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Test of a theoretical equation of state for elemental solids and liquids

Eric D. Chisolm, Scott D. Crockett, and Duane C. Wallace
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

~Received 24 October 2002; revised manuscript received 19 May 2003; published 4 September 2003!

We propose a means for constructing highly accurate equations of state~EOS! for elemental solids and
liquids essentially from first principles, based upon a particular decomposition of the underlying condensed
matter Hamiltonian for the nuclei and electrons. We also point out that at low pressures the neglect of
anharmonic and electron-phonon terms, both contained in this formalism, results in errors of less than 5% in
the thermal parts of the thermodynamic functions. Then we explicitly display the forms of the remaining terms
in the EOS, commenting on the use of experiment and electronic structure theory to evaluate them. We also
construct an EOS for aluminum and compare the resulting Hugoniot curve with data up to 5 Mbar, both to
illustrate our method and to see whether the approximation of neglecting anharmonicity etc. remains viable to
such high pressures. We find a level of agreement with experiment that is consistent with the low-pressure
results.
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I. INTRODUCTION

Over the last 60 years, numerous models and techniq
have been developed for creating equations of state~EOS!
for a variety of materials that are valid up to very extrem
pressures~tens of Mbar! and temperatures~several eV!. In
the EOS community at the national laboratories, for instan
we have often used models based on the Mie-Gru¨neisen EOS
together with the Thomas-Fermi or Thomas-Fermi-Dir
model ~or one of its modifications! to include the contribu-
tions from the electrons~see Ref. 1 for examples!. The mod-
els usually contain enough independent parameters to a
the EOS until it correctly reproduces the experimenta
measured Hugoniot curve~and perhaps a few other da
points!, but it is generally an open question how accurate
EOS is away from the Hugoniot curve. In this paper w
argue that for one class of materials, elemental solids
liquids, our understanding of the underlying condensed m
ter Hamiltonian for the nuclei and electrons has grown to
point that we can construct highly accurate EOS from ess
tially first principles, and we also propose a means for do
so. We also argue that, since the underlying physics is w
understood, an EOS derived this way should have the r
functional form, even if we are unsure of the values of so
of its parameters; thus, if the resulting EOS is shown to
accurate in one thermodynamic region~say, along the Hugo-
niot curve!, then we can be confident that it is rough
equally accurate elsewhere.

In this formalism, the EOS in the solid phase depends
a decomposition of the Hamiltonian due to Wallace~see
Chapter 1 of Ref. 2!, extending the work of Born3 to metals
as well as insulators; the resulting free energy contains te
describing the harmonic motion of the nuclei about their l
tice sites~phonons!, thermal excitation of the electrons from
their ground state, anharmonic corrections to the nuclear
tion ~represented as phonon-phonon interactions!, and inter-
actions between the electron excitations and the nuclear
tion, represented as electron-phonon interactions.~Note that
this description is exact; all of the physics contained in
true Hamiltonian of the system is included here. Spec
0163-1829/2003/68~10!/104103~12!/$20.00 68 1041
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EOS models usually neglect the anharmonic and elect
phonon terms, arguing that anharmonicity is small and m
ing reference to some form of the Born-Oppenheimer
proximation; we will take a somewhat different rout
commenting on approximations below.! A recently devel-
oped theory of the dynamics of monatomic liquids~see Ref.
4 for a review! uses the same Hamiltonian to derive a liqu
free energy which is quite similar to the expression for
solid, with additional terms accounting for the fact that t
liquid, as opposed to the solid, traverses many potential
leys and thus sees the boundaries between them. For
phases, the resulting free energies have been compared
experimental data in the low-pressure regimeP
<100 kbar), with the following results~Secs. 17–19 and 23
of Ref. 2!:

~1! Molecular dynamics~MD! calculations of the anhar
monic contribution to the entropy of several solids mat
experimental entropy data to the accuracy of the data th
selves.

~2! Low-temperature (T<20 K) calculations of the
electron-phonon term for several solids lead to predictio
that also match experimental entropy to the accuracy of
data.

~3! Theoretical arguments show that the electron-phon
contribution is entirely negligible except when the electron
contribution dominates the free energy, such as in meta
solids at low temperatures.

~4! For the 27 elemental solids for which accurate data
available from lowT @but not too low; see point~3!# to the
melting temperatureTm , the free energy excluding the an
harmonic and electron-phonon terms accounts for the exp
mental thermal energy and entropy to an accuracy of 5%~in
fact, an accuracy of 2% for all but about five materials!.

~5! For the six elements in the liquid phase for whic
accurate data are available at temperatures up to aro
3Tm , the effect of neglecting the anharmonic, boundary, a
electron-phonon contributions to the energy and entropy
similarly small.

This tells us that at low pressures, we can neglect
anharmonic, boundary, and electron-phonon terms in b
the solid and liquid free energy~which happen to be the
©2003 The American Physical Society03-1
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CHISOLM, CROCKETT, AND WALLACE PHYSICAL REVIEW B68, 104103 ~2003!
hardest terms to calculate!, and the resulting thermal energ
and entropy are both simple in form and accurate at the
level. It is for this reason, not an appeal to the Bo
Oppenheimer or other approximations, that we know we
simplify our EOS and what the results of the simplificati
will be, at least at low pressures.

In this paper we do two things:~1! we describe in more
detail this framework for constructing EOS and discuss
theoretical and experimental inputs needed to implemen
and ~2! we construct a sample EOS, neglecting anharmo
boundary, and electron-phonon terms, both to illustrate
method and to discover whether points~4! and ~5! above
continue to hold in the high-pressure regime. We use alu
num as our sample because of the availability of extens
electronic structure calculations, up to a compression
three, and highly accurate shock Hugoniot curve data, wh
provide a test of our EOS through both phases to pressure
around 5 Mbar. In Sec. II A we develop the general theory
the solid EOS, and in Sec. II B we do the same for the liqu
In Sec. III A, we construct our sample EOS for Al, compa
ing it with other EOS work, and in Sec. III B we compute th
Hugoniot curve predicted by the EOS and compare it w
the experimental data. The results are encouraging. Fin
we review our work, discuss the advantages and disad
tages of this formalism~and how to address the disadva
tages!, and suggest directions for future development.

