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Resonance peak in underdoped cuprates

A. Sherman
Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia

M. Schreiber
Institut für Physik, Technische Universita¨t, D-09107 Chemnitz, Federal Republic of Germany

~Received 30 April 2003; revised manuscript received 9 July 2003; published 25 September 2003!

The magnetic susceptibility measured in neutron-scattering experiments in underdoped YBa2Cu3O72y is
interpreted based on the self-consistent solution of thet-J model of a Cu-O plane. The calculations reproduce
correctly the frequency and momentum dependencies of the susceptibility and its variation with doping and
temperature in the normal and superconducting states. This allows us to interpret the maximum in the fre-
quency dependence—the resonance peak—as a manifestation of the excitation branch of localized Cu spins
and to relate the frequency of the maximum to the size of the spin gap. The low-frequency shoulder well
resolved in the susceptibility of superconducting crystals is connected with a pronounced maximum in the
damping of the spin excitations. This maximum is caused by intense quasiparticle peaks in the hole spectral
function for momenta near the Fermi surface and by the nesting.
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I. INTRODUCTION

Inelastic neutron-scattering experiments give import
information on the anomalous properties of high-Tc super-
conductors. Among the results obtained with this experim
tal method is the detailed information on the magnetic s
ceptibility in YBa2Cu3O72y measured in wide ranges of ho
concentrations and temperatures.1,2 These measurements r
vealed the sharp magnetic collective mode called the re
nance peak. The peak observed3,4 in the superconducting
state of YBa2Cu3O7 was later also detected in the unde
doped compounds, both in the superconducting and nor
states.2,5 Recently the resonance peak was also observe
Bi2Sr2CaCu2O81d and Tl2Ba2CuO61d .6

Theoretical works devoted to the resonance peak w
mainly concentrated at the overdoped region where the p
is observed in the superconducting state and disappea
the normal state.1–6 In Refs. 7–9 an interpretation of th
resonance peak based on the itinerant magnetism appr
was proposed. This approach which uses the Lindhard fu
tion for the bare susceptibilityx0(kv) and the random-phas
approximation relates the appearance of the peak to the
appearance or considerable decrease of Imx0(Qv) in the
frequency rangev<2Ds with the opening of thed-wave7,9

or s-wave8 superconducting gapsDs. HereQ5(p,p) is the
antiferromagnetic wave vector. In this frequency range
peak arises due to the logarithmic divergence in Rex0(Qv)
which originates from the jump7,8 in Im x0(Qv) or due to
the nesting of the bonding and antibonding Fermi surface
the two-layer crystal.9 In the normal state, when the dampin
increases, the peak is smeared out. For the approach
Refs. 8 and 9 the two-layer structure of YBa2Cu3O72y is of
crucial importance for the appearance of the resonance p
However, the recent observation6 of the peak in single-laye
Tl2Ba2CuO61d indicates that an interaction between close
spaced Cu-O layers is not the necessary condition. A sin
layer system described by a modifieds-f Hamiltonian was
0163-1829/2003/68~9!/094519~8!/$20.00 68 0945
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considered in Ref. 10. In that work the resonance peak
pears also due to the vanishing damping of spin excitati
and a real part of the spin excitation frequency stems fr
the fermion bubble. A qualitatively different approach w
suggested in Ref. 11 where the existence of a well-defi
branch of spin excitations which exists even in the abse
of mobile carriers was postulated near theM point (kÄQ) of
the Brillouin zone. In this scenario the resonance peak
related to the excitation withkÄQ of this branch. As in Refs.
7–9, here the peak is visible in the superconducting state
to the absence of the damping forv<2Ds and is smeared
out in the normal state.

This latter scenario seems to correspond most adequa
to available experimental data on the resonance peak
mentioned, it is observed also in underdoped YBa2Cu3O72y
and in the superconducting state the peak varies continuo
on passing from the underdoped to overdoped region. Mo
over, in the underdoped region the peak is also observe
the normal state and its frequency is nearly the same as in
superconducting state. Therefore it is reasonable to se
for a unified explanation for the peak which is applicab
both for underdoped and overdoped regions, and—in
former region—for the normal and superconducting sta
The existence of the excitation branch of localized Cu sp
is well established for the underdoped region.2,12 In this re-
gion it is quite reasonable to connect the resonance peak
these excitations.

