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Josephson vortices and solitons inside pancake vortex lattice in layered superconductors
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In very anisotropic layered superconductors a tilted magnetic field generates crossing vortex lattices of
pancake and Josephson vorti¢d¥’s). We study the properties of an isolated JV in the lattice of pancake
vortices. JV induces deformations in the pancake vortex crystal, which, in turn, substantially modify the JV
structure. The phase field of the JV is composed of two types of phase deformations: the regular phase and
vortex phase. The phase deformations with smaller stiffness dominate. The contribution from the vortex phase
smoothly takes over with increasing magnetic field. We find that the structure of the cores experiences a
smooth yet qualitative evolution with decrease of the anisotropy. At large anisotropies pancakes have only
small deformations with respect to position of the ideal crystal, while at smaller anisotropies the pancake stacks
in the central row smoothly transfer between the neighboring lattice positions forming a solitonlike structure.
We also find that even at high anisotropies pancake vortices strongly pin JV's and strongly increase their
viscous friction.
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[. INTRODUCTION exotic ground state, as opposed to a simple tilted vortex lat-
tice, is that magnetic coupling energy is minimal when pan-
The vortex state in layered superconductors has a vergake stacks are perfectly aligned along thaxis. A homo-
rich phase diagram in the multidimensional space ofgeneous tilt of pancake lattice costs too much magnetic
temperature-field—anisotropy-field orientation. Especially in-coupling energy, while formation of Josephson vortices only
teresting subject is the vortex phases in layered superconveakly disturbs the alignment of pancake stacks.
ductors with very high anisotropy such as,8i,CaCuy0O, Even at high anisotropies JV’s and pancake stacks have
(BSCCO. Relatively simple vortex structures are formed significant attractive couplingThe strong mutual interaction
when magnetic field is applied along one of the principalbetween the two sublattices leads to a very rich phase dia-
axes of the layered structure. A magnetic field applied pergram with many nontrivial lattice structures separated by
pendicular to the layers penetrates inside the superconductphase transitions. At sufficiently smailtaxis fields(10-50
in the form of pancake vortice@V’s).! PV's in different  G) a phase-separated state is formed: density of the pancake
layers are coupled weakly via the Josephson and magnetstacks located at JV's becomes larger than the stack density
interactions and form aligned stacks at low fields and temeutside JV's?!® This leads to formation of dense stack
peratures PV stacks. These stacks are disintegrated at thechains separated by regions of dilute triangular lattice in be-
melting point. In another simple case of the magnetic fieldtween(mixed chainrlattice stat¢ Such structures have been
applied parallel to the layers, the vortex structure is com-observed in early decoration experiméhtg and, more re-
pletely different. Such a field penetrates inside the supercoreently, by scanning Hall prob€,Lorentz microscopy* and
ductor in the form of Josephson vorticeB/’s).>~* The JV’s  magneto-optical techniqu&:® At very small c-axis fields
do not have normal cores, but have rather wide nonlinea(~several gaugshe regions of triangular lattice vanish leav-
cores, of the order of the Josephson length, located betweéng only chains of stacks Moreover, there are experimental
two central layers. At small in-plane fields JV’s form the indications® and theoretical reasonitign favor of the phase
triangular lattice, strongly stretched along the direction of thetransition from the crossing configuration of pancake-stack
layers, so that JV's form stacks aligned along ¢t@irection  chains and JV's into chains of tilted vortices. JV's also
and separated by a large distance in the in-plane direction.modify the interaction between pancake stacks leading to an
A rich variety of vortex structures were theoretically pre- attractive interaction between the stacks at large distaffices.
dicted for the case of tilted magnetic field, such as the kinked\s a consequence, one can expect clustering of the pancake
lattice*~® tilted vortex chaing, and coexisting lattices with stacks at small concentrations.
different orientatiorf A very special situation exists in highly Many unexpected observable effects can be naturally in-
anisotropic superconductors, in which the magnetic couplingerpreted within the crossing-lattices picture. The underlying
between the pancake vortices in different layers is strongeiV lattice modifies the free energy of the vortex crystal state.
than the Josephson coupling. In such superconductors a tilteh observable consequence of this change is a shift of the
magnetic field creates a unigue vortex state consisting of twmelting temperature. Strong support for the crossing-lattices
qualitatively different interpenetrating sublatticesThis set  ground state is the linear dependence of ¢hexis melting
of crossing latticegor combined lattic® contains a sublat- field on the in-plane field observed within a finite range of
tice of Josephson vortices generated by the component of thie-plane fields*°-2134|n an extended field range, several
field parallel to the layers, coexisting with a sublattice of melting regimes have been obserift indicating several
stacks of pancake vortices generated by the component of thilistinct ground-states of vortex matter in tilted fields. Tran-
field perpendicular to the layers. A basic reason for such asitions between different ground state configurations have
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also been detected by the features in the irreversibley JV’s and motion of JV's through the pancake lattice. For
magnetizatiorf>* the second case, we calculate the effective JV viscosity.

In this paper, we consider in detail the properties of an
isolated JV in the pancake lattice. We mainly focus on thal. STRUCTURE AND ENERGY OF JOSEPHSON VORTEX
regime of a dense pancake lattice, when many rows of the IN PANCAKE LATTICE
pancakes fit into the JV core. The pancake lattice forms an
effective medium for JV's, which determines their proper-
ties. The dense pancake lattice substantially modifies the JV Our calculations are based on the Lawrence-Doniach free
structure. In general, the phase field of the JV is built upenergy in the London approximation, which depends on the
from the continuous regular phase and the phase perturba-plane phaseg,(r) and vector potential(r),
tions created by pancake displacements. Such a JV has a
smaller core size and smaller energy as compared to the or- _ » |J 2 2
dinary JV? The pancake lattice also strongly modifies the F_; fd N2 Vién— QTOAL
field and current distribution far away from the core region.

The key parameter which determines the structure of the 2ms 3 B2
JV core in the dense pancake lattice is the ratio\/ys, +Ey|17c08 éniim n FOAZ +f d iy
where\ is the in-plane London penetration depthjs the
anisotropy ratio, and is the period of layered structure. The @
core structure experiences a smooth yet qualitative evolutiowhere
with decrease of this parameter. Whenis small (large
anisotropies pancakes have only small displacements with sd)?, seq qng
respect to positions of the ideal crystal and the JV core oc- J=—=— E=s— (2
cupies several pancakes rows. In this situation the renormal- m(4mN)T T sm(4m\c)
ization of the JV core by the pancake vortices can be deare the phase stiffness and the Josephson coupling energy,
scribed in terms of the continuous vortex phase which is\ =), and\, are the components of the London penetra-
characterized by its own phase stiffnésfective phase stiff-  tjon depth, ands is the interlayer periodicity. We use the
ness approagti At large o (small anisotropiesthe core | gndon gauge, di=0. We assume that the average mag-
shrinks to scales smaller than the distance between pancakgtic inductionB inside the superconductor is fix&dThe ¢
vortices. In this case, pancake stacks in the central row forrBomponent of the field fixes the concentration of the pancake
solitonlike ~structure smoothly transferring between theyoticesn, =B, /®,, inside one layer. The in-plane phasks

neighboring lattice position. _ _ have singularities at the positions of pancake vortiRgs
We consider dynamic properties of JV's in the case ofingige the layers,

small a: the critical pinning force which sticks the JV to the
PV lattice and the viscosity of the moving JV due to the
traveling displacement field in the PV lattice. The pinning [VXVal,=2m72 8(r—Ripn).
force has a nonmonotonic dependence on dfaxis mag- '
netic fieldB, reaching maximum when roughly one pancakeThe major obstacle, preventing a full analytical consideration
row fits inside the JV core region. At higher fields the pin- of the problem, is the nonlinearity coming from the Joseph-
ning force decays exponentiallyexp(—yB,/By). We study  son term. A useful approach for superconductors with weak
JV motion through the PV lattice and find that the lattice Josephson coupling is to split the phase and vector potential
strongly hinders the mobility of JV's. into the vortex and regular contributions,= ¢,,+ ¢,, and