II. GENERAL THEORY

A. Solid phase

The condensed matter Hamiltonian, decomposed as
scribed above, consists of terms describing the motion of
nuclei in a potential generated by the electrons in th
ground state, plus additional terms that lead to the ther
excitation of the electrons and describe their interacti
with the nuclear motion. With this Hamiltonian, the Helm
holtz free energy per atom for a solid at temperatureT with
volumeV per atom takes the form

Fs~V,T!5F0
s~V!1Fph

s ~V,T!

1Fel
s ~V,T!1Fanh

s ~V,T!1Fep
s ~V,T!. ~1!

HereF0
s is the static lattice potential~the electronic ground-

state energy when the nuclei are fixed at their lattice sites!; it
depends on the particular crystal structure.Fph

s is the contri-
bution from the harmonic motion of the nuclei about th
lattice sites,Fel

s represents the thermal excitation of the ele
trons when the nuclei are fixed at their lattice sites,Fanh

s

accounts for the anharmonicity of the nuclear motion~which
may be represented as phonon-phonon interactions!, andFep

s

expresses the interactions between the electron excita
and the nuclear motion, represented as electron-phonon
teractions.~We emphasize again that this free energy is
act; it includes all of the physics present in the Hamiltonia!
The discussion in the Introduction justifies approximating
solid free energy as
10410
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Fs~V,T!5F0
s~V!1Fph

s ~V,T!1Fel
s ~V,T!, ~2!

so let us now consider the forms ofFph
s and Fel

s and the
parameters on which they depend. The phonon term in
Hamiltonian describes harmonic motion, which lea
uniquely to the free energy of lattice dynamics:

Fph
s ~V,T!5E

0

`

gs~v!F1

2
\v1 ln~12e2b\v!Gdv, ~3!

whereb51/kT andgs(v) is the distribution of phonon fre-
quencies in the Brillouin zone.~Note thatgs(v) is volume
dependent.! Sometimes we require not the full Eq.~3! but
only its high- and low-temperature limits, for which we nee
not the fullgs(v) but only three of its moments, expressed
terms of the characteristic temperaturesQ0

s , Q1
s , and Q2

s

defined by

ln kQ0
s5^ ln \v&BZ ,

kQ1
s5

4

3
^\v&BZ ,

kQ2
s5F5

3
^~\v!2&BZG1/2

, ~4!

where^•••&BZ indicates an average over all the frequenc
in the Brillouin zone. Then the following limits hold:

Fph
s ~V,T!→9

8
kQ1

s as T→0 ~5!

and

Fph
s ~V,T!523kTF lnS T

Q0
sD 2

1

40S Q2
s

T D 2

1•••G ~6!

at highT.
The leading term in Eq.~6! describes purely classica

nuclear motion, while the series of terms in powers ofT22

are quantum corrections. Keeping only the first quantum c
rection, the thermodynamic functions derived from Eq.~6!
are accurate to 1% at temperatures above1

2 Q2
s .

The electronic excitation free energyFel
s can be expressed

generally as an integral function of the electronic density
states per atom,ns(e), and the Fermi distribution

f ~e!5
1

eb(e2m)11
, ~7!

whereb is still 1/kT andm is the chemical potential. If each
atom contributesZ electrons to the valence bands~notice that
Z is not necessarily the atomic number!, with the lowest
valence energy set to zero, thenm is a function ofT deter-
mined by the normalization condition

E
0

`

ns~e! f ~e!de5Z. ~8!

The electronic free energy is then
3-2
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TEST OF A THEORETICAL EQUATION OF STATE FOR . . . PHYSICAL REVIEW B 68, 104103 ~2003!
Fel
s ~V,T!5mZ2E

0

eF
ens~e!de

2kTE
0

`

ns~e!ln@11e2b(e2m)#de, ~9!

whereeF , the Fermi energy, is the value ofm whenT50.
The second term on the right-hand side of Eq.~9! is the
subtraction of the electronic ground state energy, which
sures thatFel

s →0 asT→0. This property makes sense ifFel
s

represents purely thermal excitation of the electrons.~It also
avoids double counting of the energy, as the electro
ground-state energy is already represented asF0

s .)
We see from this discussion that to evaluate the term

Eq. ~2! for the solid free energy we require three unknow
functions:F0

s , gs(v) ~or Q0
s , Q1

s , andQ2
s if we are con-

cerned only with the high- and low-T limits!, andns(e) ~and
the associated quantitiesZ andeF). These can be determine
in various ways: compressibility data and diamond anvil c
data can be used to constructF0

s(V); neutron scattering ex
periments can determinegs(v) or its various moments atP
51 bar; and for many elements all three of these functi
can be computed reliably using electronic structure the
@Or one could use results from multiple sources in combi
tion, which is often an option withF0

s and is basically a
necessity withgs(v).# One must keep in mind, however, th
the accuracy of one’s answers will be limited by the accur
and range of applicability of these functions, regardless
how they are determined.

B. Liquid phase and two-phase region

According to the theory of liquid dynamics reviewed
Ref. 4, the same Hamiltonian that gave us the solid f
energy leads to a similar form for the free energy of a m
atomic liquid. In this theory, the region of the many-bo
potential surface in which the system moves in the liq
phase is dominated by a large number of intersecting nea
harmonic valleys, called ‘‘random’’ valleys because they c
respond to particle configurations which retain no remn
crystal symmetry and which are all macroscopically iden
cal. In particular, the valleys all have the same distribution
normal mode frequencies, and they all have the same d
~which, as in the solid case, is the electronic ground-s
energy when the nuclei are fixed at the valley minimum!.
The resulting liquid free energy per atom is

Fl~V,T!5F0
l ~V!1Fph

l ~V,T!1Fel
l ~V,T!1Fab

l ~V,T!

