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Josephson vortices and solitons inside pancake vortex lattice in layered superconductors

A. E. Koshelev
Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA

~Received 9 May 2003; published 29 September 2003!

In very anisotropic layered superconductors a tilted magnetic field generates crossing vortex lattices of
pancake and Josephson vortices~JV’s!. We study the properties of an isolated JV in the lattice of pancake
vortices. JV induces deformations in the pancake vortex crystal, which, in turn, substantially modify the JV
structure. The phase field of the JV is composed of two types of phase deformations: the regular phase and
vortex phase. The phase deformations with smaller stiffness dominate. The contribution from the vortex phase
smoothly takes over with increasing magnetic field. We find that the structure of the cores experiences a
smooth yet qualitative evolution with decrease of the anisotropy. At large anisotropies pancakes have only
small deformations with respect to position of the ideal crystal, while at smaller anisotropies the pancake stacks
in the central row smoothly transfer between the neighboring lattice positions forming a solitonlike structure.
We also find that even at high anisotropies pancake vortices strongly pin JV’s and strongly increase their
viscous friction.
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I. INTRODUCTION

The vortex state in layered superconductors has a v
rich phase diagram in the multidimensional space
temperature-field–anisotropy-field orientation. Especially
teresting subject is the vortex phases in layered super
ductors with very high anisotropy such as Bi2Sr2CaCu2Ox
~BSCCO!. Relatively simple vortex structures are forme
when magnetic field is applied along one of the princip
axes of the layered structure. A magnetic field applied p
pendicular to the layers penetrates inside the supercondu
in the form of pancake vortices~PV’s!.1 PV’s in different
layers are coupled weakly via the Josephson and magn
interactions and form aligned stacks at low fields and te
peratures~PV stacks!. These stacks are disintegrated at t
melting point. In another simple case of the magnetic fi
applied parallel to the layers, the vortex structure is co
pletely different. Such a field penetrates inside the superc
ductor in the form of Josephson vortices~JV’s!.2–4 The JV’s
do not have normal cores, but have rather wide nonlin
cores, of the order of the Josephson length, located betw
two central layers. At small in-plane fields JV’s form th
triangular lattice, strongly stretched along the direction of
layers, so that JV’s form stacks aligned along thec direction
and separated by a large distance in the in-plane directio

A rich variety of vortex structures were theoretically pr
dicted for the case of tilted magnetic field, such as the kin
lattice,4–6 tilted vortex chains,7 and coexisting lattices with
different orientation.8 A very special situation exists in highl
anisotropic superconductors, in which the magnetic coup
between the pancake vortices in different layers is stron
than the Josephson coupling. In such superconductors a
magnetic field creates a unique vortex state consisting of
qualitatively different interpenetrating sublattices.5,9 This set
of crossing lattices~or combined lattice5! contains a sublat-
tice of Josephson vortices generated by the component o
field parallel to the layers, coexisting with a sublattice
stacks of pancake vortices generated by the component o
field perpendicular to the layers. A basic reason for such
0163-1829/2003/68~9!/094520~20!/$20.00 68 0945
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exotic ground state, as opposed to a simple tilted vortex
tice, is that magnetic coupling energy is minimal when pa
cake stacks are perfectly aligned along thec axis. A homo-
geneous tilt of pancake lattice costs too much magn
coupling energy, while formation of Josephson vortices o
weakly disturbs the alignment of pancake stacks.

Even at high anisotropies JV’s and pancake stacks h
significant attractive coupling.9 The strong mutual interaction
between the two sublattices leads to a very rich phase
gram with many nontrivial lattice structures separated
phase transitions. At sufficiently smallc-axis fields~10–50
G! a phase-separated state is formed: density of the pan
stacks located at JV’s becomes larger than the stack de
outside JV’s.9,10 This leads to formation of dense stac
chains separated by regions of dilute triangular lattice in
tween~mixed chain1lattice state!. Such structures have bee
observed in early decoration experiments11,12 and, more re-
cently, by scanning Hall probe,13 Lorentz microscopy,14 and
magneto-optical technique.15,16 At very small c-axis fields
~;several gauss! the regions of triangular lattice vanish lea
ing only chains of stacks.13 Moreover, there are experimenta
indications13 and theoretical reasoning17 in favor of the phase
transition from the crossing configuration of pancake-sta
chains and JV’s into chains of tilted vortices. JV’s al
modify the interaction between pancake stacks leading to
attractive interaction between the stacks at large distanc18

As a consequence, one can expect clustering of the pan
stacks at small concentrations.

Many unexpected observable effects can be naturally
terpreted within the crossing-lattices picture. The underly
JV lattice modifies the free energy of the vortex crystal sta
An observable consequence of this change is a shift of
melting temperature. Strong support for the crossing-latti
ground state is the linear dependence of thec-axis melting
field on the in-plane field observed within a finite range
in-plane fields.9,19–21,34 In an extended field range, sever
melting regimes have been observed20,21 indicating several
distinct ground-states of vortex matter in tilted fields. Tra
sitions between different ground state configurations h
©2003 The American Physical Society20-1
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A. E. KOSHELEV PHYSICAL REVIEW B68, 094520 ~2003!
also been detected by the features in the irrevers
magnetization.22,23

In this paper, we consider in detail the properties of
isolated JV in the pancake lattice. We mainly focus on
regime of a dense pancake lattice, when many rows of
pancakes fit into the JV core. The pancake lattice forms
effective medium for JV’s, which determines their prope
ties. The dense pancake lattice substantially modifies the
structure. In general, the phase field of the JV is built
from the continuous regular phase and the phase pertu
tions created by pancake displacements. Such a JV h
smaller core size and smaller energy as compared to the
dinary JV.9 The pancake lattice also strongly modifies t
field and current distribution far away from the core region24

The key parameter which determines the structure of
JV core in the dense pancake lattice is the ratioa5l/gs,
wherel is the in-plane London penetration depth,g is the
anisotropy ratio, ands is the period of layered structure. Th
core structure experiences a smooth yet qualitative evolu
with decrease of this parameter. Whena is small ~large
anisotropies! pancakes have only small displacements w
respect to positions of the ideal crystal and the JV core
cupies several pancakes rows. In this situation the renorm
ization of the JV core by the pancake vortices can be
scribed in terms of the continuous vortex phase which
characterized by its own phase stiffness~effective phase stiff-
ness approach!.9 At large a ~small anisotropies! the core
shrinks to scales smaller than the distance between pan
vortices. In this case, pancake stacks in the central row f
solitonlike structure smoothly transferring between t
neighboring lattice position.

We consider dynamic properties of JV’s in the case
smalla: the critical pinning force which sticks the JV to th
PV lattice and the viscosity of the moving JV due to t
traveling displacement field in the PV lattice. The pinni
force has a nonmonotonic dependence on thec-axis mag-
netic fieldBz reaching maximum when roughly one panca
row fits inside the JV core region. At higher fields the pi
ning force decays exponentially}exp(2ABz /B0). We study
JV motion through the PV lattice and find that the latti
strongly hinders the mobility of JV’s.

The paper is organized as follows. Section II is devoted
the static structure of an isolated JV inside the PV lattice
this section, we~i! consider smallc-axis fields and calculate
the crossing energy of JV and PV stack~Sec. II B!; ~ii ! con-
sider largec-axis fields and introduce the ‘‘effective phas
stiffness’’ approximation, which allows for simple descri
tion of the JV structure inside the dense PV lattice in the c
of large anisotropy~Sec. II C!; ~iii ! investigate a large-scal
behavior and JV magnetic field~Sec. II D!; ~iv! analyze the
JV core quantitatively using numeric minimization of th
total energy and find crossover from the JV core structure
the soliton core structure with decrease of anisotropy~Sec.
II E!; ~v! formulate a simple model which describes the so
ton core structure for small anisotropies~Sec. II F!. In Sec.
III we consider pinning of JV by the pancake lattice a
calculate the field dependence of the critical current at wh
the JV detaches from the PV lattice. In Sec. IV, we consi
possible JV dynamic regimes: dragging the pancake lat
09452
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by JV’s and motion of JV’s through the pancake lattice. F
the second case, we calculate the effective JV viscosity.

II. STRUCTURE AND ENERGY OF JOSEPHSON VORTEX
IN PANCAKE LATTICE

A. General relations

Our calculations are based on the Lawrence-Doniach
energy in the London approximation, which depends on
in-plane phasesfn(r ) and vector potentialA(r ),

F5(
n
E d2r F J

2 S“'fn2
2p

F0
A'D 2

1EJX12cosS fn112fn2
2ps

F0
AzD CG1E d3r

B2

8p
,

~1!

where

J[
sF0

2

p~4pl!2
[

s«0

p
and EJ[

F0
2

sp~4plc!
2

~2!

are the phase stiffness and the Josephson coupling en
l[lab and lc are the components of the London penet
tion depth, ands is the interlayer periodicity. We use th
London gauge, divA50. We assume that the average ma
netic inductionB inside the superconductor is fixed.25 The c
component of the field fixes the concentration of the panc
vorticesnv[Bz /F0 inside one layer. The in-plane phasesfn
have singularities at the positions of pancake vorticesRin
inside the layers,

@“3“fn#z52p(
i

d~r2Rin!.