In this paper we use the two-dimensionalt-J model to
which the realistic three-band Hubbard model of the Cu2
planes can be mapped in the case of a strong on-site C
lomb repulsion.13 For the underdoped region the se
consistent solution of thet-J model was obtained in Ref. 14
with the use of Mori’s projection operator technique. W
employ this result for the calculation of the magnetic susc
tibility in the normal and superconducting states. The cal
lations reproduce correctly the frequency and momentum
pendencies of the susceptibility and its evolution with dop
©2003 The American Physical Society19-1
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and temperature in YBa2Cu3O72y . This allows us to relate
the resonance peak with the excitation branch of the lo
ized Cu spins and to identify the frequency of the peak w
the size of the spin gap at theM point. In the underdoped
region, with increasing doping the peak frequency gro
with the gap size and the peak intensity decreases, in ag
ment with experimental observations.1,2 Moreover, the low-
frequency shoulder observed1,2 in the susceptibility of super
conducting crystals can be connected with a pronoun
maximum which we find in the damping of the spin excit
tions. This maximum is caused by intense quasipart
peaks in the hole spectral function for momenta near
Fermi surface and by the nesting.

II. HOLE GREEN’S FUNCTION
IN THE SUPERCONDUCTING STATE

The Hamiltonian of the two-dimensional~2D! t-J model
reads15

H5 (
nms

tnmans
† ams1

1

2 (
nm

Jnm~sn
zsm

z 1sn
11sm

21!, ~1!

whereans5uns&^n0u is the hole annihilation operator,n and
m label sites of the square lattice,s561 is the spin projec-
tion, uns& and un0& are site states corresponding to the a
sence and presence of a hole on the site. These state
linear combinations of the products of the 3dx22y2 copper
and 2ps oxygen orbitals of the extended Hubbard mode13

In this work we take into account nearest-neighbor inter
tions only,tnm52t(adn,m¿a andJnm5J(adn,m¿a where the
four vectorsa connect nearest-neighbor sites. The spin-1

2 op-
erators can be written assn

z5 1
2 (ssuns&^nsu and sn

s

5uns&^n,2su.
To investigate the magnetic susceptibility of this mod

the hole G(kt)52 iu(t)^$Aks(t),Aks
† %& and spin D(kt)

52 iu(t)^@sk
z(t),sÀk

z #& Green’s functions have to be calcu
lated. Here supposing the singlet superconducting pairing
introduced the Nambu spinor,

Aks5S aks

aÀk,2s
† D ,

thusG is a 232 matrix ~here and below matrices and ve
tors are designated by boldface letters!. In the above formu-
las the angular brackets denote averaging over the grand
nonical ensemble, and

aks5N21/2(
n

e2 iknans ,

sk
z5N21/2(

n
e2 iknsn

z ,

aks(t)5exp(iHt)aksexp(2iHt), N is the number of sites
H5H2m(nXn , m is the chemical potential, Xn
5un0&^n0u.

To derive the self-energy equation for the matrix Gree
function G the continued fraction representation for Gree
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function and the recursive equations for their elements fr
Ref. 14 have to be generalized for the case of matrices. S
generalization reads

Rn~v!5@vI2En2Rn11~v!Fn#21, n50,1,2. . . , ~2!

where I is a 232 unit matrix, the matricesEn and Fn are
calculated from the recursive equations

@An ,H#5EnAn1An111Fn21An21 ,

En5^$@An ,H#,An
†%&^$An ,An

†%&21, ~3!

Fn5^$An11 ,An11
† %&^$An ,An

†%&21.

