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Magnetoinductance of Josephson junction array with frozen vortex diffusion
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The dependence of sheet impedance of a Josephson junction array on an applied magnetic field is investi-
gated in the regime when vortex diffusion between an array’s plaquettes is effectively frozen due to a low
enough temperature. The field-dependent correction to the sheet inductance is found to be proportional to
f In(1/f), wheref<1 is the magnitude of the field expressed in terms of flux quanta per plaquette.
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[. INTRODUCTION tures for which the rate of a thermally activated tunneling of
a vortex between neighboring lattice plaquettesich re-

A two-coil mutual-inductance technigtizhas been intro-  quires it to overcome a well-defined barf@becomes much
duced by Fiory and Hebatdor measurement of théinean smaller than the frequency of the measurement.
frequency-dependent complex sheet impedaheéw) [or, The present work is devoted to an investigation of a Jo-
equivalently, sheet conductan@(w)=1/Z-(w)] of thin  sephson junction array response in this particular regime
superconducting film3This approach has also proved itself when the relation between the frequency and temperature
very useful for investigation of arrays of weakly coupled allows one to consider all vortices as frozen in lattice cells
superconducting islandélosephson junction arrdygén an  which they occupy. In terms of a simple motiEitreating a
external magnetic fieldfor a review, see Ref.)4In such  vortex in a proximity junction array as an overdamped point
systems the nature of the response is strongly dependent particle moving in an external potentigimposed by the
the magnitude of the applied dc field, which is convenient tostructure of the arrady this corresponds to the case when
discuss in terms of the ratio= ®/®, of the magnetic fluxb  each of the vortices is confined to oscillate within the limits
penetrating each array plaquette to the superconducting fluxf a particular minimum of the potential, which then can be
quantum®,. replaced by a harmonic one. In the framework of such a

For an integeffor example, zerpf a Josephson junction description the correction to sheet inductariper vortey
array can be described by the two-dimensiokémodel and  would have a finite value, inversely proportional to the cur-
with a decrease of temperature experiences the Berezinskiature of the potential.

Kosterlitz-Thouless transitiof into a superconducting  With the help of a more straightforward calculatigrased
phase. In this phase all vortices are bound in neutral pairgn the reduction to the equivalent electric cirguite show
and the sheet impedance in the limit of low frequency bethat the single vortex contribution contains logarithmic di-
comes purely inductiveZ(w)~iwlL, the effective sheet vergence and, therefore, for small magnetic fielthat is,
inductance. ; being inversely proportional to the superfluid small vortex concentratiofi<1) the correction to_5" is
density. A deviation of from an integer valuéby &f) intro- proportional tof In(1/f). The results can be of interest in
duces a finite concentration of unbound vorticés dimen-  relation to sheet impedance measurements for shaliin-
sionless units, that is, per lattice plaquettes|sf|), as a termediate frequenciés?

consequence of which the response is strongly changed and

in the low-frequency limit becomes purely dissipative: II. HAMILTONIAN AND THE VORTICES
Z-(w)~cRy (the frequency-independent constaqt being o
associated with a contribution from a single voitex In absence of an external magnetic field a regular Joseph-

Analogous behavior can be expected to take place in th&0n junction array can be described by the Hamiltonian
vicinity of every rationalf if the temperature is lower than
the (dlscont_lr?uously d_epende_nt of) temperature of_ the H=—J E cog @n—p), 1)
phase transition associated with freezing of the field-induced (nn’)
vortices into a commensurate pattérAs a consequence, a i
measurement of the real and imaginary components ofhere ¢, is the phase of the order parameter of tiie
Z.(w) as a function of (at fixed w and reasonably chosen supercqnductlng island. In the_ case of a square lattice
temperatur produces strongly oscillating curvdst? the the varlablen can be chosen in the form of the vector
well-developed dips on which correspond to the supercon?= (Nx.ny) with integer components, andn, . The sum-
ducting states. mation in Eq. (1) is performed over all pairsnp’) of
With a further decrease of temperature the dissipativéoupled islands and
component ofZ5(w) becomes very small and the oscilla-
tions of the inductive component much less pronourfced. J=—|
This is related to suppression of vortex diffusion at tempera- 2e ©

@
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is the Josephson coupling constant, which is assumed to be E,~7yJInN. (12)
the same for all junctiond,. being the critical current of a ) ) . . :
single junction. The form of Eq(1) assumes that the cou- HereN is the Ilnegr size of the array andis the numerical
pling is weak enough, so the magnetic field created by th&onstant depending on the structure of the latiifer a
currents flowing in the array can be neglected. square latticey=1 and for a triangular ong= \/3). Accord-
Variation of the Hamiltoniar{1) with respect tap,, shows  ingly, the main contribution to Eq(9) is coming from the

that the minima oH are achieved when the variablgs,} large scales, where it can safely be_ replaced by its continuous
satisfy the current conservation equations form (10). As a consequence of this divergence, at low tem-

peratures all vortices, which appear as thermal fluctuations,
are bound in neutral pairs. On the other hand, a finite con-

