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The cubic-tetragonal-monoclinic structural evolution of zirconia (ZrO2) is studied within a lattice dynamical
treatment using a model approach taking into consideration the variability of the oxygen ion charge. The
relevant calculations reveal the two physical factors driving that evolution. A specific Zr/O ionic radii ratio is
one of them: the radius of Zr41 is found to be too small to ensure stability of the ZrO8 cube, but not sufficiently
small to ensure the stability of the ZrO6 octahedron. Thus, the ZrO7 coordination polyhedron arises as a basic
structural fragment specifying the monoclinic~baddeleyite! lattice. Another factor is the dependence of an ionic
charge on its local environment in the crystal. This results in the charge redistribution between nonequivalent
oxygen ions during the structural transformations, which is found to be indispensable to stabilize the badde-
leyite lattice as a ground-state structure of zirconia. Special attention is paid to the elastic anomalies accom-
panying the tetragonal-monoclinic transition, which were never considered in the preceding studies. According
to the present work, those anomalies are related to the intermediate orthorhombic structure (D2h

8 ,No. 54! which
is characterized as essentially unstable.
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I. INTRODUCTION

The structural phase transfomations~SPT’s! in crystalline
zirconia manifest a number of properties,1,2 which are of
great engineering importance and of high interest for so
state physics. The most intriguing one is the transition fr
the monoclinic ~m! phase to the tetragonal~t! phase (T
51450 K) which is accompanied by a spontaneous volu
reduction of approximately 4.5%. Subsequently, tetrago
zirconia can undergo a SPT into a cubic~c! phase with fluo-
ritelike structure, induced by heating (T52650 K), i.e., with
volume extension, or by hydrostatic pressure,3 i.e., with vol-
ume contraction. Another particularity of zirconia is th
structure of its ground-statem phase~baddeleyite! in which
zirconium atoms have an odd~sevenfold! coordination, and
the two nonequivalent ~three-coordinated and four
coordinated! oxygen atom positions occur. Many experime
tal studies were devoted to the polymorphism of zircon
and most of their results remain a challenge for the the
This can be explained partly by the absence of an adeq
potential function model. Numerous attempts to deve
such a model4–11 failed to describe the stability of the bad
deleyite structure. This explains why recent attention
been paid to theoretical studies based on quant
mechanical~QM! ab initio calculations.12–21 Such calcula-
tions are rather laborious, and have been primarily restric
to static energy surface analysis.

The ab initio theory shows that the absolute minimum
the zirconia’s potential surface corresponds to the badde
ite lattice.17 The energy minimization in the cubic, tetrag
nal, and monoclinic phases led to structures with molar v
umes Vc,Vt,Vm and with the specific energyEc.Et
.Em , respectively. The volume dependence of the cal
lated static energy for all these phases is shown in Fig
0163-1829/2003/68~10!/104106~10!/$20.00 68 1041
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Little else in terms of information was obtained from th
quantum-mechanical potential energy studies. The stab
of the phases as a function of the volume variation was
comprehensively explored. The phonon dispersion of thc
phase was calculated atV5Vc only.19,20 The study of the
phonon states in thet phase was limited by theGpoint cal-
culation at V5Vt .21 Nothing is known about the phono
states at theM point which must play a key role in thet-m
instability.22 The evolution of the simulated phonon spectru
with volume variation was never reported.

The point at which theE(V) curves of two phases ap
proach each another~see, e.g., Fig. 1!, is of particular interest
for phase transition theory. Actually, on each side of suc
point, the phase with a higher energy would be unstable

FIG. 1. Energy versus volume dependence of the three m
zirconia polymorphs, schematically designed according to result
the ab initio studies of Ref. 16~solid lines! and those of Ref. 17
~dashed lines!.
©2003 The American Physical Society06-1
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principle, the phonon state and the elastic constant calc
tions could reveal the atomic displacement pattern relate
these instabilities, thus giving a microscopic insight into t
phase transition mechanism. However, this problem w
never examined in the quantum-mechanical studies of zi
nia. Frequently, theE(V) curves were plotted by using a
analytic approximation formula, and the physical sense
their intersections was thus lost. Therefore, a static ene
analysis in the quantum-mechanical studies of zirconia
not provide much important information about the pheno
ena under consideration. This is partly due to computatio
difficulties inherent forab initio studies, which become eve
greater in a finite-temperature free-energy analysis. Th
fore, the necessity of an appropriate potential model of Z2
remains paramount.