The paper is organized as follows. Section Il is devoted tA=A + A, . The vortex contributions minimize the energy
the static structure of an isolated JV inside the PV lattice. Irfor fixed positions of pancake vortices Bt=0 and give
this section, wei) consider smalt-axis fields and calculate magnetic interaction energy for the pancake vortices. One
the crossing energy of JV and PV sta@ec. Il B); (ii) con-  can express this part of energy via the vortex coordinates
sider largec-axis fields and introduce the “effective phase R, ;. In general, the regular contributions may include
stiffness” approximation, which allows for simple descrip- phases and vector potentials of the Josephson vortices. The
tion of the JV structure inside the dense PV lattice in the caseotal energy naturally splits into the regular pBit, the en-
of large anisotropySec. Il G; (iii) investigate a large-scale ergy of magnetic interactions between pancakgs and the

behavior and JV magnetic fielec. Il D; (iv) analyze the  josephson enerdy;, which couples the regular and vortex
JV core quantitatively using numeric minimization of the degrees of freedom,

total energy and find crossover from the JV core structure to
the soliton core structure with decrease of anisotr@pgc. F=F,+Fy+F;, (3
Il E); (v) formulate a simple model which describes the soli-
ton core structure for small anisotropiéSec. Il B. In Sec.  With
[l we consider pinning of JV by the pancake lattice and

A. General relations

: " ; 2 2 B?
calculate the field dependence of the critical current at whichg A= f d2r£<V _Z0A + f d3r—
the JV detaches from the PV lattice. In Sec. IV, we consider Lém A ; 2|V o, 8w’
possible JV dynamic regimes: dragging the pancake lattice 4)
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FulRn=3 2 Un(Roi~Rm;.n-m), 5)

21T
FJ[Q"rn A ar,i]: ; f derJ(l_CC'{ bnr1— bn— c}TOSAz) )v (6)
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exdikR+ign)]

J T
U R,nz—fdkf d ~2m
m(R.n) 2w - CIk2{1+)\‘2[k2~|—2(1—Cosq)/52]_1} "
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is the magnetic interaction between pancakesere with r2=((Up41—Up)?), reur=\ ata>\ andr,~a/4.5 at
a<\,?® with a=2/(\/3n,) being the lattice constant. At
u(r,z)=exp—2)E4(r—2z) +expz)E4(r +2), (8) finite Josephson enérgy, %inimizgation of the energy with re-

Eq (u)= [ (exp(-v)lv)dv is the integral exponentE,(u) spect to the phases at fixed pancake positions leads to the

~— ye—Inu+u atu<1 with ye~0.577],r= R%+ (ns)?,  Josephson term in the tilt stiffness enefty.

andL is a cutoff length. The major focus of this paper is the structure of JV core.
In this paper we focus on the crystal state. If the pancakd NiS requires analysis of the pancake displacements and

coordinates have only small deviations from the positiond€gular phase at distances<A\. andz<a,\ from the vor-

RO of the ideal triangular latticeR,;=R(®+u,;, thenF, (€ center. At these distances the main contribution to the

reduces to the energy of an ideal crystal plus the mag- EN€rgy is coming from the kinetic energy of supercurrents

netic elastic energy y.e; consisting of the shear and com- and ma_gne_tic _s_creening Caf.‘.be neglected. The structure of
pression parts, energy is significantly simplified: one can neglect the field

contributions in the regular and Josephson energy terms, i.e.,

d3k [Uq(k) U, (k) drop A, :
FM-eI:f (27)3[ tz lug(k)|2+ |2 lu(K)[?], (9

where Fil b vAr]_>Fr[¢rn]:§n: szr%(v¢rn)21 (11

d3k ) o
uniEf 5 s explik, Ri™+iksn)[eui(k) +eu (k)]
( ﬂ-) FJ[d’rn A an,i]_’
[& (&) is the unit vector parallelorthogonal to k| ],

Uy(K)=Cgek? + U(k),
1(K) = Coek + U g4(k) F‘][qsrann,i]:% derEJ[l—COS(¢n+1_¢n)]'

Uj(k) =U1a(K) +Ugqg(k), (12

U, is the compression stiffness afyg is the shear modu-

: S 2
lus. In particular, at high fields3,>®,/\%, we have and use asymptotios.,k,>1 in the tilt stiffness(10). Be-

B2 2 havior at large distancas ~\. andz~a,\ is important for
Up=Cyy(k)k2~ —2 _ accurate evaluation of the cutoff in the logarithmically di-
AR 2 16mn, )’ verging energy of the Josephson vortex. In this range the
Josephson term can be linearized and one can use the aniso-
Ces= N, /4. tropic London theory?

The magnetic tilt stiffnes® U ,,(k), is given by interpola-
tion formula, which takes into account softening due to pan- B. Small ¢ axis field: Crossing energy

cake fluctuations, At small fields and high anisotropy factor, pancake vorti-

B.0 (2 ces do not influence much structure of JV’s. However, there

U 44(K)=C 4k, )K3= 270 n cut is a finite interaction energy between pancake stack and
44 44\"z) Rz 2\ 4 -2 2 | . .

2(4m)°\ k, “+rs, JV (crossing energywhich causes spectacular observable

(10 effects, including formation of the mixed chain-lattice
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n—1/2

pn()’):—m-

Displacements in the core region have typical wave vec-
torsk,~ 7r/s. In this range, one can negldctdependence of

Um(ky),
y PZ
~———— N s
FIG. 1. Configuration of the pancake stack crossing the Joseph- M (4m)°\* Tw
son vortexi(a) the stack located in the center of JV core d@bythe )
stack located at a finite distangefrom JV center. and rewrite Eq(15) as
state'1?*We consider a JV located between the layers 0 s®y

Ex(y)=2 —u - jn<y)un). (16

and 1 and directed along axis with center ay=0 and a
pancake stack located @0 and at distancg from the JV
center. We will calculate structure of the pancake stack andVe neglected weak logarithmic dependence of the tilt stiff-
the crossing energy. The JV core structure is defined by theess on displacements and the parameten Uy, is just a

phasesp,(y) obeying the following equation: typical value of|u,,;—U,|. Minimizing this energy with
respect tau,,, we obtain the pancake displacements
d’¢ .
—=5 +SiN(bpi1— bo) —SiN(dn— bn-1)=0  (13) g ju(y) 2)\2 y
Un(y)= c Uy ysln()\/un(y))p” Ys

with y=y/\ 5o. An accurate numerical solution of this equa-
tion has been obtained in Ref. 4. It is described by the ap
proximate interpolation formufa

with v,(y)~|u,(y) —u,_1(y)| and crossing energy at finite
distancey between the crossing point and the center of JV

core,
n—1/2 0.35n—1/2)y .
)~arctar—— + — s Do) 2
s V L(n—127+y°+ 0,39 R I
2Uy n=w c
8 81n—1/2)y[y?— (n—1/2)%+2.77)
Z . (19 3 y
[(n—1/2)%+y?+2.02] ~—— Axl —|, (17
_ Y’sin(uy(y)) LS
Interaction between the pancake stack and JV appears due to
the pancake displacements under the action of the JV with
in-plane currentg,(y) (see Fig. 1 In the regime of very
weak interlayer coupling, the energy of the deformed pan- - ” - ”
cake stack is given by Ax(Y)=n§1 [IOn()’)]2=n:2_oc [1-cod ¢ni1— dn)l,
(y)= dk U'V'(kZ)| u(k,)|2—> ﬂj (y)u where the second identity can be derived from B@). In
Ex c " " particular, for the pancake stack located at the JV center,

(15  A,(0)=2 (exact valug and
where Uy (kp) =[®&/2(4m)?\*]In[1+N\?/(k; 2+r2)] is the

S M . P2
magnetic tilt stiffness of the pancake stack, E(0)~——— 0 _ (19)
27°y°sIn(3.5ys/\)
. 2cdg, y
Jn(y)= —(4m\)2y3 nl5s) The maximum pancake displacement in the core is given by
with p,(y)=de,(y)/dy being the reduced superfluid mo- Uy(0)~ 2.22% (19
mentum, and the JV phasg,(y) is given by approximate ! ysin(2ys/n)

formula (14). In particular,p,(0)=—C,/(n—1/2) with C,

.1 at largen. Using the precise numerical phasgs(y), U large distances,y>ys, using asymptoticsA.(y)

we obtain the interpolation formula ~ /4y, we obtain
C,~1—0.265[(n—0.8352+0.566], c q,g " . -
~ = —2_ t ~ 4.
giving C;~0.55 andC,~0.86. At large distances from the x(¥) with 8 (20
167 yyIn| —
core,n,y>1, pn(y) is given by Nys S
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Using numerical calculations, we also obtain the following The phase stiffness ener@®2) has to be supplemented by

approximate interpolation formula for the functign, (y),  the Josephson energy. In the core region, we can neglect the
valid for the whole range &§: \;ﬁgt;r gcgtentlals and write the total energy in termsgof

a

J J,
1l 2 F=3 der(§<V¢m>2+3(V¢m>2

~ ar
A (y)= =
BN R

Yo~0.93, a~1.23. +E [1—cog ¢ni1— dn)] ], (25

Equations(17) and (21) determine the crossing energy at where, againg,= ¢,,+ ¢, is the total phase.

