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Magnetoinductance of Josephson junction array with frozen vortex diffusion

S. E. Korshunov
L. D. Landau Institute for Theoretical Physics, Kosygina 2, 119334 Moscow, Russia

~Received 27 March 2003; published 22 September 2003!

The dependence of sheet impedance of a Josephson junction array on an applied magnetic field is investi-
gated in the regime when vortex diffusion between an array’s plaquettes is effectively frozen due to a low
enough temperature. The field-dependent correction to the sheet inductance is found to be proportional to
f ln(1/f ), where f !1 is the magnitude of the field expressed in terms of flux quanta per plaquette.
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I. INTRODUCTION

A two-coil mutual-inductance technique1,2 has been intro-
duced by Fiory and Hebard1 for measurement of the~linear!
frequency-dependent complex sheet impedanceZh(v) @or,
equivalently, sheet conductanceGh(v)51/Zh(v)] of thin
superconducting films.3 This approach has also proved itse
very useful for investigation of arrays of weakly couple
superconducting islands~Josephson junction arrays! in an
external magnetic field~for a review, see Ref. 4!. In such
systems the nature of the response is strongly depende
the magnitude of the applied dc field, which is convenien
discuss in terms of the ratiof 5F/F0 of the magnetic fluxF
penetrating each array plaquette to the superconducting
quantumF0.

For an integer~for example, zero! f a Josephson junction
array can be described by the two-dimensionalXYmodel and
with a decrease of temperature experiences the Berezin
Kosterlitz-Thouless transition5,6 into a superconducting
phase. In this phase all vortices are bound in neutral p
and the sheet impedance in the limit of low frequency
comes purely inductive,Zh(v)' ivLh , the effective shee
inductanceLh being inversely proportional to the superflu
density. A deviation off from an integer value~by d f ) intro-
duces a finite concentration of unbound vorticesc ~in dimen-
sionless units, that is, per lattice plaquette,c5ud f u), as a
consequence of which the response is strongly changed
in the low-frequency limit becomes purely dissipativ
Zh(v)'cRV ~the frequency-independent constantRV being
associated with a contribution from a single vortex!.

Analogous behavior can be expected to take place in
vicinity of every rationalf if the temperature is lower tha
the ~discontinuously dependent onf ) temperature of the
phase transition associated with freezing of the field-indu
vortices into a commensurate pattern.7 As a consequence,
measurement of the real and imaginary components
Zh(v) as a function off ~at fixedv and reasonably chose
temperature! produces strongly oscillating curves,8–12 the
well-developed dips on which correspond to the superc
ducting states.

With a further decrease of temperature the dissipa
component ofZh(v) becomes very small and the oscill
tions of the inductive component much less pronounced.8,9,12

This is related to suppression of vortex diffusion at tempe
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tures for which the rate of a thermally activated tunneling
a vortex between neighboring lattice plaquettes~which re-
quires it to overcome a well-defined barrier13! becomes much
smaller than the frequency of the measurement.

The present work is devoted to an investigation of a
sephson junction array response in this particular reg
when the relation between the frequency and tempera
allows one to consider all vortices as frozen in lattice ce
which they occupy. In terms of a simple model4,13 treating a
vortex in a proximity junction array as an overdamped po
particle moving in an external potential~imposed by the
structure of the array!, this corresponds to the case whe
each of the vortices is confined to oscillate within the lim
of a particular minimum of the potential, which then can
replaced by a harmonic one. In the framework of such
description the correction to sheet inductance~per vortex!
would have a finite value, inversely proportional to the c
vature of the potential.