1Fep
l ~V,T!2kT ln w. ~10!

All of the terms correspond to their solid counterparts w
the following exceptions.

~1! F0
l , now called the staticstructure potential, is the

depth of a typical valley in which the liquid system move
~2! The normal mode spectrum appearing inFph

l is that of
a typical liquid potential valley, not the unique solid potent
valley.
10410
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~3! The termFab
l includes corrections due both to anha

monicity and to the fact that the potential valleys ha
boundaries, which the liquid~as opposed to the solid! en-
counters as it transits from valley to valley.

~4! The extra term2kT ln w corresponds to an increase
entropy ofk ln w per atom; the value lnw'0.8 is estimated
from entropy of melting data of the elements~again, see Ref.
4 for details!. In liquid dynamics theory, this term is due t
the hypothesis that the number of potential valleys amo
which the liquid moves is of the order ofwN, whereN is the
number of atoms in the system.

We emphasize that the same Hamiltonian gives rise
both Eqs.~1! and~10!; the differences are that the potential
expanded about different equilibrium configurations in t
two cases, and that the region of configuration space o
which the liquid moves is obviously far larger than the spa
available to the solid~hence the2kT ln w term!.

Again making the approximations discussed in the Int
duction, our form for the liquid free energy becomes

Fl~V,T!5F0
l ~V!1Fph

l ~V,T!1Fel
l ~V,T!2kT ln w, ~11!

and the additional term2kT ln w is fully determined by set-
ting lnw50.8, as mentioned above. The form of the phon
term is dictated by a central hypothesis of liquid dynam
theory: The motion of the liquid consists of oscillations
the macroscopically similar valleys described above toge
with occasionaltransits between valleys; the transits are
such short duration that they do not contribute to the therm
dynamics to lowest order. Thus we will takeFph

l to have the
same form as the solid phonon term, Eq.~3!, with possibly a
different phonon frequency distributiongl(v). The elec-
tronic excitation term for the solid was derived using on
the assumption that the electrons are thermally distribu
over the available states using Fermi statistics; all of
information about the configuration of the nuclei is contain
in the density of states. Hence,Fel

l also takes the same form
as the corresponding solid term, Eq.~9!, with a density of
statesnl(e) appropriate for the liquid phase.~What this
means is discussed briefly below.!

The liquid and solid EOS together determine the melt
temperature as a function of pressureTm(P) by the require-
ment that the solid and liquid Gibbs free energies ma
along the melt curve, or

Gs
„P,Tm~P!…5Gl

„P,Tm~P!…. ~12!

Once the melt curve is determined, one can use the solid
liquid EOS separately to computeVm

s (T) and Vm
l (T), the

atomic volumes of the solid and liquid at melt as functions
temperature.@Of course, usingTm(P) one can expressVm

s

andVm
l as functions of pressure equally well.#

In the caseVm
s (T),Vm

l (T) for all T, which we assume
here, the computation of the full two-phase EOS (F, E, S,
andP) for anyV andT proceeds as follows. IfV<Vm

s (T) for
the givenT, the system is in the solid phase;Fs is computed
as described in Sec. II A, and the other functions follow fro
3-3
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CHISOLM, CROCKETT, AND WALLACE PHYSICAL REVIEW B68, 104103 ~2003!
Ss52S ]Fs

]T D
V

,

Es5Fs1TSs,

Ps52S ]Fs

]V D
T

. ~13!

If V>Vm
l (T), the system is in the liquid phase;F l is com-

puted as described in this subsection, and the other funct
follow from the expressions analogous to Eq.~13!. If
Vm

s (T),V,Vm
l (T), the system is in the two-phase regio

defining h, the volume fraction of the system in the liqu
phase, by

h5
V2Vm

s ~T!

Vm
l ~T!2Vm

s ~T!
, ~14!

the thermodynamic functions are

F~V,T!5hFl
„Vm

l ~T!,T…1~12h!Fs
„Vm

s ~T!,T…,

E~V,T!5hEl
„Vm

l ~T!,T…1~12h!Es
„Vm

s ~T!,T…,

S~V,T!5hSl
„Vm

l ~T!,T…1~12h!Ss
„Vm

s ~T!,T…,

P~V,T!52
Fl
„Vm

l ~T!,T…2Fs
„Vm

s ~T!,T…

Vm
l ~T!2Vm

s ~T!
. ~15!

Finally, we note that just as with the solid, to evaluate
terms in Eq.~11! we require three unknown functions:F0

l ,
gl(v) ~or Q0

l and Q2
l , since we are not likely to need th

low-T limit !, andnl(e). In contrast to the solid case, the
functions are generally not available experimentally.~It is
possible that one might be able to computeF0

l using liquid
compressibility data, but we suspect that this will be ve
difficult.! However, for many materials these functio
should be computable using electronic structure theory, p
ceeding much as one would in the solid case except tha
nuclei would be arranged not in a crystal configuration bu
a disordered structure characteristic of a ‘‘random’’ valley
the liquid potential surface.4 To our knowledge very few
such calculations have been attempted; the only ones we
aware of areF0

l and gl(v) at a single volume for liquid
sodium in Ref. 5~the results are referred to in Ref. 4 and
graph ofgl(v) using their results appears as Fig. 1 in R
6!. Another function that is sometimes available is the m
curveTm(P), but this curve cannot be chosen independen
of the others, since the solid and liquid EOS determine
jointly; but this can be an advantage, since ifTm(P) is
known from experiment, for example, it can be used to co
pute one of the other needed functions if it is not otherw
available. In fact, this is how we will determineF0

l in our
example EOS, to which we now turn.
10410
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III. AN EXAMPLE: ALUMINUM

To illustrate the application of the theory we have d
scribed, we will now construct an EOS for aluminum, whi
has been the subject of extensive electronic structure ca
lations and for which a great deal of high-quality experime
tal data are available. We will then compare the Hugon
curve predicted by our EOS with data up to pressures
approximately 5 Mbar; this will tell us whether the approx
mations we discussed in the Introduction~neglecting anhar-
monic, boundary, and electron-phonon effects!, known to be
accurate at low pressures, continue to be reasonable in
high-pressure domain.

