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Calculation of NMR properties of solitons in superfluid 3He-A
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Superfluid 3He-A has domain-wall-like structures, which are called solitons. We calculate numerically the
structure of a splay soliton. We study the effect of solitons on the nuclear-magnetic-resonance spectrum by
calculating the frequency shifts and the amplitudes of the soliton peaks for both longitudinal and transverse
oscillations of magnetization. The effect of dissipation caused by normal-superfluid conversion and spin dif-
fusion is calculated. The calculations are in good agreement with experiments, except a problem in the
transverse resonance frequency of the splay soliton or in magnetic-field dependence of reduced resonance
frequencies.
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I. INTRODUCTION

Nuclear-magnetic-resonance~NMR! has turned out to be
very useful for studying the superfluid phases of liquid3He.
The two superfluid phasesA and B are distinguished in the
NMR spectrum by different frequency shifts of the abso
tion peaks.1 In addition to these ‘‘bulk’’ peaks, one ofte
observes additional ‘‘satellite’’ peaks. These are caused
topological objects and textures that appear in the super
order parameter. Especially in superfluid3He-A, several dif-
ferent objects have been identified based on the freque
shifts of the satellite peaks.2–4 The simplest of these are sol
tons. They are domain-wall-like structures where a pla
object separates two different but degenerate bulk states

The satellite peaks in3He-A were first observed in mea
surements in the mid 1970s.5,6 Soon after the theory of soli
tons in 3He was developed by Maki and Kumar.7,8 Their
calculation gave a striking agreement with the measured
quency shifts of the satellite peaks at temperatures clos
the superfluid transition temperatureTc . This initial success
had the consequence that further studies of solitons wen
other directions9–12 and, unfortunately, no more precise ca
culations were done.

A soliton has two basic structures, ‘‘twist’’ and ‘‘splay,
which correspond to the cases of a magnetic fieldB
@1 mT) perpendicular and parallel, respectively, to t
plane of the soliton wall. Both these structures can be stud
using small oscillations of the magnetization that are eit
transverse or longitudinal relative to the static field.

There are several points that can be improved in the
vious calculations, given as follows.~i! The structure of the
splay soliton was calculated only by using variational a
proximation.~ii ! The calculations were limited to temper
tures nearTc . ~iii ! The effect of different parameter value
was not studied.~iv! The amplitudes and widths of the sa
ellite peaks as well as peaks of higher order were not stud
~v! Dissipation was neglected. It is just these points that
address in this paper. An additional motivation is that
study of solitons opens the way to detailed understandin
more complicated topological objects such as vortices.

We find that, using dissipationless theory, the agreem
between the theoretical and experimental frequency shif
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generally very good. However, we find a puzzling disagr
ment in the transverse oscillation frequency of the splay s
ton. This disagreement has remained unnoticed becaus
detailed comparison between theory and experiment
been published. Further, we find that the theory is parti
larly inflexible to explain this discrepancy away. Taking in
account dissipation, in particular spin diffusion, chang
these conclusions. On one hand, the disagreement in
splay-soliton frequency is reduced. On the other hand,
find considerable extra shift of resonance frequencies in h
fields, which has not been reported experimentally. We a
point out that the longitudinal resonance of the splay soli
has not been studied experimentally. Measurement of th
quantities would be important to test our understanding
the basic properties of superfluid3He.

We start in Sec. II with a short introduction to the hydr
dynamic theory and NMR in3He-A. In Sec. III we solve
numerically the structure of the splay soliton. The frequen
and the absorption of the principal satellite peak are de
mined in Secs. IV and V ignoring dissipative effects. In Se
V we calculate the frequencies and absorption of the hig
modes. In Sec. VI we take into account dissipation and c
culate the effect of the spin diffusion and normal-superflu
relaxation on the absorption spectrum.

II. HYDRODYNAMIC THEORY

Here we briefly present some main points of the hydro
namic theory and NMR in3He-A. The order parameter o
superfluid 3He-A is a 333 tensor of the form2,13

Am j5Dd̂m~m̂j1 i n̂ j !, ~1!

whered̂, m̂, andn̂ are unit vectors andm̂'n̂. It is conven-
tional to definel̂5m̂3n̂, which gives the axis of the orbita
angular momentum of a Cooper pair. The unit vectord̂ de-
fines the axis along which the spin of the Cooper pair v
ishes. In a static magnetic field, the structure of a soliton
be determined by finding a local minimum for the fre
energy2,14,15
©2003 The American Physical Society04-1
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Fstatic5E d3r ~ f d1 f g1 f h!. ~2!

Here f d comes from the dipole-dipole interaction betwe
nuclear moments,

f d52 1
2 ld~ d̂• l̂ !2, ~3!

f h from coupling to the external fieldB,

f h5
1
2 lh~ d̂•B!2, ~4!

and f g from the gradient of the order parameter,

2 f g5r'vs
21~r i2r'!~ l̂•vs!