HereF2150 andA05Aks for the case of the functionG. As
follows from Eq.~3!, the two-component operatorsAn con-
structed in this recursive procedure form an orthogonal ba
For the anticommutator Green’s functionG the inner product
of two arbitrary operatorsA andB is defined aŝ$A,B%& and
the orthogonality meanŝ$An ,Am%&5dnm^$An ,An%&. In Eq.
~2!,

Rn~v!52 i *0
`dt exp~ivt!Rn~ t !,

Rn~ t !5^$Ant ,An
†%&^$An ,An

†%&21

where the time dependencies are determined by the equ

i
d

dt
Ant5 )

k50

n21

~12Pk!@Ant ,H#, An,t505An

with the definition PnQ5^$Q,An
†%&^$An ,An

†%&21An of the
projection operatorPn that projects an arbitrary two
component operatorQ on An ~for a more detailed discussio
of these equations see Ref. 14!.

From the above definitions it follows for the Fourie
transformation ofG(kt),

G~kv!5@vI2E02R1F0#21^$A0 ,A0
†%&, ~4!

where ^$A0 ,A0
†%&5wI , w5 1

2 (11x), x5^Xn& is the hole
concentration,

E05S «k2m8 sK1w21~3Jgk28t !

sK1* w21~3Jgk28t ! 2~«k2m8!
D ,

~5!

«k52(4tw16tC1w2113JF1w21)gk , m85m14tF1w21

13JC1w21, gk5 1
4 (aexp(ika). The nearest-neigh

bor correlations C15^sn
11sn¿a

21 &, F15^ans
† an¿a,s&, K1

5s^ansan¿a,2s& and the hole concentrationx can be ex-
pressed in terms of the components of the hole and s
Green’s functions:

x5
1

N (
k
E

2`

`

dvnF~v!A~kv!,

F15
1

N (
k

gkE
2`

`

dvnF~v!A~kv!,

C15
2

N (
k

gkE
0

`

dv cothS v

2TDB~kv!, ~6!
9-2
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K15
s

N (
k

gkE
2`

`

dv@12nF~v!#@L~kvs!1 iM ~kvs!#,

where

L~kvs!52Im@G12~kvs!1G21~kvs!#/~2p!,

M ~kvs!5Re@G12~kvs!2G21~kvs!#/~2p!,

A(kv)52Im G11(kv)/p, andB(kv)52Im D(kv)/p are
the hole and spin spectral functions,nF(v)5@exp(v/T)
11#21 and T is the temperature@the functionsA(kv) and
B(kv) do not depend ons]. In the derivation of Eq.~6! for
C1 we have taken into account that the approximation u
retains the rotation symmetry of spin components14 and
thereforeC152^sn

zsn¿a
z &.

As follows from Eq.~5!, in the t-J model the supercon
ducting gap has ans-wave component ifK1Þ0. However, in
the considered case this component is small in compar
with the d-wave component introduced below and will b
neglected.

From the definition of the hole self-energySÄR1F0 we
find thatS22(kv)5S11* (k,2v) where it was taken into ac
count that these components ofS do not depend ons and
are invariant under the inversion ofk. For S11(kv) the fol-
lowing expression obtained in Ref. 14 can be used:

Im S11~kv!5
16pt2

Nf (
k8

E
2`

`

dv8FgkÀk81gk

1sgn~v8!~gkÀk82gk!A11gk8

12gk8
G 2

3@nB~2v8!1nF~v2v8!#

3A~kÀk8,v2v8!B~k8v8!, ~7!

ReS11~kv!5PE
2`

` dv8

p

Im S11~kv8!

v82v
,

where nB(v)5@exp(v/T)21#21 and P indicates Cauchy’s
principal value.

Assuming thed-wave superconducting pairing, for th
anomalous self-energies we set

S21~kvs!5S12~kvs!5sDs@cos~kx!2cos~ky!#/2, ~8!

with the superconducting gapDs. For such anomalous self
energiesM (kvs)50.

III. SPIN GREEN’S FUNCTION

In Ref. 14 we have noticed that the approximation us
there leads to an underestimation of the imaginary part of
magnetic susceptibility at low frequencies. To avoid th
drawback in the present work we shall not split the s
self-energy into the hole and spin parts, but rather conti
the calculation of the terms of the continued fraction us
the entire Hamiltonian~1!.
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The spin Green’s function is calculated from the relatio

D~kv!5v~~sk
zusÀk

z !!v2~sk
z ,sÀk

z !, ~9!

where

~sk
z ,sÀk

z !5 i E
0

`

dt^@sk
z~ t !,sÀk

z #&, ~10!

and Kubo’s relaxation function

~~sk
zusÀk

z !!v5E
0

`

dteivtE
t

`

dt8^@sk
z~ t8!,sÀk

z #& ~11!

can be represented by a continued fraction which is sim
to the scalar form of Eq.~2!. The elementsEn andFn of this
function are calculated from a recursive procedure which
similar to the scalar form of Eq.~3! where, however, mean
values of anticommutators have to be substituted by in
products of the type of Eq.~10! ~see Ref. 14!.