In the last decade, a number of oxide structures, includ
the rather covalent compound SiO2,23 were successfully
simulated using the ionic model. Consequently there is
reason to suppose that this model is not applicable in the
of ZrO2. The high and variable value of the coordinatio
number of the Zr atom in ZrO2 indicates an essentially ioni
character of binding in this crystal. However, the attempts
apply this model to ZrO2 have regularly failed. The absolut
energy minimum appeared either in the cubic fluoritel
structure or in an ‘‘octahedral’’ structure with sixfold coord
nation of Zr atoms, which has never been observed in Zr2.
The inclusion of the ionic polarizability in the model did n
improve the situation.

It is useful to recall that the the baddeleyite structures
dioxides are stable only with the medium-sized cations
and Hf, whereas the dioxide fluoritelike lattices~with eight-
fold cation coordination! are stable with larger cations~Th,
Ce, U!, and the dioxide structures with sixfold cation coo
dination are stable with smaller cations~Pb, Sn, Ti, W!.

We then deduce that the failure of the previous attempt
apply the ionic potential model to zirconia was caused
by inadequacy of the ionic concept but by specific relatio
between the atomic characteristics in this compound. In
ticular, the ratio of the ionic radii of cations and anions
peculiar to ZrO2 , which results in a mutual compensation
the two main potential energy contributions and therefo
the structures with different coordination numbers have co
parable energy values~see Sec. II! Consequently, other con
tributions in the potential function, which are not so signi
cant in most oxides, dominate the lattice dynamics a
induce the structural transformations. The results of
present paper show that this is the case for ZrO2. Previous
works have suggested~Refs. 5,10! that the variability of the
oxygen ion radius could specify the mechanism of su
transformations. However, its inclusion in the model did n
ensure the stability of the baddeleyite structure.24

In our opinion, to reveal the main factors governing t
c-t-m evolution of the zirconia lattice, one should not pr
pose variousad hoc potential function contributions bu
rather try to understand the objective factors inducing
structural instability in the cubic and tetragonal phases
ZrO2. This can be done through an analysis of the mic
scopic nature of these instabilities by focusing attention
the softness of the specific degrees of freedom~the phonon
10410
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modes and the elastic strains!, whose relaxation would caus
the stabilization of the baddeleyite structure. This is the m
goal of the present paper.

II. MODEL

On developing our model, we attempted first of all
reproduce the experimental data and to fulfil the followi
three conditions discovered in theab initio studies of the
potential surface of zirconia:

Condition 1: The absolute energy minimum correspon
to them phase with baddeleyite structure.

Condition 2: The energy versus volume dependence
the three zirconia polymorphs is close to that shown
Fig. 1.

Condition 3: The energy of the highest-symmetryc phase
is lower than that of all the hypothetical crystal structur
with the sixfold cation coordination~such as rutile, anatase
brookite,a-PbO2).

Starting from the simplest ionic model@rigid ion model
~RIM!#, we first explored the questions: which of the ju
mentioned Conditions can it obey, and why it cannot fu
the others? Then, after discovering the source of the mod
shortcoming, its necessary improvements were made.
nally, any term in thus developed potential model was u
equivocally determined by a physical characteristic detec
in the QM calculations or in the experimental studies.

Within RIM, the two main contributions to the potentia
energy correspond to the Coulomb interaction and to
short-range overlap repulsion. They are presented in
Born-Meyer potential as follows:

E5
1

2 (
iÞ j

FZiZj

r i j
1AexpS 2

r i j

r D G . ~1!

On assuming the formal ionic charge values Zr41 and
O22 and on supposing the overlap repulsion to be signific
between cations and anions only, one has to determine
the two repulsion parametersA andr. These parameters ar
directly related through the ionic radii of cationR1 and an-
ion R2. In Ref. 25 this relation was expressed as follows

A5« expS R11R2

r D ~2!

with « defined somewhat arbitrarily as a typical rate of t
atomic binding energy. We put the« value equal to 2.3 aJ
i.e., to the Coulomb energy of the charges11e and 21e
separated by the distance of 1 Å. The sumL5R11R2 is
referred below as the effective radius of the Zr-O interacti
This quantity~rather thanA) offers a simple physical inter
pretation of the overlap repulsion. Its magnitude must refl
the fact that ZrO2 is an intermediate case between the dio
ides with cations larger than Zr, which are stable in the eig
fold coordinated cubic structure, and the dioxides with c
ions smaller than Zr, which are stable in the sixfold cati
coordination.