212Cvs•“3 l̂

22C0~ l̂•vs!~ l̂•“3 l̂ !1Ks~“• l̂ !21K t~ l̂•“3 l̂ !2

1Kbu l̂3~“3 l̂ !u21K5u~ l̂•“ !d̂u2

1K6(
i , j

@~ l̂3“ ! i d̂j #
2. ~5!

The gradient energy~5! also includes the kinetic energy ari
ing from the superfluid velocityvs5(\/2m3)( i m̂i“n̂i ,
wherem3 is the mass of a3He atom. However, in the fol-
lowing we limit to the case of zero superfluid velocity. Th
parameters appearing in the gradient energy have been
culated in the weak-coupling approximation by Cross14 and
Dörfle,16 the latter including more Fermi-liquid parameter
For numerical values see Refs. 17 and 18. The characte
scales are given by the dipole lengthjd5(\/2m3)Ar i /ld

'10 mm and the dipole fieldBd5Ald /lh'2 mT.
We consider a static fieldB05B0ẑ. We assume that the

equilibrium d̂, denoted byd̂0, lies in the plane perpendicula
to B0:

d̂05 x̂ cosu1 ŷ sinu. ~6!

This situation is always achieved in large fieldB0@Bd ,
whered̂ is forced to the plane byf h ~4!, but in some cases
this happens in low fields as well. Minimization of the tot
energy~2! gives foru the equation

Du1~ l̂•d̂0!~ l̂3d̂0!z50, ~7!

where the operatorD is defined by

Df 52
K6

ld
“

2f 2
K52K6

ld
“•@ l̂~ l̂•“ ! f #. ~8!

In a dynamic magnetic state one has to include the s
magnetizationgS as a new variable in addition tod̂ and l̂ .
The effective energy density has the form1,2

f eff5
m0g2

2
S•xJ21

•S2gS•B1 f d1 f g , ~9!

whereg is the gyromagnetic ratio andxJ the susceptibility
tensor. This leads to the equations of motion
09450
al-

.
tic

in

Ṡ5gS3B2d̂3
d f

dd̂
~10a!

ḋ̂5d̂3gS B2
m0g

x
SD , ~10b!

where f 5 f d1 f g and x is the susceptibility in the norma
state. The motion ofl̂ is strongly limited by viscosity and
therefore we assume thatl̂ is independent of time.19 Equa-
tions ~10! describe dissipationless dynamics. The inclus
of dissipative terms is postponed to Sec. VI. The fieldB is
the sum of the static fieldB0 and a small radio-frequenc
field B8 that oscillates at angular frequencyv. Throughout
this paper we limit to study the linear response ofS andd̂ to
B8. We parametrize the deviation ofd̂ with two parameters
du anddz ,

d̂5d̂01~ ẑ3d̂0!du1 ẑdz . ~11!

For S we parametrize the deviationS8 from the equilibrium
S05xB0 /m0g by Sz85Sz2S0 and circular componentsS6

5Sx6 iSy . Similar definitions are used for other vectors
well. We linearize Eqs.~10! and assume the time dependen
S8(t)5S8exp(2ivt), etc. Using the equilibrium condition~7!
we get

vS656v0S67lde
6 iu~D1U'!dz

1 ilde
62iul zl 7du7xB0B6 , ~12a!

vdz5
m0g2

2x
~S2eiu2S1e2 iu!1

g

2
~B1e2 iu2B2eiu!,

~12b!

vSz852 ild~D1U i!du1 ild~ d̂03 l̂ !zl zdz , ~12c!

vdu5 i
m0g2

x
Sz82 igBz8 . ~12d!

Here v05gB0 is the Larmor frequency. The potentialsU i
andU' are defined by

U i512 l z
222~ l̂3d̂0!z

2 ~13!

U'5122l z
22~ l̂3d̂0!z

22
K6

ld
~“u!22

K52K6

ld
~ l̂•“u!2.

~14!

In order to simplify Eqs.~12!, let us consider the specia
casel z[0. In this case the equations separate into indep
dent blocks for longitudinal and transverse oscillations of
magnetization. The resonance frequencies are determine
two independent Schro¨dinger-type equations fordu anddz ,

~D1U i!du5a idu , ~15!

~D1U'!dz5a'dz . ~16!
4-2
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The eigenvaluesa i ,k anda',k of these equations are relate
to the resonance frequencies as

v i ,k
2 5V2a i ,k , ~17!

v',k
2 5v0

21V2a',k . ~18!

