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Calculation of NMR properties of solitons in superfluid *He-A
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Superfluid*He-A has domain-wall-like structures, which are called solitons. We calculate numerically the
structure of a splay soliton. We study the effect of solitons on the nuclear-magnetic-resonance spectrum by
calculating the frequency shifts and the amplitudes of the soliton peaks for both longitudinal and transverse
oscillations of magnetization. The effect of dissipation caused by normal-superfluid conversion and spin dif-
fusion is calculated. The calculations are in good agreement with experiments, except a problem in the
transverse resonance frequency of the splay soliton or in magnetic-field dependence of reduced resonance
frequencies.

DOI: 10.1103/PhysRevB.68.094504 PACS nuniber67.57.Fg, 67.57.Lm

[. INTRODUCTION generally very good. However, we find a puzzling disagree-
ment in the transverse oscillation frequency of the splay soli-
Nuclear-magnetic-resonan¢dMR) has turned out to be ton. This disagreement has remained unnoticed because no
very useful for studying the superfluid phases of liqdide.  detailed comparison between theory and experiment has
The two superfluid phases and B are distinguished in the been published. Further, we find that the theory is particu-
NMR spectrum by different frequency shifts of the absorp-larly inflexible to explain this discrepancy away. Taking into
tion peaks: In addition to these “bulk” peaks, one often account dissipation, in particular spin diffusion, changes
observes additional “satellite” peaks. These are caused bthese conclusions. On one hand, the disagreement in the
topological objects and textures that appear in the superfluigplay-soliton frequency is reduced. On the other hand, we
order parameter. Especially in superflifide-A, several dif-  find considerable extra shift of resonance frequencies in high
ferent objects have been identified based on the frequendields, which has not been reported experimentally. We also
shifts of the satellite peaks? The simplest of these are soli- point out that the longitudinal resonance of the splay soliton
tons. They are domain-wall-like structures where a planahas not been studied experimentally. Measurement of these
object separates two different but degenerate bulk states. quantities would be important to test our understanding of
The satellite peaks ifHe-A were first observed in mea- the basic properties of superfluitHe.
surements in the mid 19788.Soon after the theory of soli- We start in Sec. Il with a short introduction to the hydro-
tons in ®He was developed by Maki and Kuntat.Their ~ dynamic theory and NMR irfHe-A. In Sec. Ill we solve
calculation gave a striking agreement with the measured freaumerically the structure of the splay soliton. The frequency
guency shifts of the satellite peaks at temperatures close @nd the absorption of the principal satellite peak are deter-
the superfluid transition temperatufe. This initial success mined in Secs. IV and V ignoring dissipative effects. In Sec.
had the consequence that further studies of solitons went f¢ we calculate the frequencies and absorption of the higher
other direction$ 12 and, unfortunately, no more precise cal- modes. In Sec. VI we take into account dissipation and cal-
culations were done. culate the effect of the spin diffusion and normal-superfluid
A soliton has two basic structures, “twist” and “splay,” relaxation on the absorption spectrum.
which correspond to the cases of a magnetic fieRl (
>1 mT) perpendicular and parallel, respectively, to the
plane of the soliton wall. Both these structures can be studied

using small oscillations of the magnetization that are either pHere we briefly present some main points of the hydrody-

transverse or longitudinal relative to the static field. namic theory and NMR irfHe-A. The order parameter of
There are several points that can be improved in the Présuperfluid 3He-A is a 3x 3 tensor of the forl®

vious calculations, given as follow§) The structure of the

splay soliton was calculated only by using variational ap-

proximation. (i) The calculations were limited to tempera- A,i=Ad,(m+in)), (1)

tures neafT.. (iii) The effect of different parameter values

was not studied(iv) The amplitudes and widths of the sat- A A ~ . AoA

ellite peaks as well as peaks of higher order were not studie(Y‘.’hered' m, anﬂdnAareAunlt vectors andL n. It is conven-

(v) Dissipation was neglected. It is just these points that wdional to definel=m>xn, which gives the axis of the orbital

address in this paper. An additional motivation is that theangular momentum of a Cooper pair. The unit veatate-

study of solitons opens the way to detailed understanding dines the axis along which the spin of the Cooper pair van-

more complicated topological objects such as vortices. ishes. In a static magnetic field, the structure of a soliton can
We find that, using dissipationless theory, the agreemertie determined by finding a local minimum for the free

between the theoretical and experimental frequency shifts isnergy41°

IIl. HYDRODYNAMIC THEORY
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F static™ f dsr(fd+fg+fh)- )

Here f4 comes from the dipole-dipole interaction between

nuclear moments,

fy=—3Ng(d- 12, ©)

f, from coupling to the external fielB,

f=3\p(d-B)?, (4)

andf from the gradient of the order parameter,
2fg=p o2+ (pj—p,)(1-vg)2+2Cve V XIT
—2Co(T-v)(1- VX)) +K(V- )2+ K- VxT)?2
+ KT (VXD)|2+Kg|(T-V)d|?

