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Inhomogeneous superconducting state of superconducting networks in a magnetic field
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Making use of de Gennes—Alexander’s network equation, we have investigated the transition temperature of
superconducting honeycomb and square lattice networks in magnetic field. We found that the decrease of the
transition temperatur@ of the finite cluster due to the external field is small compared with that of the
periodic networks. AfT<T., the superconducting order parameter becomes inhomogeneous for the finite
clusters with edge in contrast to the case of the infinite lattice with periodic boundary condition. Also we
obtained the distribution of quantized fluxoids from the winding number of the phase of the order parameter.
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I. INTRODUCTION They found that the order parameter becomes zero at the
center node when external magnetic fieldtl, satisfies
Multiply connected superconductors show peculiar re-Hqa?/®,~0.5, wherea is the lattice constant, and external
sponses to the external magnetic field. A simple example i§ux dependence of the transition temperature agrees with the
the Little-Parks experimerit? which shows periodic varia- experiment qualitatively® Therefore, it seems that there is a
tion of the phase-transition temperature as a function of th@ap between the finite cluster and the periodic systems.
magnetic field. The period is called a matching field, which In this paper, we study finite superconducting networks
is @, divided by the area of the hole. Hed®, = hc/2e is the with edge. Solving the de Gennes—Alexander network equa-
flux quantum for superconductivity. tion, we calculate the transition temperature, the order pa-
Superconducting networks are extreme examp|es of mu|[ameter diStribUtion, and the distribution of the quantiZEd
t|p|y connected Superconductors_ They consist of SupercorfI.UXOid. We discuss the difference between the periOdiC lat-
ducting thin Wiresy which are connected to each other reguﬂces and the finite clusters. We show that the SUperCOﬂdUCt-
larly or randomly. In the limit where we can ignore the width ing state of the finite clusters under the magnetic field be-
of the wires, superconducting order parameter may be corfomes inhomogeneous and the order parameter at the interior
sidered as uniform across the cross section of the wires. bonds almost vanishes. Also we show that because of this
Recently, Yoshidat al3~®found the anomalous matching Property the transition temperature of the finite clusters is not
effect of the triangular microhole lattices on Al sheet. If the much suppressed by the magnetic field, compared with peri-
width of the Al film between holes is small, this system canodic infinite lattices.
be Viewed as a Superconducting honeycomb network_ Th|S paper iS Organized as fO”OWS. In Sec. Il we giVe the
Theoretical studies of Superconducting networks begaﬁetails of our calculation and show the result of the honey'
with de Gennes’ workon the superconducting lasso, which comb lattices. In Sec. lll, we show the results of square
is a ring with an arm attached to it, under the magnetic field!attices. Section IV is devoted to summary and discussion.
Subsequent work of Alexandemeneralized de Gennes’
method, which is an application of the linearized Ginzburg- Il. HONEYCOMB NETWORKS
Landau equation, to the general superconducting networks. i ) ) _
The equation that is derived by Alexander is called as de In. this section, we explam the methpds of our calculation
Gennes—Alexander network equatiedGA). Several works ~apPplied to superconducting networks in the/ plane under
on ladder network& networks with an external sourééand ~ Perpendicular magnetic field =(0,0H,). In the following,

n stripst were followed!? we con3|der.two—dllmensllonal flat networks that are com-
Experiment on the regular superconducting lattice ha®0sed of straight wires with same lengthGenerally, the de
been done on square latticEs T, lattices® Kagormie Genngs—.AIexandSr equation for the superconducting net-

lattices®® and honeycomb latticé§:)” There was also an ex- Work is given as;
periment on disordered latticé¥. .

Previous theoretical studies were mainly done on the pe- : _
riodic systems, but recently experiment on the small ; Ajexl 7"1)_niA‘COS§’ @
micrometer-sized network (22 antidot cluster has been
done®® The transition temperature of this system is somewhere the sum of is taken over the nodes connected by
what different from the periodic lattices. In the framework of wires with node, n; is the number of wires connecting with
the de Gennes—Alexander theory, they also calculated theodei, andA; denotes order parameter at ndd&he phase
transition temperature and the order-parameter distributiony; j is given as
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FIG. 1. A lattice pointi and its connected poiniss.
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3 1 3
rB(m,n)= §n+§,\/§m—\/7_n a, (6)

respectively. Heren andn are integers. For simplicity, order
parameters at the lattice point8(m,n) and r®(m,n) are
written asA”(m,n) andAB(m,n), respectively.