finite distancey between the crossing point and the center e now investigate the core structure on the basis of en-
of the JV core. Below we will use this result to calculate thegrgy (25). Eliminating the regular phasep,,= ¢n— bun,
pinning force which binds the JV to the dilute pancakeang varying the energy with respect dg, at fixed ¢,,, we
lattice. obtain the equation

C. Large c-axis field: Approximation of the effective phase JApr—(J,+I)A¢,,=0,
stiffness which gives
At high c axis fields pancakes substantially modify the JV
structure. Precise analysis of the JV core in the pancake lat- J (26)

tice for the general case requires tedious consideration of ¢””_JU+J¢”'

many energy contributionsee Sec. Il E beloy The situa-
tion simplifies considerably in the regime of very high an-
isotropy, y>\/s. In this case, one can conveniently describe
the JV structure in terms of the effective phase stiffness, et

which allows us to reduce the problem of a JV in the pancake F= 2 f dzr(%(v¢n)2+ Ej[1-coS i1~ dn)]
lattice to the problem of an ordinary JV Bt=0. In Ref. 9, n

this approach has been used to derive the JV structures at (27)
high fields, B,>®y/4m\?. The approach is based on the with the effective phase stiffnesky,

observation that smooth transverse lattice deformations
Uin(r) produce large-scale phase variatiogs,(r) with
V¢,n=2mn,e,Xuy,. This allows us to express the trans-
verse part of the elastic enerdy, ., in terms of¢,,(r):

Substituting this relation back into ener(®5), we express it
in terms of the total phase,

Jat=3"1+3t or J (28)

" 14B,/B,

Note that the smallest stiffness frodnand J, dominates in
Jet -2 From Eq.(27), we obtain equation for the equilibrium

dk J,(B;,k)
vtz f e SoE kg (29 Phase
Jeﬁv32/¢n+ Eslsin(én+1— én) —SiN(dpn— ¢n-1)]1=0,
with the effective phase stiffnesg(B, k), (29)
which has the same form as at zeraxis field, except that
S(Ceek® +U ) the bare phase stiffness is replaced with the effective phase
J, (B k)= T)Z stiffnessJq. For the Josephson vortex located between the
(2, layers 0 and 1, the phase satisfies the conditions
R .54 +In| 1+ Tew 0, y—e
gmn,\?\ 2 k2+rs) ] Z i PV (30

(23 Far away from the nonlinear core, the phase has the usual

Replacing the discrete lattice displacements by the smootﬁ)rm for the vortex in anisotropic superconductor,

phase distribution is justified at field®,>d,/(ys)?. The \y(n—1/2)

structure of the JV core is determined by phase deformations ¢n(y)~arctanJ—, (32)
with the typical wave vector&, ~1/ys<2/\ and k,~ m/s

>1/r,. In this range the vortex phase stiffneskisdepen-  \yhere the effective Josephson length

dent, similar to the usual phase stiffness,
)\J: \Jeﬁ/EJ:)\Jol\/l+ BZ/B)\
(DO cut

J (BZ)QJE, B,= |nr__ (24)  determines the size of the nonlinear core. Therefore, at low
’ B, 4mN\2 T temperatures the JV core shrinks in the presence df-thés
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magnetic field due to softening of the in-plane phase deforenergies, and compare the result with prediction of the “ef-
mations. A number of pancake rows within the JV core carfective phase stiffness” approximation. The correction to the
be estimated as JV energy is given by

N30 \/ln(rcut/rw) \/ 1 X DB L
Nyows™ N B,+B, (32 553\/25 m;M Ex(mb)~— mlny—é,

At B,>B, , it is almost independent of the field. An approxi- (38)
mate solution of Eq(29) is given by Eq(14), where the bare  \yhereL,=Mb is the long-range cutoff length. On the other
Josephson lengthy, has to be replaced by the renormalized hang, Eqs(28) and (33) give atB,<B, ,
length\ ;.

The JV energy per unit lengtlgyy, is given by

B, L
5(9‘]\/—77\ EJJ 2—B)\|ng (39)

This result is identical to Eq(38) except for expressions

L
Eyv=m EJ‘]efflngv (33
) o ) under the logarithms, which are approximate in both cases.
wherelL is the cutoff length, which is determined by screen-

ing at large distances and will be considered below, in Sec.

Il D. From Egs.(26) and (28), we obtain that the partial D. Large-scale behavior: Screening lengths
contribution of the vortex phase in the total phase, In this section, we consider the JV structure at large dis-
tances from the corep>1,y>\;. At large distances,
B screening of supercurrents becomes important and one can-
Pon= B,+B, Pn (34) not neglect the vector potential any more. At these scales the

phase changes slowly from layer to layer so that one can
continuously grows from 0 &,<B, to 1 atB,>B, . From  expand the Josephson energy in ). with respect to the
the last equation, one can estimate pancake displacementhase difference and use the continuous approximation,
bni1— Pn— (27SIPg)A,—S[ V0 — (27 D) A,],
Do2m Dyl2m Ay(n—=1/2)

Uen(Y)= 57 Vydn~— ) i
’ BZ+ B)\ y Bz+ B)\ y2+[)\‘](n_1/2)](235) FJ[(ﬁn’A]_)T:‘J[d);A]:f dSrSTEJ(VZ(,b_ z)_wAz) .
0
(40)

The maximum displacement in the core can be estimated as
This reduces the Lawrence-Doniach model defined by Egs.

2 2)\2 (3)—(6) to the anisotropic London model. Within this model
Uy o(0)~ . (36)  the JV structure outside the core region has been investigated
N 3oIN(reut/Tw) V1+B,/By in detail by Savel'evet. al?* In this section, we reproduce

the JV structure at large distances using the effective phase
stiffness approach. For the vortex energy, one still can use
Eqg. (22) with the full k-dependent phase stiffne$23).
Ux,o(0) - 0.58 (37) Within these approximations, the ener@) is replaced by

a o in(airy)
Flér, by Al=F [ A 1+F, [, ]+ Fil b+ b, Al

which shows that the condition for applicability of the linear (41)
elasticity, u, o(0)=<0.2a, is satisfied ify=3\/s. Equations

(31) and (33) describe smooth evolution of the JV structure Varying the energy with respect #, we obtain

with increase of concentration of pancakes starting from the

usual vortex aB,=0. It is quantitatively valid only at very 0 -

high anisotropies;y>\/s, and at low temperatures, when 5, VLdr—ALFNTVIA =0, (4239
one can neglect fluctuation suppression of the Josephson en-

ergy. Thermal motion of the PV’s at finite temperatures in-

duces the fluctuating phagﬁmﬂ and suppresses the effec-
tive Josephson energf,—CE;, where C= (COSPpni1)-

sion of its core. 5 _ behavior ink space. Solving linear equatiof¥2a and(42b)
regime of Sec. II B overlaps with the applicability range of
the effective phase stiffness approximation. To check the
; ot : Dy V.4
consistency of these approximations, we calculate correction | =— —,
to the JV energy at small fields, summing up the crossing 2 1+ )\%K?

