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The magnetic susceptibility measured in neutron-scattering experiments in underdopg@uy®a , is
interpreted based on the self-consistent solution otthenodel of a Cu-O plane. The calculations reproduce
correctly the frequency and momentum dependencies of the susceptibility and its variation with doping and
temperature in the normal and superconducting states. This allows us to interpret the maximum in the fre-
guency dependence—the resonance peak—as a manifestation of the excitation branch of localized Cu spins
and to relate the frequency of the maximum to the size of the spin gap. The low-frequency shoulder well
resolved in the susceptibility of superconducting crystals is connected with a pronounced maximum in the
damping of the spin excitations. This maximum is caused by intense quasipatrticle peaks in the hole spectral
function for momenta near the Fermi surface and by the nesting.
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I. INTRODUCTION considered in Ref. 10. In that work the resonance peak ap-
pears also due to the vanishing damping of spin excitations
Inelastic neutron-scattering experiments give importanand a real part of the spin excitation frequency stems from
information on the anomalous properties of hiGhsuper- the fermion bubble. A qualitatively different approach was
conductors. Among the results obtained with this experimensuggested in Ref. 11 where the existence of a well-defined
tal method is the detailed information on the magnetic susbranch of spin excitations which exists even in the absence
ceptibility in YBa,Cu; O, measured in wide ranges of hole of mobile carriers was postulated near Mepoint (k=Q) of
concentrations and temperatutésThese measurements re- the Brillouin zone. In this scenario the resonance peak is
vealed the sharp magnetic collective mode called the resgelated to the excitation witk=Q of this branch. As in Refs.
nance peak. The peak observ&dn the superconducting 7-9, here the peak is visible in the superconducting state due
state of YBgaCu;O; was later also detected in the under-to the absence of the damping fer<2AS and is smeared
doped compounds, both in the superconducting and normalut in the normal state.
states:® Recently the resonance peak was also observed in This latter scenario seems to correspond most adequately
Bi,Sr,CaCyOgq, 5 and TbBaZCuQH(;.G to available experimental data on the resonance peak. As
Theoretical works devoted to the resonance peak wergentioned, it is observed also in underdoped YBa0;_,
mainly concentrated at the overdoped region where the peaknd in the superconducting state the peak varies continuously
is observed in the superconducting state and disappears ¢n passing from the underdoped to overdoped region. More-
the normal staté-® In Refs. 7-9 an interpretation of the over, in the underdoped region the peak is also observed in
resonance peak based on the itinerant magnetism approagie normal state and its frequency is nearly the same as in the
was proposed. This approach which uses the Lindhard funguperconducting state. Therefore it is reasonable to search
tion for the bare susceptibility,(kw) and the random-phase for a unified explanation for the peak which is applicable
approximation relates the appearance of the peak to the digoth for underdoped and overdoped regions, and—in the
appearance or considerable decrease ofJ(@w) in the  former region—for the normal and superconducting states.
frequency ranges<2A® with the opening of thal-wave®  The existence of the excitation branch of localized Cu spins
or swave’ superconducting gaps®. HereQ=(w, ) isthe s well established for the underdoped regfdA.n this re-
antiferromagnetic wave vector. In this frequency range thegion it is quite reasonable to connect the resonance peak with
peak arises due to the logarithmic divergence iny\R&w) these excitations.
which originates from the jumfg in Im xo(Qw) or due to In this paper we use the two-dimensiorial model to
the nesting of the bonding and antibonding Fermi surfaces iwhich the realistic three-band Hubbard model of the guO
the two-layer crystal.In the normal state, when the damping planes can be mapped in the case of a strong on-site Cou-
increases, the peak is smeared out. For the approaches lofb repulsiont> For the underdoped region the self-
Refs. 8 and 9 the two-layer structure of Y®&arO;_, is of  consistent solution of theJ model was obtained in Ref. 14
crucial importance for the appearance of the resonance peakith the use of Mori's projection operator technique. We
However, the recent observatfbof the peak in single-layer employ this result for the calculation of the magnetic suscep-
TI,Ba,CuQ;, s indicates that an interaction between closelytibility in the normal and superconducting states. The calcu-
spaced Cu-O layers is not the necessary condition. A singldations reproduce correctly the frequency and momentum de-
layer system described by a modifisef Hamiltonian was pendencies of the susceptibility and its evolution with doping
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and temperature in YB&€wO,_, . This allows us to relate function and the recursive equations for their elements from
the resonance peak with the excitation branch of the localRef. 14 have to be generalized for the case of matrices. Such
ized Cu spins and to identify the frequency of the peak withgeneralization reads

