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Broken time-reversal symmetry and superconducting states in the cuprates
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Recently, Kaminskiet al.have reported that time-reversal symmetry is broken in the pseudogap phase in the
high-temperature superconducting material Bi2Sr2CaCu2O21d ~Bi-2212!. Here we examine the role of trans-
lationally invariant broken time-reversal states ondx22y2 superconductors. In particular, we determine the
change in the superconducting order parameter structure. We find that the broken time-reversal pseudogap state
that is consistent with the experiment of Kaminskiet al. gives rise to a mixed singlet-triplet pairingd1 ip
phase. Thisd1 ip state is shown to give rise to a helical superconducting phase. Consequences of thisd
1 ip state on Josephson experiments are discussed.

DOI: 10.1103/PhysRevB.68.100506 PACS number~s!: 74.25.Gz, 74.20.Mn
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The origin of the pseudogap regime in the cuprates
been the subject of controversy. A variety of probes reve
suppression of the single-particle density of states in
regime.1,2 A natural explanation is that the pseudogap ph
is a precursor superconducting state; a phase in which t
are Cooper pairs but no superconducting phase cohere3

The recent experimental results of Kaminskiet al.4 and of
Alff et al.5 provide evidence for a very different explanatio
of the pseudogap phase: it marks a new phase in whic
symmetry is broken. In particular, the results of Ref. 4 ha
reported that left-circularly polarized photons give a differe
photocurrent from right-circularly polarized photons in t
pseudogap phase. This, combined with a mirror plane s
metry, implies the breaking of time-reversal symmetry in t
pseudogap phase. Varma6 has proposed translationally in
variant orbital current states that may account for the
served results. If it is indeed the case that the pseudo
phase does not break translational symmetry and bre
time-reversal symmetry, then the classification of the sup
conducting pairing symmetry will differ from previous cla
sifications. Figure 1 shows the resulting phase diagram
this paper, we determine the structure of the superconduc
gap function in the pseudogap phase when time-reve
symmetry is broken and translational symmetry is preserv
Note that this implies that we do not consider thed-density
wave state of Chakravartyet al.7 The reason for this restric
tion is that a pseudogap phase which breaks translati
symmetry will not alter the superconducting state as stron
as the case considered here. The layout of the paper
follows: first we find the possible superconducting states
the pseudogap phase by using both corepresentation th
and phenomenological Ginzburg Landau arguments. Th
done for all pseudogap symmetries that retain translatio
symmetry. Then we focus on the pseudogap phase th
consistent with the experimental results of Kaminskiet al.
This phase is determined by the requirement that
pseudogap phase breaks time-reversal symmetry, break
fourfold rotation symmetry of the CuO2 plane, and also
breaks the mirror plane symmetry with normal along t
Cu-O diagonal. This leads to the two possible pseudo
order parameters that have been examined by Varma
Simon.6,8 A detailed symmetry analysis of the photoemissi
matrix elements rules out one of these two order paramet8
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We develop a Ginzburg-Landau theory of the remain
pseudogap order parameter and the interplay of this o
parameter with superconductivity. We discuss some obs
able consequences of the superconducting gap compon
induced by the pseudogap order parameter. In particular
show that a helical superconducting phase is a consequ
of broken time-reversal symmetry in this case. Finally,
discuss thec-axis Josephson current that has been obser
in strongly underdoped Bi-2212-Pb junctions.9 We show how
this can possibly be explained by the coupling of the sup
conducting order parameter to domain walls in t
pseudogap order.

Here we describe the possible magnetic point groups
the pseudogap phase and their respective free energies
symmetry group of the pseudogap phase can be written
G5GM3U(1), whereGM is the magnetic space group an
U(1) is the gauge group~which is not broken in the
pseudogap phase!. The groupGM is the group that leaves
both the charge density and the magnetization densityM
invariant. We will be interested in the possible magne
point groups that arise when time-reversal symmetry is b
ken in Bi-2212. We will focus only on transitions that do n
break translational invariance and thus focus on the 4/mmm