At B,>B, , this equation can be rewritten in the form

2—;V2¢—AZ+ A2V2A,=0. (42b)

(433
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®o Vb (43b) (K)=3/3,(k)= 2h
) W = v
2m 1+\2 14 22K2 N2KGI2+In(1+KrZ )

z Cut

(48)

Z

and excludingA, we express the energy in terms of phasesandhz4wnv)\2. The integration has to be cutlat—/s. In

addition, integration with respect tk, is typically deter-

F:f d°k i A%k (V| $,)%+ v( )(V b,)2 mined byk,~k,/y so that one can neglect (k) the term
(2mB3|2s 1+ 2 v N2KZ/2~\ 2k2/27 coming from the shear energy, in com-
) panson with the tilt energy term Indk’r2,), and the JV
SE; ¢ k2 energy reduces to
2 1+)\2k2( P’
2nik2 N\t
Following t.h_e procedure of the_preceding section, we glimi- ~ ij d2k| A2+ y2k§+k§
nate¢, , minimize the energy with respect th, , and obtain In (1+k cut
the energy in terms of the total phase,
dk,
F:f d°k Jeff(k)(vﬁb)z sE (k)( V.4) B Ysjo N2+ K31+ 2h/In(L+ 2,/ (k, 2+12)))
(2m?3l 2s (49)
(44)
where the effective phase stiffnedsy(k) and the effective A similar formula has been derived in Ref. 24. This formula
Josephson energy are given by shows that the smak; logarithmic divergence in the inte-
gral cuts off atk,=max(~"1,a™1). To reproduce JV energy at
1+ \2K2 B,=0, the upper cutoff has to be chosenkas-2.365.
Jgﬁl(k)z\]*1 55 +Jv’1(k), (459 Let us consider in more detail the case of a lacgaxis
Ak field h>1, where the JV structure is strongly renormalized
by the dense pancake lattice. Formula for the JV energy sim-
A2Kk2 plifies in this limit to
K)=E;——— 45h
E0=Er 5 (45h)

k
In the case of the JV, minimization with respect to the phases &~ f C\/In(1+0.05a2/(kz‘2+ r2)) %
has to be done with the topological constraim,V,¢ ys\2hJo ks
-V, V,¢=27m5(y) (), which gives
To estimate this integral, we split the integration region into

B 27Ky Jei(K) two intervals, ,,<k,<=/s and w/a<k,<1/r,,, and ob-
T IR+ S2E (kK2 tain
B 27k, (1+\2Kk?) usa iy 02 2.4, 2| (0.2a)]%2
KL NAE(LHw(K)] 'ys\/—( v ( )'” s '3 '”( Mw ” )
Vb= 2ik,S°E (k) _ Note that the long-range contribution to the energy scales as
y Jeﬁ(k)k§+SZEJ(k)k§ a logarithm to the power 3/2.
2ik,(14 \%k?) (a6b) 1. Magpnetic field of Josephson vortex
k2{1+)\2k2+ Nk 1+w(k)]} Using Eqgs.(46) and (43), we obtain for the JV magnetic
field (see also Ref. 24
and
vy | a2 B (k)= T (50
= — X il
VT Jer(K)Ke+ S2E (K)K2 1+ ARG+ N[ 14+ w(k) ]
_ ij d’k (47) wherew(Kk) is given by Eq.(48). Let us consider the case of
2s) N2+ A+ K1 +w(k)]' large magnetic fieldsB>B,. In a wide region, A
y z . . . .
<\/y2+('yz)2<7xc, the magnetic field in real space is ap-
with proximately given by
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2achke |\ !
In(1+ a?k2/20)

VIn(1+ak?/20) p( V2hi,y|
ex

CI)O fx
= dk -
2mANey2hJo 7 k, yyIn(1+a%k2/20)

dk,dk, . i 5 2
Bx(y,z)~(I>OJ 2.2 exp(ikyy +ik,z)| Neky+
v

) cogk,z). (51)

One can estimate from this expression the JV maximum fielénd the limiting value of the total flux &t, L ,—c depends
as on the aspect ratia,/L,.

312
, (52 E. Quantitative analysis of the core structure

a
Zc

o

——|In
377)\)\°\/H The simple “effective phase stiffness” approximation, de-
and this field decays at the scatea/4.5 in thez direction  scribed in Sec. Il C, is only valid ify is significantly larger
and at the scale/a?/20\ in the y direction. The magnetic than\/s. In BSCCO, even at low temperaturesis at most
flux concentrated at this region is estimateddas: ®,/(1  three to four times larger thaxy/s. Moreover, it always ap-
+2.8n?). The residual flux®,—® is distributed over the proaches\/s atT—T.. In this section, we extend our analy-
pancake lattice at much larger distances. sis to the regiony~\/s. We consider JV structure at low
Due to the elasticity of the pancake lattice, the behavior atemperatures and not very smalt-axis field, B,
large distances is very unusual. The limiting expression for>®,/(ys)2. The structure of JV core is completely deter-
B,(k) atk—0 is given by mined by the displacements of pancake vortices and phase
distribution. The equilibrium pancake displacements depend
hk§ -t only on the layer index and on coordinate, perpendicular to
+ m (53 the direction of the vortexsee Fig. 2 Therefore, the energy
y 2/ (2.8n) can be expressed in terms of the displacements of the vortex
Formally, the total flux of JV is given by the limit rowsu, ;. Different representations for the magnetic interac-
tion between the vortex rowsy (U, ;—Uyj,Nn—m) are
® = limB,(k). considered in Appendix A. We will operate with the phase
k—0 perturbationg,(r) with respect to equilibrium phase distri-
bution of the perfectly aligned pancake crystal. We split this
phase into the contribution, averaged over the JV direction

B,(0,0)~

B, (K)~®,| 1

However this limit depends on the order of limits Liymo

and I'm<ﬁ0’ (x axi9), Zn(y), and oscillating in the< direction contribu-
tion, é,(x,y). Pancake displacements induce jumps of the

lim lim B,(k)= %o %ﬂ, average phase at the coordinates of the vortex ri¥ys

kg Oky—0 1+2.80% 2.81° én(Yi+0)— b,(Yi—0)=2mu,;/a. The oscillating phase
induced by the row displacements becomes negligible al-
lim lim By(k)=®,. ready at the neighboring row. This allows us to separate the
ky—0k;—0 local contribution to the Josephson energy coming from

This apparent paradox can be resolved by calculating th€n(*,Y) (see Appendix B and reduce initially the three-
field distribution in the real space dimensional problem to the two-dimensional problem of

finding the average phase and row displacements. Further
on, we operate only with the averaged phase and skip the

1 1
Bu(y,2)~ > 1+ E) Doo(r)

A
1 | &, 4y>-7?%h X _ =
—1- , 54 p 0 45
( 2.8hz>77\/ﬁ(4y2+22/h)2 4 Y 7 -

This expression clearly shows that the screening is incom- FFrS
plete: the field at large scales has a slowly decaying tail. <
The magnetic flux through the large size Hax<L, is given

b n=1 | n,i '
n=0 \

CD(Ly,LZ)=CI)O(1— ( L=l w

FIG. 2. Displacements of the pancake rows in the JV core.
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accent “-" !n the notatipn En(y). We again split the DMr(un,i_um,ja o )=Up(Xi—j+Upi—Upj, ...)
total phase into the continuous regular phagg(y) and
the vortex phase%n(y), &n(Y) = drn(y)+ ¢vn(y;un,i)- _UMT(Xi*i’ co
The vortex phase is composed of jumps at the row positions
Yi, is the variation of this interaction caused by pancake row
9 displacements X;=0 for eveni and X;=a/2 for odd i.
™ ~ . T ~
¢un(y;un,i):_? 2 Uni®(Y;—y), (55) U,\y(x,y,n) is periodic with respect t, Uy, (x+a,y,n)
' =Umr(x,y,n).

(iii) gJosc(unJrl,i_un,i v¢n+1,i_¢n,i) is the local Joseph-
where®(y) is the step functiori®(y)=1 (0) aty>0 (y  son energy due to the oscillating component of the phase
<0)]. In the efective phase stiffness approach of Sec. Il Cdifference(see Appendix Bwith
we used a coarse-grained continuous approximation for this
phase. We neglect-dependent contribution in the regular Un,i
phase, which is small @>®,/(ys)?. Collecting relevant $ni=Pm(Yi HTT__ a Z Un,©
energy contributions, we now write the energy per unit
length in terms of the regular phask,(y) and the row
displacements,, ;,

5J_2 fdy[ ( b

(Yi—y)

being the external phase idh rows andnth layer.