From this definition we find for the starting operatorA0

5sk
z of this recursive procedure

E05~ i ṡk
z ,sÀk

z !~sk
z ,sÀk

z !2150,

wherei ṡk
z5@sk

z ,H#,

A15 i ṡk
z , F05

4~12gk!~JuC1u1tF1!

~sk
z ,sÀk

z !
, E150.

Using these elements of the continued fraction representa
of ((sk

zusÀk
z ))v , Eq. ~9! can be rewritten as

D~kv!5
4~12gk!~JuC1u1tF1!

v22vP~kv!2vk
2

, ~12!

wherevk
25F0,

P~kv!52 i @4~12gk!~JuC1u1tF1!#21E
0

`

dteivt~A2t ,A2
†!,

A25 i 2s̈k
z2vk

2sk
z .

As follows from the above equation, to calculatevk
2 and

A2 we have to select terms ofi 2s̈k
z which are proportional to

sk
z . It can be done only approximately because the quan

(sk
z ,sÀk

z ) cannot be calculated exactly. Following Refs.

and 16 we used the decoupling ini 2s̈k
z for such selection and

found

vk
2516aJ2S uC1u1

tF1

aJ D ~12gk!~D111gk!, ~13!

whereD is the parameter of the gap in the spin excitati
spectrum at the wave vectorQ of the Brillouin zone. In an
infinite 2D lattice this gap is opened for any nonze
temperature16 and atT50 for x*0.02.14 The gap size is
directly connected with the spin-correlation length of t
9-3
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A. SHERMAN AND M. SCHREIBER PHYSICAL REVIEW B68, 094519 ~2003!
short-range antiferromagnetic order. Hence a finite gap
T.0 is in agreement with the Mermin-Wagner theorem17

The gap parameter can be expressed through the mode
rameters and correlations of hole and spin operators.14,16

However, due to strong dependencies of the conside
quantities on this parameter we found it more accurate
determine this parameter from the constraint of zero
magnetization̂ sk

z&50 which is fulfilled in the paramagneti
state. This constraint can be written in the form

1

2
~12x!5

2

N (
k
E

0

`

dv cothS v

2TDB~kv!. ~14!

In Eq. ~13!, the parametera is introduced to improve
somewhat the results obtained with the decoupling and
take into account vertex corrections. In earlier works16 where
the analogous correction were used for the Heisenberg m
this parameter was determined from the constraint~14!. Due
to comparatively weak dependencies of the considered q
tities on this parameter we found it more appropriate to
a51.802–0.802 tanh(10x) and to use the constraint for th
calculation ofD, as mentioned above. The expression giv
for a takes into account its value obtained in Ref. 14
finite damping of spin excitations and the weakening of
vertex corrections with doping.

When selecting terms ofi 2s̈k
z which have to be included

into A2 we omitted terms proportional tot2, being motivated
by our earlier result14 and by the results of the spin-wav
approximation18 which indicate thatP(kv) has to be pro-
portional tot2. An additional argument to omit these terms
that a part of them contains multipliers of the typ
(ssams

† ams the mean values of which are zero. Other ter
of this type and a part of terms proportional totJ contain the
hole operators with opposite spins,ams

† am8,2s , which also
give zero on averaging and therefore were omitted. Te
which are proportional toJ2 and describe multiple spin
excitation scattering processes were not included intoA2
either—in this paper only the decay of the spin excitat
into the fermion pair is considered. This process is descri
by the following terms:

A25
4tJ

N (
k1k2s

gkk1k2
ak1s

† ak¿k12k2 ,ssk2

z ,

gkk1k2
5S gk2

1
1

4D ~gk22k1
2gk1

2gk¿k12k2
1gk¿k1

!,

where the line over the operators indicates that in calcula
thermodynamic averages withA2 by factorization, terms
containing couplings of hole operators from the sameA2
have to be omitted, since such processes have already
included intovk

2sk
z . SubstitutingA2 into the above definition

of P(kv), neglecting the difference betweenA2t andA2(t)
and using the decoupling we get
09451
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Im P~kv!5
8pt2J2

N2~12gk!~JuC1u1tF1!