the size of the spin gap at thd point. In the underdoped _1

region, with increasing doping the peak frequency growﬁn("’):[wl_EH_RHH(“’)FHJ , n=012...., (2
with the gap size and the peak intensity decreases, in agre@here| is a 2x<2 unit matrix, the matrice€, and F,, are
ment with experimental Observatiohg.MoreOVer, the low- calculated from the recursive equations

frequency shoulder observetin the susceptibility of super-

conducting crystals can be connected with a pronounced [An HI=E A+ A 1R 1AL,

maximum which we find in the damping of the spin excita-

tions. This maximum is caused by intense quasiparticle En=({[An,HLATDH{A, AN, 3)
peaks in the hole spectral function for momenta near the

Fermi surface and by the nesting. Fo=({Ani 1, AL DAL AN L

HereF_,=0 andA,=A,, for the case of the functio®. As
follows from Eq.(3), the two-component operatofs, con-
structed in this recursive procedure form an orthogonal basis.
The Hamiltonian of the two-dimensioné&D) t-J model  For the anticommutator Green'’s functi@nthe inner product

II. HOLE GREEN’S FUNCTION
IN THE SUPERCONDUCTING STATE

reads® of two arbitrary operatoré andB is defined ag{A,B}) and
the orthogonality meang A, ,Anb) = Sam{{An,An}). In Eq.
1 2
— T - z.Z +1.—1 )
H= 2 tam@nedmet 5 2 Jnm(SiSh+ 87 'sp), - (D) R(w)= —i [dtexpliaRy ().
_ T tyy -1
wherea,,,=|no){n0| is the hole annihilation operatar,and Ro(D)=({Ant,Anh) ({An An})

m label sites of the square lattice=* 1 is the spin projec- where the time dependencies are determined by the equation

tion, |no) and|n0) are site states corresponding to the ab-

sence and presence of a hole on the site. These states are  d

linear combinations of the products of thel,3_,2 copper 'aAan[[O (1=PlAn.H],  Ant—0=An

and 2p,, oxygen orbitals of the extended Hubbard motfel.

In this work we take into account nearest-neighbor interacwith the definition P,Q=({Q,AM({A,,A)"!A, of the

tions only,t,=—t2,6, m+a aNdIn=J2 8, m+a Where the  projection operatorP,, that projects an arbitrary two-

four vectorsa connect nearest-neighbor sites. The spiop-  component operatd on A, (for a more detailed discussion

erators can be written as;=33,0|no){no| and s7  of these equations see Ref.)14

=|na)(n,—ol. From the above definitions it follows for the Fourier
To investigate the magnetic suiceptibility of this modeltransformation ofG(kt),

the hole G(kt)=—i6(t)({Axs(t),Ay,}) and spin D(kt) -

=—i60(t)([si(t),s2]) Green’s functions have to be calcu- G(ko)=[wl —Eo—RiFo] "{({Aq,Al}). (4)