Here V5(m0g2ld /x)1/2 is the longitudinal resonance fre
quency of theA phase. The corresponding eigenfunctions
Eqs. ~15! and ~16! are denoted byc i ,k and c',k , respec-
tively. They are assumed to be normalized:*d3r uc i ,ku251
and*d3r uc',ku251. Because we have temporarily neglect
dissipative processes, the power absorptionP(v) consists of
d-peaks,P(v)5(kI kd(v2vk).

Instead of assumingl z[0, an alternative approach to Eq
~12! is to study the high-field limitv0@V. More precisely,
one can calculate the resonance frequencies as a power
of V2 and neglect terms of the order ofV4 and higher. In
this approximation all the three componentsSz8 , S1, andS2

decouple. The eigenvalue equations and frequencies ar
same as above equations~15!–~18! except that Eq.~18! is
valid only to leading order inV:

v',k56Fv01
V2

2v0
a',k1OS V4

v0
3 D G . ~19!

For the rest of this section we assume the high-field li
v0@V.

In the case of dipole locking,l̂(r )5d̂(r ), the lowest bulk
eigenvalues area i ,b5a',b51. In this case only the bulk
eigenstate gives rise to absorptionI b,i5Vi i and I b,'5Vi',
where the two modes

i i5
p

4m0
Bz8

2xV2, ~20!

i'5
p

4m0
~Bx

21By
2!xv0

2 , ~21!

andV5*d3r is the volume of the liquid.
In the presence of dipole unlocking also other eigensta

contribute to the absorption. Their intensities are giv
by2,9,20

I i ,k5 i i a i ,k Qi ,k5 i i a i ,kU E d3rc i ,k~r !U2

, ~22!

I',k5 i'Q',k5 i'U E d3rc',k~r !exp@ iu~r !#U2

. ~23!

Here theQk’s satisfy the sum rules

(
k50

`

Qi ,k5 (
k50

`

Q',k5V, ~24!

(
k50

`

a i ,kQi ,k5E d3r U i , ~25!
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`

a',kQ',k5E d3r @~ l̂•d̂0!22 l z
2#, ~26!

(
k50

`

a i ,k
2 Qi ,k5E d3r U i

2 , ~27!

(
k50

`

a',k
2 Q',k5E d3r $@~ l̂•d̂0!22 l z

2#21~ l̂3d̂0!z
2~ l̂•d̂0!2%,

~28!

and so on. The sum rules can be derived using the ortho
nality properties of the eigenfunctions.@In Eq. ~28! one also
needs Eq.~7!.# The lowest-order rules~24!–~26! apparently
are equivalent to the sum rules presented by Leggett.21

III. EQUILIBRIUM STRUCTURE OF A SPLAY SOLITON

The minimum of the dipole energy~3! can be achieved in
two ways: eitherl̂ and d̂ are parallel or they are antiparalle
This double degeneracy gives rise to domain walls or s
tons. On one side of the walll̂5d̂ and on the other sidel̂
52d̂. We will study cases where the static fieldB0 is either
perpendicular or parallel to the plane of the soliton wall. T
soliton structures in these cases are known to have comp
twist and splay structures, respectively.8 The structure and
the fundamental NMR frequency of a twist soliton have be
solved analytically.2,7,8 Here we concentrate on the case o
splay soliton, which has previously been studied only
variational methods.8,9,22,23 Its structure is illustrated
in Fig. 1.

In the cases of a twist or a splay soliton, bothl̂ and d̂ are
in the plane perpendicular toB0. We parametrize

l̂5 x̂ cosh1 ŷ sinh ~29!

andd̂ as above, Eq.~6!. For a splay soliton the anglesu and
h are taken as functions ofx only. We use the boundary
conditions h(1`)5u(1`) and h(2`)5u(2`)1p.
Substituting the vector fields~6! and ~29! into the total en-
ergy ~2! gives that the energy per unit area is

f s5
1

2E dxF ~Ks sin2h1Kb cos2h!S dh

dxD 2

1~K6 sin2h

1K5 cos2h!S du

dxD
2

2ld cos2~h2u!G . ~30!

FIG. 1. The structure of a splay soliton, where thel̂ field ~light
arrows! has splay shape. The structure is homogeneous in they-z

plane of the soliton wall. Bothd̂ and l̂ are perpendicular to the stati

field B05B0ẑ.
4-3
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The energy functional~30! was discretized using equa
intervals (xi52L/21Li /N, i 50, . . . ,N), and the values
of h and u at these discrete points were taken to be
minimizing variables. The boundary conditions were tak
into account by linear initial approximationsh5(p/2)
2(2p/3L)x and u5(p/3L)x. The minimization can be
done by a simple relaxation method. The resulting functio
h(x) andu(x) at different temperatures are shown in Fig.

IV. PRINCIPAL NMR FREQUENCY

We now apply the theory of Sec. II to calculate NM
properties of solitons. For solitonsl z[0, which decouples
the longitudinal and transverse modes at arbitraryv0 in Eqs.
~12!. Thus the eigenvaluesa',k are related to resonance fre
quencies as given in Eq.~18! at any field.