In line with theab initio results,16,17 we assumed that the
energy of thec phase is minimal at a Zr-O bond length of 2
6-2
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Å. This imposed a constraint which established a one-to-
relation between the possibleL and r values. This relation
was used to determine ther values for the different magni
tudes ofL value varied in the interval 1.48–1.63 Å. With th
potential parameters thus found, the energy minimum c
figurations for the relevant crystal structures under consid
ation were determined, and their energy was compared
that of thec phase. These results, shown in Fig. 2 , allowed
us to determine the criticalL value which ensures the abov
mentioned Condition 3. The following is seen from Fig. 2

At L.1.55 Å ~versions 4–7! the absolute energy mini
mum corresponds to thec-phase structure~i.e., the points
corresponding to all other structures are above the absc
axis in Fig. 2!.

At L,1.55 Å ~versions 1–3! the energy of the structure
with the sixfold cation coordination is lower than that of th
c phase~at L over the interval 1.52–1.55 Å the ground sta
structure is rutile, and atL in the range 1.40–1.52 Å th
ground state structure is anatase!.

Note, that atL,1.40 Å, the ground-state structure corr
sponds to the quartzlike lattice with the fourfold coordinati
of cations. This interval of the model parameters does
bear on our analysis.

FIG. 2. RIM: relative positions of the energy minima of diffe
ent crystal structures in dependence of the effective radiusL ~in Å!.
~a! Fluorite and the ‘‘octahedral’’ structures;~b! tetragonal phase.
10410
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So, it is sufficient to suppose that theL value in the po-
tential function of ZrO2 must be slightly higher than 1.55 Å
in order to fulfill condition 3. We putL51.605 Å. This leads
to Erutile2Ec50.043 aJ/molecule, which agrees well wi
the ab initio estimation Erutile2Ec50.048 aJ/molecule,
drawn from the curves shown in Ref. 16. The correspond
parameters of the potential presented by Eq.~1! are A
5258 aJ andr50.34 Å.

Condition 2 implies that the fluorite structure of ZrO2
must be unstable with respect toc-t distortion. However, the
calculation within RIM showed@see Fig. 2~b!# that this in-
stability occurs at the sameL values which provide the
ground state structure with the sixfold cation coordinatio
So, RIM is incapable of obeying all the above implied co
ditions, and it is inevitable to add a mechanism amplifyi
the c-t instability.

The quantitative criterion of this instability is the imag
nary frequency of theX2

2 mode in thec phase.26 The eigen-
vector of this mode involves the antiphase displacement
the neighboring columns . . .2O2O2 . . . , and thestiff-
ness of this distortion depends strongly on the io
polarizability.10 So, the model improvement can be done
using the polarizable ion approximation within the sh
model ~SM!.27 Customarily, only the anion polarizability is
taken into account, and the extension of RIM to SM involv
the two additional parameters: oxygen ion polarizabilitya
and shell chargeY. Their values were chosen asa(O22)
51.2 Å3 andY(O22)524e, which ensured the occurrenc
of c-t instability and led to the calculated frequenci
v(X2

2) 5 i129 cm21 and v(F1u)5330 cm21, whereas the
ab initio results19,20 gavei195 cm21 and 269 cm21, respec-
tively. @Note, that the experimental value of TO-mode fr
quencyv(F1u) is 320 cm21 ~Ref. 28!.# The effective dy-
namic charge calculated within this SM is of 4.5e. Its ab
initio value was found of 5.75e.20 So, the ionic model in-
cluding the oxygen ion polarizability is capable of reprodu
ing the occurrence ofc-t instability, and at the same time, o
obeying the third of the above conditions. The latter poin
fulfilled because the oxygen ion polarization does not aff
the energy of thec phase and very slightly affects the ener
of the ‘‘octahedral’’ crystal structures.