Ko, [(IXV)id 17, 5
The gradient energgb) also includes the kinetic energy aris-
ing from the superfluid velocityvs= (%/2mg)=;m;Vn;,
wherem; is the mass of &He atom. However, in the fol-
lowing we limit to the case of zero superfluid velocity. The

PHYSICAL REVIEW B68, 094504 (2003

. . of
S=ySXB—dxX— 109
Y e (

d=dxy (10b)

o torg)

where f=fy+fy and x is the susceptibility in the normal
state. The motion of is strongly limited by viscosity and
therefore we assume thhtis independent of timé& Equa-
tions (10) describe dissipationless dynamics. The inclusion
of dissipative terms is postponed to Sec. VI. The fiBlis

the sum of the static field, and a small radio-frequency
field B’ that oscillates at angular frequenay Throughout

this paper we limit to study the linear responseSainda to
B’. We parametrize the deviation dfwith two parameters

d, andd,,

d=do+(zxdg)d,+zd,. (11)

For S we parametrize the deviatid® from the equilibrium
So=xBo/moy by S,=S,—S, and circular componentS*
=S5,£iS,. Similar definitions are used for other vectors as
well. We linearize Eqs(10) and assume the time dependence
S'(t) =S exp(—iwt), etc. Using the equilibrium conditiofY)

parameters appearing in the gradient energy have been cd/€ 9€t

culated in the weak-coupling approximation by Crésand
Dorfle 16 the latter including more Fermi-liquid parameters.

For numerical values see Refs. 17 and 18. The characteristic

scales are given by the dipole lengfh= (%/2ms)\p|/N\g
~10 um and the dipole field4= VAyg/A =2 mT.

We consider a static fiel8,=Byz. We assume that the
equilibriumd, denoted byd,, lies in the plane perpendicular

to By:

do=X cosf+y siné.

(6)

This situation is always achieved in large fieB})>By,

whered is forced to the plane by, (4), but in some cases
this happens in low fields as well. Minimization of the total
energy(2) gives for @ the equation

DO+ (I-do)(Ixdg),=0, (7)
where the operatdP is defined by
K Ks—K .
Df=——2v2— > Oy (1. v)f]. (8)
Ng Nd

0S =+ weSTFALYD+U))d,

+i)\dei2i€| ZI :ngXBOBt ) (123)
oY i ioy . Y i i
wd, = (S e’=STe )45 (B.e"-B "),
(12b
0S;=—iNgD+Upd,+irg(dox D) l,d,, (120
oy’
wdy=i = =S, ~i78B;. (129

Here wy= yB, is the Larmor frequency. The potentidly
andU, are defined by

Uj=1-12-2(1xdg)? (13)

. K Ks—Kg -
UL=1—2I§—(I><dO)§—A—Z(VGF—%(I-V&)Z.
(14)

In a dynamic magnetic state one has to include the spin In order to simplify Eqs(12), let us consider the special

magnetizationyS as a new variable in addition @ and 1. casel,=0. In this case the equations separate into indepen-
The effective energy density has the fdr dent blocks for longitudinal and transverse oscillations of the

magnetization. The resonance frequencies are determined by

1oY? -y two independent Schdinger-type equations fat, andd,,
fer= 5 S x -S—ySB+fytfy, (9)
(D+ UH)dz?: aHdg, (15
where y is the gyromagnetic ratio ang the susceptibility
tensor. This leads to the equations of motion (D+U)d,=«,d,. (16)
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The eigenvalueg  anda, | of these equations are related
to the resonance frequencies as

I
of =%, 17) M

2 _ 2,02 b
ol T ogt Q% k. (18 FIG. 1. The structure of a splay soliton, where thigeld (light

arrows has splay shape. The structure is homogeneous iy-the
plane of the soliton wall. Botdl and are perpendicular to the static

Here Q= (uoy?Ng/x)¥? is the longitudinal resonance fre-
guency of theA phase. The corresponding eigenfunctions of" R
Egs. (15 and (16) are denoted byy;x and ¢, \, respec- field Bo=Boz.
tively. ;I'hey are assumed to be normalizddt’r |y /°=1
and[d°r|¢, \/*=1. Because we have temporarily neglected SN
dissipative processes, the power absorpB¢mw) consists of kZO “L,in,k:f d3r[(|.do)2—|§], (26)
s-peaks,P(w) =2l 6(w—wy).