12exp~v/T!

v

3 (
k1k2

gkk1k2

2 E E
2`

`

dv1dv2nB~v2!

3@12nF~v1!#nF~v1v12v2!B~k2v2!

3@A~k1v1!A~k1k12k2 ,v1v12v2!

2L~k1v1s!L~k1k12k2 ,v1v12v2 ,s!#.

~15!

Equation~13! is supposed to give a good approximation f
the real part of the frequency of spin excitations and the
fore only the imaginary part ofP(kv) will be considered
below. Notice that ImP(kv) is negative, finite forv50 and
even with respect to the change of the sign ofv.

As seen from Eq.~15!, Im P(kv) is finite for k→0,
whereasvk vanishes in this limit. Therefore the spin Green
function ~12! has a purely imaginary, diffusive pole near th
G point, in compliance with the result of the hydrodynam
theory.19 In the general case properties of spin excitatio
near theM point differ essentially from those nearG. In the
calculations of Ref. 14 for the former excitations the re
parts of frequencies were larger than their imaginary pa
due to the spin gap. However, it is worth noting that in th
comparison only the decay into two fermions was conside
as the source of damping. Another source of damping
multiple spin-excitation scattering—was neglected. Ho
ever, even in the case of overdamped excitations withkÉQ
their frequencies will have real components due to
spin gap.

To simplify further calculations we take into account th
in the considered underdoped case the spin spectral func
B(kv) is strongly peaked nearQ for v'vQ . Allowing for
the small value ofvQ , A(k1Q,v)'A(kv) and Eq.~14!
we get

Im P~kv!5
9pt2J2~12x!

2N~12gk!~JuC1u1tF1! (
k8

~gk¿k82gk8!
2

3E
2`

`

dv8
nF~v1v8!2nF~v8!

v

3@A~k8v8!A~k1k8,v1v8!

2L~k8v8s!L~k1k8,v1v8,s!#. ~16!

Now the damping has taken the familiar form given by t
fermion bubble.

IV. MAGNETIC SUSCEPTIBILITY

We have used hole self-energies~7! and correlations of
hole and spin operators obtained in Ref. 14 for calculat
the hole Green’s functionG, Eq. ~4!. This function and the
spin-gap parametersD obtained in Ref. 14 have then bee
applied for the calculation of the spin Green’s function d
termined by Eqs.~12!, ~13!, and~16!. This latter function is
9-4
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RESONANCE PEAK IN UNDERDOPED CUPRATES PHYSICAL REVIEW B68, 094519 ~2003!
connected with the magnetic susceptibility by the relation

xz~kv!524mB
2D~kv!,

wheremB is the Bohr magneton. The self-energies of Ref.
were calculated for a 20320 lattice with the parameterst
50.5 eV, J50.1 eV which correspond to hole-dope
cuprates,13,20 and for the ranges of hole concentratio
and temperatures 0<x<0.16 and 0.01t'58 K<T<0.2t
'1200 K. For several hole concentrations we have chec
now that the self-energies calculated forT50.01t remain
practically unchanged as the temperature decreasesT
50.003t'17 K. Therefore we can use these self-energ
also forT,0.01t. For temperatures close to zero the sup
conducting gapDs was set to 0.04t520 meV, the value ex-
tracted from the tunneling experiments.21 As follows from
the experiments, this value remains practically unchan
with the doping variation from heavily underdoped to op
mally doped YBa2Cu3O72y .