This is not the case for thet phase. The ionic polarization
plays a key role inc-t instability and determines the magn
tude ofc-t distortion~described by the oxygen position dis
placement parameterDz) at V5Vc . The chosen value o
a(O22) reproduces thev(X2

2) frequency well~i.e., the cur-
vature of the double-well potential governing thec-t distor-
tion! but overestimates thec-t energy barrier and the mag
nitude of the geometry distortion. This necessitates a furt
improvement of the model involving the ionic polarizatio
nonlinearity. In doing this, we supposed the core-shell pot
tial to differ from a harmonic one. Traditionally, the core
shell potential is represented by the harmonic lawU(s)
5ks2/2,27 in which s is the core-shell displacement, andk
5Y2/a is the core-shell spring stiffness. The potential us
in our study is

U~s!5kd2FcoshS s

dD21G5
ks2

2 F11
1

12S s

dD 2

1¯G , ~3!
6-3
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TABLE I. Energy minimum characteristics of the three zirconia polymorphs.

Volume c-t Energy barrier
(Å 3/molecule! distortion (10221 J/molecule) Method and

Vc Vt Vm Dz DEtc DEmt reference

33.1 33.5 35.0 0.033 5 12 ab initio ~Ref. 16!
34.3 35.9 37.1 0.050 13 16 ab initio ~Ref. 17!
32.9 33.7 35.1 0.06 9 10 Exp.~Ref. 2!
32.7 33.1 35.2 0.039 2.6 2.5 VCM, this work
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which means that the ionic polarizability decreases with
creasing ionic polarization. The new parameterd determines
a critical core-shell displacement, above which this non
earity comes into prominence. Its value was chosen to re
duce thet-phase energy minimum configuration found in t
ab initio studies~see Table I!.

Finally, we have concentrated on the questions: wha
the basic reason for stability of the baddeleyite structure
why is the traditional ionic model incapable of reproduci
it? The answer to these questions seems to be suggest
the fact that the baddeleyite structure has the two essent
different oxygen ion positions. A half of them (OI) are situ-
ated in the center of the threefold star OIZr3, just as in the
‘‘octahedral’’ crystal structures. The other oxygen positi
(OII) is located in the center of the slightly distorted tetrah
dron OIIZr4, similar to that in the fluoritelike structure. It i
reasonable to assume that the electron density distributio
these two sites differ markedly. This should be reflected
different values of the ionic parameters for the OI and OII

ions. The idea of different ionic radii of the OI and OII ions
was used in the earlier model treatments of zirconia,5,10 but it
did not favor the explanation of the baddeleyite struct
stability. The assumption of different effective charges of
OI and OII ions was never employed. However, theab initio
electron density analysis reveals the considerable differe
in the Mulliken charge values for the OI and OII ions:
Z~OI!2Z~OII!.0.2e.28 Being multiplying by the difference
in the Madelung potentialsw~OII!2w~OI!50.089e/Å ~cal-
culated within the experimental lattice geometry and with
formal ionic charges!, this quantity leads to the energyDE
5DZDw50.02 aJ/molecule. This energy value, gained
course of charge transfer between the OI andOII ions, is of
the same magnitude as the energy barrierEt2Em
50.016 aJ/molecule estimated from the results of theab ini-
tio calculations.16

It is likely that the difference between the charges of
OI and OII ions is an essential factor for the stability of th
baddeleyite structure. Actually, according to our prelimina
calculations, this structure can be stable in the framewor
anad hocRIM with different charges on the OI and OII ions.
However, the aim of this study is more complicated. It co
sists in developing aself-consistentmodel in which the mag-
nitude of the effective ionic charge would adiabatically d
pend on the local crystal environment. The key idea of
model, which will be called the variable charge mod
~VCM!, is borrowed from the charge equilibrium model, pr
posed in Ref. 30. Within this model, the magnitude of t
effective charge variation.
10410
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Zi5Zi
01DZi ~4!

is taken to be proportional to the local electrostatic poten

DZi;ciw i . ~5!

Simply stated, the deeper is the potential well, the more
electron density is located in it. We developed this idea
putting that ionic radius is also a variable quantity

Ri5Ri
01DRi , ~6!

and its variation is proportional to the charge variation

DRi5t iDZi . ~7!

In the above expressions,Zi
0 and Ri

0 are the charge and
radius values of a ‘‘free’’ ion. Similarly to Ref. 30, the effec
tive charge values for any atomic configuration are de
mined through the minimization of the Hamiltonian:

E~r ,Z,R!5(
i

Fi~DZi !1(
iÞ j

FZiZj

r i j
1«expS Ri1Rj2r i j

r D G ,
~8!

where termFi(DZi) describes the energy variation due to t
charge redistribution. On neglecting the ionic radius var
tion, the minimization ofE with respect toDZi leads to the
equation

dFi

dDZi
52DZiw i . ~9!