Instead of assuminig=0, an alternative approach to Egs. w
(12) is to study the high-field limiwy> . More precisely, _ D aﬁkQH k:f d3r Uﬁ, (27)
one can calculate the resonance frequencies as a power series k=0 "V
of Q2 and neglect terms of the order 6¥* and higher. In
this approximation all the three componeS8fs S*, andS™ * o o
decouple. The eigenvalue equations and frequencies are the, af,le,k:f dPr{[(1-dg)?— 1212+ (1xdg)5(1- do)?},
same as above equatiofisb)—(18) except that Eq(18) is =0 29)

valid only to leading order irf):
and so on. The sum rules can be derived using the orthogo-
nality properties of the eigenfunctiorf$n Eq. (28) one also
: (19 needs Eq(7).] The lowest-order rule§24)—(26) apparently
are equivalent to the sum rules presented by Ledgett.
For the rest of this section we assume the high-field limit
o> (). 11l. EQUILIBRIUM STRUCTURE OF A SPLAY SOLITON

In the case of dipole lockind(r)=d(r), the lowest bulk . . . .
eigenvalues arer ,—a, ,=1. In this case only the bulk The minimum of the dipole energid) can be achieved in

eigenstate gives rise to absorptib(;]‘=ViH andly,, =Vi,, twq ways: eithel andd are.parall_el or they are antiparallel. .
where the two modes This double degeneracy gives rise to domain walls or soli-

tons. On one side of the wall=d and on the other side

[

+QZ +0 :
o ZwOaL'k

=+
wl'k -

g

i =lB’2 02 (20) =—d. We will study cases where the static fiddg is either
I 4ug * X255 perpendicular or parallel to the plane of the soliton wall. The
soliton structures in these cases are known to have composite
- twist and splay structures, respectivBlyhe structure and
i =4—(B§+ BY) xw§, (21)  the fundamental NMR frequency of a twist soliton have been
Ko solved analytically:”® Here we concentrate on the case of a
andV=[d3 is the volume of the liquid. splay soliton, which has previously been studied only by

. . . e ,9,22,23 H :

In the presence of dipole unlocking also other eigenstate¥ariational method§! Its structure is illustrated
contribute to the absorption. Their intensities are givenn Fig. 1. o
by?9-20 In the cases of a twist or a splay soliton, bdtandd are

in the plane perpendicular B,. We parametrize
2
=1 ek Q=1 . (22

f d3r gy k(1) [=Xcosp+ysiny (29

2 andd as above, Eq6). For a splay soliton the anglesand
- (23 n are taken as functions of only. We use the boundary
conditions 7(+»)=60(+») and n(—w)=0(—x)+ .

d*ryp, k(r)exdior)]

Ik =1,Q k=i,

Here theQ,’s satisfy the sum rules Substituting the vector field&6) and (29) into the total en-
ergy (2) gives that the energy per unit area is
> Q=2 Qu =V, (24) 1 d7)2
== fs=§f dx (K, sifn+K, co§7;)<d—;7 +(Kg sirPy
i [ de\?
P o) kKQ| k= ruy, (25 +Ks cogy) F coS(n—0)|. (30)
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FIG. 2. The functionsy(x) and 6(x) for a splay soliton at ¢

temperature3/T.=0.01, 0.25, 0.50, 0.75, 1.00. The parameter val-
ues correspond to weak coupling at 3.4 MR £ 14.45 andF}
=-1).

FIG. 4. The reduced resonance frequencigsl?) ande, (18)
as functions of temperature. Splay-soliton transverse resonance:
four upper solid lines and experimental poidis(Ref. 6), A (Ref.
10), and ¢ (Ref. 23. Splay-soliton longitudinal resonance: four
The energy functiona(30) was discretized using equal lower solid lines. Twist-soliton transverse resonance: four upper
intervals §;=—L/2+Li/N, i=0,...N), and the values dash-dotted lines and experimental poistgRef. 24 andJ (Ref.
of » and 6 at these discrete points were taken to be the23). Twist-soliton longitudinal resonance: four lower dash-dotted
minimizing variables. The boundary conditions were takenines and experimental points (Ref. 5 andV (Ref. 6. In each
into account by linear initial approximationg=(/2) case there are four theoretical lines, which in order of decreasing
—(2m/3L)x and 6= (w/3L)x. The minimization can be correspond td=7=0 and weak couplingF{=0 and gap enhance-
done by a simple relaxation method. The resulting functiongnent,Fi=—1 and weak coupling, anéi}=—1 and gap enhance-

7(x) and 6(x) at different temperatures are shown in Fig. 2. ment. Good agreement between theory and experiment is achieved
with F§=—1 and weak coupling except for the high-temperature

transverse splay data. The effect of strong-coupling corrections is
IV. PRINCIPAL NMR FREQUENCY shown atT/T.=1 where the lower ends of the bars correspond to
v=2 and the upper ends tg=4. The experimental data is plotted

We now apply the theory of Sec. Il to calculate NMR with higher resolution in Fig. 10.

properties of solitons. For solitorls=0, which decouples
the longitudinal and transverse modes at arbitiagyin Egs.
(12). Thus the eigenvalues, \ are related to resonance fre-
guencies as given in Eq18) at any field.