FIG. 1. Possible phase diagram, temperatureT as a function of
hole doping, of the cuprate Bi-2212. HereT* is the critical tem-
perature where time-reversal symmetry is broken andTc is the tran-
sition temperature of superconducting phase.
©2003 The American Physical Society06-1
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(D4h) point group which is defined through the elemen
$E,C2x ,C2y ,C2z ,i ,sx ,sy ,sz ,Cda ,Cdb ,sda ,sdb ,6C4z ,
6 iC4z%. Magnetic point groups are defined asSM5H
1u(G2H), whereH is a halving subgroup of the ordinar
point group G. In magnetic symmetry groups, the cryst
point-group operationR, which belongs toG2H group,
transforms the magnetization densityM to 2M , but the
product of the time-reversal operationu and the operationR
leavesM invariant. In Table I, a list of magnetic point group
corresponding to pseudogap phase has been given. Acc
ing to the experimental observations of Kaminskiet al.,4 the
fourfold rotation aboutz axis (C4z) and the diagonal mirror
planes (sda ,sdb) are no longer symmetry operations in th
pseudogap state. The requirement that these two symme
are no longer present reduces the number of possible m
netic point groups of the pseudogap phase to two:4/mmm
$E,C2x ,C2y ,C2z ,i ,sx ,sy ,sz ,uCda ,uCdb ,iuCda ,usdb ,
6uC4z ,6 iuC4z% or mmm $E,Cda ,sz ,sdb ,iu,usda ,
uC2z ,uCdb%. The symmetries4/mmm andmmmagree with
the proposed orbital current patterns of Ref. 6.10 Conse-
quently, we use the same notation: we label the gro
4/mmm as type I and the groupmmmas type II. A detailed
symmetry analysis of the photoemission matrix eleme
rules out the type I state. So we will consider the type
phase in more detail~note that Stanescu and Phillips ha
also examined the type II phase microscopically11!.

For the one-dimensional pseudogap order parameter@A
or B irreducible representations~REPS! of the D4h point
group in Table I#, the Ginzburg Landau free energy is simp
given as

Fpg,I@h#5a1h21
b1

2
h4. ~1!

Two degenerate statesh56A2a1 /b1 minimize this free
energy.

TABLE I. Superconducting COREP basis functions for differe
magnetic point-group symmetries of the pseudogap phase. Ind
REP refers to the superconducting component induced by
pseudogap order. The magnetic point groups for two-dimensio
pseudogap REPS depend upon the form ofh1 , h2, here we take
h156h2.

Pseudogap Induced Basis functions
Phase~REP! ~REP! ~COREP!

A1g(4/mmm) B1g (kx
22ky

2)@11 ia(kx
21ky

2)#

A2g(4/mmm) B2g (kx
22ky

2)1 iakxky

B1g(4/mmm) A1g (kx
22ky

2)1 ia(kx
21ky

2)
B2g(4/mmm) A2g (kx

22ky
2)1 iakxky(kx

22ky
2)

Eg(mmm) Eg (kx
22ky

2)1 ia(h1ky2h2kx)kz

A1u(4/mmm) B1u (kx
22ky

2)1 ia(ŝ1kx2ŝ2ky)
A2u(4/mmm) B2u (kx

22ky
2)1 ia(ŝ1ky1ŝ2kx)

B1u(4/mmm) A1u (kx
22ky

2)1 ia(ŝ1kx1ŝ2ky)
B2u(4/mmm) A2u (kx

22ky
2)1 ia(ŝ1ky2ŝ2kx)

Eu(mmm) Eu (kx
22ky

2)1 ia(h1ky2h2kx)ŝ3
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For the two-dimensional pseudogap order parametersEu
or Eg REPS ofD4h point group in Table I!, the correspond-
ing Ginzburg Landau free energy is

Fpg,II @hx ,hy#5a~hx
21hy

2!1
b

2
~hx

41hy
4!1ghx

2hy
2 .

~2!

Minimization of the free energy with respect tohx and hy
gives the following sets of degenerate states:

~hx ,hy!5~0,0!; A2a

b
$~0,61!,~61,0!%;

A 2a

b1g
$~61,61!,~61,71!%. ~3!

Of these states,h0(61,61) and h0(61,71), where h0

5A2a/(b1g), minimize the free energy ifg,b. The
other four degenerate statesh́0(0,61),h́0(61,0), where
h́05A2a/b, minimize the free energy wheng.b. Simon
and Varma have depicted the (1,1) state to represent the
II current pattern,6 but there are three more states which a
degenerate with this state. In these states, the tetragonal
metry is lost asC4z(1,1)5(1,21). Each domain has sym
metry mmmwith the m oriented along the different diago
nals. Thesda(db) symmetry will be lost if there are multiple
domains. Note that the observed incommensurate modula
in Bi-2212 implies the existence of anexy strain.9 This gives
rise to an additionalexyhxhy invariant in the pseudogap fre
energy. This prefers the (61,61) and (61,71) states and
also breaks the degeneracy of these two states so that
are now twofold degenerate.

To classify the possible superconducting states in
presence of broken time-reversal symmetry we require
use of corepresentation theory. The usual representa
theory must be extended because the time-reversal ope
is antilinear and antiunitary. The magnetic point group can
written asSM5H1A3H, whereA is antiunitary operator
such that all elements of the cosetAH are antiunitary. The
corepresentations~COREPS! DG of SM can be found from
REPSG of the corresponding normal groupH in one of three
ways @labeled~a!, ~b!, or ~c!#. This approach is explained in
Ref. 12 and we use their notation. Recently, similar cons
erations have appeared in the classification of supercond
ing states in ferromagnets.13–15 The superconducting ga
function is defined as16,17 D̂(k)5 i @c(k)1 id(k)•ŝ#ŝ2. In
Table I we give representative gap functionsc(k) andd(k)
for various pseudogap symmetries.