FIG. 2. The functionsh(x) and u(x) for a splay soliton at
temperaturesT/Tc50.01, 0.25, 0.50, 0.75, 1.00. The parameter v
ues correspond to weak coupling at 3.4 MPa (F1

s514.45 andF1
a

521).

FIG. 3. The potentialU' ~solid line!, the lowest eigenvaluea' ,
and the eigenfunctionc' ~dashed line, vertical scale arbitrary! for
transverse resonance of a splay soliton atT'Tc . The absorption
thicknesss' gives the effective width of the wave function i
NMR.
09450
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The main signature of solitons in the NMR spectru
comes from the lowest eigenvalue of Schro¨dinger-like equa-
tions ~15! and~16!. This lowest frequency can be calculate
for example, using a variational formulation:

a i ,'5min
c

Ed3r@K6u“cu21~K52K6!ul̂•“cu21ldU i ,'ucu2#

ldE d3r ucu2

.

~31!

This was discretized and the values ofc(xi) were taken to be
the minimizing variables. The form for the initial approxima
tion used wasc(x)5coshn(qx) and the boundary condition
dc/dx50 were assumed at the end points. The lengthL was
increased until its effect disappeared. One solution is sho
in Fig. 3. In Fig. 4 we plot the temperature dependence of
lowest resonance frequencies as well as some experim
data. For completeness we also include the analytical res
for the twist soliton:2,8

a i
twist5

1

2K t
@A~9K t1K6!~K t1K6!23K t2K6#, ~32!

- FIG. 4. The reduced resonance frequenciesa i ~17! anda' ~18!
as functions of temperature. Splay-soliton transverse resona
four upper solid lines and experimental pointss ~Ref. 6!, n ~Ref.
10!, and L ~Ref. 23!. Splay-soliton longitudinal resonance: fou
lower solid lines. Twist-soliton transverse resonance: four up
dash-dotted lines and experimental points1 ~Ref. 24! andh ~Ref.
23!. Twist-soliton longitudinal resonance: four lower dash-dott
lines and experimental points3 ~Ref. 5! and , ~Ref. 6!. In each
case there are four theoretical lines, which in order of decreasina
correspond toF1

a50 and weak coupling,F1
a50 and gap enhance

ment,F1
a521 and weak coupling, andF1

a521 and gap enhance
ment. Good agreement between theory and experiment is achi
with F1

a521 and weak coupling except for the high-temperatu
transverse splay data. The effect of strong-coupling correction
shown atT/Tc51 where the lower ends of the bars correspond
g52 and the upper ends tog54. The experimental data is plotte
with higher resolution in Fig. 10.
4-4
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a'
twist5

K6

K61K t
. ~33!

The reduced frequency shiftsa i ~17! anda' ~18! depend
only on the ratios of the hydrodynamic coefficientsKb , Ks,
K t , K5, andK6. ~Note that the absolute magnitudes ofKi ’s
andld define length and energy scales that do not affecta i
or a' .) In the weak-coupling approximation the ratios
Ki ’s are functions of an infinite set of Fermi-liquid param
etersF j

s andF j
a , with j 51, 3, 5, etc.16 Here we neglect all

the coefficients withj .1 since they are unknown. ForF1
s

we use the value by Greywall25 at the melting pressure,F1
s

514.5. However, the dependence onF1
s is weak. For ex-

ample, the variationF1
s514.561 shows up only in the

fourth decimal ofa at T50.8Tc . In terms of pressure, th
maximum difference ina between 2.6 and 3.4 MPa is 1%
temperatures higher than 0.5Tc . The valueF1

a521 was
taken from Ref. 26 and it is also consistent with Ref. 27.
order to see the effect ofF1

a we also usedF1
a50. It can be

seen in Fig. 4 that this shifts the resonance frequency u
temperatures belowTc .

There are no quantitative calculations of strong-coupl
effects in theA phase at a general temperature. In order
get some idea how strong coupling could affect the soli
frequencies, we use a ‘‘trivial strong-coupling’’ model deve
oped by Serene and Rainer28 for the B phase. In this mode
the weak-coupling energy gap is multiplied by a factor th
depends on the temperature and on the jump of the spe
heatDCB /Cn at T5Tc . This dependence is tabulated in Re
28. We adapt this model to theA phase by calculating the
multiplying factor using the same table but substituti
6
5 DCA /Cn in place of DCB /Cn , and using extrapolation
when needed. We takeDCA /Cn from measurements b
Greywall.25 It can be seen in Fig. 4 that the gap enhan
ment, which affects only intermediate temperatures, ha
smaller effect than the change ofF1

a .
In the limiting caseT→Tc the reduced frequenciesa i and

a' are independent of any parameters appearing in
weak-coupling model, including also the gap enhancem
This is a consequence of the Ginzburg-Landau expan
that gives to the parametersKi the ratiosKb :Ks:K t :K5 :K6
5g:1:1:2:(g11). The only free parameter here isg,
which in the weak coupling~with or without gap enhance
ment! has the valueg53. This value is changed only whe
nontrivial strong-coupling corrections are included. T
‘‘weak-coupling-plus’’ model by Serene and Rainer29 gives
an estimateg'3.12. Figure 4 shows the reduced frequenc
corresponding tog52 andg54. We see that this variation
changes the splay solitona' less than 3% but for the twis
soliton the effect is ten times larger.