The main signature of solitons in the NMR spectrum
comes from the lowest eigenvalue of Safirmer-like equa-
tions (15) and(16). This lowest frequency can be calculated,
for example, using a variational formulation:

U 1
0.8t der[K6|V¢/|2+(K5— Kolll- V |2+ NqUy . [912]
o) — === - QL= min
o8| ’ T
0.4} 1 (32)
0.2+ U . This was discretized and the valuesydix;) were taken to be
L the minimizing variables. The form for the initial approxima-
Or 1 tion used was/(x) =cost(gx) and the boundary conditions
dy/dx=0 were assumed at the end points. The lehgitas
-0.2f ‘ . 1 increased until its effect disappeared. One solution is shown
-10 -5 0 5 10 in Fig. 3. In Fig. 4 we plot the temperature dependence of the
Xy lowest resonance frequencies as well as some experimental
data. For completeness we also include the analytical results
FIG. 3. The potentiall, (solid ling), the lowest eigenvalue, ,  for the twist solitor?®
and the eigenfunctiory, (dashed line, vertical scale arbitrarfpr
transverse resonance of a splay solitoriTatT.. The absorption 1
t’\rllli\;t;nesssL gives the effective width of the wave function in aﬁW'St:R[\/(9Kt+ Ke) (Ki+Kg)—3K—Kg], (32
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12f ' ' ' ' 3

. 6 4
aiw ISt:m- (33 transverse twist \-"
The reduced frequency shiftg (17) anda, (18) depend 101 o _
only on the ratios of the hydrodynamic coefficietts, K, longitudinal twist \ )

K:, Ks, andKg. (Note that the absolute magnitudeskafs 8
and\ 4 define length and energy scales that do not affgct S”,L/gd
or «, .) In the weak-coupling approximation the ratios of
K;’s are functions of an infinite set of Fermi-liquid param-
etersF} andF}, with j=1, 3, 5, etc'® Here we neglect all
the coefficients withj>1 since they are unknown. Fé&}
we use the value by Greyw&llat the melting pressuré;;
=14.5. However, the dependence BR is weak. For ex-
ample, the variationF}=14.5+1 shows up only in the

0 1 1 1 1
fourth decimal ofa at T=0.8T.. In terms of pressure, the 0 0.2 04 T 06 0.8 1
maximum difference inx between 2.6 and 3.4 MPa is 1% at ¢
temperatures higher than 0.5 The valueFi=—1 was FIG. 5. Absorption(34) of the principal soliton peak in four

taken from Ref. 26 and it is also consistent with Ref. 27. Incases. The parameter values correspond to weak-coupling at 3.4
order to see the effect ¢t we also used;=0. It can be MPa (F;=14.45 andF=—1). The numerical values & are
seen in Fig. 4 that this shifts the resonance frequency up &f"®=6.63,, s¥=7.35,, s|"*'=8.64%,, ands}"*'=12.0%,.
temperatures below. .

There are no quantitative calculations of strong-couplingseems very difficult to improve the agreement in this case by
effects in theA phase at a general temperature. In order taany change of the parameters in the theory above 3@%@/
get some idea how strong coupling could affect the solitorat T is effectively fixed. On the experimental side, one pos-
frequencies, we use a "trivial strong-coupling” model devel- sipjlity is that the field is not precisely in the plane of the
oped by Serene and Raifiéfor the B phase. In this model  sojiton in the measurements. This would add a small twist
the weak-coupling energy gap is multiplied by a factor thatcomponent to the splay soliton and thus shift up the
depends on the temperature and on the jump of the speciffiequency? Another possibility is that the inclusion of relax-
heatACg/C, atT=T,. This dependence is tabulated in Ref. ation mechanisms could shift the calculated resonance fre-
28. We adapt this model to the phase by calculating the quency, as will be discussed in Sec. VI.
multiplying factor using the same table but substituting At T. we find the eigenvalues=0.388 ande, =0.672
£ACA/C, in place of ACg/C,, and using extrapolation for =3, These differ slightly from the variational results by

when needed. We tak&C,/C,, from measurements by Maki and Kumaf that are 0.403 and 0.677, respectively.
Greywall?® It can be seen in Fig. 4 that the gap enhance-

ment, which affects only intermediate temperatures, has a

In the limiting caser — T, the reduced frequencies and Here we calculate the intensity of the principal soliton
a, are independent of any parameters appearing in thgeak and analyze the absorption at other frequencies. For
weak-coupling model, including also the gap enhancementyanar objects intensitig®2) and(23) are most conveniently
This is a consequence of the Ginzburg-Landau expansioBypressed in the form of an absorption thickngsswhich

that gives to the parameteks the ratiosK,:K4:K;:K5:Kg equalsQ, divided by the area of the planar object,
=y:1:1:2:(y+1). The only free parameter here ig,

which in the weak couplingwith or without gap enhance-

men) has the valuey=3. This value is changed only when Sk:% (34)
nontrivial strong-coupling corrections are included. The A’

“weak-coupling-plus” model by Serene and Raiffegives

an estimatey~3.12. Figure 4 shows the reduced frequenciedor each modek. The absorption thicknesses in the lowest
corresponding toy=2 andy=4. We see that this variation eigenstate are plotted in Fig. 5.