As an example, consider the4/mmm magnetic point
group. The pseudogap order parameter in this case co
sponds to a one-dimensional REP ofD4h . For this magnetic
point group,H5D2h and A5uC4z . For a dx22y2 pairing
symmetry when time-reversal symmetry is not broken,
are interested in theA1g REP ofD2h . The resulting pairing
state is a real linear combination ofc(k)5kx

21ky
2 and

c(k)5 i (kx
22ky

2) which can be denoted as ad1 is pairing
state.
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The magnetic point groupmmmdeserves further consid
eration since it is consistent with the experimental obser
tions of Kaminskiet al.8,4 For this group,H5C2v and A
5 iu. Due to the broken parity symmetry in the pseudog
phase, the pairing gap function is a mixture of spin-sing
@c(k)# and spin-triplet components@d(k)#. For a dx22y2

pairing symmetry when time-reversal symmetry is not b
ken, we are interested in theB1 REP ofC2v ~given in Table
II !. The corresponding COREP is a real linear combinat
of the spin-singlet c(k)5(ky

22kx
2) and the spin-triplet

d(k)5 i (kx2ky) ẑ gap functions. We label this state thed
1 ip phase. In Table II, we have also provided representa
basis functions for the other COREPS corresponding to
different REPS ofC2v . From the form of the gap function
found here we can deduce whether there is possibility
nodes in the gap. We find that the superconducting gap
vanish along thekx5ky line in this case~the gap does no
vanish along thekx52ky line!. Note that similar consider
ations appear in a recent symmetry analysis of ad-wave
superconductor in a uniform current.18

Here we determine the superconducting gap structure
the pseudogap phase using Ginzburg Landau theory.
approach provides the same results as those found a
using the less familiar corepresentation theory. Using cor
resentation theory, it has been shown that the existenc
d-wave order parametercd and pseudogap order parame
h ensures the existence of an induced superconducing o
parameterc. In Table I, the different possible combination
of order parameters of the pseudogap orderh and of induced
superconducting orderc have been listed. These same sta
can be found by examining Ginzburg Landau theory. In p
ticular, the invariance of the free energy with respect to tim
reversal symmetry requires any free energy invariant co
sponding to any one-dimensional pseudogap REP to have
form i eh(cd* c2c* cd), where e is real coupling coeffi-
cient. Therefore, the superconducting Ginzburg Landau
energy corresponding to the one-dimensional pseudo
REPS of Table I~up to second order inc) is

FI~h,cd ,c!5Fpg,I1aducdu21bducdu41ãucu2

1 i eh~cd* c2c* cd!. ~4!

The relation between the order parameters can be obta
by minimizing F(h,cd ,c) with respect toc* . The relation

TABLE II. The COREPS ofmmmgroup withH5C2v . a andb
are arbitrary constants,kda5kx1ky , kdb5kx2ky , ands1 ,s2 and
s3 are Pauli matrices. The COREPS are all type~a!.

E Cda sz sdb c(k)1d(k).ŝ
iu usda uC2z uCdb Basis~COREP!

A1 1 1 1 1 (kx
21ky

2)1akxky1 ibs3kda

A2 1 1 21 21 kdbkz1 ia(s1kx1s2ky)
1 ib(s1ky1s2kx)

B1 1 21 1 21 (ky
22kx

2)1 ias3kdb

B2 1 21 21 1 kdakz1 ia(s1ky2s2kx)
1 ib(s1kx2s2ky)
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is c56 i ehcd /ã, where6 sign is due to the degeneracy o
c and 2c states. From the relation it is clear that for th
nonzeroh and cd order parameters,c must be nonzero,
which ensures that the symmetry of superconducting stat
pseudogap phase isd1 ic.

For a type II pseudogap phase, the order parameter
longs to the two-dimensionalEu REP of theD4h point group.
Since the product of thed-wave order parametercd and
pseudogap order parameter (hx ,hy) transforms as aEu REP,
the induced superconducting order parameter also belong
the Eu REP. The induced superconducting order parame
can be written asc5(px ,py). To construct a nontrivial in-
variant, we decompose the product of representationsEu

^ Eu^ B1g . The relevant invariant isi ẽ@cd* (hxpx2hypy)

2cd(hxpx* 2hypy* )#, whereẽ is a real positive coefficient
The Ginzburg Landau free energy@up to second order in
(px ,py)] is

FII ~cd ,h,p!5Fpg,II 1aducdu21bducdu41ap~ upxu21upyu2!

1 i ẽ@cd* ~hxpx2hypy!2cd~hxpx* 2hypy* !#.