A. Constructing the EOS

We recall from Sec. II A that the solid EOS requires thr
functions:F0

s , gs(v), and ns(e). Since we will be testing
the EOS by comparison with Hugoniot curve data, we w
always be in the high-T region ~except for one brief low-T
excursion; see below!, so we use Eq.~6! for Fph

s instead of
Eq. ~3!; this means that we require onlyQ0

s , Q1
s , andQ2

s in
place ofgs(v).

To determine these functions, we began by consulting
results of density functional theory~DFT! calculations car-
ried out in the local density approximation by Straubet al.7

They worked with fcc and bcc Al at atomic volumes fro
37a0

3 to 160a0
3, wherea0 is the Bohr radius, corresponding t

densities from 8.17 to 1.89 g/cm3 ~the density of Al at 293 K
and 1 bar is 2.70 g/cm3). Their calculations indicate aT
50 transition from fcc to bcc at 51a0

3, corresponding tor
55.93 g/cm3, but we will neglect this phase change an
treat solid Al as an fcc crystal for two reasons: The DF
calculations themselves suggest that the effect of the ph
change on the thermodynamic functions will be quite sm
and we know from experiment that the solid-liquid transiti
on the Hugoniot curve takes place well before reaching

FIG. 1. ~Color online! Q0
s , Q1

s , andQ2
s as functions of atomic

volume from the DFT calculations in Ref. 7 and experimental d
from Ref. 9. Our functional forms are also shown.
3-4
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TEST OF A THEORETICAL EQUATION OF STATE FOR . . . PHYSICAL REVIEW B 68, 104103 ~2003!
density of concern~see Sec. III B!, so we are confident of ou
assumption of fcc along the Hugoniot curve until meltin
However, this assumption may have an effect on the liq
EOS at high densities, which we will comment on belo
~Other electronic structure work, discussed on pp. 89–90
Ref. 8, suggests the possibility of an hcp phase between
fcc and bcc phases, but as Ref. 8 also mentions, no ex
mental signature of this phase has been found, so we
proceed under the assumption of a single solid phase.!

Straubet al.computedF0
s for fcc by fitting their results to

a Birch-Murnaghan form,

F0
s~V!5c01Vb(

n52

5
cn

n! H 1

2 F S V

Vb
D 22/3

21G J n

, ~16!

with coefficients

Vb5106.302a0
3 , c052287.7832 mRy,

c25761.2029 GPa, c351319.036 GPa,

c4513 661.06 GPa, c5550 315.53 GPa. ~17!

Qn
s were determined by computing the bulk modulus a

four zone-boundary phonons at several volumes, and th
results were used to calibrate a pseudopotential mode
each volume. The pseudopotential was then used to calc
phonon frequencies throughout the Brillouin zone, allowi
the determination ofQ0

s , Q1
s , and Q2

s . Their results are
shown in Table I and Fig. 1.~The full set of results was no
reported in Ref. 7.! To check these results, Straubet al.com-
pared experimental phonon moments for Al atT580 K and
P51 bar based on Born-von Karmen fits to neutron scat
ing data9 with their predictions interpolated to the approp
ate atomic volume of 110.7a0

3. The experimental points, als
shown in Fig. 1, are in very good agreement with their c
culations; hence, these results forQn

s are acceptable for us
in our EOS without modification. To determineQn

s at any
volume, we first constructed a functional fit to theQ0

s points,
with the result

Q0
s~V!52852.691

17 319.9

V
12.336 67V2633.858 ln~V!,

~18!

whereQ0
s is in K andV is in a0

3. Then we noted that accord
ing to the DFT results bothQ1

s andQ2
s approximately equa

e1/3Q0
s , so we made the same approximation using Eq.~18!

TABLE I. DFT calculations ofQ0
s , Q1

s , andQ2
s from Ref. 7.

V(a0
3) Q0

s (K) Q1
s (K) Q2

s (K)

111.97 278.09 386.55 387.20
106.65 304.63 423.81 424.86
93.318 381.43 532.00 534.48
74.655 525.01 735.49 741.68
55.991 741.62 1044.7 1058.3
37.327 1109.5 1575.0 1605.4
10410
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for Q0
s to determineQ1

s andQ2
s at any volume. These func

tions are also shown in Fig. 1.
The DFT calculations also provided data on the electro

density of statesns(e). Graphs ofns(e) for fcc and bcc Al at
atomic volume 112.0a0

3 ~corresponding toP50 and T
5295 K) are shown in Fig. 2, along with the free electr
ns(e), for which

ns~e!5A e

eF
S 3Z

2eF
D

and

eF5
\2

2me
S 3p2Z

V D 2/3

, ~19!

at V5112.0a0
3 and Z53. The figure shows that the fre

electron model is a good approximation for either crys
structure, for electronic excitations to around1

2 Ry. The
same match, at a slightly poorer level of approximation a
for excitations to around 1 Ry, is found at our smalle
atomic volume of 37a0

3. For all volumes of our study and
temperatures up toTm , the total electronic excitation contri
bution to the energy, entropy, and pressure is at most 5%
the error introduced by using the free electronns(e) in our
calculations is negligible. Making this approximation, th
normalization condition from Eq.~8! becomes

F1/2~bm!5
2

3
~beF!3/2, ~20!

which determinesm as a function ofV andT, and Eq.~9! for
the free energy becomes

Fel
s ~V,T!5ZS m2

2

3
kT

F3/2~bm!

F1/2~bm!
2

3

5
eFD , ~21!