To make it identical to Eq.~5!, one has to define theFi(DZi)
function as

Fi5
1

2ci
DZi

2 . ~10!

Thus, the relations~4!–~8!, ~10! together with the charge
neutrality condition

(
i

Zi50 ~11!

could determine the analytic scope of the model. Howeve
numerical test showed that a low scale nonlinearity in
dependence~5! is necessary in order to limit the charge r
distribution process. Analogously to Eq.~3!, Eq. ~10! is sub-
stituted by the relation:
6-4
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TABLE II. Geometry parameters of them phase of ZrO2.

exp. ~Ref. 2! ab initio ~Ref. 17! VCM, this work

a,b,c(Å) 5.145, 5.210, 5.312 5.242, 5.305, 5.410 5.167, 5.157, 5.32
b(°) 99.2 99.23 97.2
Zr 0.2751, 0.0404, 0.2081 0.2765, 0.0421, 0.2090 0.2806, 0.0176, 0.
OI 0.0770, 0.3351, 0.3437 0.071, 0.337, 0.342 0.0468, 0.2973, 0.3
OII 0.5480, 0.2454, 0.5250 0.550, 0.242, 0.521 0.5303, 0.2470, 0.5
Zr-OI (Å) 2.0371, 2.0838, 2.1391 2.0915, 2.1017, 2.1972 2.0533, 2.0974, 2.
Zr-OII (Å) 2.1446, 2.1548, 2.1923, 2.2067, 2.0969, 2.1412,

2.2548, 2.2782 2.2919, 2.2963 2.2117, 2.2818
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Fi~DZi !5
d i

2

ci
FcoshS DZi

d i
D21G

5
1

2ci
DZi

2F11
1

12S DZi

d i
D 2

1•••G , ~12!

in which thed i parameter determines the limit of the possib
charge variation.

Finally, the improvement of the ionic model is determin
by relations~4!–~8!, ~11!,~12!, whereas the ionic polarizatio
terms stay the same as in a standard SM version.27 It was
supposed that the charge redistribution, as well as the ove
repulsion, operates between the shells but not between
cores, and theci coefficients differ from infinity merely for
anions. So, the charge transfer between cations and anio
not taken into account, and only the charge transfer betw
nonequivalent oxygen ions is considered. The charge tran
between oxygen atoms does not change the static energ
the cubic and tetragonal phases, as well as that of all
‘‘octahedral’’ structures, in which all the oxygen position
are equivalent. But it affects the values of the first and s
ond derivatives of the energy with respect to the nonsymm
ric atomic displacements leading to the oxygen position n
equivalency. Within VCM, the bare ionic chargesZi

0 and the
overlap repulsion parametersr andA were taken the same a
in the above discussed SM. The new parametersci and t i ,
governing the ionic charge and radius variations, were e
mated by the auxiliaryab initio study of the electronic den
sity distribution in the finite clusters@OZr4#141 and
@OZr3#101. Finally, their values were slightly fitted in orde
to make the simulated baddeleyite structure more close to
experimental one. The total set of the model parameters
follows:

RIM @Eq. ~1!#: Z0~O!522e, A5258 aJ, r50.34 Å,

SM @Eq. ~3!: Y~O!524e, k530 aJ/Å2, d50.02 Å,

VCM ~Eqs.~4!–~8!, ~11!,~12!#: c52.77 Å,

t50.196 Å/e, d50.35e.

III. RESULTS AND DISCUSSION

The proposed model reproduces the main characteri
of the potential surface discovered in theab initio studies.
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~a! The model provides an absolute energy minimum
the m-phase structure close to that observed experiment
and to that obtained in theab initio study ~see Table II!.
Despite of incorrect ratio of the cell parametersa andb, the
main peculiarity of the baddeleyite structure—the threef
coordination of the OI atom and the fourfold coordination o
the OII atom—is well described. The charge transfer betwe
oxygen atoms in OI and OII positions plays the key role in
stabilizing this structure. The effective ionic charges p
dicted by our model areZ~OI!521.8e andZ~OII!522.2e.
The magnitude and the sign of the charge redistribut
agrees with theab initio estimation of the Mulliken charge
differenceZ(OI)2Z(OII).0.2e.29

~b! TheE(V) curves calculated within our model forc, t,
andm phases~see Fig. 3! agree with those found in theab
initio calculations. The positions of the energy minima a
presented in Table I. It is seen that the calculatedVc , Vt ,
andVm values are close to those found in theab initio stud-
ies. The energy barriers predicted by the model are unde
timated but are of the same order.