Z lan' =0, (3 centration of vortices of the same sign can be induced by
. application of an external magnetic field perpendicular to the
where array.
=1 6SiN@n/ — @) ) lll. EQUIVALENT ELECTRIC NETWORK

is the current from theth to the (')th island, defined only
for the pairs of the islands connected by the junction. Th
simplest solution of the Eq$3) and(4) is the trivial solution

e Expansion of the Hamiltoniafl) up to second order in
deviations

— . _ (0
¢n=cConst, (5) O@n=@n— ¢y (12

corresponding to the global minimum bf and the absence ©f the variablese, from their valuese(” in some of the
of any currents. minima of H gives

A vortex is a local minimum ofH, in which on going @) B ) B )
along any closed loop surrounding the vortex cOmich Hi9 {60} =H{e™+ d¢} —H{e™}

can be associated with a particular plaquette of the latéige 1
changes by 2's, wheres= *+ 1 is the topological charge of a ~5 2 I (80— @), (13
vortex. The form of this solution implies the presence of nn’
persistent currents circulating around the vortex core. where
Away from the corep,, changes slowly and Eq$3) and
(4) can be linearized to give Jnw=Jcog {0 — 07, (14)

Since the deviation of the current,,, from its value in the
2 (¢n—@n) =0, (6)  extremal solutiorl ,, =1 sif¢{”— ¢{?'] in a linear approxi-
" mation is given by
where the summatiofiike in Eq. (3)] is performed over the o (O
nearest neighbors af. In continuous approximation E¢6) 8l o =1.c0§ {9 — ¢ 71( 8¢ — ), (15

is reduced to Eg. (13) can be rewritten as

V2p=0, (7
. . 2)— 2
which allows one to conclude that at large distances from the H( )_5 2 Lon (8l an)%, (16)
vortex core the spatial distribution qf is given by (%)
where
cp”(x,y)msarctanXJrconst, (8) L
X 0
o Lan'= ©_ O (17
wherex andy (r’=x?+y?>1) are the coordinatesn lattice cogon '~ @n ]
units) counted from the core. and
A continuous approximation can be also used for estimat-
ing the energy of a vortex, . %121 3 18
0~ 2¢| 37 2el, (19
E,=J X [1-coseh—ep)], 9 -
(nn") The form of the Hamiltonian(16) allows one to

concludé**® that in the harmonic approximation the array
behaves itself with respect to additioiakterna) current as
¥J the network formed by the inductances, =L, defined
E,~ 7f f dxdy(Ve)?, (100 by Eq.(17). At finite frequencies it is also necessary to take
into account that each of these inductances is shunted by the
to which the lattice sum of Eq9) is reduced in the frame- resistanceR,,, so the complex conductand®,, (w) of
work of this approximation, diverges at the upper limit: each network link is given by

because the integral
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1 = ! :
: + (19 Go(w)= ioLlg(w) * Ro(w)’ 29

|w|_nnr Rnn’

Gu(w)=

In the case of a proximity-coupled array, which is explicitly where the effective sheet inductance(w) and the effec-
considered below, the shunting resistafg: is determined tive shunting resistancB(w) are the real functions ab.
mainly by the conductivity of the underlying metallic sub- In particular, Eq. (27) corresponds toL(w)=L, and
strate and, therefore, can be assumed to be frequency ind8s (@)= R.

pendent and the same for all link3;,,,=R,. In the absence

of vortices¢,=const, and, therefore, the conductance of all IV. SINGLE-VORTEX CORRECTION

the links is the same: TO THE CONDUCTANCE

1 1 In order to find the correction to the frequency-dependent
G (@) =Go(w)=—— wly Ry (200 sheet conductance related to the presence of a vonteich
is assumed to be frozen in a particular array plaguete
The distribution of the currents, () in such a network Nas to consider a network in which the distribution f
has to be found by solving the current conservation equation@d: therefore, o3,/ is assumed to correspond to vortex

of the form (3) with configuration. For nonunifornp,, it i§ conveni_ent to re_write
the expression for the total currefib the x direction in a
Lan'(©) =G (@) (V= Vi), (21) ~ Square network as
where V,, is the amplitude of the time-dependent electric 1 1
potential, H(w)=5 ; e (@)= ¥ ; Gn,nﬂx—; vaPalV,
V(1) =V, expliot), (22) (29)

on thenth superconducting island. Application of the time- Where
dependent potential difference

1 _
V(t)=Vexpiwt), (23 I:)nEGn,n+ex_Gn,n—ex= m(l-n,rlwex_l-n,%—ex (30)

for example, in thex direction to the square netwoXx N

formed by equivalent elements, leads to a distribution of theandvn parametrizes the deviation o, from its value in a

uniform network,

potentials,
Ny _ htog
Vo= 1, V+const, (24) Vp=—— Vtceonst 3D
and the currents, and has to be found by solving the current conservation

equations, which foW, of the form(31) can be rewritten as
Go(w)VIN for n'=n+e,
Mo for n’=n+ (25
& > Gl @)(vn=vp) =Py, (32)
n!