The major obstacle, preventing a full analytical considerat
of the problem, is the nonlinearity coming from the Josep
son term. A useful approach for superconductors with we
Josephson coupling is to split the phase and vector pote
into the vortex and regular contributions,fn5fvn1f rn and
A5Av1Ar . The vortex contributions minimize the energ
for fixed positions of pancake vortices atEJ50 and give
magnetic interaction energy for the pancake vortices. O
can express this part of energy via the vortex coordina
Rn,i . In general, the regular contributions may inclu
phases and vector potentials of the Josephson vortices.
total energy naturally splits into the regular partFr , the en-
ergy of magnetic interactions between pancakesFM , and the
Josephson energyFJ , which couples the regular and vorte
degrees of freedom,

F5Fr1FM1FJ , ~3!

with

Fr@f rn ,Ar #5(
n
E d2r

J

2 S“f rn2
2p

F0
Ar'D 2

1E d3r
Br

2

8p
,

~4!
0-2
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FM@Rn,i #5
1

2 (
n,m,i , j

UM~Rn,i2Rm, j ,n2m!, ~5!

FJ@f rn ,Ar ,Rn,i #5(
n
E d2rEJX12cosS fn112fn2

2ps

F0
AzD C, ~6!

and

UM~R,n!5
J

2pE dkE
2p

p

dq
exp@ ikR1 iqn!]

k2$11l22@k212~12cosq!/s2#21%
'2pJF ln

L

R Fdn2
s

2l
expS 2

sunu
l D G1

s

4l
uS r

l
,
sunu
l D G

~7!
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is the magnetic interaction between pancakes,1 where

u~r ,z![exp~2z!E1~r 2z!1exp~z!E1~r 1z!, ~8!

E1(u)5*u
`(exp(2v)/v)dv is the integral exponent@E1(u)

'2gE2 ln u1u at u!1 with gE'0.577], r[AR21(ns)2,
andL is a cutoff length.

In this paper we focus on the crystal state. If the panc
coordinates have only small deviations from the positio
Ri

(0) of the ideal triangular lattice,Rni5Ri
(0)1uni , thenFv

reduces to the energy of an ideal crystalFcr plus the mag-
netic elastic energyFM -el consisting of the shear and com
pression parts,

FM -el5E d3k

~2p!3 FUt~k!

2
uut~k!u21

Ul~k!

2
uul~k!u2G , ~9!

where

uni[E d3k

~2p!3
exp~ ik'Ri

(0)1 ikzsn!@etut~k!1elul~k!#

@el (et) is the unit vector parallel~orthogonal! to k'],

Ut~k!5C66k'
2 1U44~k!,

Ul~k!5U11~k!1U44~k!,

U11 is the compression stiffness andC66 is the shear modu
lus. In particular, at high fields,Bz@F0 /l2, we have

U11[C11~k!k'
2 '

Bz
2

4pl2 S 12
k'

2

16pnv
D ,

C665nve0/4.

The magnetic tilt stiffness,35 U44(k), is given by interpola-
tion formula, which takes into account softening due to p
cake fluctuations,

U44~k![C44~kz!kz
25

BzF0

2~4p!2l4
lnS 11

r cut
2

kz
221r w

2 D ,

~10!
09452
e
s

-

with r w
2 5^(un112un)2&, r cut'l at a.l andr cut'a/4.5 at

a,l,26 with a5A2/(A3nv) being the lattice constant. A
finite Josephson energy, minimization of the energy with
spect to the phases at fixed pancake positions leads to
Josephson term in the tilt stiffness energy.36

The major focus of this paper is the structure of JV co
This requires analysis of the pancake displacements
regular phase at distancesr'!lc andz!a,l from the vor-
tex center. At these distances the main contribution to
energy is coming from the kinetic energy of supercurre
and magnetic screening can be neglected. The structur
energy is significantly simplified: one can neglect the fie
contributions in the regular and Josephson energy terms,
drop Ar :

Fr@f rn ,Ar #→Fr@f rn#5(
n
E d2r

J

2
~“f rn!2, ~11!

FJ@f rn ,Ar ,Rn,i #→

FJ@f rn ,Rn,i #5(
n
E d2rEJ@12cos~fn112fn!#,

~12!

and use asymptoticsr cutkz@1 in the tilt stiffness~10!. Be-
havior at large distancesr';lc andz;a,l is important for
accurate evaluation of the cutoff in the logarithmically d
verging energy of the Josephson vortex. In this range
Josephson term can be linearized and one can use the a
tropic London theory.24

B. Small c axis field: Crossing energy

At small fields and high anisotropy factor, pancake vor
ces do not influence much structure of JV’s. However, th
is a finite interaction energy between pancake stack
JV ~crossing energy! which causes spectacular observab
effects, including formation of the mixed chain-lattic
0-3



an
th

a-
ap

ue

an

-

e

ec-

iff-

e
JV

ter,

by

ep

A. E. KOSHELEV PHYSICAL REVIEW B68, 094520 ~2003!
state.11,12,14We consider a JV located between the layers
and 1 and directed alongx axis with center aty50 and a
pancake stack located atx50 and at distancey from the JV
center. We will calculate structure of the pancake stack
the crossing energy. The JV core structure is defined by
phasesfn(y) obeying the following equation:

d2fn

dỹ2
1sin~fn112fn!2sin~fn2fn21!50 ~13!

with ỹ5y/lJ0. An accurate numerical solution of this equ
tion has been obtained in Ref. 4. It is described by the
proximate interpolation formula27

fn~ ỹ!'arctan
n21/2

ỹ
1

0.35~n21/2!ỹ

@~n21/2!21 ỹ210.38#2

1
8.81~n21/2!ỹ@ ỹ22~n21/2!212.77#

@~n21/2!21 ỹ212.02#4
. ~14!

Interaction between the pancake stack and JV appears d
the pancake displacementsun under the action of the JV
in-plane currentsj n(y) ~see Fig. 1!. In the regime of very
weak interlayer coupling, the energy of the deformed p
cake stack is given by

E3~y!5E dkz

2p

UM~kz!

2
uu~kz!u22(

n

sF0

c
j n~y!un ,

~15!

where UM(kz)5@F0
2/2(4p)2l4# ln@11l2/(kz

221rw
2)# is the

magnetic tilt stiffness of the pancake stack,

j n~y!'
2cF0

~4pl!2gs
pnS y

gsD ,

with pn( ỹ)[dfn( ỹ)/dỹ being the reduced superfluid mo
mentum, and the JV phasefn( ỹ) is given by approximate
formula ~14!. In particular,pn(0)52Cn /(n21/2) with Cn

→1 at largen. Using the precise numerical phasesfn( ỹ),
we obtain the interpolation formula

Cn'120.265/@~n20.835!210.566#,

giving C1'0.55 andC2'0.86. At large distances from th
core,n,ỹ@1, pn( ỹ) is given by

FIG. 1. Configuration of the pancake stack crossing the Jos
son vortex:~a! the stack located in the center of JV core and~b! the
stack located at a finite distancey from JV center.
09452
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pn~ ỹ!52
n21/2

~n21/2!21 ỹ2
.

Displacements in the core region have typical wave v
torskz;p/s. In this range, one can neglectkz dependence of
UM(kz),

UM'
F0

2

~4p!2l4
ln

l

r w
,

and rewrite Eq.~15! as

E3~y!5(
n

S sUM

2
un

22
sF0

c
j n~y!unD . ~16!

We neglected weak logarithmic dependence of the tilt st
ness on displacements and the parameterr w in UM is just a
typical value of uun112unu. Minimizing this energy with
respect toun , we obtain the pancake displacements

un~y!5
F0

c

j n~y!

UM
'

2l2

gsln„l/un~y!…
pnF y

gsG
with vn(y)'uun(y)2un21(y)u and crossing energy at finit
distancey between the crossing point and the center of
core,

E3~y!52
s

2UM
(

n52`

` S F0 j n~y!

c D 2

'2
F0

2

4p2g2s ln„l/u1~y!…
A3S y

gsD , ~17!

with

A3~ ỹ!5 (
n51

`

@pn~ ỹ!#25 (
n52`

`

@12cos~fn112fn!#,

where the second identity can be derived from Eq.~13!. In
particular, for the pancake stack located at the JV cen
A3(0)52 ~exact value! and

E3~0!'2
F0

2

2p2g2s ln~3.5gs/l!
. ~18!

The maximum pancake displacement in the core is given

u1~0!'
2.2l2

gs ln~2gs/l!
. ~19!