Results of such calculations for the imaginary part of
magnetic susceptibility at the antiferromagnetic wave vec
Im x(Q) are shown in Figs. 1 and 2. In these figures exp
mental data2 on the magnetic susceptibility of underdop
YBa2Cu3O72y are also depicted. The oxygen deficienciesy
50.5 and 0.17 in this crystal correspond to the hole conc
trations x'0.075 and 0.14.22 YBa2Cu3O72y is a bilayer
crystal and the symmetry allows one to divide the susce

FIG. 1. The imaginary part of the spin susceptibility at the a
tiferromagnetic wave vector in the superconducting state. Cu
show the results of our calculations in a 20320 lattice for t
50.5 eV,J50.1 eV,T517 K, x50.06~a! andx50.12~b!. Filled
squares are the odd susceptibility measured~Ref. 2! in
YBa2Cu3O6.5 @~a! Tc545 K, x'0.075] and in YBa2Cu3O6.83 @~b!
Tc585 K, x'0.14] atT55 K. Here and in Fig. 2 tick labels on
the vertical axes correspond to the curves. In both figures exp
mental values are approximately 1.5 times smaller than the ca
lated ones.
09451
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bility into odd and even parts. For the antiferromagnetic
trabilayer coupling the odd part can be compared with
calculations carried out for a single layer.

The value of dampinguIm P(Qv)u depends on widths o
peaks in the hole spectral functions near the Fermi surfa
These widths are determined by an artificial broaden
which was introduced in Ref. 14 to stabilize the iterati
procedure. From the comparison with photoemiss
spectra23 of YBa2Cu3O72y it is seen that the peaks in Ref. 1
are more intensive and narrower than in experiment wh
leads to a larger value and stronger frequency dependen
the calculated damping. To weaken this difference and
obtain a better fit of the shapes of the calculated suscept
ity to the experimental data we have decreaseduIm P(Qv)u
by a factor f and added a constant dampingh to it. This
allows us to weaken somewhat the frequency dependenc
the total dampingG(Qv)5uIm P(Qv)u/ f 1h. As will be
discussed in greater details later, the low-frequency shou
in Im x(Qv) is connected with this dependence. Thus t
fitting parametersf and h allow us to change the relativ
intensity of this shoulder. The dampingh can be connected
with the processes of multiple spin-excitation scattering
scattering at impurities. The frequency dependencies of
total damping used in the calculation of the curves in Figs
and 2 are shown in Fig. 3. Notice that the fitting paramet
f and h with the values given in the caption to this figu
influence only weakly the position of the maximum in su
ceptibility which is determined by the value ofvQ .

As seen from Figs. 1 and 2, the position of this maximu
the resonance peak, and its evolution with doping and te
perature described by thet-J model are in good agreemen

-
s

ri-
u-

FIG. 2. The imaginary part of the spin susceptibility in the no
mal state. Curves show the results of our calculations forT
5116 K, all other parameters are the same as for the respe
panels in Fig. 1. Filled squares are the odd susceptibility meas
~Ref. 2! in YBa2Cu3O6.5 ~a! and in YBa2Cu3O6.83 ~b! at T
5100 K.
9-5
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A. SHERMAN AND M. SCHREIBER PHYSICAL REVIEW B68, 094519 ~2003!
with those observed in YBa2Cu3O72y . In the model the
maximum is connected with the excitation of localized C
spins at the antiferromagnetic wave vectorQ. Its frequency
vQ determines the size of the spin gap. In the underdo
case it determines also the frequency of the resonance p
As shown in Ref. 14,vQ grows with doping and this leads t
the growth of the frequency of the resonance peak from
proximately 18 meV atx50.06 to 38 meV atx50.12 in
Figs. 1 and 2. It was also shown14 that Imx(kv) is strongly
peaked atQ and that the value of Imx(Qv) decreases with
doping which is in agreement with experiment
observations.1,2 In absolute units our calculated values
Im x(Qv) are approximately 1.5 times larger than its expe
mental values.