[whereg,=(1,0) ande,=(0,1)], corresponding to the total

current in the chosen direction given b
g y Comparison of Eq(29) with Eq. (26) shows that the cor-

|(@)=Go(w)V. (26) rection to G5(w) induced by a nonuniform distribution of
¢, can be split into two contributions, the first of which has

This means that the sheet conductafige(w) of a uniform  the form of a frequency-independent correctiorLfg",
square network coincides with the conductance of a single
link: -1
1 Lo” E
ALY =— = > (t-Lt y=— 2 —
Gry(0)=Gol®). (27) (A= & (Lo o) =~ 23

In the case of a uniform triangular network
Go(w) =3 Gy(w) and, like in the case of a square net- and turns out to be proportional to the eneiy(counted
work, the sheet conductance does not depend on the direfrom the ground-state energpf the considered configura-

(33

tion. tion. In the case of a single vortex this energy is given by Eq.
In the following it will be convenient to decompose (11) and, accordingly, the expression fcxkl(al)l contains
G(w) into real and imaginary parts as the logarithmic divergence.
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The form of this correction corresponds to a formal aver-ra|ly (ALil)ZEnmaHoi w(AGp),(w) [as well as (lLil)l]
aging of the superfluid density. In conjunction with the ab-does not depend on the value of the shunting resistRgce
sence of a frequency dependence this allows us to conclude
that (ALil)1 has nothing to do with vortex oscillations in a
potential minimum and should be associated with suppres- V. RESULTS AND DISCUSSION

sion of the superfluid density. Thus we have found that at frequencies for which the
The second correction diffusion of vortices is effectively frozen the main correction
to the sheet inductance of a Josephson junction array comes
1 from the suppression of the superfluid density rather than
(AGp)o=- ﬁ ; vnPn (34 from the displacement of vortices in the effective potential
and contains a logarithmic divergence.

is characterized by a more complex frequency dependence In the presence of a small concentration of more or less
y . _P q y dep Uniformly distributed vortices induced by the application of a
and reduces to correction tb~ only in the limit of

. . . weak magnetic fieldwith f<1) the divergence in the ex-
w—0. It is not hard to show that in the case of a single g d ) J

ortex the lattice sum in Eq34) [in contrast to the lattice pression for the vortex energy is cut offat f ~ /2 (instead
vortex ice sum Ir q ' S ! of atr~N), and the correction ta ;' can be rewritten as
sum in Eq.(33)] is not divergent at large scales.

The behavior ofP, away from the vortex core can be

found from the continuous approximation, in the framework 1T 1

of which Alg'~—ZLlofing. (39
1 9 Ie| 1 9 [dep\? The same expression is also valid for other periodic
Tl X% 2iwlg x| ox (39 |attices—for example, triangular. When the screening effects

related to the self-induced magnetic fields of the currents in
the array are taken into account, the logarithmic factor in Eq.
For ¢(x,y) of the form(8) this gives (39) has to saturatéwith decrease of) when the typical
distance between vortices becomes of the order of the mag-
2 Xy netic penetration depth’ of the array.
Py~ T o 23 (36) Earlier the magnetoinductance of a Josephson junction ar-
loLo (x2+y?) . . e . ;
ray in the regime of frozen vortex diffusion was investigated
) . ) ) for the case of a fractal array with the structure of the Sier-
Therefore, ifv,, decays with an increase of the distance frompinski gasket®>8with the help of the recursive calculation
the vortex core(as naturally one can expect it to )ddhe using the self-similarity of the Sierpinski gasket it has been
lattice sum in the right-hand side of E@4) will be conver- foun® that the field dependence of the correction to induc-
gent and the behavior of correction k9, (w=0) will be  tance in such a system can be characterized by the exponent
dominated by the divergence of the contributiohl(:');  , =In(125/33)/In 4<0.96. On the other hand, the applica-
discussed above. tion of a simplified approactf, which in terms of this work
The behavior ofv, away from the vortex core can be is equivalent to consideration of onA{;),, leads to a
found by replacing in the left-hand side of E§2) Gnn(@w)  larger valuevg=In5/In 4~1.16. That means that in the case

2

by Go(w)=1wlo+1/Ry, after which it is reduced to of a Sierpinski gasket array the main contribution to the cor-
) o rection to the sheet inductance for small fields is coming
—(1+iwlo/Ro) Vv =iwLoP(Xy). 37 from the term AGy),, which can be associated with oscil-

lations of vortices. The results of this work show that in
The solution of Eq(37) allows one to find that away from periodic arrays the situation is qualitatively different and the
the corev(x,y) decays as main contribution to the correction to the inductance is com-

ing from the suppression of the superfluid density related to

i a nonuniform distribution of the order parameter phases in-
v(Xy)= T 1alo/Ry | 201 y?) In(x*+y~) duced by the presence of vortices.
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