At large distances,y@gs, using asymptoticsA3( ỹ)
'p/4ỹ, we obtain

E3~y!'2
F0

2

16pgy lnS by2

lgsD
with b;1. ~20!

h-
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Using numerical calculations, we also obtain the followi
approximate interpolation formula for the functionA3( ỹ),
valid for the whole range ofỹ:

A3~ ỹ!'
p/4

Aỹ21y0
2 S 11

a

ỹ21y0
2D , ~21!

y0'0.93, a'1.23.

Equations~17! and ~21! determine the crossing energy
finite distancey between the crossing point and the cen
of the JV core. Below we will use this result to calculate t
pinning force which binds the JV to the dilute panca
lattice.

C. Large c-axis field: Approximation of the effective phase
stiffness

At high c axis fields pancakes substantially modify the
structure. Precise analysis of the JV core in the pancake
tice for the general case requires tedious consideration
many energy contributions~see Sec. II E below!. The situa-
tion simplifies considerably in the regime of very high a
isotropy,g@l/s. In this case, one can conveniently descr
the JV structure in terms of the effective phase stiffne
which allows us to reduce the problem of a JV in the panc
lattice to the problem of an ordinary JV atBz50. In Ref. 9,
this approach has been used to derive the JV structure
high fields, Bz@F0/4pl2. The approach is based on th
observation that smooth transverse lattice deformati
utn(r ) produce large-scale phase variationsfvn(r ) with
“fvn52pnvez3utn . This allows us to express the tran
verse part of the elastic energy,Fv2t , in terms offvn(r ):

Fv2t5E dk

~2p!3

Jv~Bz ,k!

2s
k'

2 ufv~k!u2, ~22!

with the effective phase stiffnessJv(Bz ,k),

Jv~Bz ,k!5
s~C66k'

2 1U44!

~2pnv!2

'
J

8pnvl2 S l2k'
2

2
1 lnS 11

r cut
2

kz
221r w

2 D D .

~23!

Replacing the discrete lattice displacements by the smo
phase distribution is justified at fieldsBz.F0 /(gs)2. The
structure of the JV core is determined by phase deformat
with the typical wave vectorsk';1/gs,2/l and kz;p/s
.1/r w . In this range the vortex phase stiffness isk indepen-
dent, similar to the usual phase stiffness,

Jv~Bz!'J
Bl

Bz
, Bl[

F0

4pl2
ln

r cut

r w
. ~24!
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The phase stiffness energy~22! has to be supplemented b
the Josephson energy. In the core region, we can neglec
vector potentials and write the total energy in terms off rn
andfv as

F5(
n
E d2r S J

2
~“f rn!21

Jv

2
~“fvn!2

1EJ@12cos~fn112fn!# D , ~25!

where, again,fn[f rn1fvn is the total phase.
We now investigate the core structure on the basis of

ergy ~25!. Eliminating the regular phase,f rn5fn2fvn ,
and varying the energy with respect tofvn at fixedfn , we
obtain the equation

JDfn2~Jv1J!Dfvn50,

which gives

fvn5
J

Jv1J
fn . ~26!

Substituting this relation back into energy~25!, we express it
in terms of the total phase,

F5(
n
E d2r S Jeff

2
~“fn!21EJ@12cos~fn112fn!# D

~27!

with the effective phase stiffnessJeff ,

Jeff
215J211Jv

21 or Jeff5
J

11Bz /Bl
. ~28!

Note that the smallest stiffness fromJ and Jv dominates in
Jeff .

28 From Eq.~27!, we obtain equation for the equilibrium
phase,

Jeff¹y
2fn1EJ@sin~fn112fn!2sin~fn2fn21!#50,

~29!

which has the same form as at zeroc axis field, except that
the bare phase stiffness is replaced with the effective ph
stiffnessJeff . For the Josephson vortex located between
layers 0 and 1, the phase satisfies the conditions

f12f0→H 0, y→`

2p, y→2`.
~30!

Far away from the nonlinear core, the phase has the u
form for the vortex in anisotropic superconductor,

fn~y!'arctan
lJ~n21/2!

y
, ~31!

where the effective Josephson length

lJ5AJeff /EJ5lJ0 /A11Bz /Bl

determines the size of the nonlinear core. Therefore, at
temperatures the JV core shrinks in the presence of thec-axis
0-5
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magnetic field due to softening of the in-plane phase de
mations. A number of pancake rows within the JV core c
be estimated as

Nrows'
lJ0

l
Aln~r cut/r w!

4p
A Bz

Bl1Bz
. ~32!

At Bz.Bl , it is almost independent of the field. An approx
mate solution of Eq.~29! is given by Eq.~14!, where the bare
Josephson lengthlJ0 has to be replaced by the renormaliz
lengthlJ .

The JV energy per unit length,EJV , is given by

EJV5pAEJJeffln
L

s
, ~33!

whereL is the cutoff length, which is determined by scree
ing at large distances and will be considered below, in S
II D. From Eqs. ~26! and ~28!, we obtain that the partia
contribution of the vortex phase in the total phase,

fvn5
Bz

Bz1Bl
fn , ~34!

continuously grows from 0 atBz!Bl to 1 atBz@Bl . From
the last equation, one can estimate pancake displaceme

ux,n~y!5
F0/2p

Bz1Bl
“yfn'2

F0/2p

Bz1Bl

lJ~n21/2!

y21@lJ~n21/2!#2
.

~35!

The maximum displacement in the core can be estimate

ux,0~0!'
2.2l2

lJ0ln~r cut /r w!A11Bz /Bl

. ~36!

At Bz@Bl , this equation can be rewritten in the form

ux,0~0!

a
'

0.58l

lJ0Aln~a/r w!
, ~37!

which shows that the condition for applicability of the line
elasticity, ux,0(0)&0.2a, is satisfied ifg*3l/s. Equations
~31! and ~33! describe smooth evolution of the JV structu
with increase of concentration of pancakes starting from
usual vortex atBz50. It is quantitatively valid only at very
high anisotropies,g@l/s, and at low temperatures, whe
one can neglect fluctuation suppression of the Josephson
ergy. Thermal motion of the PV’s at finite temperatures
duces the fluctuating phasef̃n,n11 and suppresses the effe
tive Josephson energyEJ→CEJ , where C[^cosf̃n,n11&.
This leads to reduction of the JV energy and thermal exp
sion of its core.

In the rangeF0 /(gs)2,Bz,Bl , the ‘‘crossing energy’’
regime of Sec. II B overlaps with the applicability range
the effective phase stiffness approximation. To check
consistency of these approximations, we calculate correc
to the JV energy at small fields, summing up the cross
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energies, and compare the result with prediction of the ‘‘
fective phase stiffness’’ approximation. The correction to t
JV energy is given by

dEJV5
1

a (
m52M

M

E3~mb!'2
F0Bz

8pg ln„l/u1~0!…
ln

Ly

gs
,

~38!

whereLy5Mb is the long-range cutoff length. On the oth
hand, Eqs.~28! and ~33! give atBz!Bl ,

dEJV5pAEJJ
Bz

2Bl
ln

L

s
. ~39!

This result is identical to Eq.~38! except for expressions
under the logarithms, which are approximate in both cas

D. Large-scale behavior: Screening lengths

In this section, we consider the JV structure at large d
tances from the core,n@1, y@lJ . At large distances,
screening of supercurrents becomes important and one
not neglect the vector potential any more. At these scales
phase changes slowly from layer to layer so that one
expand the Josephson energy in Eq.~6! with respect to the
phase difference and use the continuous approximat
fn112fn2(2ps/F0)Az→s@“zf2(2p/F0)Az#,

FJ@fn ,A#→F̃J@f,A#5E d3r
sEJ

2 S“zf2
2p

F0
AzD 2

.

~40!

This reduces the Lawrence-Doniach model defined by E
~3!–~6! to the anisotropic London model. Within this mod
the JV structure outside the core region has been investig
in detail by Savel’evet. al.24 In this section, we reproduce
the JV structure at large distances using the effective ph
stiffness approach. For the vortex energy, one still can
Eq. ~22! with the full k-dependent phase stiffness~23!.
Within these approximations, the energy~3! is replaced by

F@f r ,fv ,A#5Fr@f r ,A'#1Fv2t@fv#1F̃J@f r1fv ,Az#.
~41!

Varying the energy with respect toA, we obtain

F0

2p
“'f r2A'1l2¹2A'50, ~42a!

F0

2p
“zf2Az1lc

2¹2Az50. ~42b!

It is convenient to perform the analysis of the large-sc
behavior ink space. Solving linear equations~42a! and~42b!
using Fourier transform,

A'5
F0

2p

“'f r

11l2k2
, ~43a!
0-6
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Az5
F0

2p

“zf

11lc
2k2

, ~43b!

and excludingA, we express the energy in terms of phas

F5E d3k

~2p!3 F J

2s

l2k2

11l2k2
~“'f r !