There is rather good agreement between the experim
and the theory corresponding to weak coupling andF1

a5
21. Equally good agreement is achieved with gap enhan
ment andF1

a'20.7. The longitudinal twist data is a stron
indication that the deviation from the weak-coupling val
g53 is small, as predicted by Serene and Rainer.29 The only
major difference between theory and experiment exists in
transverse splay-soliton frequency at high temperature
09450
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seems very difficult to improve the agreement in this case
any change of the parameters in the theory above sincea'

splay

at Tc is effectively fixed. On the experimental side, one po
sibility is that the field is not precisely in the plane of th
soliton in the measurements. This would add a small tw
component to the splay soliton and thus shift up t
frequency.8 Another possibility is that the inclusion of relax
ation mechanisms could shift the calculated resonance
quency, as will be discussed in Sec. VI.

At Tc we find the eigenvaluesa i50.388 anda'50.672
for g53. These differ slightly from the variational results b
Maki and Kumar8 that are 0.403 and 0.677, respectively.

V. ABSORPTION AND HIGHER MODES

Here we calculate the intensity of the principal solito
peak and analyze the absorption at other frequencies.
planar objects intensities~22! and~23! are most conveniently
expressed in the form of an absorption thicknesssk , which
equalsQk divided by the area of the planar object,

sk5
Qk

A
, ~34!

for each modek. The absorption thicknesses in the lowe
eigenstate are plotted in Fig. 5.

The absorption for a twist soliton can be calculated a
lytically. Substituting the eigenfunctionc5c1sechmaz
into Eqs. ~22! and ~23! and using u5c2
2m'sgn(z)arccos(sechaz) ~Refs. 8 and 2! we find

si
twist5

ApG2S m i

2 DGS m i1
1

2D
aG~m i!G

2S m i11

2 D , ~35!

FIG. 5. Absorption~34! of the principal soliton peak in four
cases. The parameter values correspond to weak-coupling a
MPa (F1

s514.45 andF1
a521). The numerical values atTc are

si
splay56.63jd , s'

splay57.35jd , si
twist58.64jd , ands'

twist512.02jd .
4-5
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R. HÄNNINEN AND E. V. THUNEBERG PHYSICAL REVIEW B68, 094504 ~2003!
s'
twist5

Ap412m'G~m'!

aGS m'1
1

2D . ~36!

HereG is the Gamma function and

a5Ald~K61K t!

K6K t
, ~37!

m i5
1

2 SA9K t1K6

K t1K6
21D , ~38!

m'5
K t

K61K t
. ~39!

In order to get all the resonance modes, we discretize
space as discussed above (xi52L/21Li /N, i 50, . . . ,N,
for twist soliton replacex by z). This means that Eqs.~15!
and ~16! turn into a matrix eigenvalue problem. This can
solved by standard library routines for matrices of reasona
size. This gives all the frequencies, including the fundam
tal one ~31!. However, the higher modes extend over t
whole interval, and it is important to fix boundary conditio
for them. We require zero derivative ofc at x56L/2. This
can be justified by considering a lattice of solitons. The g
eral eigenfunctionsc of Eqs.~15! and~16! are of the Bloch
form, but only strictly periodic functions lead to nonze
absorption in Eqs.~22! and ~23!. The unit cell of a soliton
lattice x52L/2, . . . ,3L/2 consists of two solitons locate
aroundx50 andx5L. The vectorsl̂ and d̂ have the sym-
metries l̂(L/21x)5 l̂(L/22x) and d̂(L/21x)5d̂(L/22x).
This implies that the eigenfunctions can be classified as s
metric or antisymmetric~with respect tox5L/2). The sym-
metric solutions havedc/dx(6L/2)50, and the antisym-
metric solutions can be neglected since they do
contribute to the absorption.

The results for the frequencies and intensities of
higher modes are shown in Fig. 6. As expected, the hig
modes depend on the sizeL of the system used in the calcu
lation. The modes seem to appear as pairs above the
peak. The bulk peak also seems to consist of two peaks
do not appear exactly ata51 due to finiteL. In fact, the
finite L corresponds to a periodic lattice of solitons, whi
should give rise to peaks that are analogous to the Br
peaks in the x-ray scattering from periodic solids. Su
peaks are indeed seen experimentally in the case of a vo
sheet, where a nearly periodic arrangement is automatic
generated.30 The observation of the peaks depends ess
tially on dissipative effects, which broadens the peaks. T
will be discussed in the following section.