!ated. Here supposing the'singlet superconducting pairing W nere <{A0,A$}>=<pl, e=1(1+x), x=(X,) is the hole

introduced the Nambu spinor,

n—1

concentration,
_| Fo ex—p' K10 H(3Jy—8t)
Akg-_ t I E0: 1 ,
a—k,—o‘ O'K;_r(p (SJ’}/k—Bt) _(Sk_,lb/)
thus G is a 2x 2 matrix (here and below matrices and vec- )

tors are designated by boldface letiets the above formu- g, = —(4te+6tCie *+3IF 0 Dy, u'=p+4tFo 1t
las the angular brackets denote averaging over the grand ca-3JC,o~ %, y,=313.exp(ka). The nearest-neigh-

nonical ensemble, and bor correlations C;=(s; s, 1), F1=(a],antae): Ki
=o0(ap,an+a—,) and the hole concentration can be ex-
A, =NV eikng presse,d in terms of the components of the hole and spin
n Green’s functions:

1 o
- == d Akw),
si:N*IIZE eflknsﬁ, X N ; J;w one(w)A(kw)

1 ©
(1) =exp(Ht)ay,exp(—iHt), N is the number of sites, Fl:ﬁ E ykJ' dong(w)A(kw),
H=H-u=.X,, w is the chemical potential, X, K o
=[n0){n0|. )
. . . y o w
Tq derive the se_lf-energy e_quatlon for the_matrlx Green,s Ci=— 2 ykf do cotl‘( _) B(kw), (6)
function G the continued fraction representation for Green’s N 0 2T
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o o The spin Green’s function is calculated from the relation
K1=N; ykj do[1-np(w)][L(koo)+iM (koa)],
- D (ko) = w((s[sZ4)w— (sk,5%0), 9

where where

L(kwo)=—Im[G iy kwo)+ Gy(kwo)]/(2),

CESRIRUETEN (10
M(kwo)=Rg G kwo)—Gyi(kwa)]/(27), 0

A(kw)=—1mGy;(kw)/ 7, andB(kw)=—ImD(kw)/ are ~ and Kubo's relaxation function

the hole and spin spectral functionag(w)=[exp(/T) . .

+1]"! and T is the temperaturgthe fL_mct_ionsA(kw) and ((Sﬂsz—k))w:J dteiwtf dU([si(t'),s%,])  (11)
B(kw) do not depend owr]. In the derivation of Eq(6) for 0 t

C, we have taken into account that the approximation used

retains the rotation symmetry of spin componéhtand can be represented by a continued fraction which is s_:lmllar
Y to the scalar form of Eq2). The element&, andF, of this
thereforeC,=2(s/S{+.)-

As follows from Eq.(5), in the t-J model the supercon- fgn(;tion are calculated from a recursive procedure which is
ducting gap has asrwa;/e éomponent K.+0. However. in similar to the 'scalar form of Eq.3) where, hovyever, mean
the considered case this component i; sm.all i com,parisovalues of anticommutators have to be substituted by inner

ith the d-wave component introduced below and will be Broducts OT the t_y be of Ec{.’L_O) (see Ref. 1)1_

\r/1v(|atglecte q P From this definition we find for the starting operatéy
. 2 . .

From the definition of the hole self-ener@=R,F, we =S of this recursive procedure
find that ,5(kw) =27%,(k, — @) where it was taken into ac-
count that these components ®fdo not depend omr and
are invariant under the inversion kf For 3 ;(kw) the fol-
lowing expression obtained in Ref. 14 can be used:

Eo=(ist,s%y)(st,s%) " 1=0,

whereisi=[s%,H],

: 4(1- J|C|+tF
16mt? o (= AL=isE, Fom w)z( |Z ) g,
Imzll(kw): N¢ E d(l) 7k—k/+7k (skas—k)
k —o0
5 Using these elements of the continued fraction representation
1+ v of ((sg]s%y)). EQ.(9) can be rewritten as
_’_Sgr(w!)(,yk_k/_,yk) 1 » (( kl k)) q ( )
"
N ) D (k)= 41— y)(J[Cy|+1tFy) 12
X[Ng(— ")+ Ne(w—0")] o ollka)—a? '
XAk—K",0—w")B(k'w"), 7
( o—o")B(k'e") (7) wherew?=F,,
S (ko) = » dw' |m211(ka),) - A
Rexu( “)‘PLT T H(kw>=—i[4<1—yk><chll+tF1)]‘1f0 dte!( Ay A,
where ng(w)=[exp@/T)—1] ! and P indicates Cauchy’s . )
principal value. A,=i%Si— wist.
Assuming thed-wave superconducting pairing, for the
anomalous self-energies we set As follows from the above equation, to calculas@ and