FIG. 2. ns(e) for bcc and fcc Al at atomic volume 112.0a0
3 from

the calculations in Ref. 7. The free electronns(e) at this volume and
Z53 from Eq.~19! is shown for comparison~Ref. 2!.
3-5
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CHISOLM, CROCKETT, AND WALLACE PHYSICAL REVIEW B68, 104103 ~2003!
where Z53. Fn(x) are the standard Fermi integrals; the
properties are discussed on pp. 332–334 of Ref. 10 and
values for variousn are tabulated in Refs. 11 and 12.

The solid EOS that results from assembling all of the
functions is reliable over a large range of volumes and te
peratures; however, it is not in perfect agreement with
highly accurate experimental data that are available at
pressures. Specifically, experiments on Al atT50 and P
50 show that7

V05110.6a0
3 , E052249 mRy,

B0579.4 GPa,
dB0

dP
54.7, ~22!

but the EOS yieldsV05107.3a0
3, which is outside the ex-

perimental error. Therefore, we chose to make a small
rection to our purely theoretical free energy to agree with
experiment. These quantities are obviously determined
the T50 form of the free energy,F0

s5F0
s1 9

8 kQ1
s @see Eq.

~5!#; sinceQ1
s is already in excellent agreement with ava

able experiment, we chose to modify onlyF0
s . To proceed,

we noted that the data determineP0, the T50 pressure, in
the vicinity of V5V0 by the relation

P0~V!5P0~V0!

1
dP0

dV UV0
~V2V0!1

1

2

d2P0

dV2 U
V0

~V2V0!21•••

52
B0

V0
~V2V0!1

B0

2V0
2 S 11

dB0

dP D ~V2V0!21•••,

~23!

while at higher compressions we have no information
supplement the electronic structure result; so we decide
construct aF0

s that correctly reproduces Eq.~23! nearV0 but
smoothly interpolates to Eq.~16! at lower volumes. To do
this, we computedP0 at ten volumes between 110a0

3 and
111.25a0

3 using Eq. ~23!, and we also computedP05

2]F0
s/]V using the above form forF0

s , with F0
s from Eq.

~17!, at 23 volumes between 30a0
3 and 41a0

3. We then per-
formed a least-squares fit to these points using an expres
similar to the Birch-Murnaghan form, but carried to
slightly higher order; after integrating, adjusting the const
of integration to correctly matchE0 from Eq. ~22!, and sub-
tracting off 9

8 kQ1
s , we had a newF0

s given by

F0
s~V!521.646 1531061

2.076 083107

V2/3
2

4.615 153108

V4/3

1
5.712 493109

V2
2

5.499 9831010

V8/3

1
3.719 7831011

V10/3
2

1.662 8431012

V4
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1
4.411 1831012

V14/3
2

5.250 6431012

V16/3

1
2.267 893107

V
2220.716V1236 788 ln~V!,

~24!

whereF0
s is in mRy andV is in a0

3. This F0
s , which repro-

duces the data in Eq.~22! and interpolates smoothly to th
DFT curve at higher compressions, is what we use in
EOS instead of Eq.~17!. The T50 pressure-volume curve
constructed using both the original and newF0

s are shown in
Fig. 3.

Our choice of a Birch-Murnaghan–like form was dictat
by the fact that the result of Straubet al. provides most of
our information about the shape ofF0

s ; so our goal was to
preserve that form insofar as was possible, interpolating b
to their result as quickly as we could without introducin
enough curvature to compromise agreement withdB0 /dP.
This correction toF0

s constitutes a small change to the ove
all EOS; the effect of this change on the Hugoniot curve w
be considered in the following section. This modificatio
completes the full solid free energy, so we can now consi
the liquid.

For the liquid we need the same three functions that
needed for the solid, and we must also consider the mel
curve Tm(P). Having chosen to use Eq.~6! for Fph

s , we
certainly did the same forFph

l , since the Hugoniot curve will
obviously enter the liquid region only at rather high tempe
tures; thus we needed onlyQ0

l andQ2
l . From experiment we

know that Al is what is called in liquid dynamics a ‘‘norma
melting element’’~the entropy of melting at constant densi
is approximately 0.8k per atom!, and we argue in Ref. 4 tha
Q0 in solid and liquid phases of such an element are appr

FIG. 3. ~Color online! The T50 pressure-volume relations ca
culated using the originalF0

s and the newF0
s we constructed. No-

tice how they differ in the vicinity ofV5110.6a0
3 but then agree

more closely at lower volumes.
3-6
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mately equal.~Experimental and computational work su
porting this conjecture are also discussed in Ref. 4.! Thus we
took the liquid to have the sameQ0 as the solid. It is also
true that in the liquid,T is typically much larger thanQ2

s ~for
example, in liquid Al at normal densityT>2Q2

s), rendering
the first quantum correction toFph

l negligible~roughly 1% at
normal density!, so even ifQ2

l differs from Q2
s by 25% or

more, the impact on the phonon term will be very sma
therefore we also used the sameQ2 in the liquid as in the
solid.

Since the free electron model approximates the DFT
sult for ns(e) so well for both fcc and bcc Al~Fig. 2!, which
correspond to two valleys in the many-body potential surf
with rather different structures, we also expect this mode
be a good approximation fornl(e), the density of states fo
the structure characteristic of a liquid. Since at all volum
and temperatures up to 5Tm ~the relevance of this numbe
will appear below!, the electronic contribution to the thermo
dynamic functions does not exceed 25%, the error in
duced by the free electron model is still acceptable.