VI. THE EFFECT OF DISSIPATION

There are two sources of dissipation that are important
solitons. The nonequilibrium between normal and superfl
magnetizations is the main relaxation mechanism in hom
geneous superfluid3He.31–33 In inhomogeneous situation
the nonequilibrium between normal magnetizations at diff
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ent locations causes relaxation via spin diffusion. We stu
these two mechanisms below, the latter in the case where
inhomogeneity arises from the soliton. We neglect extrin
effects such as the inhomogeneity caused by nonunif
magnetic field. We also do not consider dissipation caused
orbital motion. According to the estimation in Ref. 19, this
important only at temperatures very nearTc , region which is
vanishingly small on the scale of Fig. 4.

Our treatment of the dissipation is purely phenomenolo
cal. For normal-superfluid relaxation we use the model
veloped by Leggett and Takagi, which is extensively d
scribed in Ref. 33. For the relaxation of spatial
nonequilibrium magnetization we use simple diffusion equ
tion. This approach can be correct only when the mean
path of the quasiparticles is smaller than the thickness of
soliton, and therefore it necessarily fails at low temperatu
where the mean free path diverges. Our treatment also
glects the tensor character of the spin-diffusion coefficie
as well as the anisotropic energy gap with varying anisotro
axis l̂(r ), which leads to Andreev reflection of the quasipa
ticles.

In order to treat the relaxation, the spin polarizationS is
divided into a superfluid~pair! part Sp and a normal~quasi-
particle! partSq5S2Sp . Both parts have separate equatio
of motion

Ṡq5gSq3S B2m0g
F0

a

x0
SpD 1

1

t
@~12l!Sp2lSq#1k¹2Sq ,

~40a!

Ṡp5gSp3S B2m0g
F0

a

x0
SqD 2

1

t
@~12l!Sp2lSq#2d̂3

d f

dd̂
,

~40b!

FIG. 6. The higher modes in the case of transverse resonan
a splay soliton. The length used in the calculation isL550jd in the
main frame whereas the inset also contains the points foL
5250jd . In both cases the lattice spacing of the discretized lat
is 0.1jd . Other parameters are weak-coupling at 3.4 MPa (F1

s

514.45, F1
a521) and temperatureT50.95Tc .
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ḋ̂5gd̂FB2m0g
F0

a

x0
Sq2m0gS F0

a

x0
1

1

lx0
DSpG . ~40c!

Except the spin-diffusion termk¹2Sq , these equations
are the same as in Ref. 33. Herex0 is the susceptibility in the
absence of Fermi-liquid effects. As above,x is the suscepti-
bility in the normal state, so thatx/x051/(11F0

a). The
functionl(T/Tc) is defined as the equilibrium fraction of th
superfluid magnetization, and is given by Eq.~4.23! in Ref.
33. The Leggett-Takagi relaxation timet describes local re-
laxation of Sp and Sq to their equilibrium values. The spin
diffusion appears via termk¹2Sq in the equation forṠq
~40a!. In the normal state the spin-diffusion constantk is
related to the spin-diffusion timetD by34

k5 1
3 vF

2~11F0
a!tD , ~41!

wherevF is the Fermi velocity. We use this parametrizati
also in the superfluid state. Note thatk is defined as the
spin-diffusion constant forSq , so that the effective diffusion
constant for the total magnetizationS is (12l)k.

We continue by writing the equations for variablesd̂, S,
and the deviation from local equilibrium

h5Sp2lS. ~42!

Similarly, as in Sec. II, we linearize the equations a
assume harmonic time dependence. We use the fact thl z
50 in solitons. As a consequence, the transverse and lo
tudinal modes separate at any fieldB0. Differing from Sec. II
we introduce dimensionless quantities by definingS6

5(V2/ldv0)(Sx86 iSy8) and h65(V2/ldv0)(hx86 ihy8).
For transverse oscillations we get the equations

v

v0
S65F611 i ~12l!

k

v0
¹2GS6

2 i
k

v0
¹2h67

V2

v0
2

e6 iu~D1U'!dz7
B6

B0
,

~43a!

v

v0
h65S 6

1

11F0
a

2
i

v0t
1 il

k

v0
¹2D h6

2 il~12l!
k

v0
¹2S6

7~12l!
V2

v0
2

e6 iu~D1U'!dz ,

~43b!

v

v0
dz5

1

2
~S2eiu2S1e2 iu!1

x

2lx0
~h2eiu2h1e2 iu!