changes the splay solitam, less than 3% but for the twist The absorption for a twist soliton can be calculated ana-

soliton the effect is ten times larger. Iytically. Substituting the eigenfunctiony=c,sechltaz
There is rather good agreement between the experimeimto Egs. (220 and (23) and using 6=c,

and the theory corresponding to weak coupling &fg= — i, sgn(z)arccos(sectaz) (Refs. 8 and Rwe find

—1. Equally good agreement is achieved with gap enhance-

ment andF§~ —0.7. The longitudinal twist data is a strong K 1

indication that the deviation from the weak-coupling value \/;IQ(?)F Mty

y=3 is small, as predicted by Serene and RafR@he only sitit= , (35)

major difference between theory and experiment exists in the ar'( )FZ( Mt 1)

transverse splay-soliton frequency at high temperatures. It al 2
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. Py RN ) I
stLWIS'(:\/——(iLLJ‘)_ (36) o5l | oy
al’ Mt o
2 %T 20 . o o L=50&,
Herel is the Gamma function and § x L=250¢,
% 15 ;
Ng(Kg+K S x
A INd(Keg t)’ 37) £ 5 )
KGKt g 10 S Xxxx oo
"3_ 0 XXX QD PP
:E 9Kt+Ke_l . § 1 1.1 . 1.2 13
PIT2I VKrKg ) S 5
. K'[ 39 0 ) ﬁ 0? Lo @ o1 O L o L o
e (39 1 11 12 13 14 15 16

reduced frequency shift, o
In order to get all the resonance modes, we discretize the

fSpatce. ?S C:.Itscusse? abot;be:( _1I'_f<'2+ Li/N, It; ?,E ) i'\é’ a splay soliton. The length used in the calculatioh #850¢, in the
or twist soliton replacex by z). is means that Eq$15) main frame whereas the inset also contains the pointsLfor

and(16) turn into a matnx e|ge_nvalue prob!em. This can be:ZS%d. In both cases the lattice spacing of the discretized lattice
solved by standard library routines for matrices of reasonablg 0.1£,. Other parameters are weak-coupling at 3.4 M3 (

size. This gives all the frequencies, including the fundamen— 14.45, F2= — 1) and temperatur&=0.95.
tal one (31). However, the higher modes extend over the
whole interval, and it is important to fix boundary conditions
for them. We require zero derivative ¢f at x=*=L/2. This

can be justified by considering a lattice of solitons. The gen
eral eigenfunctiongs of Egs.(15) and(16) are of the Bloch

form, but only strictly periodic functions lead to nonzero
absorption in Eqs(22) and (23). The unit cell of a soliton

FIG. 6. The higher modes in the case of transverse resonance of

ent locations causes relaxation via spin diffusion. We study
these two mechanisms below, the latter in the case where the
inhomogeneity arises from the soliton. We neglect extrinsic
effects such as the inhomogeneity caused by nonuniform
magnetic field. We also do not consider dissipation caused by
lattice x=—L/2,...,3/2 consists of two solitons located _orbital motion. According to the estimation in _Ref. 19’ th_is is
- ) important only at temperatures very ndar, region which is

aroundx=0 andx=L. The vectord andd have the sym- vanishingly small on the scale of Fig. 4.
metries [(L/2+x)=1(L/2—x) and d(L/2+x)=d(L/2—X). Our treatment of the dissipation is purely phenomenologi-
This implies that the eigenfunctions can be classified as symal. For normal-superfluid relaxation we use the model de-
metric or antisymmetri¢with respect tax=L/2). The sym-  veloped by Leggett and Takagi, which is extensively de-
metric solutions havely/dx(=L/2)=0, and the antisym- scribed in Ref. 33. For the relaxation of spatially
metric solutions can be neglected since they do nohonequilibrium magnetization we use simple diffusion equa-
contribute to the absorption. tion. This approach can be correct only when the mean free

The results for the frequencies and intensities of theyath of the quasiparticles is smaller than the thickness of the
higher modes are shown in Fig. 6. As expected, the highesoliton, and therefore it necessarily fails at low temperatures,
modes depend on the sikzeof the system used in the calcu- where the mean free path diverges. Our treatment also ne-
lation. The modes seem to appear as pairs above the bulifects the tensor character of the spin-diffusion coefficient,
peak. The bulk peak also seems to consist of two peaks thak well as the anisotropic energy gap with varying anisotropy

do not appear exactly at=1 due to finiteL. In fact, the * 5is7(r) which leads to Andreev reflection of the quasipar-
finite L corresponds to a periodic lattice of solitons, which;|aq

should give rise to peaks that are analogous to the Bragg |, orer to treat the relaxation, the spin polarizat®is

peaks in the x-ray scattering from periodic solids. SUChdivided into a superfluidpain partS, and a normalquasi-

peaks are indeed seen exper'imentally in the case of a \{ort rticle) partS,=S—S, . Both parts have separate equations
sheet, where a nearly periodic arrangement is automaticall f motion

generated® The observation of the peaks depends essen-
tially on dissipative effects, which broadens the peaks. This
will be discussed in the following section. ) F3 1
Sy= ¥Sy X B—,LLO)/X—SD +;[(1—>\)sp—>\sq]+xv231,
VI. THE EFFECT OF DISSIPATION 0 (408