The energy given in the E¢56) describes the JV struc-
ture at distances, <\. andz<<a,\ from its center.
+Ej[1-cos dp1— dn)] To facilitate calculations, we introduce the reduced coor-
dinates

1
+§ E Mr(un,i_um,jaYi,jm_m) yzl v .:ﬂ
n,m,i,j ’yS' noa
+HZJ EsosdUn+1i = Un,i»Pn1i~ bn,i)- (56 and represent the energies in the scaling form. We represent
magnetic interaction between the rows as
Here X y
(i) dn(Y)=in(Y) + dun(y;un,) is the total phase. Umr(X,Y, n)——VMr 22"
(ii) Ume(Xn,i—Xm,j»Yij,n—m) is the magnetic interac-
tion between the vortex rows separated by distaige
=Yi—Y;=Db(i—]) (see Appendix A where
|
A2 s | |
Vur(X,y,n)=——| &,— 5-ex IN[1—2 cos 2rx exp( —27|y|) + exp —4m|y|)]
a 2\ B
) - W+ (x—m)Z s|n
S (WO sinl
2a2 m=—w Na A

andu(r,z) is defined by Eq(8). Note that aix,y—0, V\y,(X,y,n) remains finite fom# 0 because logarithmic divergency in
the first term is compensated by logarithmic divergency ofrthe0 term in the sum. Ap?=x%+y?—0, using asymptotics
u(p,z)~exp(=2)[—ve—In(p?2z) ]+ exp@E,(22) with yz=0.5772, we obtain the limiting value of,,(x,y,n) atn+0,

s|n| . s|n| . 2s|n +2§ am s/n|
RN YE|TER TR T WAL

The local Josephson energy can be represented as

872s|n|\
2

SA
WVur (0, On)—

a

E10sd U, P)=2E acod ¢) J(ula),

where 7(v) is dimensionless functionf(v)~ (#/4)v2In(0.39b) atv<1 (see Appendix B In reduced units the total energy
takes the form
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2

1(deb

2 d“)'/

; u7(vn+l,i_vn,i)cos(¢n+l,i_¢n,i)a (57)

7T’}/5a ~ ?i,j
+1-cog i1~ dn) +—2 2 Ve Uni= Umj,»— N—M
2\ nm,i,j a,

g‘]/SJO:; f dﬁy

2a
s

wheree jo=E;ys=J/ys is the JV energy scaleh,(y) = ¢n(y) —272jv, ;O (Y;—y), anda,=alys. Varying the energy, we
obtain equations fov,, ; and ¢, :

<1

ysa |
Vy¢rn(Yi)+ 2_)\2 mE] er( Un,i=™ Um,j ufun_

Y

a
mj+ 7T_’y5 5:2:1 Coi(b“‘i_¢”+5’i)‘7:J(Un,i_Un+5,i)=0, (58a

2
d’rn

+Sm(¢’n+l ¢n) —SiN(pp— ¢n—1)=0. (58b)

Here Fy,(X,y,n)=—V,Vu,(X,y,n) is the magnetic interaction force between the vortex rows,

_2m\? s S 4 sin| | sin 2mx LS V(x= m)2+y +2°
Fur(x,y,n)= 22 7 xR T ) Jcosh 2n]y[—cos 2nx | 22 & (Xx—m)2 Ma

andF;(v,¢)=—dJ(v)/ dv~—(m/2)v In(0.2350) atv<1. The derivative of the regular phase has jumps at the positions of
the rows,

Qirn (Y O)— d’rn
dy dy

(Y 0)=— E jvn+5| Unl)Sln(¢n+(‘)‘| ¢’n|) (59

YS s==+

To find the JV structure at low temperatures one has to solvthis limit, the shear energy has already a very weak influence
Egs. (583, (58b), and(59) with condition (30). on JV properties. The sum over the layersfig[v, ] is

Let us consider in more detail magnetic interactions bedetermined by large number of the layers of the ordea/sf
tween vortex rows, i.e., the term withy,, in Eq. (589. First,  or \/s. If we consider layen close to the JV core, then the
one can observe that the dominating contributions to the surimteraction force with row in the layen, in the same stack
over the layer indexn and row index come from rows in  with n<m<a/s,\/s, is given by Fy(v,i—vm;,0n—m)

the same layem=n, and rows in the same stagkzi. The  ~—(v,;—vn;)/2(M—n). Interactions with remote layers
former sum determines the shear stiffness, while the lattegive large contributions even if displacements in these layers
one determines the magnetic tilt stiffness, are smally,j<vp ;. A useful trick to treat this situation is

to separate interaction of a given pancake row with the
alignedstack pancake rows:

<1

al'j ,n—m) ~feheak Un,il+ Fulvn,il,
(60)

2 Fur Uni= Um,j»
m.J

= |

with fti|t[vn,i] = ngn %Mr(vn,i - Um’i,o,n_ m) + fcagévn,i)a

Yij with
fsheaEUn,i]:, / er(Un,i_Un,ji _|],0>, (61
J#i a,

%Mr(vn,i _Um,ivoan_ m):]:Mr(Un,i _Um,ivoan_ m)
falvn,il= Fmr(Uni—vmi,0n—m). (62 — Fur(v:,0n—m)

m#n
The sum over the rows ifignefvy,,i] converges very fast 54
and is effectively determined by the first two neighboring
rows. Note that skipping the terms with#n in fqpefvn il
is completely justified in the limia<<\, but leads to over- v)= Fo (0.0m
estimation of the shear energy in the lirait-\. However in caodv) = 2 Funl )
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is the interaction force of a chosen pancake row with the B,

aligned stack of rows‘cage” force), for which we derive a Vydm=~g Vybun-

useful representation z

Note that we replaced,(y) in In[Clu,(y)] by its typical

[

_ value and absorbed the logarithmic factor into the definition
feagdv)= _Zl of B, (24). From the last equation, we obtaigp,,
=(B\/B,) ¢,nand
o Aqsin(2wlv) B
V@n)Z+2ah2(V(@an) 2+ (2a)2+ 27l ¢n=(l+ B—i) brn -

At v<1<MNa, this equation gives fcudv)~

~ Therefore Eq(58b) reduces to
—vIn(0.4330).  Fu;(vni—vmi,0n—m) behaves as

vm,if2(m—n) at largem and decays with increase mfmuch 1 d?¢, . _
faster thanFy, (v, —vmi,0n—m). The same splitting can ~ — B—d2+5|n( én— Pn+1) +SIN(Py— Py-1) =0,
be made in the magnetic coupling energy: 1+ B_Z y
N
E E V(0= 0m,N—M) which is just dimensionless version of EQ9).
m#n

1. Numerical calculations of JV core structure.

= Ve (0= 0mN—m) =V, (v,,n—m) Crossover to solitonlike cores.

[ml>[n] To explore the JV core structure, we solved E@E8a)

and (58hb) numerically for different ratioa/ys and different

—VMr(vm,n—m))vLE UcagdVn) magnetic fields. We used a relaxation technique to find the
. equilibrium displacements of the pancake rows and the con-

with tinuous regular phase. Typically, we solved equations for 20

layers and the in-plane region<(y < 20.
_ To test the “effective phase stiffness” model and to cal-
Ucagdv) rgo Viar(v.) culate uncertain numerical factors, we start from the case of
large anisotropiesy>\/s. Figure 3 shows the gray-level
2(1-cog27lv)) plots of the cosine of the phase difference between two cen-
1 1@ )2+ (27 A(V(@n) 2+ (2a) 2+ 2al) trgl layers of JV, co®, O=¢,— dpg=2¢4, for AfO.Zys.
Figure 4 showy dependence of the total phase differefice
This function has simple asymptotics at<l<M/a, and the contribution to this phase coming from the regular
Vcagdv) ~(v?/2)In(0.7130). phase for the same parameters. As one can sed at
We demonstrate now that in the limje>\/s, Egs.(588  =d,/(ys)? the core region covers several pancake rows. At
and (58b) reproduce the JV structure obtained within the high fields the core size shrinks so that the number of rows in
effective phase stiffness approximation. One can show that ithe core does not change, in agreement with the “effective
this limit the local Josephson energy influences weakly thephase stiffness” model. From Fig. 4, one can see that the
JV structure. We calculate correction to the JV energy due téraction of the regular phase in the total phase progressively
this term in the Appendix C. The dominating contribution to decreases with increase of magnetic field. For the field
the magnetic interaction between the pancake rowsgd,/(ys)?, we also plotted® (y) dependence from the “ef-
SmjFmr@ni—vm;.(Yij/a,),n—m), comes from the tilt fective phase stiffness” model, assumiBg=2.1® ,/4m\>2.
force (62), which with good accuracy can be described byOne can see that the numerically calculated dependence is
the cage forcd cogdv ) in the limit of smallv, i, feagdv)  reasonably well described by this model.
~ —vIn(Clv) with C~0.433. Further estimate shows thatthe We now extend study of the core structure to moderate
term = s nFwe(Uni — Umi,0N—m) in Eq. (62) amounts to  anisotropies~\/s. In Fig. 5, we plot the maximum pancake
the replacement of numerical const&htinder the logarithm  displacementi,,, in the core region normalized to the lattice
by a slowly changing function of the order of unity. Becauseconstanta as function of magnetic field for different/ ys.
of slow space variations, the discrete row displacements The maximum displacement approximately saturates at a fi-
can be replaced by the continuous displacement fig{d). nite fraction of lattice constant at high fieldt high \/ys,
Within these approximations, E¢83a reduces to one can actually observe a slight decreaselgf,/a with
field). Figure 6 shows dependence wf,/a on \/ys for
ysa C fixed fieldB=10d,/(ys)?. Dashed line shows prediction of
Vydin=_—vn(y)in - the “effective phase stiffness” model given by E&7). One
2\ vn(y) . . . . .
can see that this equation correctly predicts maximum dis-
Replacingv(y) by the vortex phasep,,(y) obtained by placement foix/ys<<0.35. An important qualitative change
coarse graining of Eq55), vn(y) =(b/27ys)Vyé,n(y), we  occurs ath/ys>0.35, where the maximum displacement
obtain Uma{0) exceedsa/4. This means that the pancakes initially

