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Inhomogeneous superconducting state of superconducting networks in a magnetic field
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Making use of de Gennes–Alexander’s network equation, we have investigated the transition temperature of
superconducting honeycomb and square lattice networks in magnetic field. We found that the decrease of the
transition temperatureTC of the finite cluster due to the external field is small compared with that of the
periodic networks. AtT&TC , the superconducting order parameter becomes inhomogeneous for the finite
clusters with edge in contrast to the case of the infinite lattice with periodic boundary condition. Also we
obtained the distribution of quantized fluxoids from the winding number of the phase of the order parameter.
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I. INTRODUCTION

Multiply connected superconductors show peculiar
sponses to the external magnetic field. A simple exampl
the Little-Parks experiment,1,2 which shows periodic varia
tion of the phase-transition temperature as a function of
magnetic field. The period is called a matching field, wh
is F0 divided by the area of the hole. HereF05hc/2e is the
flux quantum for superconductivity.

Superconducting networks are extreme examples of m
tiply connected superconductors. They consist of superc
ducting thin wires, which are connected to each other re
larly or randomly. In the limit where we can ignore the wid
of the wires, superconducting order parameter may be c
sidered as uniform across the cross section of the wires

Recently, Yoshidaet al.3–6 found the anomalous matchin
effect of the triangular microhole lattices on Al sheet. If t
width of the Al film between holes is small, this system c
be viewed as a superconducting honeycomb network.

Theoretical studies of superconducting networks be
with de Gennes’ work7 on the superconducting lasso, whic
is a ring with an arm attached to it, under the magnetic fie
Subsequent work of Alexander8 generalized de Gennes
method, which is an application of the linearized Ginzbu
Landau equation, to the general superconducting netwo
The equation that is derived by Alexander is called as
Gennes–Alexander network equation~dGA!. Several works
on ladder networks,9 networks with an external source,10 and
n strips11 were followed.12

Experiment on the regular superconducting lattice
been done on square lattices,13 T3 lattices,14 Kagomé
lattices,15 and honeycomb lattices.16,17There was also an ex
periment on disordered lattices.18

Previous theoretical studies were mainly done on the
riodic systems, but recently experiment on the sm
micrometer-sized network (232 antidot cluster! has been
done.19 The transition temperature of this system is som
what different from the periodic lattices. In the framework
the de Gennes–Alexander theory, they also calculated
transition temperature and the order-parameter distribut
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They found that the order parameter becomes zero at
center node when external magnetic fieldH0 satisfies
H0a2/F0;0.5, wherea is the lattice constant, and extern
flux dependence of the transition temperature agrees with
experiment qualitatively.19 Therefore, it seems that there is
gap between the finite cluster and the periodic systems.

In this paper, we study finite superconducting netwo
with edge. Solving the de Gennes–Alexander network eq
tion, we calculate the transition temperature, the order
rameter distribution, and the distribution of the quantiz
fluxoid. We discuss the difference between the periodic
tices and the finite clusters. We show that the supercond
ing state of the finite clusters under the magnetic field
comes inhomogeneous and the order parameter at the int
bonds almost vanishes. Also we show that because of
property the transition temperature of the finite clusters is
much suppressed by the magnetic field, compared with p
odic infinite lattices.

This paper is organized as follows. In Sec. II we give t
details of our calculation and show the result of the hon
comb lattices. In Sec. III, we show the results of squa
lattices. Section IV is devoted to summary and discussio

II. HONEYCOMB NETWORKS

In this section, we explain the methods of our calculati
applied to superconducting networks in thex-y plane under
perpendicular magnetic fieldH5(0,0,H0). In the following,
we consider two-dimensional flat networks that are co
posed of straight wires with same lengtha. Generally, the de
Gennes–Alexander equation for the superconducting
work is given as,8,12

(
j

D jexp~ ig i , j !5niD icos
a

j
, ~1!

where the sum ofj is taken over the nodes connected
wires with nodei, ni is the number of wires connecting wit
nodei, andD i denotes order parameter at nodei. The phase
g i , j is given as
©2003 The American Physical Society09-1
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g i , j5
2p

F0
E

i

j

A•ds. ~2!

In this section we use Landau gauge, and the vector pote
is expressed asA5(0,H0x,0). The line integral is over the
contour along the wire. The temperatureT dependence of the
Landau-Ginzburg coherence lengthj near the zero-field
transition temperature TC0 can be written as j
5j0 /A12T/TC0, wherej0 is the coherence length at ze
temperature. For example, the de Gennes–Alexander
work equation for the nodei in Fig. 1~a! is given as

(
j 51

3

D jexp~ ig i , j !53D icos
a

j
, ~3!

and for the node in Fig. 1~b!,

(
j 51

2

D jexp~ ig i , j !52D icos
a

j
. ~4!

We apply the above discussion to the honeycomb su
conductive network~HSNW! as shown in Fig. 2 under mag
netic fieldH5(0,0,H0). In the following discussion, we cal
the network shown in Fig. 2 asM3N HSNW.