s A, we have to select terms iﬁéﬁ which are proportional to
221(kwo) =2 1 koo)=oAT cogk,) —cogk,)]/2, (8) si . It can be done only approximately because the quantity

with the superconducting gab®. For such anomalous self- (sk.sZy) cannot be calculated e>factly. Following Refs. 14
energiesM (kwo) =0. and 16 we used the decouplingifrs; for such selection and
found

Ill. SPIN GREEN'S FUNCTION

2_
In Ref. 14 we have noticed that the approximation used wi =162 (I=v)(A+1+y9, (13

there leads to an underestimation of the imaginary part of the

magnetic susceptibility at low frequencies. To avoid thiswhereA is the parameter of the gap in the spin excitation
drawback in the present work we shall not split the spinspectrum at the wave vect@ of the Brillouin zone. In an
self-energy into the hole and spin parts, but rather continuéfinite 2D lattice this gap is opened for any nonzero
the calculation of the terms of the continued fraction usingtemperatur® and atT=0 for x=0.02}* The gap size is
the entire Hamiltoniargl). directly connected with the spin-correlation length of the

tF,
+_
Cal+—
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short-range antiferromagnetic order. Hence a finite gap for 8mt2J2 1—exp(w/T)
T>0 is in agreement with the Mermin-Wagner theorfm.  ImII(kw)= 5

The gap parameter can be expressed through the model pa- N%(1— ) (J|Cy| +1Fy) w
rameters and correlations of hole and spin operafos. -

However, due to strong dependencies of the considered X > 9Pk ff dw;dw,ng(w,)
guantities on this parameter we found it more accurate to kikp 12 —o

determine this parameter from the constraint of zero site
magnetizatior(s;) =0 which is fulfilled in the paramagnetic
state. This constraint can be written in the form X[A(kiw1)A(k+ ki =Ky, 0+ 01— w5)

X[1=np(w1) Inp(0+ w1~ w2)B(kaw,)

—L(klwlo')L(k-i- kl_kz,w+ wl—wz,o)].

%(1—x)=§; fo dwCOtf(%)B(kw). (14) (15
Equation(13) is supposed to give a good approximation for
the real part of the frequency of spin excitations and there-

In Eq. (13), the parametew is introduced to improve fore only the imaginary part ofl(kw) will be considered
somewhat the results obtained with the decoupling and tdelow. Notice that Il (kw) is negative, finite fow=0 and
take into account vertex corrections. In earlier wofkghere  even with respect to the change of the signwof
the analogous correction were used for the Heisenberg model As seen from Eq.(15), ImIl(kw) is finite for k—0,
this parameter was determined from the constréidl. Due  whereasw, vanishes in this limit. Therefore the spin Green’s
to comparatively weak dependencies of the considered quaffiinction (12) has a purely imaginary, diffusive pole near the
tities on this parameter we found it more appropriate to sef’ point, in compliance with the result of the hydrodynamic
a=1.802-0.802 tanh(X) and to use the constraint for the theory!® In the general case properties of spin excitations
calculation ofA, as mentioned above. The expression givemear theM point differ essentially from those nefr In the
for o takes into account its value obtained in Ref. 14 forcalculations of Ref. 14 for the former excitations the real
finite damping of spin excitations and the weakening of theparts of frequencies were larger than their imaginary parts
vertex corrections with doping. due to the spin gap. However, it is worth noting that in this

When selecting terms dfs? which have to be included comparison only the decay into two fermions was considered
into A, we omitted terms proportional t3, being motivated S the source of damping. Another source of damping—
by our earlier resulf and by the results of the spin-wave Multiple spin-excitation scattering—was neglected. How-
approximation® which indicate thafll(kw) has to be pro- ©€Ver even in the case of overdamped excitations kAQ
portional tot2. An additional argument to omit these terms is their frequencies will have real components due to the
that a part of them contains multipliers of the type SPN 9ap. _ ,