There are two sources of dissipation that are important for
solitons. The nonequilibrium between normal and superfluid Fa 1 Sf
magnetizations is the main relaxation mechanism in homog — g x| g— _0 )__ - - —dx—=
. : S Y Y [(1-NS—A§]-dX—,
geneous superfluidHe 3123 In inhomogeneous situations =75 Ho XoSq T > 5d
the nonequilibrium between normal magnetizations at differ- (40b)
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The full solution of this problem can be written as a five-
(400  component vectop=(S~ 7~ d, T S")T=3,¢;¢;, where
the ¢;’s satisfy the homogeneous equation wh&e=0.
The eigenvalueso; of the homogeneous equation are now
complex valued, and the eigenvectafsare not orthogonal
to each other. In order to solve for the absorption spectrum
we find that the following adjoint eigenvalue problém:

. Fa Fyo1
d=yd| B~ Mov—Sq ro¥| )\X)Sp'

Except the spin-diffusion termszsq, these equations

are the same as in Ref. 33. Heygis the susceptibility in the

absence of Fermi-liquid effects. As aboyejs the suscepti-

bility in the normal state, so that/x,=1/(1+F§). The

function\ (T/T,) is defined as the equilibrium fraction of the

superfluid magnetization, and is given by E4.23 in Ref. w—S_[+1+l(1 )\)—VZ

33. The Leggett-Takagi relaxation timedescribes local re- 0

laxation of S, and S to their equilibrium values. The spin

diffusion appears via term:VZSq in the equation forSq

(40a. In the normal state the spin-diffusion constantis

related to the spin-diffusion timey by3* w

87

1
—iN(1- x)—v Ize*"’gz, (4438

. 1 i K
w__7: + a_E+|)\w_V2 2
KZ%U,Z:(J.-’-FS)TD, (41) 0 1+F 0 0
Wher_evF is the Fermi velocity. We use 'Fhis pgrametrization —j inSi: X eiod, (44b)
also in the superfluid state. Note thatis defined as the wo ~  2NXo
spin-diffusion constant fo§;, so that the effective diffusion )
constant for the total magnetizati@is (1—\) «. ] - <
. o g Izat I. ( )K ' . _gz (D+UL)[e—IOS—_eI08+
We continue by writing the equations for variabl@ssS, o wé = =
and the deviation from local equilibrium _ _
+(1—)\)(ef'627—e”’2+)] (440
7=S~AS. (42) has the same eigenvalues; as the homogeneous ver-

sion of problem (43) and that the eigenvectors);

Similarly, as in Sec. Il, we linearize the equations and
4 ; =(S n; d,; 5" S)T are orthogonal tay;’s:

assume harmonic time dependence. We use the fact that —

=0 in solitons. As a consequence, the transverse and longi-

tudinal modes separate at any fi@gl Differing from Sec. Il f lﬁiTtﬁjd3r =djj - (45)

we introduce dimensionless quantities by definisg o T .

=(92/)\dw0)(8;ti8;,) and ﬂi:(Qz/Mwo)(ﬂQiiﬂQ- When deriving this we have assumed zero derivate for the

For transverse oscillations we get the equations wave functions far from the soliton by considering a lattice
of solitons as was discussed in Sec. V. The power absorption

can now be written as
. +1+i(1— >\)—V2 s*
wqo 1
P(w)z—wa Im(B’-S")dqr
K 0z B 2
H 2, *— *if - _—
—|w—V n +—2€ (D+Ul)dZ+B—, B
w
° @o 0 :X4 > Im cjf d’(B*S +B%S")|,
(433 Mo ]
(46)
® s + 1 —I—+i)\£V2 = where the coefficients; are given by
wo 1+F§ o7 wo
. cj:w_wa d*|B_S -B.S'
—iN(1—\)—V3S* J
Wo
, +5(e7'"B —€e"B)d,|. (47)
:(1_)\)Eeii0(p+ U,)d;, We observe that the eigenfunctions are not symmetric with
0 respect to the center of the soliton. This apparently is caused
(43b N
by the spin-diffusion term.
© 1 In the hydrodynamic limit whereo7<<1 one may solve
w_dzzi(s_em_ Ste 10+ —— 2)\ (,7 elf—ptei?) 7~ from Eq.(43) and to linear order i
0
0%
1 T=—(1-MkV2STxir(1-N)—e D+ U)d,.
— (B.e"-B_g"). @39 wo ?
" 2B, (48)
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If we additionally ignore the ternvV?z™, the equations for
the three-component vecto8( d, S™)" read

ﬂsi—
Wo

¢1+i(1—>\)wiv2}s*
0

—QZ *ig _B+
—0——287 (D+ UL)dZ_FB_O,

)

(493

1-\
1 XA7Mx o,
X0

s

1 ) )
+—(B,e ""—-B_¢g'%.