21
Jv~k!

2s
~“'fv!2

1
sEJ

2

lc
2k2

11lc
2k2

~“zf!2G .

Following the procedure of the preceding section, we elim
natef r , minimize the energy with respect tofv , and obtain
the energy in terms of the total phase,

F5E d3k

~2p!3 FJeff~k…

2s
~“'f!21

sEJ~k!

2
~“zf!2G .

~44!

where the effective phase stiffnessJeff(k… and the effective
Josephson energy are given by

Jeff
21~k!5J21

11l2k2

l2k2
1Jv

21~k!, ~45a!

EJ~k!5EJ

lc
2k2

11lc
2k2

. ~45b!

In the case of the JV, minimization with respect to the pha
has to be done with the topological constraint,“z“yf
2“y“zf52pd(y)d(z), which gives

“zf5
2p ikyJeff~k!

Jeff~k!ky
21s2EJ~k!kz

2

5
2p iky~11lc

2k2!

k2@11lc
2ky

21l2kz
2~11w~k!#

, ~46a!

“yf52
2p ikzs

2EJ~k!

Jeff~k!ky
21s2EJ~k!kz

2
5

2
2p ikz~11l2k2!

k2$11lc
2ky

21l2kz
2@11w~k!#%

, ~46b!

and

EJV5
1

2E d2k
sEJ~k!Jeff~k!

Jeff~k!ky
21s2EJ~k!kz

2

5
J

2sE d2k

l221g2ky
21kz

2@11w~k!#
, ~47!

with
09452
i-

s

w~k!5J/Jv~k!5
2h

l2ky
2/21 ln~11kz

2r cut
2 !

~48!

andh[4pnvl2. The integration has to be cut atkz;p/s. In
addition, integration with respect toky is typically deter-
mined byky;kz /g so that one can neglect inw(k) the term
l2ky

2/2;l2kz
2/2g2, coming from the shear energy, in com

parison with the tilt energy term ln(11kz
2rcut

2 ), and the JV
energy reduces to

E JV'
J

2sE d2kS l221g2ky
21kz

21
2hkz

2

ln~11kz
2r cut

2 !
D 21

5
pJ

gsE0

kc dkz

Al221kz
2~112h/ ln„11r cut

2 /~kz
221r w

2 !…!
.

~49!

A similar formula has been derived in Ref. 24. This formu
shows that the small-kz logarithmic divergence in the inte
gral cuts off atkz5max(l21,a21). To reproduce JV energy a
Bz50, the upper cutoff has to be chosen askc52.36/s.

Let us consider in more detail the case of a largec axis
field h@1, where the JV structure is strongly renormaliz
by the dense pancake lattice. Formula for the JV energy s
plifies in this limit to

EJV'
pJ

gsA2h
E

0

kcAln„110.05a2/~kz
221r w

2 !…
dkz

kz
.

To estimate this integral, we split the integration region in
two intervals, 1/r w&kz&p/s and p/a&kz&1/r w , and ob-
tain

EJV'
pJ

gsAh
SAlnS 0.2a

r w
D ln

2.4r w

s
1

2

3 F lnS 0.2a

r w
D G3/2D .

Note that the long-range contribution to the energy scale
a logarithm to the power 3/2.

1. Magnetic field of Josephson vortex

Using Eqs.~46! and ~43!, we obtain for the JV magnetic
field ~see also Ref. 24!

Bx~k!5
F0

11lc
2ky

21l2kz
2@11w~k!#

, ~50!

wherew(k) is given by Eq.~48!. Let us consider the case o
large magnetic fieldsB.Bl . In a wide region, l
,Ay21(gz)2,lc , the magnetic field in real space is a
proximately given by
0-7
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Bx~y,z!'F0E dkydkz

4p2
exp~ ikyy1 ikzz!S lc

2ky
21

2l2hkz
2

ln~11a2kz
2/20!

D 21

5
F0

2pllcA2h
E

0

`

dkz

Aln~11a2kz
2/20!

kz
expS 2

A2hkzuyu

gAln~11a2kz
2/20!

D cos~kzz!. ~51!
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One can estimate from this expression the JV maximum fi
as

Bx~0,0!'
F0

3pllcAh
S ln

a

zc
D 3/2

, ~52!

and this field decays at the scale;a/4.5 in thez direction
and at the scalega2/20l in the y direction. The magnetic
flux concentrated at this region is estimated asF'F0 /(1
12.8h2). The residual fluxF02F is distributed over the
pancake lattice at much larger distances.

Due to the elasticity of the pancake lattice, the behavio
large distances is very unusual. The limiting expression
Bx(k) at k→0 is given by

Bx~k!'F0S 11
hkz

2

ky
2/41kz

2/~2.8h!
D 21

. ~53!

Formally, the total flux of JV is given by the limit

F5 lim
k→0

Bx~k!.

However this limit depends on the order of limits limky→0

and limkz→0,

lim
kz→0

lim
ky→0

Bx~k!5
F0

112.8h2
'

F0

2.8h2
,

lim
ky→0

lim
kz→0

Bx~k!5F0 .

This apparent paradox can be resolved by calculating
field distribution in the real space

Bx~y,z!'
1

2 S 11
1

2.8h2D F0d~r !

2S 12
1

2.8h2D F0

pAh

4y22z2/h

~4y21z2/h!2
, ~54!

This expression clearly shows that the screening is inc
plete: the field at large scales has a slowly decaying 1/r 2 tail.
The magnetic flux through the large size boxLy3Lz is given
by

F~Ly ,Lz!5F0X12S 12
1

2.8h2D 2

p
arctanS 2AhLy

Lz
D C
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and the limiting value of the total flux atLy ,Lz→` depends
on the aspect ratioLy /Lz .

E. Quantitative analysis of the core structure

The simple ‘‘effective phase stiffness’’ approximation, d
scribed in Sec. II C, is only valid ifg is significantly larger
thanl/s. In BSCCO, even at low temperatures,g is at most
three to four times larger thanl/s. Moreover, it always ap-
proachesl/s at T→Tc . In this section, we extend our analy
sis to the regiong;l/s. We consider JV structure at low
temperatures and not very smallc-axis field, Bz
.F0 /(gs)2. The structure of JV core is completely dete
mined by the displacements of pancake vortices and ph
distribution. The equilibrium pancake displacements dep
only on the layer index and on coordinate, perpendicula
the direction of the vortex~see Fig. 2!. Therefore, the energy
can be expressed in terms of the displacements of the vo
rowsun,i . Different representations for the magnetic intera
tion between the vortex rowsUMr(un,i2um, j ,n2m) are
considered in Appendix A. We will operate with the pha
perturbationfn(r ) with respect to equilibrium phase distr
bution of the perfectly aligned pancake crystal. We split t
phase into the contribution, averaged over the JV direct
(x axis!, f̄n(y), and oscillating in thex direction contribu-
tion, f̃n(x,y). Pancake displacements induce jumps of
average phase at the coordinates of the vortex rowsYi ,
f̄n(Yi10)2f̄n(Yi20)52pun,i /a. The oscillating phase
induced by the row displacements becomes negligible
ready at the neighboring row. This allows us to separate
local contribution to the Josephson energy coming fr
f̃n(x,y) ~see Appendix B! and reduce initially the three
dimensional problem to the two-dimensional problem
finding the average phase and row displacements. Fur
on, we operate only with the averaged phase and skip

FIG. 2. Displacements of the pancake rows in the JV core.
0-8
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accent ‘‘2 ’’ in the notation f̄n(y). We again split the
total phase into the continuous regular phasef rn(y) and
the vortex phasefvn(y), fn(y)5f rn(y)1fvn(y;un,i).
The vortex phase is composed of jumps at the row positi
Yi ,

fvn~y;un,i !52
2p

a (
i

un,iQ~Yi2y!, ~55!

whereQ(y) is the step function@Q(y)51 (0) at y.0 (y
,0)]. In the effective phase stiffness approach of Sec. II
we used a coarse-grained continuous approximation for
phase. We neglectx-dependent contribution in the regula
phase, which is small atB.F0 /(gs)2. Collecting relevant
energy contributions, we now write the energy per u
length in terms of the regular phasef rn(y) and the row
displacementsun,i ,

EJ5(
n
E dyF J

2 S df rn

dy D 2

1EJ@12cos~fn112fn!#G
1

1

2 (
n,m,i , j

ŨMr~un,i2um, j ,Yi , j ,n2m!

1(
n,i

EJosc~un11,i2un,i ,fn11,i2fn,i !. ~56!

Here
~i! fn(y)[f rn(y)1fvn(y;un,i) is the total phase.
~ii ! UMr(xn,i2xm, j ,Yi , j ,n2m) is the magnetic interac

tion between the vortex rows separated by distanceYi , j
5Yi2Yj5b( i 2 j ) ~see Appendix A!,
09452
s

is

t

ŨMr~un,i2um, j , . . . ![UMr~Xi 2 j1un,i2um, j , . . . !