Etro-a:mram(r the mean values of which are zero. Other terms, To S|mpl_|fy further calculations we take into account tha't
of this type and a part of terms proportionalticontain the in the c_onS|dered underdoped case the spin spec_:tral function
hole operators with opposite spirg,,an ., which also B(kw) is strongly peaked ned for o~ wq. Allowing for

give zero on averaging and therefore were omitted. Termgh;3 sg:all value olwg, A(k+Q,w)~A(kw) and Eq.(14)
which are proportional tal?> and describe multiple spin- 9

excitation scattering processes were not included #jo 9mt232(1—x)

either—in this paper only the decay of the spin excitation |mII(kw)= > (Ve — )2

into the fermion pair is considered. This process is described 2N(1-y)J[Cy|+1tFy) 17

by the following terms: Jm ’n,:(w+w’)—n,:(w’)
X do

— w
4t : _
A2= (2, Ok Bt k.o X[AK 0 )AK+K 0+ o)
—L(k'o' o)L(k+k',0o+w',0)]. (16
1 Now the damping has taken the familiar form given by the
ik, = | Vi, T 1 (Vky—ky ™ Yy ™ Vebky—k, T Yitky) s fermion bubble.

where the line over the operators indicates that in calculating IV. MAGNETIC SUSCEPTIBILITY

thermodynamic averages with, by factorization, terms We have used hole self-energi€d and correlations of
containing couplings of hole operators from the safe hole and spin operators obtained in Ref. 14 for calculating
have to be omitted, since such processes have already begie hole Green’s functio®, Eq. (4). This function and the
included intow?s? . SubstitutingA, into the above definition  spin-gap parameters obtained in Ref. 14 have then been
of II(kw), neglecting the difference betweén, and A,(t) applied for the calculation of the spin Green’s function de-
and using the decoupling we get termined by Eqs(12), (13), and(16). This latter function is
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FIG. 1. The imaginary part of the spin susceptibility at the an- FIG. 2. The imaginary part of the spin susceptibility in the nor-

tiferromagnetic wave vector in the superconducting state. Curve§'al state. Curves show the results of our calculations Tor
show the results of our calculations in a>2R0 lattice for t =116 K, all other parameters are the same as for the respective

=0.5eV,J=0.1 eV, T=17 K, x=0.06(a) andx=0.12(b). Filled panels in Fig. 1. Filled squares are the odd susceptibility measured
squares are the odd susceptibility measuréRef. 2 in  (Ref. 2 in YBa,CwOss (@ and in YBgCu;Oggs (b) at T
YBa,CuyOg 5 [(8) Tc=45 K, x~0.075] and in YBaCu;Og g5 [()) =100 K.

Tc=85K, x=0.14] atT=5 K. Here and in Fig. 2 tick labels on bility into odd and even parts. For the antiferromagnetic in-

the vertical axes correspond to the curves. In both figures expen-rab.Ia er counling the odd part can be compared with our
mental values are approximately 1.5 times smaller than the Ca|Cl}- nay upling P P