~5!

Minimizing the free energy with respect topx* andpy* gives

px5 i ẽcdhx /ap and py52 i ẽcdhy /ap . Thus we have
(px ,py)5 i ẽ(hx ,2hy)cd /ap5 i ẽh0(1,21)cd /ap , where
(hx ,hy)5h0(1,1) has been used.

The appearance of the induced superconducting gap f
tions in the pseudogap phase leads to a variety of observ
consequences. In the pseudogap phase havingd1 ip state,
the breaking of parity symmetry gives rise to Lifshits inva
ants in the free energy which give rise to a spatially vary
~helical! superconducting phase.19 This behavior can be
readily explained in terms of the Ginzburg Landau free e
ergy. In particular, the relevant Lifshitz invariant is

FL5FII 1 i é@cd* ~Dxpx2Dypy!2cd~Dx* px* 2Dy* py* !#,
~6!

where D5(Dx ,Dy), D j52 i“ j22eAj /\c and A is the
vector potential. The helical superconducting phase can
found by settingA50 and considering the spatial variatio
of order parameters ascd5cd0eiq.r and (px ,py)
5(px0 ,py0)eiq•r. Minimizing with respect toqx and qy

givesqx5qy52 éeh0 /apk̃ ~wherek̃ is the defined through
the gradient termk̃uDcdu2 in the free energy!. Note that
gauge invariance and minimization of the free energy w
respect toq implies that the current in helical phase is zer
The helical structure of the order parameter can be veri
by Josephson junction experiments. We refer to Ref. 20
details. The existence of gap nodes found in the last sec
assumed a uniform~non-helical! order parameter. If 1/qx
@j0, wherej0 is the coherence length, then the nodes w
presumably still provide a reasonable description of the lo
energy excitations of the superconductor.

It is interesting to note that a Josephson current has b
observed throughc-axis Josephson junctions betweenunder-
dopedBi-2212 and Pb. Mo¨ßle and Kleingeret al. have dem-
6-3
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onstrated this through a series of very careful experimen9

They have shown that the junctions are homogeneous
the coupling is a conventional lowest-order Josephson c
pling. This experiment is difficult to explain with a pur
d-wave order parameter in Bi-2212. Rae has pointed out
this current may exist if the Pb superconductor contain
d-wave contribution.21 This is possible if the junction is
made from a low-symmetry orientation of lead~a @110# face,
for example!. However, as pointed out by Rae, this explan
tion requires that there is a systematic bias towards@110# Pb
faces in the junctions which remains to be verified. Given
possibility of ad1 ip phase, it is natural to ask if this can b
related to the observed Josephson current. Here we show
while a d1 ip state as described above does not have a
sephson current, a domain wall in the pseudogap order
rameter will. This can be understood by considering surf
energy at ac-axis junction between ad1 ip superconductor
and a conventionals-wave superconductor;

Fsur5E d2S@cs* ~hxpx1hypy!1c.c.#. ~7!

If we consider (hx ,hy)5h0(1,1) then, as shown above,px
52py andFsur will be zero. But consider a domain wall o
the type (hx ,hy)5h0@1,tanh(x/j)# ~herehx remains constan
but hy varies from2h0 to h0 across the domain wall!, the
current density in this case is given as

j 5 j 0@12tanh2~x/j!#sin~ud2us!, ~8!

where j 054eh0
2ẽucduucsu. A Fraunhofer pattern can be ob

tained by applying the field along the normal to the dom
ev

, Z
d

D.

v

10050
.
nd
u-

at
a

-

e

hat
o-
a-
e

n

walls. However, as the angle between the field and dom
walls decreases, the current pattern will deviate from
usual Fraunhofer pattern. In particular, for the field along
domain wall, only the central peak of the original Fraunho
pattern remains. Note that these considerations require
junction size to be much smaller than the period of the h
cal order, so that thep-wave order parameter is approx
mately uniform. Furthermore, in Bi-2212, the incommens
rate modulation may alter this analysis. If there is a stro
interaction between this modulation and the pseudogap o
parameter, then any domain walls in the pseudogap o
parameter will be tied to domain boundaries of incomme
surate modulation.

In conclusion, we have determined the superconduc
gap structure in translationally invariant pseudogap pha
that break time-reversal symmetry. It has been shown th
d1 ip state is the superconducting ordered state for
pseudogap state that agrees with the experimental resu
Bi-2212. The inducedip component removes two of the fou
nodes associated with adx22y2 order parameter. The conse
quences of the inducedip order parameters on Josephs
experiments have been explored. The inducedip phase can
explain the observed Josephson current through ac-axis
junction between underdoped Bi-2212 and Pb only if th
are the domain walls in the pseudogap order parameter. It
also been shown that thed1 ip state will give rise to a he-
lical superconducting phase.
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Kabanov for useful correspondence.
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