~c! The phonon frequencies calculated in the energy m
mum configuration of thec andt phases~see Table III! agree
well with both theab initio results and the experimental dat

Reproducing the main results of theab initio studies, the
model seems to be quite reliable to answer important qu
tions which remained beyond the earlier works. Let us c
sider thec-t-m trasformations of zirconia on paying speci
attention to the structural instabilities related to the points
which theE(V) curves in Fig. 3 approach each other.

At decreasing volume theEc(V) and Et(V) curves ap-
proach each other at theL point in which Ec(V)5Et(V).
This indicates a possible pressure-inducedt-c phase transi-
tion. Such a continuous phase transformation was obse
in Ref. 3 at a hydrostatic pressure interval of 8–30 G
Theoretically, the order of this phase transition is related
the character of approaching ofEc(V) andEt(V) curves. A
smooth junction~i.e., with the same derivative at theL point!
of those curves would indicate the second-order SPT. Ot
wise, this is a first-order SPT for which a triple-minimu
potential curve along thec-t distortion would be inherent.

The potential energy variation governing thec-t distor-
tion was examined in a series ofab initio studies10,13,14 in
which the double-well potential curves have been inevita
found. Moreover, it was shown in those studies that
height of thec-t energy barrier monotonously decreases
6-5
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lattice contraction and eventually vanishes. This unequi
cally corresponds to a second-order phase transition and
tates theEc(V) and Et(V) curves to be smoothly mergin
together. Therefore, it may be thought that the crossing
these curves shown in Refs. 17,18 is caused by using s
analyticE(V) approximation~as it was explicitly said in Ref.
18! and not by an accurate numerical calculations. O
model ~in line with as theab initio study16! predicts the
Ec(V) and Et(V) curves as smoothly merging together
V531.5 Å3/molecule. In this point their slope correspon
to pressurePc512.5 GPa. The analogous estimation of t
critical pressure derived from theE(V) curves presented in
Ref. 16 leads to thePc value of about 35 GPa.

Another experimental fact indicating a possibility of th
pressure-inducedt-c instability is the negative value of th
dTc /dP derivative estimated as270 K/GPa in Ref. 34. This
quantity can be compared with the calculated ra
DEct /DP, whereDEct is expressed in the temperature sca
According to our model, this ratio is equal to240 K/GPa.

TheL point, in which theEc(V) andEt(V) curves merge
together, corresponds to the volume at which the soft m
X2

2 vanishes. So, thec phase is unstable to the right of theL
point in Fig. 3, and this part of theEc(V) curve~ shown by
a dotted line! corresponds to the energy surface saddle po
with negative curvature along thec-t distortion. In course of

FIG. 3. Potential energy of different crystal phases of ZrO2 in
dependence of the volume variation calculated by VCM. The s
lines correspond to the stable configurations. The unstable con
rations, related to saddle points of the potential surface, corresp
to the dotted part of the lines.
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this distortion, thec-phase transforms into thet phase. In this
phase, theX2

2 mode becomes a totally symmetricA1g mode.
Its frequency increases and reaches 219 cm21 in the t-phase
energy minimum configuration, according to our model. T
volume and pressure dependence of the calculated pho
frequencies in thec andt phases is shown in Fig. 4, in whic
the valueP50 corresponds to the energy minimum config
ration of thet phase, and the valueP512.5 GPa correspond
to theL point. For theB1g , Eg , andA1g modes presented in
Fig. 4, thedv/dP coefficients were estimated as 5.1, 1
and 28.5 cm21/GPa, whereas the corresponding expe
mental values35 are of 3.4, 1.7, and23.6 cm21/GPa, respec-
tively.