lated ones. calculations carried out for a single layer.
The value of dampingim IT(Qw)| depends on widths of
n Peaks in the hole spectral functions near the Fermi surface.
These widths are determined by an artificial broadening
x(kw)=—4u2D(kw), which was introduced in Ref. 14 to stabilize the iteration
procedure. From the comparison with photoemission
wherepug is the Bohr magneton. The self-energies of Ref. 14spectr&® of YBa,Cu;0;_, it is seen that the peaks in Ref. 14
were calculated for a 2020 lattice with the parametets are more intensive and narrower than in experiment which
=0.5eV, J=0.1eV which correspond to hole-doped leads to a larger value and stronger frequency dependence of
cuprates®>? and for the ranges of hole concentrationsthe calculated damping. To weaken this difference and to
and temperatures 9x<0.16 and 0.0t=58 K=T=<0.2 obtain a better fit of the shapes of the calculated susceptibil-
~1200 K. For several hole concentrations we have checkeity to the experimental data we have decreadsed(Qw)|
now that the self-energies calculated for=0.01t remain by a factorf and added a constant dampingto it. This
practically unchanged as the temperature decreaseb to allows us to weaken somewhat the frequency dependence of
=0.003~17 K. Therefore we can use these self-energieshe total dampingl’'(Qw)=|ImII(Qw)|/f+ 5. As will be
also forT<0.01t. For temperatures close to zero the super-discussed in greater details later, the low-frequency shoulder
conducting gap\® was set to 0.04=20 meV, the value ex- in Im x(Qw) is connected with this dependence. Thus the
tracted from the tunneling experimeritsAs follows from fitting parameters and » allow us to change the relative
the experiments, this value remains practically unchangethtensity of this shoulder. The dampingcan be connected
with the doping variation from heavily underdoped to opti- with the processes of multiple spin-excitation scattering or
mally doped YBaCu;0O;_, . scattering at impurities. The frequency dependencies of the
Results of such calculations for the imaginary part of thetotal damping used in the calculation of the curves in Figs. 1
magnetic susceptibility at the antiferromagnetic wave vectoand 2 are shown in Fig. 3. Notice that the fitting parameters
Im x(Q) are shown in Figs. 1 and 2. In these figures experif and » with the values given in the caption to this figure
mental daté on the magnetic susceptibility of underdoped influence only weakly the position of the maximum in sus-
YBa,Cu;0; _ are also depicted. The oxygen deficiengies ceptibility which is determined by the value afy .
=0.5 and 0.17 in this crystal correspond to the hole concen- As seen from Figs. 1 and 2, the position of this maximum,
trations x~0.075 and 0.142 YBa,Cu;O;_ is a bilayer the resonance peak, and its evolution with doping and tem-
crystal and the symmetry allows one to divide the susceptiperature described by theJ model are in good agreement

connected with the magnetic susceptibility by the relatio
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FIG. 4. The Fermi surface of theJ model (lines) and the

FIG. 3. The frequency dependence of the total dampi(@) momenta which give the majn contribution t.o the maximf'f()Q)
used in the calculation of the four curves in Figs. 1 and 2. Thdn the used 2820 lattice (circles. The antiferromagnetic wave
parametef is equal to 2.7 for the dashed curve and 2 for the otherV€Ctor Q connecting momenta of the fermion pair in the spin po-
curves. The parametep is equal to 0.02¢ 0.04, 0.012, and larization bubble is shown by the arrow. The pdihtorresponds to
0.029 for the solid, dashed, short-dashed, and dash-dotted curveg,:(”'”)'

