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Recently, Kaminsket al. have reported that time-reversal symmetry is broken in the pseudogap phase in the
high-temperature superconducting materigl®8jCaCy0, ., 5 (Bi-2212). Here we examine the role of trans-
lationally invariant broken time-reversal states dyp_,2 superconductors. In particular, we determine the
change in the superconducting order parameter structure. We find that the broken time-reversal pseudogap state
that is consistent with the experiment of Kamingkial. gives rise to a mixed singlet-triplet pairirdsip
phase. Thisdd+ip state is shown to give rise to a helical superconducting phase. Consequencesdf this
+ip state on Josephson experiments are discussed.
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The origin of the pseudogap regime in the cuprates hasVe develop a Ginzburg-Landau theory of the remaining
been the subject of controversy. A variety of probes reveal @seudogap order parameter and the interplay of this order
suppression of the single-particle density of states in thigarameter with superconductivity. We discuss some observ-
regimel? A natural explanation is that the pseudogap phasé@ble consequences of the superconducting gap components
is a precursor superconducting state; a phase in which theféduced by the pseudogap order parameter. In particular, we
are Cooper pairs but no superconducting phase cohefencéhow that a helical superconducting phase is a consequence
The recent experimental results of Kaminsgiial* and of  of broken time-reversal symmetry in this case. Finally, we
Alff et a|_5 pro\/ide evidence for a very different exp|anation discuss thec-axis Josephson current that has been observed
of the pseudogap phase: it marks a new phase in which i strongly underdoped Bi-2212-Pb junctiché/e show how
symmetry is broken. In particular, the results of Ref. 4 havethis can possibly be explained by the coupling of the super-
reported that left-circularly polarized photons give a differentconducting order parameter to domain walls in the
photocurrent from right-circularly polarized photons in the Pseudogap order.
pseudogap phase. This, combined with a mirror plane sym- Here we describe the possible magnetic point groups of
metry, implies the breaking of time-reversal symmetry in thethe pseudogap phase and their respective free energies. The
pseudogap phase. Varfnhas proposed translationally in- Symmetry group of the pseudogap phase can be written as
variant orbital current states that may account for the obg=Gu><XU(1), whereGy, is the magnetic space group and
served results. If it is indeed the case that the pseudogdg(l) is the gauge grougwhich is not broken in the
phase does not break translational symmetry and break¥seudogap phaseThe groupGy is the group that leaves
time-reversal symmetry, then the classification of the superoth the charge density and the magnetization deridity
conducting pairing symmetry will differ from previous clas- invariant. We will be interested in the possible magnetic
sifications. Figure 1 shows the resulting phase diagram. IIRoint groups that arise when time-reversal symmetry is bro-
this paper, we determine the structure of the superconductingen in Bi-2212. We will focus only on transitions that do not
gap function in the pseudogap phase when time-reversdireak translational invariance and thus focus on tinerdm
symmetry is broken and translational symmetry is preserved.
Note that this implies that we do not consider theensity
wave state of Chakravarst al.” The reason for this restric-
tion is that a pseudogap phase which breaks translational
symmetry will not alter the superconducting state as strongly Tt
as the case considered here. The layout of the paper is as
follows: first we find the possible superconducting states in
the pseudogap phase by using both corepresentation theory pseudogap
and phenomenological Ginzburg Landau arguments. This is region
done for all pseudogap symmetries that retain translational
symmetry. Then we focus on the pseudogap phase that is
consistent with the experimental results of Kaminskial.

This phase is determined by the requirement that the
pseudogap phase breaks time-reversal symmetry, breaks the
fourfold rotation symmetry of the CuOplane, and also
breaks the mirror plane symmetry with normal along the
Cu-O diagonal. This leads to the two possible pseudogap FiG. 1. Possible phase diagram, temperafliges a function of
order parameters that have been examined by Varma anfble doping, of the cuprate Bi-2212. Hefé is the critical tem-
Simon®8 A detailed symmetry analysis of the photoemissionperature where time-reversal symmetry is broken Bnis the tran-
matrix elements rules out one of these two order param®terssition temperature of superconducting phase.
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TABLE I. Superconducting COREP basis functions for different  For the two-dimensional pseudogap order parametegs (
magnetic point-group symmetries of the pseudogap phase. Inducest Eg REPS ofD,, point group in Table)l, the correspond-
REP refers to the superconducting component induced by thghg Ginzburg Landau free energy is
pseudogap order. The magnetic point groups for two-dimensional