2UMr~Xi 2 j , . . . !.

is the variation of this interaction caused by pancake r
displacements,Xi50 for even i and Xi5a/2 for odd i.
ŨMr(x,y,n) is periodic with respect tox, ŨMr(x1a,y,n)
5ŨMr(x,y,n).

~iii ! EJosc(un11,i2un,i ,fn11,i2fn,i) is the local Joseph-
son energy due to the oscillating component of the ph
difference~see Appendix B! with

fn,i[f rn~Yi !1p
un,i

a
2

2p

a (
j . i

un, jQ~Yj2y!

being the external phase ati th rows andnth layer.
The energy given in the Eq.~56! describes the JV struc

ture at distancesr'!lc andz!a,l from its center.
To facilitate calculations, we introduce the reduced co

dinates

ỹ5
y

gs
, vni5

uni

a
,

and represent the energies in the scaling form. We repre
magnetic interaction between the rows as

UMr~x,y,n!5
pJa

l2
VMr S x

a
,
y

a
,nD ,

where
n

y

VMr~x,y,n!52
l2

a2 S dn2
s

2l
expS 2

sunu
l D D ln@122 cos 2px exp~22puyu!1exp~24puyu!#

1
sl

2a2 (
m52`

`

uSAy21~x2m!2

l/a
,
sunu
l D

andu(r ,z) is defined by Eq.~8!. Note that atx,y→0, VMr(x,y,n) remains finite fornÞ0 because logarithmic divergency i
the first term is compensated by logarithmic divergency of them50 term in the sum. Atr2[x21y2→0, using asymptotics
u(r,z)'exp(2z)@2gE2ln(r2/2z)#1exp(z)E1(2z) with gE50.5772, we obtain the limiting value ofVMr(x,y,n) at nÞ0,

VMr~0,0,n!5
sl

2a2 FexpS 2
sunu
l D S lnF8p2sunul

a2 G2gED 1expS sunu
l DE1S 2sunu

l D12 (
m51

`

uS am

l
,
sunu
l D G .

The local Josephson energy can be represented as

EJosc~u,f!52EJa cos~f!J~u/a!,

whereJ(v) is dimensionless function,J(v)'(p/4)v2ln(0.39/v) at v!1 ~see Appendix B!. In reduced units the total energ
takes the form
0-9
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EJ /«J05(
n
E dỹF1

2 S df rn

dỹ
D 2

112cos~fn112fn!G1
pgsa

2l2 (
n,m,i , j

ṼMr S vn,i2vm, j ,
Ỹi , j

ag
,n2mD

1
2a

gs (
n,i

J~vn11,i2vn,i !cos~fn11,i2fn,i !, ~57!

where«J0[EJgs[J/gs is the JV energy scale,fn(y)5f rn(y)22p( ivn,iQ(Yi2y), andag[a/gs. Varying the energy, we
obtain equations forvn,i andfn :

“yf rn~Yi !1
gsa

2l2 (
m, j

FMr S vn,i2vm, j ,
Ỹi , j

ag
,n2mD 1

a

pgs (
d561

cos~fn,i2fn1d,i !FJ~vn,i2vn1d,i !50, ~58a!

d2f rn

dỹ2
1sin~fn112fn!2sin~fn2fn21!50. ~58b!

HereFMr(x,y,n)[2“xVMr(x,y,n) is the magnetic interaction force between the vortex rows,

FMr~x,y,n!5
2pl2

a2 Xdn2
s

2l
expS 2

sunu
l D C sin 2px

cosh 2puyu2cos 2px
1

sl

a2 (
m

x2m

~x2m!21y2
expS 2

A~x2m!21y21z2

l/a D
andFJ(v,f)52]J(v)/]v'2(p/2)v ln(0.235/v) at v!1. The derivative of the regular phase has jumps at the position
the rows,

df rn

dỹ
~Ỹi10!2

df rn

dỹ
~Ỹi20!5

2a

gs (
d561

J~vn1d,i2vn,i !sin~fn1d,i2fn,i !. ~59!
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To find the JV structure at low temperatures one has to s
Eqs.~58a!, ~58b!, and~59! with condition ~30!.

Let us consider in more detail magnetic interactions
tween vortex rows, i.e., the term withFMr in Eq. ~58a!. First,
one can observe that the dominating contributions to the
over the layer indexm and row indexj come from rows in
the same layer,m5n, and rows in the same stack,j 5 i . The
former sum determines the shear stiffness, while the la
one determines the magnetic tilt stiffness,

(
m, j

FMr S vn,i2vm, j ,
Ỹi , j

ag
,n2mD' f shear@vn,i #1 f tilt@vn,i #,

~60!

with

f shear@vn,i #5(
j Þ i

FMr S vn,i2vn, j ,
Ỹi , j

ag
,0D , ~61!

f tilt@vn,i #5 (
mÞn

FMr~vn,i2vm,i ,0,n2m!. ~62!

The sum over the rows inf shear@vn,i # converges very fas
and is effectively determined by the first two neighbori
rows. Note that skipping the terms withmÞn in f shear@vn,i #
is completely justified in the limita,l, but leads to over-
estimation of the shear energy in the limita.l. However in
09452
e

-

m

er

this limit, the shear energy has already a very weak influe
on JV properties. The sum over the layers inf tilt@vn,i # is
determined by large number of the layers of the order ofa/s
or l/s. If we consider layern close to the JV core, then th
interaction force with row in the layerm, in the same stack
with n!m!a/s,l/s, is given by FMr(vn,i2vm,i ,0,n2m)
'2(vn,i2vm,i)/2(m2n). Interactions with remote layer
give large contributions even if displacements in these lay
are small,vm,i!vn,i . A useful trick to treat this situation is
to separate interaction of a given pancake row with
alignedstack pancake rows:

f tilt@vn,i #5 (
mÞn

F̃Mr~vn,i2vm,i ,0,n2m!1 f cage~vn,i !,

with

F̃Mr~vn,i2vm,i ,0,n2m!5FMr~vn,i2vm,i ,0,n2m!

2FMr~vn,i ,0,n2m!

and

f cage~v !5 (
mÞ0

FMr~v,0,m!
0-10
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JOSEPHSON VORTICES AND SOLITONS INSIDE . . . PHYSICAL REVIEW B 68, 094520 ~2003!
is the interaction force of a chosen pancake row with
aligned stack of rows~‘‘cage’’ force!, for which we derive a
useful representation

f cage~v !52(
l 51

`

3
4psin~2p lv !

A~a/l!21~2p l !2~A~a/l!21~2p l !212p l !
.

At v!1!l/a, this equation gives f cage(v)'
2v ln(0.433/v). F̃Mr(vn,i2vm,i ,0,n2m) behaves as
vm,i /2(m2n) at largem and decays with increase ofm much
faster thanFMr(vn,i2vm,i ,0,n2m). The same splitting can
be made in the magnetic coupling energy:

1

2 (
mÞn

VMr~vn2vm ,n2m!

5 (
umu.unu

„VMr~vn2vm ,n2m!2VMr~vn ,n2m!

2VMr~vm ,n2m!…1(
n

vcage~vn!

with

vcage~v !5 (
nÞ0

VMr~v,n!

5(
l 51

`
2~12cos~2p lv !!

lA~a/l!21~2p l !2~A~a/l!21~2p l !212p l !
.

This function has simple asymptotics atv!1!l/a,
vcage(v)'(v2/2)ln(0.713/v).

We demonstrate now that in the limitg@l/s, Eqs.~58a!
and ~58b! reproduce the JV structure obtained within t
effective phase stiffness approximation. One can show tha
this limit the local Josephson energy influences weakly
JV structure. We calculate correction to the JV energy du
this term in the Appendix C. The dominating contribution
the magnetic interaction between the pancake ro
(m, jFMr„vn,i2vm, j ,(Yi , j /ag),n2m…, comes from the tilt
force ~62!, which with good accuracy can be described
the cage forcef cage(vn,i) in the limit of smallvn,i , f cage(v)
'2v ln(C/v) with C'0.433. Further estimate shows that t
term (mÞnF̃Mr(vn,i2vm,i ,0,n2m) in Eq. ~62! amounts to
the replacement of numerical constantC under the logarithm
by a slowly changing function of the order of unity. Becau
of slow space variations, the discrete row displacementsvn,i
can be replaced by the continuous displacement fieldvn(y).
Within these approximations, Eq.~58a! reduces to

“yf rn'
gsa

2l2
vn~y!ln

C

vn~y!
.

Replacingv(y) by the vortex phasefvn(y) obtained by
coarse graining of Eq.~55!, vn(y)5(b/2pgs)“yfvn(y), we
obtain
09452
e
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“yf rn'
Bl

Bz
“yfvn .