respectively.
A(Q+k',w+ ") [see EQq.(16)] overlap and fall into the

with those observed in YB&u;0;_,. In the model the frequency window determined by the difference of the occu-
maximum is connected with the excitation of localized Cupation numbgrs. _ _
spins at the antiferromagnetic wave vec@r Its frequency The Fermi s%r;‘?ce in YBLYO;_ differs from that
wq determines the size of the spin gap. In the underdopeghown in Fig. £°** However, it is known from the photo-
case it determines also the frequency of the resonance pedKnission experiments that at least in the superconducting
As shown in Ref. 140 grows with doping and this leads to State the hole spectral function has pronounced peaks for
the growth of the frequency of the resonance peak from aplomenta near the Fermi surface. In the two-layer
proximately 18 meV a=0.06 to 38 meV atx=0.12 in  YB&CwO;_, the main contribution to the damping of the
Figs. 1 and 2. It was also sho¥that Imy(kw) is strongly ~ SPin excitations is given by the decay into the fermion pair in
peaked a‘Q and that the value of IW(Q(D) decreases with which one of the fermions belongs to the bonding band and
doping which is in agreement with experimental the other to the antibonding band and the respective parts of
observationd:? In absolute units our calculated values of the Fermi surface are nested by the momentanr( ). %4
Im x(Quw) are approximately 1.5 times larger than its experi-These conditions are similar to those observed in ttde
mental values. model and therefore the low-frequency shoulder in the sus-
We notice that the shape of the calculated frequency deeeptibility in YBa,Cu;O;_,, can be also related to the strong
pendence of the susceptibility is close to that observed exrequency dependence of the damping of the spin excitations
perimentally. Of special interest is the low-frequency shoul-which arises due to pronounced peaks in the hole spectral
der in this dependence. This shoulder is more pronounced fdunction and the nesting.
lower hole concentrations and temperatures. As mentioned It is worth noting that for all four curves in Figs. 1 and 2
above, it originates from the strong frequency dependence dhe value ofl'(Q, wq)/2 is smaller thamwg . Thus in contrast
the dampind’(Q) shown in Fig. 3. The pronounced maxima to a vicinity of thel” point near theM point the spin excita-
of the curves in this figure are connected with intensivetions are not overdamped in underdoped ¥BaO;_,, .
peaks in the hole spectral function for momenta near the Now let us consider the momentum dependence of the
Fermi surface. These peaks correspond to the so-called spiresonance mode. In Fig. 5 the constant energy scans obtained
polaron band® For moderate doping the Fermi surface ofin our calculations are compared with experinfenin
the t-J model consists of two rhombuses with roundedYBa,Cu;Og 5. The scans were performed along the diago-
cornerst* These rhombuses are centered at thand M nal of the Brillouin zone at the resonance energy in the su-
points and are approximately nested by the momenfum perconducting and normal states. To simulate a finite instru-
This nesting is also very essential for the appearance of theental momentum resolution, which is comparable to the
maximum inI'(Qw). In Fig. 4 the Fermi surface is shown width of the peak in Imy(kw) our curves were calculated by
and momenta of the hole spectral functions which give thehe convolution of this quantity with the Gaussian with the
main contribution to the maxima df (Q) in the used 20 full width at half maximum equal to 022 in the momentum
X 20 lattice are indicated. For these momenta the intensivepace. This corresponds to 0.1 in reciprocal-lattice units
spin-polaron maxima in the spectral functiofék’w’) and  which is the usual resolution in experiments of this type. As
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This function fitted to our calculated data with the param-
1250 eters wo=18.4 meV andc/a=8a|C,[J=0.134 meV is
1 also shown in Fig. 6. Hera is the distance between Cu sites
1000+ in a Cu-O plane. As seen from this figure, our calculated
1 dispersion is close to the experimental one for similar param-
750 - o/ N\ eters. Foro~wqg Im x(kw) is peaked atk=Q. For o
>wq the susceptibility has maxima on the ring with the
500 - oy radius approximately determined by the equatior [
] ’ +c?(k—Q)?]*2. In constant energy scans along some direc-
250 N\ o tion this property of the susceptibility manifests itself as two
o/ peaks in incommensurate positions equally spaced from the
5 M point?® For w<wq for the considered parameters
o Im xy(kw) is peaked ak=Q.
04 ) 0.6 ' 0.8 . 1.0 ) 12 ' 14 . 16
w/n V. CONCLUDING REMARKS

FIG. 5. Constant energyx(«) scans at the resonance energy  \ye have considered the magnetic susceptibility for the
wq. Solid and dashed curves show the results of our CaICUIaﬂonanderdoped case when the resonance peak is observed both
for x=0.12, wq=38 meV in the superconducting state & . yhe normal and in the superconducting states. As men-

=17 K.a.nd n the normal state at=116 K, re.SpeCt'Vely' To simu- tioned, the frequency of the peak is determined by the fre-
late a finite instrumental momentum resolution the curves were cal-

culated by the convolution of Ina(kw) with the Gaussian with the quency of the spin excitationq which sets the size of the

full width at half maximum equal to 022 in the momentum space. spin- gap. Ih's frequency _grows _W'th the hole
Filed and open squares are experimental dé®ef. 29 in concentratiort? in agreement with experimental observa-