M s
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B [in units @/ (ys)?] \ —regular phase
; . total phase

3 . .
. ! 0 : | c : :

- p . . 37 )

2 . | . . | . E

| .g'

8:':':':§:':':'

between two central layers of JV, c®s for A =0.2ys and several
magnetic fieldgdark regions correspond to ¢c®s-—1 and white @ 2
regions correspond to c@s~-1). The total size of displayed region
in the horizontal direction is $§s. One can see that in this regime l
several pancake rows fit inside the core region. At high fields, the \ | — — Effective phase stiffness
size of the core shrinks so that the number of pancake rows inside .
the core remains constant. e

\
FIG. 3. Gray-level plots of the cosine of the phase difference -.\“
\
A

belonging to the neighboring stacks become closer than the y

pancakes belonging to the same stack. This can be viewed as

switching of the vortex lines in the central layer of JV. This  FIG. 4. Coordinates dependence of the phase difference between
switching is clearly observed in Fig. 7, which shows pancakewo central layers® = ¢;— ¢, for \/ys=0.2 and different mag-
displacements in the central row of pancake stacks and itsetic fields. Circles connected by dotted lines represent total phase
neighboring row for two values of the ratio/ys, 0.3 and difference, solid lines show contributions from the regular phase.
0.5, and several fields. Fa/ ys=0.5, configuration of the Jumps of the total phase difference at the positions of pancake rows
pancake rows in the central stack is very similar to the clasareé caused by pancake displacement and represent the vortex
sical soliton(“kink” ) of the stationary sine-Gordon equa- phase_s. In the Iower plot dashed I_ine represents prediction of the
tion: the stacks smoothly transfer between the two ideal lat-¢ffective phase stiffness” model witB), =2.1o/4m\ 2,

tice position in the region of the core. Simplified 2 . . .
approximate description of such solitionlike structure in the>q)0/4m‘ . Estimate(37) and numerical calculations show

caseys<\ is presented below in Sec. Il F. Figure 8 showsthat at sufficiently small anisotropy<0.5v/s, the maxi-

distribution of cosine of interlayer phase difference betwee um dlspla_cement_ in the core region exceeds a quarter of the
two central layers, co®. As one can see, atl ys=0.3 there attice spacing. This means that distance between displaced

are still extended regions of large phase mismatch in the J‘Qancakes belonging to the same vortex linéy 0), b?’. .
core (dark regiong while for \/ys=0.5 these regions are comes larger than the distance between pancakes initially

almost eliminated by large pancake displacements in thg_elongmg to the pe|ghbor|ng Imea; 2”’90(0) - This can be
core. viewed as switching of the vortex lines in the central layer of

JV. At lower anisotropies, pancake stacks in the central row

acquire a structure similar to the soliton of the stationary

sine-Gordon model: in the core region they displace
In this section, we consider the structure of the JV coresmoothly between the two ideal lattice positisee Fig. 7

for moderate anisotropiegys<0.5\ and high fieldsB for A/ys=0.5). In such configuration a strong phase mis-

F. Simple model for solitonlike cores at moderate anisotropies
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Maximum pancake displacement in the core
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FIG. 5. Field dependencies of the maximum pancake displace;

PHYSICAL REVIEW B 68, 094520(2003

B (in units O/ (ys)®)
1 2 4

Adys

0.3

05 |7

FIG. 7. Structure of the pancake-stacks row in the center of JV
(big circles and its neighboring rovismall circle$ for N/ys=0.3
and 0.5 and several values of the magnetic field \Ays=0.5,

ment in the core at different ratios'ys (the curves are labeled by pancakes in the central row form lines smoothly transferring be-

this ratio.

tween two ideal lattice positiofsolitonlike structurg

match between the two central layers is eliminated, which

saves the Josephson energy in the core region. On the other
hand, large pancake displacements lead to greater loss of the

d%v y?
-—+
dZZ2 L\

Ucagdv) =0. (64)

magnetic coupling energy. To describe this soliton structure,

we consider a simplified model, in which w@ keep only
displacements in the central rawy, o=v,, (i) use the cage
approximation for magnetic interactions, afiid) neglect the

shear energy. All these approximations are valid close to the

JV center. Atn>0, we redefine displacements ag—1

+v,. The redefined displacements depend smoothly on the
layer index,v,,1—v,<<1, so that one can replace the layer

index n by continuous variable=ns, u,—u(z), and use
elastic approximation for the Josephson tilt energy:

WEJSEJ
gcore%JA dz o4

where the logarithmic factorl;
~In[0.39(@a/s)|du/dZ ] and

a

dz

du\? wJa u
dz) gz Ve

) . (63

is estimated ascs;

“ 1—coq2mlv)
Ucagév)NZlW

is the magnetic cage. For estimates, we replacby a con-
stant substituting a typical value falu/dz under the loga-
rithm. The equilibrium reduced displacementu/a is de-
termined by the equation

“*| B=10oy4m* -

8 o2
:
2 o1 <
T U'ﬂ\/ln & i
o a 2 s
0 ; ; :
0 0.1 0.2 0.3 0.4 0.5
Mys

Its solution is implicitly determined by the integral relation

v dv _Ayz
172 VUcagéU) A

with A= /2/L;. Therefore a typical size of the soliton is

given by
ze~MNlvy

and the applicability condition of this approads>s is
equivalent toys<\. In fact, accurate numerical calculations
of the preceding section show that the core acquires the soli-
tonlike structure already ays<2\. The core energy is
given by

am\2JE;L; (1
Ecore™ fjo dv VUcage(U)-

At a<\, numerical evaluation of the integral gives
J§0v v cagdv) ~1.018/27 and we obtain

B (in units Dy/(ysP)
Mys 1 2 4
os| g -'-g-:-z:zzzgzrz:z
e s | B
05 )@ 4 S | LS
) p o 2.3

FIG. 8. Gray-level plots of the cosine of the interlayer phase
difference between the two central layers of JV kdrys=0.3 and
0.5 and different fields. Fax/ys=0.3, the JV core covers roughly

FIG. 6. Dependence of the maximum pancake displacement ithree pancake row, while fot/ys=0.5 it shrinks to one pancake

the core on the ratia/ys at B=10®y/47\?. Dashed line repre-
sents prediction of the “effective phase stiffness” mod&r).

row. In the second case, the regions of suppressed Josephson energy
are practically eliminated.
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[ Lja . ]
Ecore™ \/ JE; N @j

L4
We also estimate the shear contribution to the periodic po- F

tential v cagdv), >

2\2 2(1—cos 2mv)exp — /3)

Usheaf V)™~ —5~ A
shea a2 [1+exp—37)]2 |
\2 y

~0.017—2(1— COS 2mv).
a FIG. 9. Pinning of a Josephson vortex by a single pancake-stack

It occurs to be numerically small and only has to be taken
into account whera becomes significantly smaller than ’

It is important to note that the described model does not = - Ci®p
provide precise soliton structure. At distanes\/y dis- M 42 y32n(NSB;)
placements in other pancake rows become comparable with 5
displacements in the central row. In fact, at distanzes with Cy=max[A!(y)] and B¢~1. Numerical calculation
>\/vy the displacements should cross over to the regimegives C;~1.4 and the maximum is located wat~0.52ys.
described by the “effective phase stiffness” mogdeb). Pre-  The critical current which detaches JV from the row of pan-
cise description of the soliton structure is rather complicatedake stacks with the perical, is given by
and beyond the scope of this paper.