Note that we replacedvn(y) in ln@C/vn(y)# by its typical
value and absorbed the logarithmic factor into the definit
of Bl ~24!. From the last equation, we obtainf rn
5(Bl /Bz)fvnand

fn5S 11
Bz

Bl
Df rn .

Therefore Eq.~58b! reduces to

2
1

11
Bz

Bl

d2fn

dy2
1sin~fn2fn11!1sin~fn2fn21!50,

which is just dimensionless version of Eq.~29!.

1. Numerical calculations of JV core structure.
Crossover to solitonlike cores.

To explore the JV core structure, we solved Eqs.~58a!
and~58b! numerically for different ratiosl/gs and different
magnetic fields. We used a relaxation technique to find
equilibrium displacements of the pancake rows and the c
tinuous regular phase. Typically, we solved equations for
layers and the in-plane region 0, ỹ,20.

To test the ‘‘effective phase stiffness’’ model and to ca
culate uncertain numerical factors, we start from the case
large anisotropies,g@l/s. Figure 3 shows the gray-leve
plots of the cosine of the phase difference between two c
tral layers of JV, cosQ, Q[f12f0[2f1, for l50.2gs.
Figure 4 showsy dependence of the total phase differenceQ
and the contribution to this phase coming from the regu
phase for the same parameters. As one can see, aB
*F0 /(gs)2 the core region covers several pancake rows.
high fields the core size shrinks so that the number of row
the core does not change, in agreement with the ‘‘effect
phase stiffness’’ model. From Fig. 4, one can see that
fraction of the regular phase in the total phase progressiv
decreases with increase of magnetic field. For the fi
8F0 /(gs)2, we also plottedQ(y) dependence from the ‘‘ef-
fective phase stiffness’’ model, assumingBl52.1F0/4pl2.
One can see that the numerically calculated dependenc
reasonably well described by this model.

We now extend study of the core structure to moder
anisotropies;l/s. In Fig. 5, we plot the maximum pancak
displacementumax in the core region normalized to the lattic
constanta as function of magnetic field for differentl/gs.
The maximum displacement approximately saturates at
nite fraction of lattice constant at high field~at high l/gs,
one can actually observe a slight decrease ofumax/a with
field!. Figure 6 shows dependence ofumax/a on l/gs for
fixed fieldB510F0 /(gs)2. Dashed line shows prediction o
the ‘‘effective phase stiffness’’ model given by Eq.~37!. One
can see that this equation correctly predicts maximum
placement forl/gs,0.35. An important qualitative chang
occurs atl/gs.0.35, where the maximum displaceme
umax(0) exceedsa/4. This means that the pancakes initial
0-11
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belonging to the neighboring stacks become closer than
pancakes belonging to the same stack. This can be viewe
switching of the vortex lines in the central layer of JV. Th
switching is clearly observed in Fig. 7, which shows panca
displacements in the central row of pancake stacks and
neighboring row for two values of the ratiol/gs, 0.3 and
0.5, and several fields. Forl/gs50.5, configuration of the
pancake rows in the central stack is very similar to the c
sical soliton ~‘‘kink’’ ! of the stationary sine-Gordon equ
tion: the stacks smoothly transfer between the two ideal
tice position in the region of the core. Simplifie
approximate description of such solitionlike structure in t
casegs,l is presented below in Sec. II F. Figure 8 sho
distribution of cosine of interlayer phase difference betwe
two central layers, cosQ. As one can see, atl/gs50.3 there
are still extended regions of large phase mismatch in the
core ~dark regions!, while for l/gs50.5 these regions ar
almost eliminated by large pancake displacements in
core.

F. Simple model for solitonlike cores at moderate anisotropies

In this section, we consider the structure of the JV c
for moderate anisotropiesgs,0.5l and high fields B

FIG. 3. Gray-level plots of the cosine of the phase differen
between two central layers of JV, cosQ, for l50.2gs and several
magnetic fields~dark regions correspond to cosQ;21 and white
regions correspond to cosQ;1). The total size of displayed regio
in the horizontal direction is 6gs. One can see that in this regim
several pancake rows fit inside the core region. At high fields,
size of the core shrinks so that the number of pancake rows in
the core remains constant.
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e

e

.F0/4pl2. Estimate~37! and numerical calculations show
that at sufficiently small anisotropy,g,0.5l/s, the maxi-
mum displacement in the core region exceeds a quarter o
lattice spacing. This means that distance between displa
pancakes belonging to the same vortex line, 2ux,0(0), be-
comes larger than the distance between pancakes init
belonging to the neighboring lines,a22ux,0(0) . This can be
viewed as switching of the vortex lines in the central layer
JV. At lower anisotropies, pancake stacks in the central r
acquire a structure similar to the soliton of the stationa
sine-Gordon model: in the core region they displa
smoothly between the two ideal lattice position~see Fig. 7
for l/gs50.5). In such configuration a strong phase m

e

e
de

FIG. 4. Coordinates dependence of the phase difference betw
two central layers,Q5f12f0, for l/gs50.2 and different mag-
netic fields. Circles connected by dotted lines represent total ph
difference, solid lines show contributions from the regular pha
Jumps of the total phase difference at the positions of pancake
are caused by pancake displacement and represent the v
phases. In the lower plot dashed line represents prediction of
‘‘effective phase stiffness’’ model withBl52.1F0/4pl2.
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match between the two central layers is eliminated, wh
saves the Josephson energy in the core region. On the
hand, large pancake displacements lead to greater loss o
magnetic coupling energy. To describe this soliton structu
we consider a simplified model, in which we~i! keep only
displacements in the central rowvn,0[vn , ~ii ! use the cage
approximation for magnetic interactions, and~iii ! neglect the
shear energy. All these approximations are valid close to
JV center. Atn.0, we redefine displacements asvn→1
1vn . The redefined displacements depend smoothly on
layer index,vn112vn!1, so that one can replace the lay
index n by continuous variablez5ns, un→u(z), and use
elastic approximation for the Josephson tilt energy:

Ecore'E dzS pEJsLJ

2a S du

dzD
2

1
pJa

sl2
vcageS u

aD D , ~63!

where the logarithmic factorLJ is estimated asLJ
' ln@0.39(a/s)udu/dzu21# and

vcage~v !'(
l 51

`
12cos~2p lv !

~2p!2l 3

is the magnetic cage. For estimates, we replaceLJ by a con-
stant substituting a typical value fordu/dz under the loga-
rithm. The equilibrium reduced displacementv5u/a is de-
termined by the equation

FIG. 5. Field dependencies of the maximum pancake displa
ment in the core at different ratiosl/gs ~the curves are labeled b
this ratio!.

FIG. 6. Dependence of the maximum pancake displacemen
the core on the ratiol/gs at B510F0/4pl2. Dashed line repre-
sents prediction of the ‘‘effective phase stiffness’’ model~37!.
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d2v

dz2
1

g2

L Jl
2

vcage8 ~v !50. ~64!

Its solution is implicitly determined by the integral relation

E
1/2

v dv

Avcage~v !
5

Agz

l
,

with A5A2/LJ. Therefore a typical size of the soliton i
given by

zs'l/g

and the applicability condition of this approachzs@s is
equivalent togs!l. In fact, accurate numerical calculation
of the preceding section show that the core acquires the
tonlike structure already atgs&2l. The core energy is
given by

Ecore'
apA2JEJLJ

l E
0

1

dvAvcage~v !.

At a!l, numerical evaluation of the integral give
*0

1dvAvcage(v)'1.018/2p and we obtain

e-

in

FIG. 7. Structure of the pancake-stacks row in the center of
~big circles! and its neighboring row~small circles! for l/gs50.3
and 0.5 and several values of the magnetic field. Atl/gs50.5,
pancakes in the central row form lines smoothly transferring
tween two ideal lattice position~solitonlike structure!.

FIG. 8. Gray-level plots of the cosine of the interlayer pha
difference between the two central layers of JV forl/gs50.3 and
0.5 and different fields. Forl/gs50.3, the JV core covers roughl
three pancake row, while forl/gs50.5 it shrinks to one pancake
row. In the second case, the regions of suppressed Josephson e
are practically eliminated.
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Ecore'AJEJ

LJ

2

a

l
.

We also estimate the shear contribution to the periodic
tential vcage(v),

vshear~v !'
2l2

a2

2~12cos 2pv !exp~2A3p!

@11exp~2A3p!#2

'0.017
l2

a2
~12cos 2pv !.

It occurs to be numerically small and only has to be tak
into account whena becomes significantly smaller thanl.

It is important to note that the described model does
provide precise soliton structure. At distancesz*l/g dis-
placements in other pancake rows become comparable
displacements in the central row. In fact, at distancez
@l/g the displacements should cross over to the regi
described by the ‘‘effective phase stiffness’’ model~35!. Pre-
cise description of the soliton structure is rather complica
and beyond the scope of this paper.