YBa,Cu;Op g3 for wo=235 meV, T=4 K, and 109 K, respectively. tions in underdoped crystafs. . o
For the normal-state-J model in the overdoped region it

. as showf’ that the part of the magnon branch, which per-
can be seen from Fig. 5, for both temperatures the calculate\gSted at lower doping at the periphery of the Brillouin zone,

;nxc;rgﬁmgm dependencies are in good agreement WItIS suddenly destroyed fo¢§ 0.17 atT=0. This transition is
o . . . accompanied by the radical change of the hole spectrum:

In Fig. 6 the dispersion of the maximum of our calcu- di . d distribution of the spectral weight become
lated susceptibility is compared with experimental &ata ISPErsion an P weight
YBa,CusOs.c. This dispersion corresponds approximately toclose to the case of weakly C(_)rrelated fermions. This result

ir21 E E"f?’) For smallq=k—Q this momentum depen- corresponds to the sudden disappearance of the resonance
a)énce c?alln be.written as peak in the normal-state overdoped cupréfe@ne of the

reasons for the transition in thel model is the damping of

the spin excitations which grows with doping. A considerable

wk’“*/wé‘*' c2(k—Q)2. (17)  decrease of the damping in the superconducting state can

restore the spin excitations near tepoint in the frequency
rangew<2A° Such mechanism was considered in Ref. 11
where the magnetic susceptibility similar to that given by
Egs.(12) and(13) was postulated and the damping described
by the fermion bubble of the type of Eq16) was used.
Above the mentioned transition @t=0.17 the hole spectrum
of thet-J model becomes similar to that used in Ref. 11 and
the analogous outcome can be expected here.

In contrast to the underdoped region, in the overdoped
case the frequency of the resonance peak decreases with dop-
ing which can be related to a finite damping of the spin
excitations and to the decrease of the superconducting gap
with doping in this range of concentratiofis.

In contrast to YBaCu,O;_, where wqo=2AS in
La,_,Sr,CuQ, the value of A5~9 meV is substantially
r r ; r smaller thanwqg which is supposed to be approximately the
03 0.0 8.3 same as in the former crystal. This difference may be the
i reason for the absence of the resonance peak in overdoped

FIG. 6. The dispersion of the maximum in the frequency depenl-8-»SCUO,. ' Changes in the susceptibility obser¢ih
dence of Imy(qw), q=k—Q. Filled squares are our results for ~ La1.8651.14CUC, at the superconducting transition consist of
=0.06 andT=17 K. The fit for these data with E417) is shown =~ Some suppression of Iy below the superconducting gap
by the curve. Open squares are experimental reRles. 2) in and an increase above it. The suppression can be connected
YBa,Cu;Og 5 at T=5 K for odd spin excitations. with the decrease of the damping of the spin excitation ac-

Intensity (arb. units)
[m]

120

80

o, (meV)

40 <4

094519-7



A. SHERMAN AND M. SCHREIBER PHYSICAL REVIEW B68, 094519 (2003

companying the opening of the gap, while the increase of thezed Cu spins and to relate the frequency of the maximum to
signal above the gap is apparently a combined effect of théhe size of the spin gap. The low-frequency shoulder well
transfer of the carrier spectral weight above the gap and theesolved in the susceptibility of superconducting crystals was
nesting supposétfor the Fermi surface of this crystal. connected with a pronounced maximum in the damping of

In conclusion, we compared the magnetic susceptibilitythe spin excitations. This maximum is caused by intense qua-
calculated in the-J model with the experimental data in the sjparticle peaks in the hole spectral function for momenta

underdoped YBgCu;0;_y. It was demonstrated that the near the Fermi surface and by the nesting.
calculations reproduce correctly the frequency and momen-

tum dependencies of the experimental susceptibility and its

variation with_ doping and temperature in the _normal and ACKNOWLEDGMENTS

superconducting states. This allowed us to interpret the

maximum in the frequency dependence—the resonance This work was partially supported by ESF Grant No. 5548
peak—as a manifestation of the excitation branch of localand by DFG.
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