Ci\?
vsagIin(N/sBs)’

wherejJ=c<I>0/(8772>\§s) is the Josephson current. This ex-

Dynamic properties of JV's can be probed either by ap-pression is valid as long as the lattice periaglis much
plying transport current along theedirection or by studying larger than the Josephson lenggh. Otherwise interaction
ac susceptibility for magnetic field, polarized along the lay-with several pancake rows has to be considered, which will
ers. Although there are numerous experimental indicationbe done in the following section.
that pancake vortices strongly impede motion of A7t
no quantitative studytheoretical or experimentahas been B. Pinning by dilute pancake lattice (A<a,<ys)
done yet. In this section, we consider a pinning force, which .
is necessary to apply to the JV to detach it from the pancake When several pancake-stack rows fit inside the JV core
vortex crystal. We consider the simplest case of a dilute pantPut still ag> 1) interaction energy of JV per unit length with
cake latticea>\, which allows us to neglect the influence the pancake latticet, (y), can be calculated as a sum of
of pancakes on the JV core, and small concentration of J\'<<r0Ssing energie€l?),
so that we can neglect the influence of the JV lattice on the 1
pancake crystale.g., formation of phase-separated states Ey(y)= a_o z E(y—nby)

n

Jap=1ls (66)
I1l. PINNING OF JOSEPHSON VORTEX
BY PANCAKE VORTICES

A. Pinning by a single pancake-stack romay,>ys)

@ °° y—mby
We consider first the simplest case of an isolated pancake- e P A><< S ) '

stack row crossing J\see Fig. 9 and estimate the force 4m y"saIn(ys/h) m=== Y
necessary to detach JV from this stack, assuming that its (67)
position is fixed. The consideration is based on the crossing
energy of JV and isolated pancake stack, calculated in Sec 1.2
[l B. Let us calculate first the force necessary to separate J\ 1
from an isolated pancake stack. Using ELy), we obtain for 0.8
the force acting on JV from the pancake stack located alg\o 0.6
distancey from the center of JV core, 0'4

F d E (I)g Al ( y ) 0'§ 7

*dy x(¥) 4m2y32n(Nuy(y)) \¥S) 0 0.5 1 1.5 2
(65 B [in units ®/(s)’]

with AL (y)=dA,(y)/dy. For the maximum force, we ob-  FIG. 10. The field dependence of the dimensionless pinning
tain force of JV by dilute pancake vortex crystal.
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whereb,= \/3a,/2 is the distance between the PV rows. This An exponential decay of the pinning energ§8) and
expression has a logarithmic accuracy, i.e., we neglected farce holds until the row separatidn, reaches\. At larger
weak y dependence under the logarithm and replaced théelds, one has to take into account shrinking of the vortex
dimensionless function under the logarithm by its typicalcore. Because the number of pancake rows in the core is
value. Using Fourier transform ofE.(y), E.(p) @&mostconstantat high field, the exponential decay will satu-

= [dyexp(~ipy)Ex(y), we also represerif;(y) as rate at a finite value-exp(—Cys/\).

. " B (2775) p(| 27s IV. PANCAKE VORTICES AND VISCOSITY

al el bo bo OF JOSEPHSON VORTEX
In the casé,<ys, we can keep onlg=0,+ 1, terms in this A sufficiently large c-axis transport current will drive
sum, JV’s. Two dynamic regimes are possible, depending on the
relation between the JV-pancake interaction and disorder-
~ (2w 27ry induced pancake pinning. Moving JV'’s either can drag the
Es(y)~E»(0)+2n,Ex By %% oy pancake lattice or they can move through the static pancake

lattice. Slow dragging of pancake stacks by JV’s at small

asymptotics fob,< ys, pancake interaction force decays exponentially at lightis
fields in the case\.<+vs, one can expect that JV’s will al-
ways move through the static pancake lattice at sufficiently
Ea(y)—Ey(0)~—0. 35W‘\/ bo high fields.
% cos< 2wy F{ 5 82b_) (68) A. Dragging pancake lattice by Josephson vortices

When moving JV’s drag the pancake lattice, one can ob-
tain simple universal formulas for the JV viscosity coeffi-
g|ent and JV flux-flow resistivity. The effective viscosity co-
efficient per single JV is connected by a simple relation with
the viscosity coefficient of pancake stack per unit length,

To compute the field dependence of the critical current,
we represent the force acting on JV from the pancake lattic
in the scaling form,

Fap(y)= J3s; f(l E) Bym3v=B
PR (am)2(ys)iinnds)” L vsTys)” XMV el -
with Therefore, the JV  flux-flow resistivity pf(B)
=d,B,/(c?n,y) is given by
F(y.bo)= 2 4 Ax(y—ibo)
Y, O _~ '9 i >< y—I 0/- . (I)OB>2(
The critical pinning current is given by c°7,B;
J3\2 _ As a consequence, we also obtain a simple relation between
jopi= m Fe(bo), (69 p%(B) andp3’(B,)
with 2
c ab BX
~ ~ pii(B)=pt; (Bz)?
Fo(bo)=max{ F(Y,by)]. 2

y
Numerically calculated dependence Bf versus reduced

field (ys)?B/®,=+/3/2b2. (see Fig. 10 Maximum F,
(vs) 0= 3/25. ( g. 10 cmax Consider slow JV motion through the static pancake lat-

~1.15 is achieved atB~0.26D,/(ys)? (bo=2.1ys). _ ) . \ . :
Therefore the maximum pinning current can be estimated a%ce JV motion along thy direction with velocityVy, in-
uces traveling pancake displacement fieldy —V,t)(see
\2 animation in EPAP®). For slow motion,u,(y) is jUSt the
30 majs——————. (70)  static displacement field around JV. Contribution to the en-
P (vys)?In(\/s) ergy dissipation caused by these displacements is given by

B. Josephson vortex moving through pancake lattice

For typical parameters of BSCCO this current is only 5-10
times smaller than the maximum Josephson current, i.e., itis yy. oMy 2 fdru =7,
actually rather large.

n 2 fdr(v u,)?
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where 7, is the pancake viscosity coefficient. Therefore thetice is about four order of magnitudiéactor (€/N\)?] smaller
JV viscosity per unit length is given by than the flux-flow resistivity of free JV's. We see that even
though the critical force becomes exponentially small at high
fields, pancakes still very strongly hinder mobility of JV’s.
Mv= npnv; f dr(V,up)?. (72
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with C=(cos(p,1— ¢n))<1, and derive an approximate for-
mula for the JV viscosity coefficient
APPENDIX A: MAGNETIC INTERACTION BETWEEN

s 273 co\ PANCAKE ROWS
V=g (v9)3| , Teut ' (73 In this appendix we derive several useful representation
| . for the magnetic interaction between pancake rows in differ-
w

ent layers. The interaction energy between two pancakes in
with n,=mn,/s is the viscosity of pancake stack per unit Fourier and real space is given by E#). We will use also
length. Because the JV viscosity;y is proportional to the this interaction in the mixed representation,

pancake-stack viscosity, , there is a relation between the

flux-flow resistiv_ity of Jt}/’s (0fs) and the flux-flow resistivity 47235, 2w?sdexp—ns m)
of pancake vorticesy), Upn(k, ,n)= 5 ——
k? \2K? VA T2+ K2
pis p?fb a 0.31y5)2 [ In(reye/ry) | *? The interaction energy between the pancake rows per unit
B, B, s 0 C (74)  length is given by
If we use the Bardeen-Stephen formula for the in-plane 1
flux-flow resistivity, p2P~p,,B,/Hc,, and an estimate UMr(vaan)Ea% Um(x—mayy,n)
for the c-axis flux-flow resistivity at B,=0, p??
~(16y3cszBX/<D0)pagd33 we can also obtain relation be- 1 dk, 2.7l
tweenp;;(B,) andps;, =a— : jﬁUM ky= Ky,
&2a(In(r gy /ry) | ¥ 2l
015 | | (75 Xexr{i%xﬁkyy).