With the help of a more straightforward calculation~based
on the reduction to the equivalent electric circuit! we show
that the single vortex contribution contains logarithmic d
vergence and, therefore, for small magnetic fields~that is,
small vortex concentrationf !1) the correction toLh

21 is
proportional to f ln(1/f ). The results can be of interest i
relation to sheet impedance measurements for smallf at in-
termediate frequencies.9,10

II. HAMILTONIAN AND THE VORTICES

In absence of an external magnetic field a regular Jose
son junction array can be described by the Hamiltonian

H52J (
(nn8)

cos~wn2wn8!, ~1!

where wn is the phase of the order parameter of thenth
superconducting island. In the case of a square lat
the variablen can be chosen in the form of the vect
n5(nx ,ny) with integer componentsnx and ny . The sum-
mation in Eq. ~1! is performed over all pairs (nn8) of
coupled islands and

J5
\

2e
I c ~2!
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is the Josephson coupling constant, which is assumed t
the same for all junctions,I c being the critical current of a
single junction. The form of Eq.~1! assumes that the cou
pling is weak enough, so the magnetic field created by
currents flowing in the array can be neglected.

Variation of the Hamiltonian~1! with respect town shows
that the minima ofH are achieved when the variables$wn%
satisfy the current conservation equations

(
n8

I nn850, ~3!

where

I nn85I csin~wn82wn! ~4!

is the current from thenth to the (n8)th island, defined only
for the pairs of the islands connected by the junction. T
simplest solution of the Eqs.~3! and~4! is the trivial solution

wn5const, ~5!

corresponding to the global minimum ofH and the absence
of any currents.

A vortex is a local minimum ofH, in which on going
along any closed loop surrounding the vortex core~which
can be associated with a particular plaquette of the lattice! wn
changes by 2ps, wheres561 is the topological charge of
vortex. The form of this solution implies the presence
persistent currents circulating around the vortex core.

Away from the corewn changes slowly and Eqs.~3! and
~4! can be linearized to give

(
n8

~wn82wn!50, ~6!

where the summation@like in Eq. ~3!# is performed over the
nearest neighbors ofn. In continuous approximation Eq.~6!
is reduced to

¹2w50, ~7!

which allows one to conclude that at large distances from
vortex core the spatial distribution ofw is given by

wv~x,y!'s arctan
y

x
1const, ~8!

wherex andy (r 2[x21y2@1) are the coordinates~in lattice
units! counted from the core.

A continuous approximation can be also used for estim
ing the energy of a vortex,

Ev5J (
(nn8)

@12cos~wn
v2wn8

v !#, ~9!

because the integral

Ev'
gJ

2 E E dxdy~¹wv!2, ~10!

to which the lattice sum of Eq.~9! is reduced in the frame
work of this approximation, diverges at the upper limit:
09451
be
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e

t-

Ev'pgJ ln N. ~11!

HereN is the linear size of the array andg is the numerical
constant depending on the structure of the lattice~for a
square latticeg51 and for a triangular oneg5A3). Accord-
ingly, the main contribution to Eq.~9! is coming from the
large scales, where it can safely be replaced by its continu
form ~10!. As a consequence of this divergence, at low te
peratures all vortices, which appear as thermal fluctuatio
are bound in neutral pairs. On the other hand, a finite c
centration of vortices of the same sign can be induced
application of an external magnetic field perpendicular to
array.

III. EQUIVALENT ELECTRIC NETWORK

Expansion of the Hamiltonian~1! up to second order in
deviations

dwn5wn2wn8
(0) ~12!

of the variableswn from their valueswn
(0) in some of the

minima of H gives

H (2)$dw%5H$w (0)1dw%2H$w (0)%

'
1

2 (
nn8

Jnn8 ~dwn2dwn8!
2, ~13!

where

Jnn85J cos@wn
(0)2wn8

(0)
#. ~14!

Since the deviation of the currentdI nn8 from its value in the
extremal solutionI nn85I csin@wn

(0)2wn8
(0)

# in a linear approxi-
mation is given by

dI nn85I ccos@wn
(0)2wn8

(0)
#~dwn2dwn8!, ~15!

Eq. ~13! can be rewritten as

H (2)5
1

2 (
(nn8)

Lnn8~dI nn8!
2, ~16!

where

Lnn85
L0

cos@wn
(0)2wn8

(0)
#

~17!

and

L05F \

2eG2 1

J
5

\

2eIc
. ~18!

