always
system sizes. give the critical exponentg at critical temperatures close to
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0.6565 - ‘ ' ‘ fl=45 - algorithm slows down considerably &sincreases. Together
' WY v p=5  x with the increasingly slowly decaying correlations in the
A22 44 Y pJ=55  x L . .
eee o5 & T 8J=6 D space direction as the temperature is lowered, this leads to a
0666 2200 ® o A pJ=65 = considerable increase in the correlation times of our algo-
HEm N g = o] ° J=7 o) | .
oog 2§ oo %J:s . rithm. As a result, the data we were able to obtain were too
! FRX o = J=9 2 noisy to permit a useful data collapse. We can, nonetheless,
D885 I ook T w0 =10 4 identify the location of th ition by tracking wh
X% X p=12 ve try to identify t e ocation of the transition by tracking where
ey, Xy * g 7 crosses 1/9Fig. 1) _ _ _
0.665 - o, x n| We note that the classical six-state clock model, which
* . X has a phase diagram very similar to the one we find here, has
. been studied by many authdfs® As is the case for us,
0.6645 ‘ ' ‘ ' ' i £
0 002 004 006 008 01 o042 almost all the authors report that it is much more difficult to
P get data collapse at the lower KT transition than at the
L higher. Only in a recent paper, Tomita and Ok&basing a
0.664 oo oo v 55 R S “probability-changing cluster algorithm,” have found the
sams o 29 ¢ o o lower transition easily. Given the frustrated and higher di-
0.662 - DD O0Bo o o o . . mensional nature of our spin model, such a cluster algorithm
0.66 | ¥ KX % ox % * * is not available to us.
W K X ¥ x x The nature of the ordered phase at Ibvis of the (+0—)
, 0658 x . type. There is in principle the possibility of a change of sign
> 0.656 Lo + of vg for entropic reasons as the couplings are vatied\s
' + ! JEJ;g ; I' increases, it becomes increasingly hard to determine the
0.654 + . pJ=2.4  x sign of co$66) for the system sizes available to us. The
+ ijg-g = largestI” for which we can confidently state that the lower
0.652 1 N BB_J;3 o KT transition is into thg+0—) phase id'/J=1.2. Although
0.65 , , , pJ=34 e this difficulty may be in part due to a decrease in the strength
o 0.02 0.04 006 008 0.1 0.12 of vg, there is no supporting numerical evidence that the sign
Lt of vg ever changes.

FIG. 8. The Binder cumularil, versus system siZeat various
temperaturedsl’/J=0.8. Note the different scales for the ordinate. C. The quantum critical point

We now turn to the properties of the quantum critical

1/4, especially for largé&’. For example, we get the following point, i.e., to the zero temperature transition from the clock
upper set of critical temperatures and critical exponepts symmetry broken ordered phase to the paramagnet. We can
BJ=5.8(6),7=0.287(25) atI'/J=0.2, B.J=3.5(2),7 determine its approximate location to be Bt/J=1.65
=0.263(15) atI'/J=0.4, B.J=2.6(2),»=0.230(20) at =*0.05. For largel’, the magnet is in a quantum paramag-
I'’'3=0.8, and B.J=3.0(3),»=0.203(25) at['/3=1.2. netic phase with a size-independent susceptibility.
For I'/J=0.2, the high-temperature data scales very well We have not directly attempted to determine the proper-
over a wide range of temperatures. Thus it is difficult toties of this transition as extensive previous simulations on the
determine the precise value of the upper transition temperalassical stacked magnet exist. At the time, there were some
ture at thisl". suggestions that the observed critical exponents were in fact

The systematic trend of decreasingvith increasingl’ is not those of adl=3 XY modet* and perhaps altered due to
in accordance with the fact thaj at the zero temperature the presence of another instabiftf/!®
transition at largd” is different. For thed=3 XY universality The structure of our phase diagram lends support to the
class, 7 is in fact close to 6! so that the increasing proxim- d=23 XY universality class scenario via an independent route.
ity of this fixpoint should be expected to show up in a cor-By inducing a dimensional crossover through switching on a
rection of this kind. One can account for the systematic trendinite temperature, we find that the highly nontrivial phase
of increasingn with decreasind’ in the same way. Indeed, diagram is that predicted by the same Landau theory which
the frustrated triangular Ising model has a critical point atgives thed=3 XY universality class. This diagnostic is per-
T=0, wherep=1/23 haps more robust than a direct determination of the critical

Probably related to this crossover is the fact thatl’as exponents, which can be influenced by corrections to scaling
increases, the plots of the Binder cumulant as a function obr the proximity of other instabilities.
system size fail to display the clear flattening visible in Fig. The shape of the phase boundary near the quantum criti-
7 for I'/J=0.4 until a system size which is substantially cal point follows from the knowledge of the critical expo-
larger; this is displayed fof'/J=0.8 in Fig. 8. nents of the quantum phase transitidriThe boundaries of

The lower transition at largel poses a problem for the the KT phase nealr; follow the trajectoryTroc|T —1T"¢| "%,
alogorithm we use. Since we used linked lists to store thavhere, for the present case, the dynamical critical exponent
location of the domain walls in the temporal direction, thez=1 andv is close to 2/3!
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The upper and lower boundaries of the KT phase go taeliability and find that, for the phase transitions in particular,
zero at a common value df./J=1.65 since according to considering the system size independence of the Binder cu-
the LGW analysis of the stacked magnet the clock term isnulant and the power-law dependence of the magnetization
dangerously irrelevant id=3. That means that the quantum on system size systematically overestimate the extent of the
transition afT =0 is immediately into an ordered phase with- critical phase.

out an intermediate KT phase. In summary, the results we have obtained demonstrate
once again that frustrated magnets provide a good starting
VI. CONCLUSION point for finding unconventional phases and phase diagrams.

In this particular case, by using a tunable combination of
We have demonstrated that the common action of thermahermal and quantum fluctuations, we have managed to real-
and quantum fluctuations in the triangular lattice transversge a standard model from statistical mechanics, X
field Ising model generate an interesting fluctuation-drivenmodel with sixfold clock anisotropyf) in dimensionsd=2
phase diagram including an extended critical phase bordereghgd=3, in terms of another one, namely, the Ising model
by a pair of KT transitions. We have employed several diagyn the triangular lattice. Given other magnets in this class
nostics for the presence of the KT phase and our results ai@g|ize unusual order parametéris approach should pro-

from an analysis based on a<2)-dimensionalXY sym-  pased on simple model spin systems.

metric action with a sixfold clock anisotropy for a temporal

dimension of tunable extent. This provides indirect support

for the XY nature of the.q.uantum cri.tical point. The Qynami— ACKNOWLEDGMENTS
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