pseudogap REPS depend upon the formyef 7,, here we take . B 4 4 ) 5
71=E 7. Fpg,ll[77x , 77y]: a(ny+ 77y) + E( Nt 77y)+ Y7x My -
Pseudogap Induced Basis functions )
Phase(REP) (REP (CORER Minimization of the free energy with respect tg, and 7,
Aqg(4imm) By (K=K 1+ia(ki+k2)] gives the following sets of degenerate states:
Agg(4Immm) Bag (KE—K) +iakyk,
2 L2\ 2 2 /—CY
Blg(é/mm—n) Alg gli( zky)—‘rla(kx-‘;liy)z (77)(177)/):(010)1 7{(Ovi 1)1(i110)}1
Bzg(ﬂlmrrr_n) AZQ (kx ky)+|akxky(kx ky)
Eg(mmm) Eq (Ki—K3) +ia(niky— m2k )k,
A (4mm B 2_Kk3y+ialoKo—o -«
1 m) 1 (k)z( kg)ﬂa(irlkx o2ky) /_{(ﬂ,i (=151 3
Agy(4mmm) Bay (K2—K2) +ia(oky+oaKy) Bty
B, (4/mmm A 2 k3 +ia(o o
BlU(Z/_ ) . (o) Hialgabct ogky) Of these statesy(=1,£1) and 7o(=1,51), where 7,
2u(4/mmm) 2u (L‘x_'z‘y)f'a(‘flky_‘fzkxz =J=al(B+7), minimize the free energy ify<pB. The
E,(mmm) Eu (ke—kg) +ia(miky— 72k ) o3 other four degenerate stateg(0,=1),70(=1,0), where

7o=+— al B, minimize the free energy whep> 3. Simon

) o ] and Varma have depicted the (1,1) state to represent the type
(D4p) point group which is defined through the elementsy| cyrrent patterr, but there are three more states which are
{E.Cox,Cay,Co;,i,0%,0y,07,CqaCab 0dar Tans + Caz, degenerate with this state. In these states, the tetragonal sym-
+iCypp. Magnetic point groups are defined @& =H  metry is lost asC,,(1,1)=(1,—1). Each domain has sym-
+60(G—H), whereH is a halving subgroup of the ordinary metry mmmwith the m oriented along the different diago-
point groupG. In magnetic symmetry groups, the crystal nals. Theo g, Symmetry will be lost if there are multiple
point-group operatiorR, which belongs toG—H group,  domains. Note that the observed incommensurate modulation
transforms the magnetization denshy to —M, but the jn Bj-2212 implies the existence of ag, strain® This gives
product of the time-reversal operationand the operatioR  rise to an additionat,, 7,7, invariant in the pseudogap free
leavesM invariant. In Table I, a list of magnetic point groups energy. This prefers the®(1,+1) and (+1,%1) states and
corresponding to pseudogap phase has been given. Accorgiso breaks the degeneracy of these two states so that they
ing to the experimental observations of Kaminekial,* the  are now twofold degenerate.

fourfold rotation about axis (C,,) and the diagonal mirror  To classify the possible superconducting states in the
planes ¢qq,04p) are no longer symmetry operations in the presence of broken time-reversal symmetry we require the
pseudogap state. The requirement that these two symmetrigge of corepresentation theory. The usual representation
are no longer present reduces the number of possible magheory must be extended because the time-reversal operator
netic point groups of the pseudogap phase to ®mnm s antilinear and antiunitary. The magnetic point group can be
{E,C2x,Cay,Coz,i,0x,0y,0,,0Cqa,0Cqp,i1 0Cya, 0Ty, written asSy,=H-+AXH, whereA is antiunitary operator
*£0Cy,,+160Cs, or mmm {E,Cya,0;,,045,i0,004a,  such that all elements of the coskH are antiunitary. The
6Cs;,6Cqpf. The symmetrieg/mmm andmmmagree with  corepresentation€COREPS DI of Sy, can be found from

the proposed orbital current patterns of Ref.°8Conse- REPST of the corresponding normal grotpin one of three
quently, we use the same notation: we label the grougvays[labeled(a), (b), or (c)]. This approach is explained in
4/mmm as type | and the groummmas type Il. A detailed  Ref. 12 and we use their notation. Recently, similar consid-
symmetry analysis of the photoemission matrix elementgrations have appeared in the classification of superconduct-
rules out the type | state. So we will consider the type lling states in ferromagnetd:5 The superconducting gap
phase in more detailnote that Stanescu and Phillips have ¢, tion is defined a6 AK) =i[ (k) +id(K)- &6 In

also examined the type Il phase microscopically Table | : tati functiopd dd(k
For the one-dimensional pseudogap order paramggers f; vzrig:ﬁ* %g:uzeopézge:y%xitﬁzz_ uncti ) andd(k)