7B, (49b)

The homogeneous adjoint problem for this is given by

o . K +
—S = i1+|(1—)\)—V2}§—
) o
1 ¥(1—N)k .
S Pt DL PR TN
2 Xo
0} 02 ) .
_gZ:_Z('D+UL)(e*|H§7_eI()§+)
™xQ3(1—\)

—i A= 2N(D+U,)d ,.

Xowoh (50b)
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w . K_, . K_, .
5§Z=|(1—>\)5V §Z—|)\(1—)\)§V 7,+idy,
(529
© __iKgeg [ Kg2| i X
o= VST g T Ve Ao
(52b)
w .
qde=—I(D+UP[SH(1=N) 7, (520

Power absorption for longitudinal case is given by

xQo
2oy

P(w)= > |m(c,-fB'*ssz3r), (53)
J

where thec11’s are the coefficients of the full solutiog
=(S,7,dy)"=2¢{(S,j 7,;dy;)" and given by

iyB’
Cj:y—f g‘gvjdsl’.

Similar to the transverse case one could write the hydrody-
namic equations using only, ands,.

The numerical solution for these different eigenvalue
problems is obtained by dividing the calculation length
—L/2,...L/2, for example, to 1000 points and approximat-
ing the spatial derivatives by differences. The eigenvalues
and vectors of the resulting sparse 58@DO0 (or in the
longitudinal case 30003000) matrixA are then solved by
MATLAB . We make use of sparse matrices and calculate nor-
mally only 20 lowest eigenvalues with Re,]>0 that give
the main contribution to the absorption spectrum. The com-
plex mode frequencies, are related to the reduced fre-
guency shiftsey as given by Egs(17) and (18).

Additional parameters appear in the calculation compared

(54)

The equation for the power absorption does not need any, he gissipationless case. The most crucial ones are the

modifications. One must be careful since the validity region.o|axation times- and =
of the hydrodynamic approximation is not very large. For o

temperatures nedr. one must, for typical values af, have

Bo=15 mT. We mainly used the hydrodynamic approxima-

tion for checking our calculations in the limit af— 0.
For longitudinal case, whe®' =B’z | B, we also define
dimensionless quantities by writingS’zi)\dSZ/Q, n

=2\g7,/Q, andd’ =d,zx d,. The equations of motions are

® . K o K _, )
652=|(1—)\)§V Sz_lﬁv 7]Z—I('D+UH)d0,

(51a
o . K _, |1 K_,
ﬁnz:_l)\(l_)\)ﬁv SZ—I m—)\av 72
—i(l—)\)('D—l—U”)dg, (51b)
O Xnz\ . vB'
5d0—| S,+ )\X()) i Q- (510

The Leggett-Takagi time can be
extracted from the width of the bulk peak. Measurements of
longitudinal and transverse resonances are in good
agreement® We have reanalyzed the data by Gudlyal3®
including strong-coupling corrections as described in Sec. IV
and get the fitr=[1.70+ 6.71(1-T/T ) ](1+F3)10 " s in

the range oflf/T.=0.78-0.98. We fixi= —0.746. For the
spin-diffusion coefficientk we use the valuexT?=1.1

X 10~ % mK?/s from Refs. 37 and 38. This corresponds to the
spin-diffusion time 75,=1.25<10 T~ 2 mK?s. A few ab-
sorption spectra are plotted in Figs. 7-9.

The effect of the normal-superfluid relaxation seems to be
simple line broadening. In the transverse resonance the line-
width measured on the, scale is inversely proportional to
the magnetic fieldB, for Bo>B,. This is caused by/(wq7)
term in Eq.(43b). There is no field dependence in the longi-
tudinal resonance since Eq$1) do not containwy. In the
longitudinal case the linewidth on the scale has no strong
temperature dependence and approaches a finite constant
whenT—T,.. In the transverse case the linewidth on the
scale vanishes as—T,. All these characteristics are the

and the homogeneous adjoint problem for this is given by same as predicted for the bulk peaks.
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T=0.95T
c

longitudinal splay

absorption
absorption

0.4 0.6 0.8 1 1.2 0.4 0.6 0.8 1 1.2

reduced frequency shift, a A reduced frequency shift, o
FIG. 7. Absorption spectra for transverse twist solitalash- FIG. 9. Longitudinal absorption spectrum for a splay soliton at

dotted lineg and splay solitorisolid lines atT/T,=0.92, 0.95, and  T=0.95T, (solid line). There is no dependence on the magnetic
0.97 when L=50¢4, Bpy=3 mT, 7=[1.70+6.71(1-T/T)](1 field, and other parameters are the same as in Fig. 7. The effect of
+F3)10 "s, and 7,=1.25<10 ‘T2 mK?s. Other parameters the two dissipation mechanisms is demonstrated by setting

are obtained using weak-coupling and pressure of 3.4 MPa witfidash-dotted lineand 7,=0 (dashed ling

Fi=—-1 andF}=—0.746.
most smeared out. In the longitudinal case there is no field