We notice that the shape of the calculated frequency
pendence of the susceptibility is close to that observed
perimentally. Of special interest is the low-frequency sho
der in this dependence. This shoulder is more pronounced
lower hole concentrations and temperatures. As mentio
above, it originates from the strong frequency dependenc
the dampingG(Q) shown in Fig. 3. The pronounced maxim
of the curves in this figure are connected with intens
peaks in the hole spectral function for momenta near
Fermi surface. These peaks correspond to the so-called
polaron band.15 For moderate doping the Fermi surface
the t-J model consists of two rhombuses with round
corners.14 These rhombuses are centered at theG and M
points and are approximately nested by the momentumQ.
This nesting is also very essential for the appearance of
maximum inG(Qv). In Fig. 4 the Fermi surface is show
and momenta of the hole spectral functions which give
main contribution to the maxima ofG(Q) in the used 20
320 lattice are indicated. For these momenta the inten
spin-polaron maxima in the spectral functionsA(k8v8) and

FIG. 3. The frequency dependence of the total dampingG(Q)
used in the calculation of the four curves in Figs. 1 and 2. T
parameterf is equal to 2.7 for the dashed curve and 2 for the ot
curves. The parameterh is equal to 0.027t, 0.04t, 0.012t, and
0.029t for the solid, dashed, short-dashed, and dash-dotted cu
respectively.
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A(Q1k8,v1v8) @see Eq.~16!# overlap and fall into the
frequency window determined by the difference of the oc
pation numbers.

The Fermi surface in YBa2Cu3O72y differs from that
shown in Fig. 4.23,24 However, it is known from the photo
emission experiments that at least in the superconduc
state the hole spectral function has pronounced peaks
momenta near the Fermi surface. In the two-lay
YBa2Cu3O72y the main contribution to the damping of th
spin excitations is given by the decay into the fermion pair
which one of the fermions belongs to the bonding band a
the other to the antibonding band and the respective part
the Fermi surface are nested by the momentum (p,p,p).9,24

These conditions are similar to those observed in thet-J
model and therefore the low-frequency shoulder in the s
ceptibility in YBa2Cu3O72y can be also related to the stron
frequency dependence of the damping of the spin excitat
which arises due to pronounced peaks in the hole spe
function and the nesting.

It is worth noting that for all four curves in Figs. 1 and
the value ofG(Q,vQ)/2 is smaller thanvQ . Thus in contrast
to a vicinity of theG point near theM point the spin excita-
tions are not overdamped in underdoped YBa2Cu3O72y .

Now let us consider the momentum dependence of
resonance mode. In Fig. 5 the constant energy scans obta
in our calculations are compared with experiment25 in
YBa2Cu3O6.83. The scans were performed along the diag
nal of the Brillouin zone at the resonance energy in the
perconducting and normal states. To simulate a finite ins
mental momentum resolution, which is comparable to
width of the peak in Imx(kv) our curves were calculated b
the convolution of this quantity with the Gaussian with t
full width at half maximum equal to 0.2p in the momentum
space. This corresponds to 0.1 in reciprocal-lattice u
which is the usual resolution in experiments of this type.

e
r

es,

FIG. 4. The Fermi surface of thet-J model ~lines! and the
momenta which give the main contribution to the maxima ofG(Q)
in the used 20320 lattice ~circles!. The antiferromagnetic wave
vector Q connecting momenta of the fermion pair in the spin p
larization bubble is shown by the arrow. The pointM corresponds to
k5(p,p).
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can be seen from Fig. 5, for both temperatures the calcul
momentum dependencies are in good agreement
experiment.

In Fig. 6 the dispersion of the maximum of our calc
lated susceptibility is compared with experimental data2 in
YBa2Cu3O6.5. This dispersion corresponds approximately
vk in Eq. ~13!. For smallqÄkÀQ this momentum depen
dence can be written as

vk'AvQ
2 1c2~kÀQ!2. ~17!