The applied magnetic flux per hexagon i®

=(33/2)a’H,. The dGA equation at interior points
rA(m,n) andrB(m,n) becomes

AB(m,n) +e” (2w®/¢0)[(n/2)—(1/4)]AB(m_ 1,n_ 1)

+ 21PN/~ (UAB(m n—1)

il N 2
YiiT CDO | S. 2 a| ,
=3co z A%(m,n), @)
In this section we use Landau gauge, and the vector potential
is expressed aB=(0,Hyx,0). The line integral is over the B
contour along the wire. The temperatidtelependence of the AA(m,n) +e” CPVTWNIAA(M,n+1)

Landau-Ginzburg coherence length near the zero-field
as ¢

transition temperature Too can be written

+e2mPIPQUN2) T (UMIAA(M+ 10+ 1)

=&9/\1—T/To, Whereg, is the coherence length at zero a\ p
temperature. For example, the de Gennes—Alexander net- =3co £ A%(m,n). ®

work equation for the nodein Fig. 1(a) is given as

3

i a
J'Zl A]-eX[I(I ’yiyj)ZSAiCOSg,

and for the node in Fig.(b),

2

a
j§=:1 A]-exp(iyiyj)=2Aicosé;.

If r is the edge point and the number of connected lattice
points is two, which is the case shown in Fighl dGA

© equation becomes the one similar to E4j.
Divided by 2 or 3, these equations become eigen-
value equations with the eigenvalue @ig]. We solve
it numerically, using a subroutine that contains transforma-
@ tion of general complex matrix to the Hessenberg matrix and

the QR algorithm. Then, we can determine the transi-
tion temperature from its largest eigenvalue abd(

We apply the above discussion to the honeycomb super=cog(ayl—T/Tcg)/éol.
conductive networkHSNW) as shown in Fig. 2 under mag-  The behavior of the superconducting transition tempera-
netic fieldH=(0,0H,). In the following discussion, we call ture T under the magnetic field is shown in Fig. 3.

the network shown in Fig. 2 dgl XN HSNW.

The transition temperature of HSNW with periodic
2 3

Lattice points of honeycomb networks are divided mtoboundary condition shows dip structurestatd =3, 2, 2,

3 4

two sublatticesA and B. The coordinates of each lattice 3, 2, %, £.

points in A and B sublattices are expressed as

rA(m,n)= ( \/—m—£n

M hexagons

O e
j,:' L
Wm}
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FIG. 2. M XN honeycomb network.

On the other hand, iM XN HSNW with edge, we cannot
find these structures. It should be also noted that decrease of
transition temperature due to the applied magnetic field is

(5) smaller than that in the network with the periodic boundary
condition. The difference of transition temperature between
HSNW with periodic boundary condition and HSNW with
edge can be explained as follows. The amplitude of order
parameter in HSNW with edge decreases exponentially from
edge point to center point at the transition temperature. The
“bulk part” in the center of HSNW with edge has already
changed to normal phase in the lower temperature than tran-
sition temperature of HSNW with edge. The transition tem-
perature of network with edge is higher than that of the bulk
part that corresponds the network with periodic boundary
condition. In Fig. 4, amplitude of the order parameter as a
function of distance from the edge point is shown for several
values of the external field.