The form of the Hamiltonian ~16! allows one to
conclude14,15 that in the harmonic approximation the arra
behaves itself with respect to additional~external! current as
the network formed by the inductancesLnn8[Ln8n defined
by Eq. ~17!. At finite frequencies it is also necessary to ta
into account that each of these inductances is shunted by
resistanceRnn8 , so the complex conductanceGnn8(v) of
each network link is given by
2-2
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Gnn8~v!5
1

ivLnn8

1
1

Rnn8

. ~19!

In the case of a proximity-coupled array, which is explicit
considered below, the shunting resistanceRnn8 is determined
mainly by the conductivity of the underlying metallic su
strate and, therefore, can be assumed to be frequency
pendent and the same for all links:Rnn8[R0. In the absence
of vorticeswn5const, and, therefore, the conductance of
the links is the same:

Gnn8~v!5G0~v![
1

ivL0
1

1

R0
. ~20!

The distribution of the currentsI nn8(v) in such a network
has to be found by solving the current conservation equat
of the form ~3! with

I nn8~v!5Gnn8~v!~Vn2Vn8!, ~21!

where Vn is the amplitude of the time-dependent elect
potential,

Vn~ t !5Vnexp~ ivt !, ~22!

on thenth superconducting island. Application of the tim
dependent potential difference

V~ t !5Vexp~ ivt !, ~23!

for example, in thex direction to the square networkN3N
formed by equivalent elements, leads to a distribution of
potentials,

Vn52
nx

N
V1const, ~24!

and the currents,

I nn85H G0~v!V/N for n85n1ex ,

0 for n85n1ey
~25!

@whereex5(1,0) andey5(0,1)], corresponding to the tota
current in the chosen direction given by

I ~v!5G0~v!V. ~26!

This means that the sheet conductanceGh(v) of a uniform
square network coincides with the conductance of a sin
link:

Gh~v!5G0~v!. ~27!

In the case of a uniform triangular networ
Gh(v)5A3 G0(v) and, like in the case of a square ne
work, the sheet conductance does not depend on the d
tion.

In the following it will be convenient to decompos
Gh(v) into real and imaginary parts as
09451
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Gh~v![
1

ivLh~v!
1

1

Rh~v!
, ~28!

where the effective sheet inductanceLh(v) and the effec-
tive shunting resistanceRh(v) are the real functions ofv.
In particular, Eq. ~27! corresponds toLh(v)5L0 and
Rh(v)5R0.

IV. SINGLE-VORTEX CORRECTION
TO THE CONDUCTANCE

In order to find the correction to the frequency-depend
sheet conductance related to the presence of a vortex~which
is assumed to be frozen in a particular array plaquette! one
has to consider a network in which the distribution ofwn
and, therefore, ofGnn8 is assumed to correspond to vorte
configuration. For nonuniformwn it is convenient to rewrite
the expression for the total current~in the x direction! in a
square network as

I ~v!5
1

N (
n

I n,n¿ex
~v!5

1

N2 F(
n

Gn,n¿ex
2(

n
vnPnGV,

~29!

where

Pn[Gn,n¿ex
2Gn,nÀex

5
1

iv
~Ln,n¿ex

21 2Ln,nÀex

21 ! ~30!

andvn parametrizes the deviation ofVn from its value in a
uniform network,

Vn52
nx1vn

N
V1const, ~31!

and has to be found by solving the current conservat
equations, which forVn of the form~31! can be rewritten as

(
n8

Gnn8~v!~vn2vn8!5Pn . ~32!

Comparison of Eq.~29! with Eq. ~26! shows that the cor-
rection toGh(v) induced by a nonuniform distribution o
wn can be split into two contributions, the first of which ha
the form of a frequency-independent correction toLh

21 ,

~DLh
21!152

1

N2 (
n

~L0
212Ln,n¿ex

21 !52
L0

21

N2

E

2J
,

~33!

and turns out to be proportional to the energyE ~counted
from the ground-state energy! of the considered configura
tion. In the case of a single vortex this energy is given by E
~11! and, accordingly, the expression for (DLh

21)1 contains
the logarithmic divergence.
2-3
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The form of this correction corresponds to a formal av
aging of the superfluid density. In conjunction with the a
sence of a frequency dependence this allows us to conc
that (DLh

21)1 has nothing to do with vortex oscillations in
potential minimum and should be associated with supp
sion of the superfluid density.