From this estimate, we can see thataat\ the flux-flow  From this equation, we obtain the following integral repre-
resistivity for JV's slowly moving through the pancake lat- sentation forJ,,,(x,y,n):

In

seg s | | 27X 2aly| 47y|
UM,(x,y,n)z? - 5n—§ex ~ 1- 2COSTeX ~Ta +ex B

2l / 2ml\? 2ml\?
f ex*lxﬂ )\2+(T7T> usn— A%(%) \/1+u2|y|)

2l ?
{1+ 1+(T) UZ]\/1+u2

This representation can be used to derive largesymptotics ol (X,y,n),

S
a

094520-16



JOSEPHSON VORTICES AND SOLITONS INSI. . . PHYSICAL REVIEW B 68, 094520(2003

U ] 5 S s|n| 21X 2|y
Mr(nyvn)“‘? nT oy €XP T os_—exg -~ —
2
—2 |57 2
2w N2 27\ ? A a) (sn)
Vs O\ X VAT ] Y 2]
T2 PARIL
S A

at \/)\‘2+(27r/a)2|y|>1. Therefore the interaction between the pancake rows decays exponentigkynath ,a.
Interaction of pancake row with stack of rows is given by

5(271'X) [{ 27Ty) '{ 47Ty”
1-2cos—|exp ——|+exp — —
a a a
2l s
223 ex ITX— N o+
a 9 V@@/N)?+(271)?

- wd
Ums(%,Y) =22 Uy (x,y,n)=—In
n=1 a

In particular, the potential created by pancakes belonging to o[
the same row stackcage potential’) is given by Fy=E;a f dor{l—cog ¢,(x,y)+ (X,¥)]}
472 27l —
UcageEUMs(X,O):— 7; 2 CO{%X) :EJaZJ’ dzr{l_cos{@v(Y)+QD(X1Y)]}+LX5JOS<,(U1(P)-
=1
1 1 where ¢(x,y) is the smooth external phase and the local
X| =—— . Josephson energy;os{v,¢) per unit length is defined as
2al \J(a/N) 2+ (271)?

E,a?
gJOS(,(UIQD):_ L J'dXdy{C‘JigD_'—(PU(X!y)]

APPENDIX B: LOCAL CONTRIBUTION TO JOSEPHSON

ENERGY DUE TO MISMATCH OF PANCAKE ROWS —cod o+ ¢, (y) ]} =2E,acog¢)J,
IN NEIGHBORING LAYERS

(B1)
We consider two pancake rows in neighboring layers withwhere

perioda< ys shifted at distance with respect to each other

in the direction of row X axis). In zero order with respect to 12 o —

the Josephson coupling, these rows produce the phase mis- J(U)Efimdxfo dy{cog ¢,(y)]—cod ¢,(x,y)]}.

matche,(x,y) between the layers, (B2)
S . X—m+uv/2 arct X—m—uv/2 In £50sdv,¢) we can neglect weak coordinate dependence of
Pu(X,y)= = arctan y arctan y : the external phase and replace it by a constant |v]

<1/2 the ground state for fixed corresponds t@=0, while
We measure all distances in units of the lattice constant at 1/2<|v|<1 the ground state corresponds to=1r.

The x-averaged phase mismatch is given by Ey0sdv,¢) has a symmetry property€iosdl—v,¢)=
. —&30sdv,®). The integral overy in J(v) is converges at
@, (y)=mv sgny). y=1/27. This allows us to consider a single row separately
o from other rows and neglect the coordinate dependence of
The total phase approaches(y) aty=1/2m. the “external phase’.
Separatingp, (x,y) from the total phase, we can represent Using the complex variable=x+iy, one can derive a
the Josephson energy as useful expression fop,(X,y):
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m Z—m+v/2

¢U(Z)=|m(lnn ZZmovi2) (| Si”[”(z—v/a])_

NS m(z+0/2)]

Going back to theX,y) representation, we obtain

tad m(X+v/2)] 3 tarf m(x—v/2)]

¢,(X,y)=arcta tanhmy arcta tanhmy

and

cosh 2y cosmv — COS 27X

COS@,(X,y)=

\J(cosh 27y —cos 2mx cosmv)2— (sin 2mx sinmv )2

Integral (B2) can now be represented as

12 o cosh 27y cosmv — COS 2irX
J(v)zf dxf dy| cog v ) — — _ > |-
-12 Jo \J(cosh 27y — cos 2mrx cosmv)?— (sin 2wx sin v )
|
We obtain an approximate analytical result at smallv We also calculated functiof(v) numerically for the

<1. Simple expansion with respect #oproduces logarith- whole range 8<v <1/2. The result is shown in Fig. 11 and is
mically diverging integral. To handle this problem we intro- described by approximate interpolation formula
duce the intermediate scayg, v<<yy<<1, and split integral

J into contribution coming fromy>y, (J~) and y _1—cosmv B
<yo (J-). At y>y,, we use small> expansion and obtain Jw)~—72 " Cosmp 0379 c0STU
0 1/2 i
J>:(wv)2f dyf dx| —1+ sinft2my ) +0.076 coém). (BS)
yo ~Jo (cosh 27y — cos 2mx)?
5 This result was used in numerical calculations of the JV core
structure.

_(Wv)sz EXF(—ZWy)NWUI 1
a o Y Tsinh2my 4 "

2 4wy’

In regiony<y,, we can expand all trigonometric functions APPENDIX C: CONTRIBUTION TO JV ENERGY
and obtain the integral COMING FROM LOCAL JOSEPHSON TERM AT y3\/s
4(x%+y?)—v?

Yo 172
j<w2f d f dx
o Vo V402 +y?) +v?)2— (4x)?

v2 (2yolv _ (b _ X2+y2—1
= —f dyf dx| 1— ——= —
2Jo 0 \/(x2+y2—1)2+4y2

In the limit of very weak coupling, the correction to re-
duced JV energy57) coming from the local Josephson en-

1- S
ergy is given by

3 -
, OE~ — E f
4\1+B,/By n=-=

dy(vps1—vn)?

—

~ ~ 0.39
with y=2y/v andx=2x/v. Because we only interested in xlnﬁcos{cﬁnﬂ— bn), (C)
the main logarithmic term, we can extend integration over Un+17Un
up toee. The obtained integral can be evaluated as 0.025 . . .
7T [ e -
j<~—vz( % +1.58). 0.02
4 v -
> 0015 | |
Adding 7~ and 7., we obtain -~
0.01 | ]
T 1
j(v)%zvz In;—0.95) (B3) 0.005 | 1
and % 0.1 0.2 0.3 0.4 05
. RV . .
T 1 . . . . .
E 0)~—Ejaco 2l In=-0.95/. B4 FIG. 11. Dimensionless functiog(v) which determines the
JosdV:¢) 2 Lo ( v ) (B4) local Josephson energy. Dashed line is smadlsymptoticsB4).
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with y=y/\;=\1+B,/B,y/ys. We will focus only on the
regimeB,>B, , where this correction can be noticeable. In

this regime, reduced row displacements are connected with"

phase gradient by relation

b ~
vn(y)=~ mvyﬁbn
and the correction reduces to

JB,/B,

87Tnv(’yS)2

2.83ys\B, /B,

a|vy¢n+l_ vyd’nl

Ev~=

; f d’gl(vy¢n+l_ vy(ﬁn)2

XIn

COS ¢n+1_ (bn)

(C2

Using numerical estimates

an fld?/coi(bnﬂ— ¢n)(Vy¢n+1_vy¢,n)z% 24,

E j;dg/cos(d’n+1_¢n)(vyd’n+1_vy¢n)2

n=—wx
1
In— =
|Vy¢n+l_vy¢n|
obtained with the JV phase,(y) (14), we obtain

B, 0.3&7? 0.1vys a
55‘]\/% — a7 e In In_
Bz (ys)?In(alr,,) A

M'w

X

(C3

As we can see, the correction is smaller than the reduced JV
energy atB,>B,, &y~my{B,/B,n(a/s), by the factor
~N2(ys)2.
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