The distribution of fluxoid is determined from the phase
of order parameter. IE>(7/2)a, the phase difference be-
tween lattice points; andr; can be calculated as
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FIG. 3. The magnetic-field dependence of transition temperature
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O fluxon
. anti-fluxon

of honeycomb superconducting netwotkESNW). (a) HSNW with
periodic boundary conditiontb) 10X 10 HSNW, and(c) 20X 20

HSNW.
A(j)€
=ard “ 5

where the symbol argj denotes the principal value of the
argument of complex nhumbez i.e., — w<arg(z)<w. For
an arbitrary loopC in the network, the number of quantized

~VYij» ©)

FIG. 5. (Color-online Fluxon distribution of 1&X 10 HSNW at

ﬂuxoids(the phase W|nd|ng numbﬁm(c)’ passing through (D/(I)OZOJ.OO A circle shows a Single fluxon ar shows an

the loopC is

AA(n,n)
AA(1,1)
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FIG. 4. Variations of amplitudes of order parameters of 20
X20 HSNW at the transition temperatures from the corner

|AA(1,1)| to the centetA”(10,10).
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antifluxon.

Hereafter, we call the quantized fluxoid as a fluxon. Figures
5 and 6 show distributions of fluxon for HSNW with edge
under the external magnetic field. For weak magnetic field,
fluxons tend to locate in the center of the network. For in-
creasing applied field, fluxons tend to form straight lines and
line up along the network edge.

In Figs. 5 and 6, we can see antifluxons, which are sur-
rounded by ordinary fluxons. By antifluxon we mean a
fluxon whose direction is antiparallel to the external mag-
netic field. The appearance of the antifluxon can be under-
stood as follows: if numbers of ordinary fluxons surround a
single hexagon, then current flows around the center hexa-
gon, which makes the magnetic field antiparallel. Fluxons
appear according to the symmetry of the system, and when
external field is not strong for such configuration of fluxons,
it is sometimes energetically favorable to keep such configu-
ration that makes the antifluxon.

In some cases, superconducting order is broken at the
point in the wire that connects between two lattice nodes. For
example, in Fig. 6, superconducting order is broken at the
wire that locates the center of the network and an antifluxon
passes through it.

IIl. SQUARE LATTICE NETWORKS

In this section, we consider the square lattice with size
2Lax2La, wherea is the length of the wire. We denote the
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lattice points asirfa,ma), wheren andm are integers and (C) OO O000000 OO
—L=n and m=L. The de Gennes—Alexander network O «+ O © 06 o 0 ¢ O - O
equation(l) for the square network is given by O 0 0 06 0 06 06 06 0 O O
o [ ] (-] [ . [ -] ] o
A(n,m+21)e""*+A(n,m—1)e"7¢ O o 06+ ¢+ e 2000
+A(n+l’m)e7immb+A(n_1'm)eim7'r¢ o e O o+ o e« o © @ o
a O o (-] ® ] . ° L] o -] o
=4 co{g)A(n,m), (11 QO ¢ o o o e o « O
Qo000 06060600(0
~ «‘-—\/\ O + O o © o © ¢ O - O
AN Q0000000000

/ FIG. 8. Spatial distribution of the amplitude of the order param-

eter A at nodes for®/d,=0.033 (a), ®/P;,=0.333 (b), and
®/d,=0.4833(c). Radius of the circle at each vortex shows rela-
tive magnitude of the order parametér(n,m)| at the vertex.

(1-T.I Ty ) al ¢)?
O O O O O O O

whereA (n,m) is an order parameter at a lattice poin{if).
Equation(11) is for the lattice points inside the network. For
the lattice point atif,L), the dGA equation becomes

A(n,L—1)e "™+ A(n+1L)e L™+ A(n—1L)e'-"%

S = oWk ooy

FIG. 7. Magnetic-field dependence ®©f of square supercon-
ducting lattices(a) is for the periodic lattice(b) for a lattice with —3 CO% a

size 40< 40, (c) for 20x 20, and(d) for 10X 10. §) Aln.L). (12
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FIG. 9. Variation of the amplitude of the order parameter from SHENBENEDL
the corner node to the center node along the diagonal (@€l0 ) ' [
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The equation for the other points at the edge of the lattice is ® ®
similar. And for the point atl(,L), the equation becomes
) [e olo]o]e o
. ) a o]0 (o] [}
A(L,L-1)e ™?+A(L—-1L)et?=2 cos{)A(L,L). ol |o ol lo
€ o [o] [ele| [o] o
(13 ) ol & e )
o o] ! |O o
. .. . o o o|o (o] (o]
Also for the other corner points, similar equations hold. o Te ol To
We can solve the above equations as an eigenvalue prob- olo oo
lem in a manner similar to that for honeycomb networks. In o ololole °
Fig. 7, we show magnetic-field dependence of the transition
temperature for the periodic lattice, X0, 20x20, and FIG. 10. (Color onling Spatial distribution of the quantized
40X 40 lattices. fluxoids for ®/®,=0.033 (a), ¢/P;,=0.1833(b), ®/P,=0.333