The second correction

~DGh!252
1

N2 (
n

vnPn ~34!

is characterized by a more complex frequency depende
and reduces to correction toLh

21 only in the limit of
v→0. It is not hard to show that in the case of a sing
vortex the lattice sum in Eq.~34! @in contrast to the lattice
sum in Eq.~33!# is not divergent at large scales.

The behavior ofPn away from the vortex core can b
found from the continuous approximation, in the framewo
of which

Pn'
1

ivL0

]

]x
cosS ]w

]x D'2
1

2ivL0

]

]x S ]w

]x D 2

. ~35!

For w(x,y) of the form ~8! this gives

Pn'
2

ivL0

xy2

~x21y2!3
. ~36!

Therefore, ifvn decays with an increase of the distance fro
the vortex core~as naturally one can expect it to do!, the
lattice sum in the right-hand side of Eq.~34! will be conver-
gent and the behavior of correction toLh

21(v50) will be
dominated by the divergence of the contribution (DLh

21)1

discussed above.
The behavior ofvn away from the vortex core can b

found by replacing in the left-hand side of Eq.~32! Gnn8(v)
by G0(v)[1/ivL011/R0, after which it is reduced to

2~11 ivL0 /R0!¹2v5 ivL0P~x,y!. ~37!

The solution of Eq.~37! allows one to find that away from
the corev(x,y) decays as

v~x,y!'
1

11 ivL0 /R0
F x

4~x21y2!
ln~x21y2!1/2

1
x~3y22x2!

16~x21y2!2G , ~38!

which confirms the convergence of the lattice sum in E
~34!.

The frequency dependence of (DGh)2, related to the
frequency-dependent factor in Eq.~38!, is consistent with
what one expects from the driven oscillations of an ov
damped particle in effective harmonic potential. Quite na
09451
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rally (DLh
21)2[ limv→0iv(DGh)2(v) @as well as (DLh

21)1]
does not depend on the value of the shunting resistanceR0.

V. RESULTS AND DISCUSSION

Thus we have found that at frequencies for which t
diffusion of vortices is effectively frozen the main correctio
to the sheet inductance of a Josephson junction array co
from the suppression of the superfluid density rather th
from the displacement of vortices in the effective potent
and contains a logarithmic divergence.

In the presence of a small concentration of more or l
uniformly distributed vortices induced by the application o
weak magnetic field~with f !1) the divergence in the ex
pression for the vortex energy is cut off atr; f 21/2 ~instead
of at r;N), and the correction toLh

21 can be rewritten as

DLh
21'2

p

4
Lh

21f ln
1

f
. ~39!

The same expression is also valid for other perio
lattices—for example, triangular. When the screening effe
related to the self-induced magnetic fields of the currents
the array are taken into account, the logarithmic factor in
~39! has to saturate~with decrease off ) when the typical
distance between vortices becomes of the order of the m
netic penetration depth16,17 of the array.

Earlier the magnetoinductance of a Josephson junction
ray in the regime of frozen vortex diffusion was investigat
for the case of a fractal array with the structure of the Si
pinski gasket.15,18 With the help of the recursive calculatio
using the self-similarity of the Sierpinski gasket it has be
found15 that the field dependence of the correction to indu
tance in such a system can be characterized by the expo
nL5 ln(125/33)/ln 4'0.96. On the other hand, the applic
tion of a simplified approach,18 which in terms of this work
is equivalent to consideration of only (DLh

21)1, leads to a
larger valuenE5 ln 5/ln 4'1.16. That means that in the cas
of a Sierpinski gasket array the main contribution to the c
rection to the sheet inductance for small fields is com
from the term (DGh)2, which can be associated with osci
lations of vortices. The results of this work show that
periodic arrays the situation is qualitatively different and t
main contribution to the correction to the inductance is co
ing from the suppression of the superfluid density related
a nonuniform distribution of the order parameter phases
duced by the presence of vortices.
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