or B irreducible representationREPS of the Dy, point As an example, consider thé/mmm magnetic point
group in Table ], the Ginzburg Landau free energy is simply o6, The pseudogap order parameter in this case corre-
given as sponds to a one-dimensional REPf,,. For this magnetic
point group,H=D,, and A=6C,,. For ad,2_,2 pairing
F o [n]= 2, & 2 i symmetry when time-reversal symmetry is not broken, we
po.L 1= @1 T 5 are interested in thé;y REP ofD,y,. The resulting pairing
state is a real linear combination af(k)=k;+k7 and
Two degenerate stategs= *+/— a4 /B; minimize this free w(k)=i(k§—k§) which can be denoted asdtis pairing
energy. state.
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TABLE Il. The COREPS ommmgroup withH=C,, . aandb s ;= +jeyyy/@, where= sign is due to the degeneracy of
are arbitrary constantiqa =k Ky, kap=ky—ky, andoy,0oand 504 —  states. From the relation it is clear that for the
o3 are Pauli matrices. The COREPS are all type nonzeroz and ¢4 order parametersy must be nonzero,
which ensures that the symmetry of superconducting state in

_E Caa o2 Tap p(k)+d(k).o pseudogap phase @5+ i .

10 00qa  6Co  OCap Basis(CORER For a type Il pseudogap phase, the order parameter be-
A1 1 1 1 (IZ+K2) +akk,+ibosky, Io_ngs to the two-dimension&,, REP of theD 4, point group.
A, 1 1 -1 -1 Kgoko +ia (o ik, orok,) Since the product of thel-wave order parameteyy and

pseudogap order parametey,(, n,) transforms as &, REP,

the induced superconducting order parameter also belongs to
the E, REP. The induced superconducting order parameter
can be written ag/=(py,py). To construct a nontrivial in-
variant, we decompose the product of representations

®E,®By4. The relevant invariant i$el Py (7xPx— 1yPy)

The magnetic point groummmdeserves further consid- — Pa( 7Pt — ﬂypi)], wheree is a real positive coefficient.
eration since it is consistent with the experimental observaThe Ginzburg Landau free enerdup to second order in
tions of Kaminskiet al®* For this group,H=C,, and A (py,Py)] is
=i#. Due to the broken parity symmetry in the pseudogap Y
phase, the pairing gap function is a mixture of spin-singletF”(zpd,n,p):Fng, + agl gl >+ Bal al *+ a’p(|px|2+|py|2)
[#(k)] and spin-triplet componentsd(k)]. For ad,z 2 B
pairing symmetry when time-reversal symmetry is not bro- +iel ¢ (npx— 7yPy) — by 7P — nyp;,‘)].
ken, we are interested in ti®, REP ofC,, (given in Table 5)

II). The corresponding COREP is a real linear combination

of the spin-singlety(k)=(k;—kZ) and the spin-triplet Minimizing the free energy with respect fif andpy gives
d(k)=i(ks—k,)z gap functions. We label this state tle p,=ieyyn /e, and p,=—iepyn,/a,. Thus we have
+ip phase. In Table Il, we have also provided representativ =i _ =i _

basis functions for the other COREPS corresponding to th%%;’,%)) :I;(()?lx,'l) ﬁg)fgég,‘; ulszz(_)(l' Lialey, where
different REPS ofC,, . From the form of the gap functions ~ “Tne gppearance of the induced superconducting gap func-
found here we can deduce whether there is possibility ofions in the pseudogap phase leads to a variety of observable
nod_es in the gap. We flnd that the superconducting gap W'u:onsequences. In the pseudogap phase havinip state,
vanish along the, =k, line in this case(the gap does not the preaking of parity symmetry gives rise to Lifshits invari-
vanish along theé,= —k, line). Note that similar consider- ants in the free energy which give rise to a spatially varying
ations appear in a recent symmetry analysis of-@ave  (helica) superconducting phas®.This behavior can be
superconductor in a uniform curretit. readily explained in terms of the Ginzburg Landau free en-

Here we determine the superconducting gap structures igrgy. |n particular, the relevant Lifshitz invariant is
the pseudogap phase using Ginzburg Landau theory. This

approach provides the same results as those found abOVeFL=F|,+i%[¢§(DXpX— Dypy)— #a(D}px —Dipi)]1,

+ib(o ik, + ook,
-1 (K2—k2) +iaoskap

1 Keakotia(oky— ook,
+ib(oike— opk,)

o @
N
B e
(I
(RN
I

o

using the less familiar corepresentation theory. Using corep- (6)
resentation theory, it has been shown that the existence of ) _
d-wave order parametat, and pseudogap order parameterwhere D=(D,,Dy), D;=—iV;—2eA/Aic and A is the