FIG. 5. Constant energy (k,k) scans at the resonance ener
vQ . Solid and dashed curves show the results of our calculat
for x50.12, vQ538 meV in the superconducting state atT
517 K and in the normal state atT5116 K, respectively. To simu-
late a finite instrumental momentum resolution the curves were
culated by the convolution of Imx(kv) with the Gaussian with the
full width at half maximum equal to 0.2p in the momentum space
Filled and open squares are experimental data~Ref. 25! in
YBa2Cu3O6.83 for vQ535 meV, T54 K, and 109 K, respectively

FIG. 6. The dispersion of the maximum in the frequency dep
dence of Imx(qv), qÄkÀQ. Filled squares are our results forx
50.06 andT517 K. The fit for these data with Eq.~17! is shown
by the curve. Open squares are experimental results~Ref. 2! in
YBa2Cu3O6.5 at T55 K for odd spin excitations.
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ed
th

This function fitted to our calculated data with the para
eters vQ518.4 meV andc/a5A8auC1uJ50.134 meV is
also shown in Fig. 6. Herea is the distance between Cu site
in a Cu-O plane. As seen from this figure, our calcula
dispersion is close to the experimental one for similar para
eters. Forv'vQ Im x(kv) is peaked atkÄQ. For v
.vQ the susceptibility has maxima on the ring with th
radius approximately determined by the equationv5@vQ

2

1c2(kÀQ)2#1/2. In constant energy scans along some dir
tion this property of the susceptibility manifests itself as tw
peaks in incommensurate positions equally spaced from
M point.26 For v,vQ for the considered paramete
Im x(kv) is peaked atkÄQ.

V. CONCLUDING REMARKS

We have considered the magnetic susceptibility for
underdoped case when the resonance peak is observed
in the normal and in the superconducting states. As m
tioned, the frequency of the peak is determined by the
quency of the spin excitationvQ which sets the size of the
spin gap. This frequency grows with the ho
concentration,14 in agreement with experimental observ
tions in underdoped crystals.2,6

For the normal-statet-J model in the overdoped region
was shown27 that the part of the magnon branch, which pe
sisted at lower doping at the periphery of the Brillouin zon
is suddenly destroyed forx'0.17 atT50. This transition is
accompanied by the radical change of the hole spectr
dispersion and distribution of the spectral weight beco
close to the case of weakly correlated fermions. This re
corresponds to the sudden disappearance of the reson
peak in the normal-state overdoped cuprates.2,6 One of the
reasons for the transition in thet-J model is the damping of
the spin excitations which grows with doping. A considerab
decrease of the damping in the superconducting state
restore the spin excitations near theM point in the frequency
rangev<2Ds. Such mechanism was considered in Ref.
where the magnetic susceptibility similar to that given
Eqs.~12! and~13! was postulated and the damping describ
by the fermion bubble of the type of Eq.~16! was used.
Above the mentioned transition atx'0.17 the hole spectrum
of the t-J model becomes similar to that used in Ref. 11 a
the analogous outcome can be expected here.

In contrast to the underdoped region, in the overdop
case the frequency of the resonance peak decreases with
ing which can be related to a finite damping of the sp
excitations and to the decrease of the superconducting
with doping in this range of concentrations.21

In contrast to YBa2Cu3O72y where vQ&2Ds, in
La22xSrxCuO4 the value of 2Ds'9 meV is substantially
smaller thanvQ which is supposed to be approximately th
same as in the former crystal. This difference may be
reason for the absence of the resonance peak in overd
La22xSrxCuO4.11 Changes in the susceptibility observed28 in
La1.86Sr0.14CuO4 at the superconducting transition consist
some suppression of Imx below the superconducting ga
and an increase above it. The suppression can be conne
with the decrease of the damping of the spin excitation
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companying the opening of the gap, while the increase of
signal above the gap is apparently a combined effect of
transfer of the carrier spectral weight above the gap and
nesting supposed29 for the Fermi surface of this crystal.

In conclusion, we compared the magnetic susceptibi
calculated in thet-J model with the experimental data in th
underdoped YBa2Cu3O72y . It was demonstrated that th
calculations reproduce correctly the frequency and mom
tum dependencies of the experimental susceptibility and
variation with doping and temperature in the normal a
superconducting states. This allowed us to interpret
maximum in the frequency dependence—the resona
peak—as a manifestation of the excitation branch of loc
tie
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ized Cu spins and to relate the frequency of the maximum
the size of the spin gap. The low-frequency shoulder w
resolved in the susceptibility of superconducting crystals w
connected with a pronounced maximum in the damping
the spin excitations. This maximum is caused by intense q
siparticle peaks in the hole spectral function for mome
near the Fermi surface and by the nesting.
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