1
1

2B0
~B1e2 iu2B2eiu!. ~43c!
09450
gi-

The full solution of this problem can be written as a fiv
component vectorc5(S2 h2 dz h1 S1)T5( icic i , where
the c i ’s satisfy the homogeneous equation whereB650.
The eigenvaluesv i of the homogeneous equation are no
complex valued, and the eigenvectorsc i are not orthogonal
to each other. In order to solve for the absorption spectr
we find that the following adjoint eigenvalue problem:35

v

v0
S65F611 i ~12l!

k

v0
¹2GS6

2 il~12l!
k

v0
¹2h67

1

2
e7 iudz , ~44a!

v

v0
h65S 6

1

11F0
a

2
i

v0t
1 il

k

v0
¹2D h6

2 i
k

v0
¹2S67

x

2lx0
e7 iudz , ~44b!

v

v0
dz5

V2

v0
2 ~D1U'!@e2 iuS22eiuS1

1~12l!~e2 iuh22eiuh1!# ~44c!

has the same eigenvaluesv i as the homogeneous ve
sion of problem ~43! and that the eigenvectorsc i

5(Si
2h i

2dz,i h i
1 Si

1)T are orthogonal toc j ’s:

E c i
Tc jd

3r 5d i j . ~45!

When deriving this we have assumed zero derivate for
wave functions far from the soliton by considering a latti
of solitons as was discussed in Sec. V. The power absorp
can now be written as

P~v!5
1

2
gvE Im~B8•S8!d3r

5
xB0v

4m0
(

j
ImFcjE d3r ~B2* Sj

21B1* Sj
1!G ,

~46!

where the coefficientscj are given by

cj5
g

v2v j
E d3r FB2Sj

22B1Sj
1

1
1

2
~e2 iuB12eiuB2!dz, j G . ~47!

We observe that the eigenfunctions are not symmetric w
respect to the center of the soliton. This apparently is cau
by the spin-diffusion term.

In the hydrodynamic limit wherevt!1 one may solve
h6 from Eq. ~43! and to linear order int

h652tl~12l!k¹2S66 i t~12l!
V2

v0
e6 iu~D1U !dz .

~48!
4-7
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If we additionally ignore the term¹2h6, the equations for
the three-component vector (S2 dz S1)T read

v

v0
S65F611 i ~12l!

k

v0
¹2GS6

7
V2

v0
2

e6 iu~D1U'!dz7
B6

B0
, ~49a!

v

v0
dz5

1

2
eiuF12

tx~12l!k

x0
¹2GS2

2
1

2
e2 iuF12

tx~12l!k

x0
¹2GS1

2 i
txV2~12l!

x0v0l
~D1U'!dz

1
1

2B0
~B1e2 iu2B2eiu!. ~49b!

The homogeneous adjoint problem for this is given by

v

v0
S65F611 i ~12l!

k

v0
¹2GS6

7
1

2 S 12
tx~12l!k

x0
¹2D ~e7 iudz!, ~50a!

v

v0
dz5

V2

v0
2 ~D1U'!~e2 iuS22eiuS1!

2 i
txV2~12l!

x0v0l
~D1U'!d z . ~50b!

The equation for the power absorption does not need
modifications. One must be careful since the validity reg
of the hydrodynamic approximation is not very large. F
temperatures nearTc one must, for typical values oft, have
B0&15 mT. We mainly used the hydrodynamic approxim
tion for checking our calculations in the limit oft→0.

For longitudinal case, whereB85B8ẑ iB0, we also define
dimensionless quantities by writingS85 ẑldSz /V, h8

5 ẑldhz /V, andd85duẑ3d̂0. The equations of motions ar

v

V
Sz5 i ~12l!

k

V
¹2Sz2 i

k

V
¹2hz2 i ~D1U i!du ,

~51a!

v

V
hz52 il~12l!

k

V
¹2Sz2 i S 1

tV
2l

k

V
¹2Dhz

2 i ~12l!~D1U i!du , ~51b!

v

V
du5 i S Sz1

xhz

lx0
D2 i

gB8

V
, ~51c!

and the homogeneous adjoint problem for this is given b
09450
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v

V
Sz5 i ~12l!

k

V
¹2Sz2 il~12l!

k

V
¹2hz1 i du ,

~52a!

v

V
hz52 i

k

V
¹2Sz2 i S 1

tV
2l

k

V
¹2Dhz1 i

x

lx0
du ,

~52b!

v

V
du52 i ~D1U i!@Sz1~12l!hz#. ~52c!

Power absorption for longitudinal case is given by

P~v!5
xVv

2m0g (
j

ImS cjE B8* Sz, jd
3r D , ~53!

where thecj ’s are the coefficients of the full solutionc
5(Sz hz du)T5( j cj (Sz, j hz, j du, j )

T and given by

cj5
igB8

v j2vE du, jd
3r . ~54!