The mechanism of thet-m transformation is more com
plicated and its understanding requires a detailed exam
tion of theEc(V) andEt(V) curves behavior. According to
results of Ref. 16, these curves smoothly merge togethe
the K point ~see Fig. 1!, whereas in Ref. 17 they intersect
theK8 point. At first glance, our model gives the results~see
Fig. 3! similar to those of Ref. 17: theEt(V) and Em(V)
curves approach each other in pointK8 with different slopes
which correspond to different static pressure values. Ho
ever, these curves do not intersect. According to our mo
there is no energy minimum in them phase to the left of the
K8 point, and theEm(V) curve terminates on approachin
this point from the right side. It is remarkable, that the mod
predicts an instability in thet phase when approaching th
K8 point from the left side. So, to the right of theK8 point
one phase~m! is stable and another one~t! is unstable,
whereas to the left of theK8 point only one stable phase~t!
exists, somewhat similarly to the case of thec and t phases
around theL point. The different slopes ofEt(V) andEm(V)
curves in theK8 point mean that them-t instability cannot
be induced by hydrostatic compression. This can exp
why the relevant phase transition was not observed.

Let us consider the microscopic origin of the instability
the t phase at volume increase. It was qualitatively shown
Ref. 22 that the vector of thet-m structural transformation
would involve the combination of three phononsM1 , M2,
and Eg from which the two former correspond to the two
dimensional primary order parameter. Our model calcu
tions confirm this issue. As it is seen from Fig. 4, the tw
lowest frequencyM phonons soften markedly at volume e
pansion and both vanish eventually. TheM1 soft mode van-
ishes the first at theK8 point. Thus, to the right of theK8
point, the energy minimum in thet phase transforms into a
saddle point, and the energy minimum appears in a less s
metric structure dictated by the eigenvector of the vanish
phonon. However, according to the symmetry rules, the s
condensation of theM1 mode would transform thet phase
into an orthorhombic structure with the space symme
groupN54 ~we call it o54), and the solo condensation of th
M2 mode would transform thet phase into an orthorhombi
structure with the space symmetry groupN60 (a-PbO2
structure!. Only a joint condensation of these two phono
would result in the baddeleyite structure. In principle, to p
duce t-m transformation, it is not of importance which o
thoseM modes vanishes the first, but both should soften
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approaching the phase transition point. On testing the pr
ous ionic models,6,11 one can find that only theM2 phonon
softens there thus transforming thet-phase structure into th
orthorhombica-PbO2 structure, but not into the monoclini
baddeleyite structure.

The origin of the softness of theM1 andM2 modes in our
model can be understood by analyzing their eigenvect
presented in Figs. 5~c! and 5~d! along with the atomic dis-
placement pattern of the tetragonal-to-monoclinic trans
mation@Fig. 5~a!#. It is seen from Fig. 5 that the latter can b
represented as a combination of the eigenvectors of the t
modesM1 , M2, andEg . Figure 5~d! shows that the eigen
vector of theM2 mode mainly involves the relative tange
tial displacements of the neighboring planes of oxygen
oms. The softness of this mode can be attributed to the st
O-O repulsion giving a negative dynamic matrix contributi
which arises from the high and negative value of the tang
tial O-O force constants. Note, that the same factor de

TABLE III. Phonon frequencies (cm21) of ZrO2 in the c and t
phases.

Species Experimental data and VCM, this work
ab initio results~in brackets!

c t c t c t

B1u ~673e! 856
X1

1 ~697e! 735
M4 759

Eg 642d ~659e! 677
X5

2 M3 ~568e! 633 644
M2 640

B1g 609a ~607e! 560
F2g 490a ~587e! 557

Eg 466d ~474e! 506

Eu 467c ~479e! 404
F1u 320b ~269e! 334

A2u 339c ~339e! 223

M1 335
X4

1 218
B1g 322d ~339e! 204

M2 249
X5

2 M3 ~141e! 180 231
Eg 148d ~147e! 191

Eu 164c ~153e! 182
X5

1 M2 ~325e! 170 104
M1 52

A1g 266d ~259e! 219
X2

2 ( i196e! i120
M4 200

aReference 31. dReference 33.
bReference 28. eReference 21.
cReference 32.
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FIG. 4. Pressure and volume dependence of some phonon
quencies of tetragonal zirconia. The critical pressure wherein tt
phase transforms into thec phase is shown by the dotted line. Th
symmetry assignment of the modes in thec phase is given aside.