We fixed the only remaining term in Eq.~11!, F0
l , by the

requirement that the Gibbs free energies of the solid
liquid match along the Al melting curve. Boehler and Ros13

suggested that

Tm~P!5933.45 KS P

6.049 GPa
11D 0.531

~25!

on the basis of their experimental work up to 80 GPa~0.8
Mbar!, and experiments by McQueenet al.14 and Hänström
and Lazor15 and theoretical work by Pe´lissier16 suggest that
this curve continues to be accurate up to 200 GPa. In
absence of evidence to the contrary, we took Eq.~25! to be
valid to higher pressures as needed.~As we will see later, our
EOS will assume Eq.~25! no higher than 400 GPa.! We
computedF0

l as follows: We made a guess forF0
l not very

different fromF0
s , and then we used it and Eq.~25! to cal-

culate the difference between the two Gibbs fr
energies,

DG~P!5Gs
„P,Tm~P!…2Gl

„P,Tm~P!…, ~26!

at several hundred values ofP over the entire pressure rang
considered in this study. We also calculated the liquid m
volumeVm

l (P) at eachP. If the rms average of Eq.~26! over
all calculated points was not sufficiently small, we used
following easily verified fact: To first order, a small chang
dF0

l produces a small changedGl
„P,Tm(P)… given by

dGl
„P,Tm(P)…5dF0„Vm

l (P)…. Thus we performed the sub
stitution

F0
l ~V!→F0

l ~V!1DG„Pm
l ~V!…, ~27!

where DG was computed by Eq.~26! and Pm
l (V) is the

inverse ofVm
l (P), and calculated Eq.~26! again. We iterated

until the rms average was sufficiently small~less than 0.001
mRy in our case!, giving us the neededF0

l , which is shown
in Fig. 4 along withF0

s . We recordedF0
l as a list of points,
10410
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and we did not create a functional fit for it; instead we us
an interpolator to calculate it and its derivative when need

It is at this point that the existence of other solid phases
Al, discussed earlier, affects the EOS of the liquid. It is like
that the liquid region borders the fcc crystal only over part
its boundary, beyond which the liquid borders the bcc reg
or other solid phases. In such a case, at sufficiently h
pressures we should use the free energy appropriate for
solid phase, not the fcc free energy, in Eq.~26!. This suggests
that F0

l may become inaccurate beyond densities in
neighborhood of 6 g/cm3, where theT50 fcc-bcc phase
transition occurs. We will take this fact into consideratio
when we discuss the limits of applicability of the EOS b
low.

Once we had the full solid and liquid EOS, we the
solved Eq.~12! directly to computeTm(P), verifying that we
had reproduced the Boehler-Ross curve; our result is sh
in Fig. 5, together with the data from Refs. 14 and 15 a
some points from Pe´lissier’s theoretical curve.~According to
Ref. 14, their data point at 125 GPa marks the onset of m
ing along the Hugoniot curve. We will comment on this
the following Subsection.!

Now that we have the full two-phase EOS, it is profitab
to compare our work with another EOS for Al, due to Mor
arty et al.17 These authors also use a full lattice dynam
treatment of the crystal phonons, although they calcu
their gs(v) two separate ways, using both Moriarty’s gene
alized pseudopotential theory~GPT! and a local pseudopo
tential model with parameters chosen to match solid-ph
EOS data. We strongly prefer to rely on DFT results, as
believe DFT has reached such a stage of maturity tha
more accurately captures the physics contained in the
Hamiltonian of the system, which as we have emphasized
believe to be understood in sufficient depth that it sho
underlie all of our work. Second, in their treatment of t

FIG. 4. ~Color online! F0
l determined by matching the liquid

and solid Gibbs free energies along the melt curve.F0
s is also

shown for comparison.
3-7



pe

s
st
on
ua
n
e

fr

a

is
th
e

us

an
is

th

th

ake

ree
ere.
olid
quid
ree

200
ns
the

o a

ke

ow
le.

-
t at
are
-

for
e a

he

n-
n-
’t

ear;

s
nd

,

CHISOLM, CROCKETT, AND WALLACE PHYSICAL REVIEW B68, 104103 ~2003!
liquid phase Moriartyet al. rely on fluid variational theory,
described in detail in Ref. 18, to compute the least up
bound to the ‘‘real’’ liquid free energy~from a liquid Hamil-
tonian based on pseudopotentials! that can be obtained from
the free energy of a reference system; Moriartyet al. inves-
tigate hard-sphere, soft-sphere, and one-component pla
reference systems before settling on the soft-sphere sy
as providing the best bound. Based on the investigati
summarized in Ref. 4, we claim that we have the act
Hamiltonian of the liquid itself, not a Hamiltonian based o
pseudopotential theory; furthermore, this Hamiltonian d
composes naturally into a dominant term that produces a
energy that can be used directly~instead of requiring ap-
proximation by the free energy of a reference system! and
remaining terms whose contributions to the free energy
known to be small~see the Introduction!. The same point we
made above for the solid phase applies; we argue that it
better strategy in developing EOS to try to understand
true Hamiltonian of the system, and then to use it wh
doing statistical mechanics. Almost inevitably, one m
make approximations~which we certainly have done here!,
but we believe we are in a better position to understand
improve upon them if the physical foundation of the EOS
as solid as we can make it.

Finally, let us make some conservative estimates of
range of applicability of this EOS. Any limits will arise from
two sources: the validity of the approximation thatFab

l is
negligible in the liquid~see the Introduction! and the limited
ranges over which the functionsF0(V), g(v), n(e), and
Tm(P) are known. Let us consider each in turn.

~1! We know from experiment thatFab
l is negligible when

T<3Tm ~again, see the Introduction!, and judging from
trends in the data we suspectFab

l will still be small up toT
'5Tm , but clearly this term must become relevant as

FIG. 5. ~Color online! The melt curveTm(P) computed from
our full solid and liquid EOS@which reproduces the Boehler-Ros
curve, Eq.~25!#, the experimental data from Refs. 14 and 15, a
points from the theoretical curve in Ref. 16.
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nuclear motion becomes more gaslike. Thus we shall t
care with any data atr and T such thatT approaches or
exceeds 5Tm(r).