7 ensures the existence of an induced superconducing ord¥gctor potential. The helical superconducting phase can be
parametery. In Table |, the different possible combinations found by settingA=0 and considering the spatial variation
of order parameters of the pseudogap organd of induced Of order parameters asyy=g0€'*" and (py,py)
superconducting ordey have been listed. These same states= (Pxo.Pyo)€'?". Minimizing with respect toq, and g,

can be found by examining Ginzburg Landau theory. In pargivesq,=q,= —%enolapx (wherex is the defined through
ticular, the invariance of the free energy with respect to timethe gradient termT<|Dz,/fd|2 in the free energy Note that
reversal symmetry requires any free energy invariant corregayge invariance and minimization of the free energy with
sponding to any one-dimensional pseudogap REP to have thgspect tog implies that the current in helical phase is zero.
form ien(yy —* q), where e is real coupling coeffi-  The helical structure of the order parameter can be verified
cient. Therefore, the superconducting Ginzburg Landau fregy Josephson junction experiments. We refer to Ref. 20 for
energy corresponding to the one-dimensional pseudogagetails. The existence of gap nodes found in the last section

REPS of Table Kup to second order ig) is assumed a uniforn{non-helical order parameter. If
5 4~ > &y, Whereé, is the coherence length, then the nodes will
Fi(77, 44, ¥) =F pg1+ agl ol *+ Byl ol *+ a| 4 presumably still provide a reasonable description of the low-
. * o % energy excitations of the superconductor.
Fien(a b= 9" va). @) It is interesting to note that a Josephson current has been

The relation between the order parameters can be obtainadbserved through-axis Jpsephson junctions betwaarder-
by minimizing F( 7,4 ,¥) with respect toy*. The relation dopedBi-2212 and Pb. MBle and Kleingeet al. have dem-
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onstrated this through a series of very careful experimentswalls. However, as the angle between the field and domain
They have shown that the junctions are homogeneous anglalls decreases, the current pattern will deviate from the
the coupling is a conventional lowest-order Josephson coussual Fraunhofer pattern. In particular, for the field along the
pling. This experiment is difficult to explain with a pure domain wall, only the central peak of the original Fraunhofer
d-wave order parameter in Bi-2212. Rae has pointed out thaiattern remains. Note that these considerations require the
this current may exist if the Pb superconductor contains §nction size to be much smaller than the period of the heli-
d-wave Contributior{l This is pOSSible if the jUnCtion is cal Order7 so that th@_wa\/e order parameter is approxi_
made from a low-symmetry orientation of le@ai[110] face,  mately uniform. Furthermore, in Bi-2212, the incommensu-
for example. However, as pointed out by Rae, this explana-rate modulation may alter this analysis. If there is a strong
tion requires that there is a systematic bias tow@td§] Pb  interaction between this modulation and the pseudogap order
faces in the junctions which remains to be verified. Given theparameter, then any domain walls in the pseudogap order

possibility of ad+ip phase, it is natural to ask if this can be parameter will be tied to domain boundaries of incommen-
related to the observed Josephson current. Here we show thairate modulation.

while ad+ip state as described above does not have a Jo- |n conclusion, we have determined the superconducting
sephson current, a domain wall in the pseudogap order papp structure in translationally invariant pseudogap phases
rameter will. This can be understood by Considering surfaceghat break time-reversal symmetry. It has been shown that a
energy at ec-axis junction between e+ip superconductor d+ip state is the superconducting ordered state for the

and a conventiona-wave superconductor; pseudogap state that agrees with the experimental results in
Bi-2212. The inducedp component removes two of the four
Fsur:f d?S[ ¥ (npyt+ nyPy) +C.Cl. (7)  nodes associated withdgz_,2 order parameter. The conse-
quences of the induceip order parameters on Josephson

If we consider ¢y ,7,)= 70(1,1) then, as shown abovp, exper.iments have been explored. The induiqeghase can
= —p, andFg,, will be zero. But consider a domain wall of €xplain the observed Josephson current througtraais
the type (7, 7,) = 10l 1,tanhg/&)] (here, remains constant junction between underdoped Bi-2212 and Pb only if there

but 7, varies from— 7, to 7, across the domain wajlthe ~ are the domain walls in the pseudogap order parameter. It has
current density in this case is given as also been shown that th:é+|p state will give rise to a he-
lical superconducting phase.
j=lol1—tankf(x/£)]sin( 64— b5), (€S) . . .
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