FIG. 5. XY projection of the atomic position rearrangement i
volved in thet-m transformation.~a! Eigenvectors of three mode
contributing to the order parameterEg ~b!, M1 ~c!, andM2 ~d!. The
c-t distortion is shown by the plus and minus signs inside
circles, thet-m distortion is shown by arrows and by the plus a
minus signs at the end of the arrows. The broken Zr-OI bond in the
m phase is shown by dotted curves in~a!.
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FIG. 6. XZ projection of the crystal structure
in the t phase~a!, o54 phase~b!, and m phase
~c!; potential energy as a function of the stru
tural distortion along theM1-mode eigenvector
~d!; potential energy as a function of th
orthorhombic-monoclinic distortion~e!. The en-
ergy versus deformation dependences presen
in this figure correspond to the potential surfa
cross-sections shown by the vertical arrows
Fig. 3. The broken Zr-OI bond in them phase is
shown by a dotted line in plot~c!.
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mines the softness ofX2
2 mode in thec phase.10 This ex-

plains why theM2 mode can be soft even within a simp
ionic model.11

The question is why is theM1 mode soft and why is
this fact not predicted within SM but appears within VCM
On viewing Fig. 5~c!, one can see that the eigenvector
this mode involves primarily the Zr atom displacemen
These displacements correspond to the antiphase pulsa
of the OIZr4 and OIIZr4 tetrahedra thus resulting in the op
posite sign variation of the electrostatic potentials a
the charges on the OI and OII atoms. This explains why
this mode makes the OI and OII atoms nonequivalent. Its
condensation should produce a strong destabilizing ef
due to the charge redistribution between those atoms. S
the derivatives dZ(OI)/dQ(M1) and dZ(OII)/dQ(M1)
have opposite signs, the corresponding force constant co
10410
f
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bution dZ(OI)/dQ(M1)1/ur (OI)2r (OII)udZ(OII)/dQ(M1)
is negative.

Although the energetic criteria suggest the essenti
first-order character of thet-m transition, the following
structural evolution between thet and m phases can be re
vealed by using the soft-mode concept. As was mentio
above, the condensation of theM1 mode would transform
the t phase into the orthorhombico54 structure@see Figs.
6~a! and 6~b!#. Moreover, the calculations show that the p
tential surface cross section along theM1 eigenvector has a
double-well form@see Fig. 6~d!# with the energy minima in
theo54 structure. This structure is shown in Fig. 6~b!, and its
energy versus volume dependence is shown in Fig. 3. H
ever, according to our calculations thiso54 phase is essen
tially unstable. The shear elastic constantC55 and the bulk
module B were found to be negative because of a stro
optoacoustic coupling inherent to this structure: the low
6-8
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frequencyAg mode~former softM1 mode! couples with the
homogeneous strainU11U21U3, and the low frequency
B2g mode@former softM2 mode, see Fig. 6~b!# couples with
the U5 strain. @The negative sign of the bulk module in th
o54 phase is seen from the curvature of the correspon
Eo54(V) curve in Fig. 3.# So, theo54 configuration corre-
sponds to a saddle point of the potential surface. To bec
stable, the lattice undergoes the finite-scale spontaneou
formation including theU5 ~orthorhombic-to-monoclinic!
shear deformation and the volume increment~along U1
1U21U3) and finally evolves into the monoclinic badd
leyite structure@Figs. 6~c! and 6~e!#. Moreover, this explains
why theEt(V) andEm(V) curves in Fig. 3 have no commo
points.

On approaching theK8 point, the monoclinic structure
also manifests the elastic anomalies: the elastic constantsC55
and the bulk module values gradually vanish. This is see
Fig. 3, in which the curvature ofEm(V) tends to zero on
approaching theK8 point. This can be related to the nature
the tremendous volume change and shear deformation
companying them-t inversion.

IV. CONCLUSIONS

The main peculiarity of the atomic arrangement in zirc
nia, distinguishing it from other crystalline dioxides, orig
nates from a specific value of the cation radius: it is n
sufficiently large to ensure the stability of the fluoritelik
cubic structure, but is too large to ensure the stability of
‘‘octahedral’’ crystal structure with the sixfold cation coord
nation. Because of this peculiarity, the two principal dynam
matrix contributions, that from the Coulomb interaction a
that from the overlap repulsion, are mutually canceled. A
result, the total interatomic forces in zirconia are govern
by other contributions which are not prominent in most o
ides as against the two major ones. The analysis of the
perimental data, of the results of theab initio studies, and the
previous model treatments led us to conclude that the ph
cal factor determining the stability of the baddeleyite stru

*Author to whom correspondences should be addressed. Ema
dress: andrem@unilim.fr
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