III. PINNING OF JOSEPHSON VORTEX
BY PANCAKE VORTICES

Dynamic properties of JV’s can be probed either by a
plying transport current along thec direction or by studying
ac susceptibility for magnetic field, polarized along the la
ers. Although there are numerous experimental indicati
that pancake vortices strongly impede motion of JV’s,29–31

no quantitative study~theoretical or experimental! has been
done yet. In this section, we consider a pinning force, wh
is necessary to apply to the JV to detach it from the panc
vortex crystal. We consider the simplest case of a dilute p
cake lattice,a.l, which allows us to neglect the influenc
of pancakes on the JV core, and small concentration of J
so that we can neglect the influence of the JV lattice on
pancake crystal~e.g., formation of phase-separated states!.

A. Pinning by a single pancake-stack row„a0Ìgs…

We consider first the simplest case of an isolated panc
stack row crossing JV~see Fig. 9! and estimate the force
necessary to detach JV from this stack, assuming tha
position is fixed. The consideration is based on the cross
energy of JV and isolated pancake stack, calculated in
II B. Let us calculate first the force necessary to separate
from an isolated pancake stack. Using Eq.~17!, we obtain for
the force acting on JV from the pancake stack located
distancey from the center of JV core,

F352
d

dy
E3~y!'

F0
2

4p2g3s2ln~l/u1~y!!
A38 S y

gsD ,

~65!

with A38 ( ỹ)[dA3( ỹ)/dỹ. For the maximum force, we ob
tain
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F3 max'
CfF0

2

4p2g3s2ln~l/sb f !
,

with Cf5maxỹ@A38 (ỹ)# and b f;1. Numerical calculation
gives Cf'1.4 and the maximum is located atyf'0.52gs.
The critical current which detaches JV from the row of pa
cake stacks with the perioda0 is given by

j Jp5 j J

Cfl
2

gsa0ln~l/sb f !
, ~66!

wherej J5cF0 /(8p2lc
2s) is the Josephson current. This e

pression is valid as long as the lattice perioda0 is much
larger than the Josephson lengthgs. Otherwise interaction
with several pancake rows has to be considered, which
be done in the following section.

B. Pinning by dilute pancake lattice „lËa0Ëgs…

When several pancake-stack rows fit inside the JV c
~but still a0.l) interaction energy of JV per unit length wit
the pancake lattice,EJl(y), can be calculated as a sum
crossing energies~17!,

EJl~y!5
1

a0
(

n
E3~y2nb0!

'2
F0

2

4p2g2sa0ln~gs/l!
(

m52`

`

A3S y2mb0

gs D ,

~67!

FIG. 9. Pinning of a Josephson vortex by a single pancake-s
row.

FIG. 10. The field dependence of the dimensionless pinn
force of JV by dilute pancake vortex crystal.
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whereb05A3a0/2 is the distance between the PV rows. Th
expression has a logarithmic accuracy, i.e., we neglecte
weak y dependence under the logarithm and replaced
dimensionless function under the logarithm by its typic
value. Using Fourier transform ofE3(y), Ẽ3(p)
5*dyexp(2ipy)E3(y), we also representEJl(y) as

EJl~y!5nv (
s52`

`

Ẽ3S 2ps

b0
DexpS i

2ps

b0
yD .

In the caseb0!gs, we can keep onlys50,61, terms in this
sum,

EJl~y!'EJl~0!12nvẼ3S 2p

b0
D cosS 2py

b0
D .

Using interpolation formula~21! for A3( ỹ), we obtain the
asymptotics forb0,gs,

EJl~y!2EJl~0!'20.35
nvF0

2

g ln~gs/l!
Ags

b0

3cosS 2py

b0
DexpS 25.82

gs

b0
D . ~68!

To compute the field dependence of the critical curre
we represent the force acting on JV from the pancake lat
in the scaling form,

FJpl~y!'
A3sF0

2

~4p!2~gs!4ln~l/s!
FS y

gs
,
b0

gsD ,

with

F~ ỹ,b̃0![
2

b̃0

d

dỹ
(

j
A3~ ỹ2 j b̃0!.

The critical pinning current is given by

j Jpl5 j J

A3l2

2~gs!2ln~l/s!
Fc~ b̃0!, ~69!

with

Fc~ b̃0!5max
ỹ

@F~ ỹ,b̃0!#.

Numerically calculated dependence ofFc versus reduced
field (gs)2B/F0[A3/2b̃0

2. ~see Fig. 10! Maximum Fcmax

'1.15 is achieved at B'0.26F0 /(gs)2 (b052.1gs).
Therefore the maximum pinning current can be estimated

j Jp max' j J

l2

~gs!2ln~l/s!
. ~70!

For typical parameters of BSCCO this current is only 5–
times smaller than the maximum Josephson current, i.e.,
actually rather large.
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An exponential decay of the pinning energy~68! and
force holds until the row separationb0 reachesl. At larger
fields, one has to take into account shrinking of the vor
core. Because the number of pancake rows in the cor
almost constant at high field, the exponential decay will sa
rate at a finite value;exp(2Cgs/l).

IV. PANCAKE VORTICES AND VISCOSITY
OF JOSEPHSON VORTEX

A sufficiently large c-axis transport current will drive
JV’s. Two dynamic regimes are possible, depending on
relation between the JV-pancake interaction and disord
induced pancake pinning. Moving JV’s either can drag
pancake lattice or they can move through the static panc
lattice. Slow dragging of pancake stacks by JV’s at sm
c-axis fields have been observed experimentally.13 As the JV-
pancake interaction force decays exponentially at highc-axis
fields in the casel,gs, one can expect that JV’s will al
ways move through the static pancake lattice at sufficien
high fields.

A. Dragging pancake lattice by Josephson vortices

When moving JV’s drag the pancake lattice, one can
tain simple universal formulas for the JV viscosity coef
cient and JV flux-flow resistivity. The effective viscosity co
efficient per single JV is connected by a simple relation w
the viscosity coefficient of pancake stack per unit length,hv ,

BxhJV5Bzhv .

Therefore, the JV flux-flow resistivity r f f
c (B)

5F0Bx /(c2hJV) is given by

r f f
c ~B!5

F0Bx
2

c2hvBz

. ~71!

As a consequence, we also obtain a simple relation betw
r f f

c (B) andr f f
ab(Bz)

r f f
c ~B!5r f f

ab~Bz!
Bx

2

Bz
2

.

B. Josephson vortex moving through pancake lattice

Consider slow JV motion through the static pancake
tice. JV motion along they direction with velocityVy in-
duces traveling pancake displacement fieldun(y2Vyt)~see
animation in EPAPS32!. For slow motion,un(y) is just the
static displacement field around JV. Contribution to the e
ergy dissipation caused by these displacements is given

W'hpnv(
n
E dr u̇n

25hpFnv(
n
E dr ~“yun!2GVy

2 ,
0-15
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wherehp is the pancake viscosity coefficient. Therefore t
JV viscosity per unit length is given by

hJV5hpnv(
n
E dr ~“yun!2. ~72!

Using relation between the vortex phase and displacem
field “yfvn52pnvun , we obtain an estimate

nv(
n
E dy~“yun!2'

2.7l3Anv

~gs!3 S C
ln~r cut/r w! D

3/2

,

with C[^cos(fn112fn)&,1, and derive an approximate fo
mula for the JV viscosity coefficient

hJV'hv

s

a

2.7l3

~gs!3 S C

ln
r cut

r w

D 3/2

, ~73!

with hv[hp /s is the viscosity of pancake stack per un
length. Because the JV viscosityhJV is proportional to the
pancake-stack viscosityhv , there is a relation between th
flux-flow resistivity of JV’s (r f f

c ) and the flux-flow resistivity
of pancake vortices (r f f

ab),

r f f
c

Bx
'

r f f
ab

Bz

a

s

0.37~gs!3

l3 S ln~r cut /r w!

C D 3/2

. ~74!

If we use the Bardeen-Stephen formula for the in-pla
flux-flow resistivity, r f f

ab'rabBz /Hc2, and an estimate
for the c-axis flux-flow resistivity at Bz50, r f f

c0

'(16g3s2Bx /F0)rab ,33 we can also obtain relation be
tweenr f f

c (Bz) andr f f
c0 ,

r f f
c '0.15r f f

c0 j2a

l3 S ln~r cut /r w!

C D 3/2

. ~75!

From this estimate, we can see that ata;l the flux-flow
resistivity for JV’s slowly moving through the pancake la
09452
nt

e

tice is about four order of magnitude@factor (j/l)2] smaller
than the flux-flow resistivity of free JV’s. We see that ev
though the critical force becomes exponentially small at h
fields, pancakes still very strongly hinder mobility of JV’s
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APPENDIX A: MAGNETIC INTERACTION BETWEEN
PANCAKE ROWS

In this appendix we derive several useful representa
for the magnetic interaction between pancake rows in diff
ent layers. The interaction energy between two pancake
Fourier and real space is given by Eq.~7!. We will use also
this interaction in the mixed representation,

UM~k' ,n!'
4p2Jdn

k'
2

2
2p2sJ

l2k'
2

exp~2nsAl221k'
2 !