~2! At densities below approximately 6 g/cm3, we are
confident that the solid is in the fcc phase, and the liquid f
energy is based on this phase, so we trust the full EOS h
At higher densities, we must be more circumspect; the s
may have undergone a phase transition to bcc, and the li
EOS at this density may be based on the wrong solid f
energy. Further, as we have indicated earlier, Eq.~25! for the
melt curve has received independent support only up to
GPa, so we must be cautious with the liquid EOS in regio
beyond this point. We decided to be brave and accept
melt curve as valid up to 400 GPa; this corresponds t
liquid density of 6.15 g/cm3, and since this is not far from
the probable location of the solid fcc-bcc transition, we ta
it as the density limit of our EOS.~Even if we did not have
this concern, we would be restricted to densities bel
8.17 g/cm3, where electronic structure results are availab!
Also, the free electron approximation tons(e) has been vali-
dated only fore2eF up to 1/2 Ry, or 6.8 eV, at low com
pression and 1 Ry, or 13.6 eV, at high compression, bu
higher temperatures the electronic energy and entropy
sensitive to the details ofns(e) to energies above these lim
its. We estimated the values ofT that begin to probe the
unvalidated region ofns(e) ~roughly 3kT5e2eF), and we
found that over our valid density range theT55 Tm limit
always took precedence. Hence this limit is not relevant
us, but we mention it for completeness, as it may becom
concern if the EOS is extended to higher densities.

Figure 6 shows the limitsr<6.15 g/cm3 andT<5Tm of
the EOS inT-P space, together with the melt curve and t
Hugoniot curve~see the following subsection!, while Fig. 7
shows the same three features inT-r space. In this figure, the
melt curve becomes a two-phase region, which we will co
sider in more detail in the following subsection. We are co
fident that this EOS is valid within these limits, but we don
know how far beyond them the inaccuracies begin to app

FIG. 6. ~Color online! The limits of our EOS, the melt curve
and the Hugoniot curve.
3-8
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TEST OF A THEORETICAL EQUATION OF STATE FOR . . . PHYSICAL REVIEW B 68, 104103 ~2003!
thus we will not be shy about considering data not too
outside this range.

B. Comparison with Hugoniot curve data

If a shock wave travels at speedus through a sample o
material, accelerating its particles from rest to speedup and
changing its density, atomic volume, pressure, and inte
energy per atom fromr0 , V0 , P0, andE0 to r, V, P, andE,
then ~assuming thermal equilibrium before and after t
shock! these quantities must satisfy the Rankine-Hugon
relations,

r~us2up!5r0us ,

P2P05r0usup ,

E2E05
1

2
~P01P!~V02V!, ~28!

derived from considerations of mass, momentum, and en
conservation.~It is assumed that the wave is steady a
strength effects are negligible.! By solving these equation
together with the EOS, which relatesP, V, and E, we can
determine the Hugoniot curve, the locus of all possible e
states of the shocked material. We used our EOS and
~28! to computeus as a function ofup andP as a function of
r along the Al Hugoniot curve; the results are shown in Fi
8 and 9 along with the intersection of the Hugoniot cur
with the limit of validity of the EOS. Hugoniot curve dat
from several sources19–24are also included. The low-pressu
region of the Hugoniot curve is highlighted in Figs. 10 a
11, and the intermediate-pressure region, including the in
sections with the phase boundaries, is shown in F
12 and 13.

FIG. 7. ~Color online! The limits of our EOS, the two-phas
region ~solid below the region, liquid above!, and the Hugoniot
curve.
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Three important considerations in selecting which data
include are~1! the initial densities of the samples,~2! the
quality of the experimental technique, and~3! whether the
measurements were absolute or relative. All of the availa
data were taken using Al alloys with densities that diff
from the known pure metal value of 2.70 g/cm3 ~predicted
correctly by our EOS!; some alloys are as close a
2.71 g/cm3, while others differ much more. Since Hugoni
curves in general are quite sensitive to the initial density,
chose to compare only with the data for whichr0 clustered
around 2.71 g/cm3. ~Thus we used only one data point fro

FIG. 8. ~Color online! The us-up Hugoniot curve for Al pre-
dicted by our EOS together with the experimental data from R
19–24. The intersection of the Hugoniot curve with the limit
validity of the EOS~dot-dash line! is also indicated.

FIG. 9. ~Color online! The P-r Hugoniot curve for Al predicted
by our EOS together with the experimental data from Refs. 19–
The intersection of the Hugoniot curve with the limit of validity o
the EOS~dot-dash line! is also indicated.
3-9
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Ref. 20, which mainly concerns porous materials. All of t
data from the other references were used.! We also avoided
sources that gathered data using unusual shock wave g
etries ~such as Ref. 25!, and we also chose not to use th
results of indirect or relative measurements, such as R
26–28, preferring to rely on the absolute measurements
are available. Finally, we did not use the few data poi
available~primarily nuclear driven! that lie very far beyond
the limits of applicability of our EOS~but see below!.

The theoretical Hugoniot curve compares well with bo
the us-up and theP-r data all the way up to the predicte
limit of its validity, at approximately 500 GPa~5 Mbar!.
More specifically, the theory agrees with experiment atP
&40 GPa~Figs. 10 and 11!; at 40–125 GPa, the theory fall

FIG. 10. ~Color online! Theus-up Hugoniot curve in the low-P
region, with data from Refs. 19 and 21–23. Theup error bars on the
circles23 appear as slightly broadened vertical lines.