The effect of spin diffusion is more complicated. In addi- dependence and the effective diffusion constant reduces to

tion to broadening, it shifts the principal soliton peak to Ly=(1—\)«/€. In both transverse and longitudinal cases
higher frequencies. Since the spin diffusion is due to inhothe effective diffusion coefﬁcientﬁsﬂff and x4 diverge when
mogeneous texture, its strength in the transverse case is ob—T., as(1—0.

tained by comparing the ternfl—\)(«/wq) V2S™ with the The relative contributions of normal-superfluid relaxation
term (Q% w3)exp(*if)(D+U,)d, in Eq. (439. Therefore and spin diffusion are illustrated in Figs. 8 and 9, where both
the effective diffusion constant.z=(1—\)kwy/Q? is lin-  are separately shut off by setting=0 or 75=0. It can be
early proportional to the magnetic field. As a consequenc&€en that the broadening of the longitudinal satellite peak is
also the reduced frequeney, of the satellite peak is field mostly caused by normal-superfluid conversion &t

dependent. WheB,=5 mT the effect of diffusion is already =0.95T¢. In the transverse case at high field the spin diffu-
quite large aff =0.95T. and the soliton satellite peak is al- Sion becomes the dominant relaxation mechanism, as well as

approachingl;. In uniform order parameter the width of the
o bulk peak comes solely from normal-superfluid relaxation.

Our soliton lattice has many higher peaks in the absence of
dissipation, but dissipation seems to remove them. Note that
the higher peaks are mostly suppressed by spin diffusion in
the case of Fig. 8 but by normal-superfluid relaxation in the
case of Fig. 9.

The relatively high field in Fig. 8 has been chosen to
allow a comparison to the spectrum of Hakoretral?* The
shape of the twist-soliton spectra are very similar even if the
temperature is quite low, where our modeling of the spin
diffusion is under suspect. Further spectra at lower field are
shown by Partet al?® The comparison to Ref. 10 is a dif-
ferent case. In this experiment such a dense soliton lattice
was created that no bulk peak was observable. Avenal®

N s and Gould and Léeshow soliton spectra measured by
0.4 0.L6 - Es— 1 . sweeping temperature. In all cases a proper comparison to
reduced frequency shift, o our calculations would require first estimation of the density
of solitons and then correcting our calculations for that den-

FIG. 8. Transverse absorption spectrum for a twist solitofi at Sity, which we have not done. What we can state that there
=0.75T, and Bo=28.4 mT (solid line). Other parameters are the Seems to be no obvious contradictions between theory and
same as in Fig. 7. The effect of the two dissipation mechanisms i€xperiment concerning the linewidth.
demonstrated by setting=0 (dash-dotted lineand 7,=0 (dashed A summary of our results &,=3 mT is shown Fig. 10.
line). We see that the frequency of maximum absorption is shifted

T=0.75T, N
B,=284mT | N

transverse twist |, |

absorption
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independent, but for the transverse mode it increases with

2‘8 increasing field. In high field this shift can be substantial
e | even atT~0.7T;, see Fig. 8. This poses a problem since no
=07 field-dependent shift has been observed experimentally. This
‘ﬁ, is the case particularly for the transverse mode of twist soli-
§ ton measured aBy,=9.9 mT (J) (Ref. 23 and 28 mT
3_0'6 (+).%* Similar evidence for transverse mode of splay soliton
2 measured at 2.5-3.7 mT)X) (Ref. 6 and at 15-20 mTA)
B0.50  longitudinal twist. -5 = SR (Ref. 10 is not so clear since the latter data is measured
S S o T T under different conditions, as discussed above.

[
0.4 E VII. CONCLUSIONS
"""""""""" longitudinal splay The frequencies of soliton satellite peaks in the NMR

0'8. 0:8 0.9
TIT,

spectrum are calculated at all temperatures. The agreement
of dissipationless theory with experiments is very good.
However, there is a small difference in the transverse-mode

FIG. 10. The resonance frequencies and linewidths as a functiofrequency of a splay soliton ne@g. This difference is partly

of temperature aB,=3 mT. The solid lines give the frequency of explained by taking into account spin diffusion. The spin
maximum satellite absorption, the dash-dotted lines 75%, and dodiffusion shifts up the reduced frequenciesat high fields,

ted lines 50% of the maximum. The dashed lines give resonance/hich has not been observed experimentally. We hope that
frequency in the absence of dissipation. Other parameterd are new experiments could clarify this problem. We also point

=50¢yq, 7=[1.70+6.71(1-T/TY](1+F3)107s, =125
X107 'T~2 mK?s, pressure 3.4 MPaF§=14.45 Fi=—1, and
Fi=—0.746 and weak-couplingThe experimental points are the
same as in Fig. 4.

towards higher frequencies, especially at temperatures negy

out the relatively narrow longitudinal line of the splay soli-
ton, which has not been studied experimentally.

It would be of interest to extend the present calculations
to vortex lines in®He-A. This requires two-dimensional cal-
culation and thus would be computationally much more de-
anding than the present one.

T.. This alleviates the disagreement found between dissipa-

tionless theory and the experiment by Gould and®lirghe
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