Al221k'
2

.

The interaction energy between the pancake rows per
length is given by

UMr~x,y,n![
1

a (
m

UM~x2ma,y,n!

5
1

a2 (
l
E dky

2p
UMS kx5

2p l

a
,ky ,nD

3expS i
2p l

a
x1 ikyyD .

From this equation, we obtain the following integral repr
sentation forUMr(x,y,n):
UMr~x,y,n!5
s«0

a H 2Fdn2
s

2l
expS 2

sunu
l D G lnF122 cos

2px

a
expS 2

2puyu
a D1expS 2

4puyu
a D G

1
s

a (
l
E du

expS i
2p l

a
x1 iAl221S 2p l

a D 2

usn2Al221S 2p l

a D 2

A11u2uyu D
H 11F11S 2pl l

a D 2Gu2JA11u2
J .

This representation can be used to derive large-y asymptotics ofUMr(x,y,n),
0-16
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UMr~x,y,n!'
pJ

a 5 Fdn2
s

2l
expS 2

sunu
l D G2 cos

2px

a
expS 2

2puyu
a D

1
A2ps

a

expS i
2p

a
x2Al221S 2p

a D 2

uyu2
Al221S 2p

a D 2

~sn!2

2uyu
D

Fl221S 2p

a D 2G1/4

Auyu 6
at Al221(2p/a)2uyu@1. Therefore the interaction between the pancake rows decays exponentially aty,sn.l,a.

Interaction of pancake row with stack of rows is given by

UMs~x,y!52(
n51

`

UMr~x,y,n!5
pJ

a
lnF122 cosS 2px

a DexpS 2
2py

a D1expS 2
4py

a D G

1
2p2J

a (
l

expS i
2p l

a
x2Al221S 2p l

a D 2

yD
A~a/l!21~2p l !2

.

g

it
r

m

t

n

cal

of

ely
e of
In particular, the potential created by pancakes belongin
the same row stack~‘‘cage potential’’! is given by

Ucage[UMs~x,0!52
4p2J

a (
l 51

`

cosS 2p l

a
xD

3S 1

2p l
2

1

A~a/l!21~2p l !2D .

APPENDIX B: LOCAL CONTRIBUTION TO JOSEPHSON
ENERGY DUE TO MISMATCH OF PANCAKE ROWS

IN NEIGHBORING LAYERS

We consider two pancake rows in neighboring layers w
perioda!gs shifted at distancev with respect to each othe
in the direction of row (x axis!. In zero order with respect to
the Josephson coupling, these rows produce the phase
matchwv(x,y) between the layers,

wv~x,y!5(
m

S arctan
x2m1v/2

y
2arctan

x2m2v/2

y D .

We measure all distances in units of the lattice constana.
The x-averaged phase mismatch is given by

w̄v~y!5pv sgn~y!.

The total phase approachesw̄v(y) at y*1/2p.
Separatingwv(x,y) from the total phase, we can represe

the Josephson energy as
09452
to

h

is-

t

FJ5EJa
2E d2r$12cos@wv~x,y!1w~x,y!#%

5EJa
2E d2r$12cos~ w̄v~y!1w~x,y!#%1LxEJosc~v,w!,

where w(x,y) is the smooth external phase and the lo
Josephson energyEJosc(v,w) per unit length is defined as

EJosc~v,w!52
EJa

2

Lx
E dxdy$cos@w1wv~x,y!#

2cos@w1w̄v~y!#%52EJa cos~w!J,

~B1!

where

J~v ![E
21/2

1/2

dxE
0

`

dy$cos@w̄v~y!#2cos@wv~x,y!#%.

~B2!

In EJosc(v,w) we can neglect weak coordinate dependence
the external phase and replace it by a constantw. At uvu
,1/2 the ground state for fixedv corresponds tow50, while
at 1/2,uvu,1 the ground state corresponds tow5p.
EJosc(v,w) has a symmetry propertyEJosc(12v,w)5
2EJosc(v,w). The integral overy in J(v) is converges at
y&1/2p. This allows us to consider a single row separat
from other rows and neglect the coordinate dependenc
the ‘‘external phase’’w.

Using the complex variablez5x1 iy , one can derive a
useful expression forwv(x,y):
0-17
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wv~z!5ImS ln)
m

z2m2v/2

z2m1v/2D 5ImS ln
sin@p~z2v/2!#

sin@p~z1v/2!# D .

Going back to the (x,y) representation, we obtain

wv~x,y!5arctan
tan@p~x1v/2!#

tanhpy
2arctan

tan@p~x2v/2!#

tanhpy

and

coswv~x,y!5
cosh 2py cospv2cos 2px

A~cosh 2py2cos 2px cospv !22~sin 2px sinpv !2
.

Integral ~B2! can now be represented as

J~v !5E
21/2

1/2

dxE
0

`

dyFcos~pv !2
cosh 2py cospv2cos 2px

A~cosh 2py2cos 2px cospv !22~sin 2px sinpv !2G .
o-

s

n
r

is

ore

-
n-
We obtain an approximate analytical result at smallv, v
!1. Simple expansion with respect tov produces logarith-
mically diverging integral. To handle this problem we intr
duce the intermediate scaley0 , v!y0!1, and split integral
J into contribution coming from y.y0 (J.) and y
,y0 (J,). At y.y0, we use small-v expansion and obtain

J.5~pv !2E
y0

`

dyE
0

1/2

dxS 211
sinh22py

~cosh 2py2cos 2px!2D
5

~pv !2

2 E
y0

`

dy
exp~22py!

sinh 2py
'

pv2

4
ln

1

4py0
.

In region y,y0, we can expand all trigonometric function
and obtain the integral

J,'2E
0

y0
dyE

0

1/2

dxF12
4~x21y2!2v2

A~4~x21y2!1v2!22~4xv !2G
5

v2

2
E

0

2y0 /v
dỹE

0

1/v
dx̃F 12

x̃21 ỹ221

A~ x̃21 ỹ221!214ỹ2
G ,

with ỹ52y/v and x̃52x/v. Because we only interested i
the main logarithmic term, we can extend integration ovex̃
up to `. The obtained integral can be evaluated as

J ,'
p

4
v2S ln

y0

v
11.58D .

Adding J. andJ, , we obtain

J~v !'
p

4
v2S ln

1

v
20.95D ~B3!

and

EJosc~v,w!'
p

2
EJa cos~w!v2S ln

1

v
20.95D . ~B4!
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We also calculated functionJ(v) numerically for the
whole range 0,v,1/2. The result is shown in Fig. 11 and
described by approximate interpolation formula

J~v !'
12cospv

4p S ln
1

12cospv
20.379 cospv

10.076 cos2pv D . ~B5!

This result was used in numerical calculations of the JV c
structure.

APPENDIX C: CONTRIBUTION TO JV ENERGY
COMING FROM LOCAL JOSEPHSON TERM AT gšlÕs

In the limit of very weak coupling, the correction to re
duced JV energy~57! coming from the local Josephson e
ergy is given by

dEJV'
pA3

4A11Bz /Bl
(

n52`

` E
2`

`

dỹ~vn112vn!2

3 ln
0.39

uvn112vnu
cos~fn112fn!, ~C1!

FIG. 11. Dimensionless functionJ(v) which determines the
local Josephson energy. Dashed line is small-v asymptotics~B4!.
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with ỹ5y/lJ5A11Bz /Bly/gs. We will focus only on the
regimeBz@Bl , where this correction can be noticeable.
this regime, reduced row displacements are connected
phase gradient by relation

vn~y!'
b

2plJ
“̃yfn

and the correction reduces to

dEJV'
ABz /Bl

8pnv~gs!2 (
n
E dỹ~“̃yfn112“̃yfn!2

3 lnF 2.83gsABl /Bz

au“̃yfn112“̃yfnu
Gcos~fn112fn!.

~C2!

Using numerical estimates
n

p,

u

ni

T
io

nd

09452
ith
(

n52`

` E
2`

`

dỹ cos~fn112fn!~“̃yfn112“̃yfn!2'22.4,

(
n52`

` E
2`

`

dỹ cos~fn112fn!~“̃yfn112“̃yfn!2

3 ln
1

u“̃yfn112“̃yfnu
'4.7

obtained with the JV phasefn( ỹ) ~14!, we obtain

dEJV'2pABl

Bz

0.38l2

~gs!2ln~a/r w!
lnF0.1gs

l
Aln

a

r w
G .

~C3!

As we can see, the correction is smaller than the reduced
energy at Bz@Bl , EJV'pABl /Bzln(a/s), by the factor
;l2/(gs)2.
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