Similar to the honeycomb lattices, transition temperaturgc), and®/®,=0.4833(d). O shows 2, fluxon. Other symbols
for the lattice with the edge does not tend to that of theare the same as in Fig. 6.
periodic lattice as the size of the lattice is increaskg.of
the periodic lattice shows several dips ab/®, small ®/d,, the amplitude decays exponentially with dis-
=3%.3,5.7.1, - - .. ButT¢ of finite clusters show only one tance from the edge. Its decay rate becomes large for larger
dip at®/®,=3. This is because the superconducting state iglusters.
bounded to the periphery of the lattice, as in the case of We also calculate the phase winding number around each
honeycomb lattices. For example, spatial dependence of therjuare, and deduce the distribution of fluxons. We show typi-
amplitude of the order parameter at each node is shown inal examples in Fig. 10. For weak field, the fluxoid enters
Fig. 8 for 10 10 lattice. from the center of the lattice. For some field value, the mul-
For weak external field, the order parameter does notiquantum fluxon appears at the center, breaking the super-
change largely from the edge node to the center node. But faronductivity of the surrounding wires, as shown in Fig.
large field, the order parameter varies largely. We show thé&(Q(a). In this case, @ fluxon appears in the four squares
variation of magnitude of the order parameter in Fig. 9 foraround the center node, breaking superconductivity of four
10X 10 and 20X 20 lattices. bonds. On increasing the field, fluxons move outward and
In these figures, the amplitude of the order parameter isometimes an antifluxon appears, which is surrounded by
normalized by the value at the corner node. Except veryprdinary fluxons, as shown in Fig. ). On further increas-
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ing the field, fluxons tend to form a lifgig. 10c)]. Thisis  gular micro-hole lattice by the superconducting quantum in-
because the kinetic energy associated to the phase changeteiference devicgSQUID) microscope and reported that
the order parameter becomes small, when the fluxons amagnetic fluxes form parallel linédsOur calculations are
aligned. consistent with their results. In addition, antifluxon appears
associated with fluxons, similar to the mesoscopic supercon-
IV. SUMMARY AND CONCLUSION ducting square plates that were studied by Chibogral >°
Multiple fluxon also appears by breaking the superconduc-

In this paper, making use of the de Gennes—Alexandejjyity of surrounding bonds. These results may be verified by
equation, we have investigated superconducting transition ghe SQUID microscope.

honeycomb and square networks under the magnetic field. o approach is applicable only at the phase-transition

For both types of networks, transition temperatures of th@emperature. Therefore distribution of the order parameter
finite clusters are not much decreased by the magnetic fielgyng fluxons may change on decreasing the temperature be-
compared with periodic infinite lattice. It can be explained agg,y T.. In order to study temperature dependence, we must

follows: The order parameter of finite clusters becomes ingg|ye full nonlinear Ginzburg-Landau equation. This is a fu-
homogeneous under the magnetic field. At the edge the ordeggre proplent!

parameter is large and decreases exponentially towards the
center. Because the order parameter at interior bonds almost
vanishes, transition temperature is determined mostly by the
edge-bond superconductivity. Therefore the frustration at the
interior bonds does not much suppress the transition tem- The authors would like to thank T. Ishida, M. Yoshida,
perature. Also system size dependence becomes weak. and S. Nakata for discussions about their experiments. Also
The distribution of fluxons shows much variety of pat- one of the authoréM.K.) would like to thank Y. Kayanuma

terns. For strong magnetic field, fluxons tend to align alongand members of quantum physics research group of the
the edge. Ishidet al. observed fluxoid distribution on trian- Osaka Prefecture University for useful discussions.
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