Lattice points of honeycomb networks are divided in
two sublatticesA and B. The coordinates of each lattic
points inA andB sublattices are expressed as

rA~m,n!5S 3

2
n2

1

2
,A3m2

A3

2
nD a, ~5!

FIG. 1. A lattice pointi and its connected pointsj ’s.

FIG. 2. M3N honeycomb network.
09450
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rB~m,n!5S 3

2
n1

1

2
,A3m2

A3

2
nD a, ~6!

respectively. Herem andn are integers. For simplicity, orde
parameters at the lattice pointsrA(m,n) and rB(m,n) are
written asDA(m,n) andDB(m,n), respectively.

The applied magnetic flux per hexagon isF
5(3A3/2)a2H0. The dGA equation at interior point
rA(m,n) and rB(m,n) becomes

DB~m,n!1e2(2pF/F0)[(n/2)2(1/4)]DB~m21,n21!

1e(2pF/F0)[(n/2)2(1/4)]DB~m,n21!

53cosS a

j DDA~m,n!, ~7!

DA~m,n!1e2(2pF/F0)[(n/2)1(1/4)]DA~m,n11!

1e(2pF/F0)[(n/2)1(1/4)]DA~m11,n11!

53cosS a

j DDB~m,n!. ~8!

If r is the edge point and the number of connected lat
points is two, which is the case shown in Fig. 1~b!, dGA
equation becomes the one similar to Eq.~4!.

Divided by 2 or 3, these equations become eige
value equations with the eigenvalue cos(a/j). We solve
it numerically, using a subroutine that contains transform
tion of general complex matrix to the Hessenberg matrix a
the QR algorithm. Then, we can determine the tran
tion temperature from its largest eigenvalue cos(a/j)
5cos@(aA12T/TC0)/j0#.

The behavior of the superconducting transition tempe
ture TC under the magnetic field is shown in Fig.
The transition temperature of HSNW with period
boundary condition shows dip structures atF/F05 1

3 , 2
5 , 3

7 ,
1
2 , 3

5 , 4
7 , 3

5 .
On the other hand, inM3N HSNW with edge, we canno

find these structures. It should be also noted that decreas
transition temperature due to the applied magnetic field
smaller than that in the network with the periodic bounda
condition. The difference of transition temperature betwe
HSNW with periodic boundary condition and HSNW wit
edge can be explained as follows. The amplitude of or
parameter in HSNW with edge decreases exponentially fr
edge point to center point at the transition temperature.
‘‘bulk part’’ in the center of HSNW with edge has alread
changed to normal phase in the lower temperature than t
sition temperature of HSNW with edge. The transition te
perature of network with edge is higher than that of the b
part that corresponds the network with periodic bound
condition. In Fig. 4, amplitude of the order parameter a
function of distance from the edge point is shown for seve
values of the external field.

The distribution of fluxoid is determined from the pha
of order parameter. Ifj.(p/2)a, the phase difference be
tween lattice pointsr i and r j can be calculated as
9-2



e

d

res
e
ld,

in-
nd

ur-
a
g-
er-
a
xa-
ns
hen
s,
gu-

the
For
the
on

ize
e

tu

20
ne

INHOMOGENEOUS SUPERCONDUCTING STATE OF . . . PHYSICAL REVIEW B 68, 094509 ~2003!
f i , j5argS D~ j !eig i , j

D~ i ! D2g i , j , ~9!

where the symbol arg(z) denotes the principal value of th
argument of complex numberz, i.e., 2p,arg(z)<p. For
an arbitrary loopC in the network, the number of quantize
fluxoids~the phase winding number!, m(C), passing through
the loopC is

m~C!52
1

2p (
C^ i , j &

f i , j . ~10!

FIG. 3. The magnetic-field dependence of transition tempera
of honeycomb superconducting networks~HSNW!. ~a! HSNW with
periodic boundary condition,~b! 10310 HSNW, and~c! 20320
HSNW.

FIG. 4. Variations of amplitudes of order parameters of
320 HSNW at the transition temperatures from the cor
uDA(1,1)u to the centeruDA(10,10)u.
09450
Hereafter, we call the quantized fluxoid as a fluxon. Figu
5 and 6 show distributions of fluxon for HSNW with edg
under the external magnetic field. For weak magnetic fie
fluxons tend to locate in the center of the network. For
creasing applied field, fluxons tend to form straight lines a
line up along the network edge.

In Figs. 5 and 6, we can see antifluxons, which are s
rounded by ordinary fluxons. By antifluxon we mean
fluxon whose direction is antiparallel to the external ma
netic field. The appearance of the antifluxon can be und
stood as follows: if numbers of ordinary fluxons surround
single hexagon, then current flows around the center he
gon, which makes the magnetic field antiparallel. Fluxo
appear according to the symmetry of the system, and w
external field is not strong for such configuration of fluxon
it is sometimes energetically favorable to keep such confi
ration that makes the antifluxon.

In some cases, superconducting order is broken at
point in the wire that connects between two lattice nodes.
example, in Fig. 6, superconducting order is broken at
wire that locates the center of the network and an antiflux
passes through it.