FIG. 11. ~Color online! The P-r Hugoniot curve in the low-P
region, with data from Refs. 19 and 21–23.
10410
m-

fs.
at
s

below the experimental error bars by around 1% at m
~Figs. 10–13!; and the theory again lies within the exper
mental error bars through the liquid phase~Figs. 8, 9, 12, and
13!. ~We recall that given percentage errors inus and up
correspond to roughly the same percentage errors in theP-r
plane.! The presence of theoretical error only in the so
phase is likely due to strength effects, which are presen
the solid but not in the liquid, and which are neglected in o
Hugoniot curve calculations. Furthermore, as Fig. 13 sho
we predict that the Hugoniot curve crosses the two-ph
region betweenr54.43 and 4.58 g/cm3, corresponding to a
range inP from 126 to 156 GPa; this agrees very well wi
Ref. 14, in which melting was found to occur between 1
and 150 GPa.@We note that Ref. 14 used Al 2024, an allo

FIG. 12. ~Color online! The us-up Hugoniot curve in the
intermediate-P region, including intersections with the phas
boundaries, with data from Refs. 23 and 24.

FIG. 13. ~Color online! The P-r Hugoniot curve in the
intermediate-P region, including intersections with the phas
boundaries, with data from Ref. 23 and 24.
3-10
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whose density is sufficiently different from pure Al that w
did not use Hugoniot curve data taken with that alloy in o
figures. We consider their melting results because, as we
in the preceding subsection, their data are consistent
other experiments that did use pure Al.# The correction toF0

s

from the preceding subsection, shown in Fig. 3, shifts
Hugoniot curve at pressures below 30 GPa, bringing it i
excellent agreement with experiment, while at pressu
above 60 GPa or so, the effect on the Hugoniot curve
insignificant.

We have also compared our results with data just bey
the EOS limits of validity; the points in Ref. 29 that matc
our initial density~one of which is a reanalysis of the sing
point in Ref. 30!, lying at about 10 Mbar, fall noticeably
below our Hugoniot curve, and their consistency with t
very-high-pressure points of Ragan31,32 strongly suggest tha
they represent the true Hugoniot curve, which thus falls
neath our prediction at higher pressures. Possible error
our EOS at such densities include, in what we estimate to
decreasing order of importance,~1! the shift from the fcc to
the bcc crystal, with a corresponding change inF0

l , as dis-
cussed in the last subsection,~2! deviations in the melt curve
Tm(P) from the Boehler-Ross form at higher pressures~the
densities of the points in Ref. 29 correspond to melt pr
sures around 620 GPa according to our EOS!, ~3! the fact
that at such highT the EOS is probing the high-energy r
gion of ns(e), and ~4! the neglect of the anharmonic an
boundary contributions to the liquid EOS (T is only slightly
below 5Tm at these points according to our EOS!.

IV. CONCLUSIONS

Drawing upon theory developed in Ref. 2, we have d
scribed a framework for constructing EOS for elemental s
ids and liquids, and we have discussed experimental and
oretical results indicating that the framework remains hig
accurate at low pressures when certain small effects~anhar-
monicity, boundaries, electron-phonon interactions! are ne-
glected. After displaying the resulting formulas for the Helm
holtz free energy, we considered the information one ne
to evaluate them, and we discussed the combination of
periment and theoretical work that could be used to get
information. Finally, as an illustration we constructed
EOS for Al, established its range of validity based on t
inputs to the EOS, and compared it with Hugoniot curve d
to 5 Mbar; our EOS matched the data to the accuracy
expected based on the low-pressure results.

We consider the primary advantage of this method to
in the fact that it incorporates into the decomposition of
Hamiltonian a great deal of accumulated knowledge of c
densed matter physics both for the solid and liquid pha
~for example, the fact that the electronic ground-state ene
is the most appropriate potential for the nuclear motion!. If
we have indeed captured the correct physics~and we expect
no new physics to enter until the relativistic domain!, then
the EOS should have the right functional form, which mea
that if it is shown to agree with available data, then we ha
reason to believe that it will be equally accurate in regio
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where no data are available; and making predictions wh
we have no data is the point of having an EOS to begin w
Furthermore, the better the foundation we can build, the b
ter our position for intelligently investigating and controllin
our approximations.

This discussion bears on the second goal of this pa
which was to learn whether the approximation of neglect
anharmonic, boundary, and electron-phonon effects rem
useful at higher pressures. We already knew, as discusse
the Introduction, that at lowP the anharmonic and electron
phonon terms are small, and we found this from direct c
culations; we also knew that for several elements, ove
range ofT, at low P the approximations in question yielde
thermal energies and entropies that disagreed with exp
ments by 5% at most. Our work here has shown that for
material at much higherP the approximations yield result
that match data along a single curve, the Hugoniot curve
comparable accuracy. Based on our arguments above tha
EOS incorporates the correct physics and is thus of the
rect functional form, we claim to have shown that this
EOS is trustworthy throughout its range of validity, for allT
andP.

The main disadvantage of this method is that it relies
many inputs@F0 ,g(v), and n(e) for each phase#, which
may be available only over limited ranges, and each of th
limits also restricts the range of validity of the EOS. Our
example amply illustrates this problem; with a compress
range from a little under 1 to just over 2, and a temperat
range that reaches only to slightly under 4 eV, this EOS
inadequate for many applications at the national laborator
We argue, however, that this problem does not indicat
deficiency in the approach; it only underscores the need
many more DFT calculations of these quantities for mo
materials with ever greater accuracy over ever larger ran

In the meantime, though, we would like to be able to s
something about elemental solid and liquid EOS at hig
compressions. We do know that as density increases,
electrons come to dominate the free energy, and it is a
known that TFD correctly describes the electrons in the lim
of infinite density. This suggests the following possibilit
Construct an EOS using the present techniques to comp
sions as high as the available experimental or DFT res
allow, and then interpolate between these results and the
dictions of TFD for higher compressions. This raises an i
portant question: At what pressures does TFD begin to
come accurate? Conventional wisdom, usually traced bac
Feynmanet al.,33 has held that TFD becomes reliable sta
ing at P'10 Mbar, but other work34 suggests that TFD~or
TF in their case, but TF and TFD converge at high pressu!
deviates noticeably from electronic structure results until 1
Mbar at least. This suggests that the pressure thresho
which TFD is trustworthy has not yet been adequately es
lished; it would be of great interest to settle this quest
more definitively.
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