III. SQUARE LATTICE NETWORKS

In this section, we consider the square lattice with s
2La32La, wherea is the length of the wire. We denote th

re

r

FIG. 5. ~Color-online! Fluxon distribution of 10310 HSNW at
F/F050.100. A circle shows a single fluxon and̂ shows an
antifluxon.
9-3
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lattice points as (na,ma), wheren and m are integers and
2L>n and m>L. The de Gennes–Alexander netwo
equation~1! for the square network is given by

D~n,m11!einpf1D~n,m21!e2 inpf

1D~n11,m!e2 impf1D~n21,m!eimpf

54 cosS a

j DD~n,m!, ~11!

FIG. 6. ~Color-online! Fluxon distribution of 10310 HSNW at
F/F050.400. Broken line shows that superconductivity of t
bond is broken. Other symbols are same as Fig. 5.

FIG. 7. Magnetic-field dependence ofTc of square supercon
ducting lattices.~a! is for the periodic lattice,~b! for a lattice with
size 40340, ~c! for 20320, and~d! for 10310.
09450
whereD(n,m) is an order parameter at a lattice point (n,m).
Equation~11! is for the lattice points inside the network. Fo
the lattice point at (n,L), the dGA equation becomes

D~n,L21!e2 inpf1D~n11,L !e2 iLpf1D~n21,L !eiLpf

53 cosS a

j DD~n,L !. ~12!

FIG. 8. Spatial distribution of the amplitude of the order para
eter D at nodes forF/F050.033 ~a!, F/F050.333 ~b!, and
F/F050.4833~c!. Radius of the circle at each vortex shows re
tive magnitude of the order parameteruD(n,m)u at the vertex.
9-4
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The equation for the other points at the edge of the lattic
similar. And for the point at (L,L), the equation becomes

D~L,L21!e2 iLf1D~L21,L !eiLf52 cosS a

j DD~L,L !.

~13!

Also for the other corner points, similar equations hold.
We can solve the above equations as an eigenvalue p

lem in a manner similar to that for honeycomb networks.
Fig. 7, we show magnetic-field dependence of the transi
temperature for the periodic lattice, 10310, 20320, and
40340 lattices.

Similar to the honeycomb lattices, transition temperat
for the lattice with the edge does not tend to that of
periodic lattice as the size of the lattice is increased.TC of
the periodic lattice shows several dips atF/F0
5 1

2 , 1
3 , 2

3 , 1
4 , 3

4 , . . . . But TC of finite clusters show only one
dip atF/F05 1

2 . This is because the superconducting stat
bounded to the periphery of the lattice, as in the case
honeycomb lattices. For example, spatial dependence o
amplitude of the order parameter at each node is show
Fig. 8 for 10310 lattice.

For weak external field, the order parameter does
change largely from the edge node to the center node. Bu
large field, the order parameter varies largely. We show
variation of magnitude of the order parameter in Fig. 9
10310 and 20320 lattices.

In these figures, the amplitude of the order paramete
normalized by the value at the corner node. Except v

FIG. 9. Variation of the amplitude of the order parameter fro
the corner node to the center node along the diagonal line.~a! 10
310 cluster;~b! 20320 cluster.
09450
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small F/F0, the amplitude decays exponentially with di
tance from the edge. Its decay rate becomes large for la
clusters.

We also calculate the phase winding number around e
square, and deduce the distribution of fluxons. We show ty
cal examples in Fig. 10. For weak field, the fluxoid ente
from the center of the lattice. For some field value, the m
tiquantum fluxon appears at the center, breaking the su
conductivity of the surrounding wires, as shown in F
10~a!. In this case, 2F0 fluxon appears in the four square
around the center node, breaking superconductivity of f
bonds. On increasing the field, fluxons move outward a
sometimes an antifluxon appears, which is surrounded
ordinary fluxons, as shown in Fig. 10~b!. On further increas-

FIG. 10. ~Color online! Spatial distribution of the quantized
fluxoids for F/F050.033 ~a!, F/F050.1833 ~b!, F/F050.333
~c!, andF/F050.4833~d!. s shows 2F0 fluxon. Other symbols
are the same as in Fig. 6.
9-5
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ing the field, fluxons tend to form a line@Fig. 10~c!#. This is
because the kinetic energy associated to the phase chan
the order parameter becomes small, when the fluxons
aligned.

IV. SUMMARY AND CONCLUSION

In this paper, making use of the de Gennes–Alexan
equation, we have investigated superconducting transitio
honeycomb and square networks under the magnetic fi
For both types of networks, transition temperatures of
finite clusters are not much decreased by the magnetic fi
compared with periodic infinite lattice. It can be explained
follows: The order parameter of finite clusters becomes
homogeneous under the magnetic field. At the edge the o
parameter is large and decreases exponentially towards
center. Because the order parameter at interior bonds al
vanishes, transition temperature is determined mostly by
edge-bond superconductivity. Therefore the frustration at
interior bonds does not much suppress the transition t
perature. Also system size dependence becomes weak.

The distribution of fluxons shows much variety of pa
terns. For strong magnetic field, fluxons tend to align alo
the edge. Ishidaet al. observed fluxoid distribution on trian
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