Similar to the transverse case one could write the hydro
namic equations using onlydu andSz .

The numerical solution for these different eigenval
problems is obtained by dividing the calculation lengthx5
2L/2, . . . ,L/2, for example, to 1000 points and approxima
ing the spatial derivatives by differences. The eigenval
and vectors of the resulting sparse 500035000 ~or in the
longitudinal case 300033000) matrixA are then solved by
MATLAB . We make use of sparse matrices and calculate
mally only 20 lowest eigenvalues with Re@vk#.0 that give
the main contribution to the absorption spectrum. The co
plex mode frequenciesvk are related to the reduced fre
quency shiftsak as given by Eqs.~17! and ~18!.

Additional parameters appear in the calculation compa
to the dissipationless case. The most crucial ones are
relaxation timest andtD . The Leggett-Takagi timet can be
extracted from the width of the bulk peak. Measurements
longitudinal and transverse resonances are in g
agreement.36 We have reanalyzed the data by Gullyet al.36

including strong-coupling corrections as described in Sec
and get the fitt5@1.7016.71(12T/T c)#(11F0

a)1027 s in
the range ofT/Tc50.78–0.98. We fixF0

a520.746. For the
spin-diffusion coefficientk we use the valuekT251.1
31025 mK2/s from Refs. 37 and 38. This corresponds to t
spin-diffusion timetD51.2531027T22 mK2 s. A few ab-
sorption spectra are plotted in Figs. 7–9.

The effect of the normal-superfluid relaxation seems to
simple line broadening. In the transverse resonance the
width measured on thea' scale is inversely proportional to
the magnetic fieldB0 for B0@Bd . This is caused byi /(v0t)
term in Eq.~43b!. There is no field dependence in the long
tudinal resonance since Eqs.~51! do not containv0. In the
longitudinal case the linewidth on thea scale has no strong
temperature dependence and approaches a finite con
whenT→Tc . In the transverse case the linewidth on thea
scale vanishes asT→Tc . All these characteristics are th
same as predicted for the bulk peaks.
4-8
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The effect of spin diffusion is more complicated. In add
tion to broadening, it shifts the principal soliton peak
higher frequencies. Since the spin diffusion is due to in
mogeneous texture, its strength in the transverse case is
tained by comparing the termi (12l)(k/v0)¹2S6 with the
term (V2/v0

2)exp(6iu)(D1U')dz in Eq. ~43a!. Therefore
the effective diffusion constantkeff

' 5(12l)kv0 /V2 is lin-
early proportional to the magnetic field. As a conseque
also the reduced frequencya' of the satellite peak is field
dependent. WhenB055 mT the effect of diffusion is already
quite large atT50.95Tc and the soliton satellite peak is a

FIG. 7. Absorption spectra for transverse twist soliton~dash-
dotted lines! and splay soliton~solid lines! at T/Tc50.92, 0.95, and
0.97 when L550jd , B053 mT, t5@1.7016.71(12T/Tc)#(1
1F0

a)1027 s, and tD51.2531027T22 mK2 s. Other parameters
are obtained using weak-coupling and pressure of 3.4 MPa
F1

a521 andF0
a520.746.

FIG. 8. Transverse absorption spectrum for a twist soliton aT
50.75Tc and B0528.4 mT ~solid line!. Other parameters are th
same as in Fig. 7. The effect of the two dissipation mechanism
demonstrated by settingt50 ~dash-dotted line! andtD50 ~dashed
line!.
09450
-
ob-

e

most smeared out. In the longitudinal case there is no fi
dependence and the effective diffusion constant reduce
keff

i 5(12l)k/V. In both transverse and longitudinal cas
the effective diffusion coefficientskeff

i andkeff
' diverge when

T→Tc , asV→0.
The relative contributions of normal-superfluid relaxati

and spin diffusion are illustrated in Figs. 8 and 9, where b
are separately shut off by settingt50 or tD50. It can be
seen that the broadening of the longitudinal satellite pea
mostly caused by normal-superfluid conversion atT
50.95Tc . In the transverse case at high field the spin dif
sion becomes the dominant relaxation mechanism, as we
approachingTc . In uniform order parameter the width of th
bulk peak comes solely from normal-superfluid relaxatio
Our soliton lattice has many higher peaks in the absenc
dissipation, but dissipation seems to remove them. Note
the higher peaks are mostly suppressed by spin diffusio
the case of Fig. 8 but by normal-superfluid relaxation in t
case of Fig. 9.

The relatively high field in Fig. 8 has been chosen
allow a comparison to the spectrum of Hakonenet al.24 The
shape of the twist-soliton spectra are very similar even if
temperature is quite low, where our modeling of the sp
diffusion is under suspect. Further spectra at lower field
shown by Partset al.23 The comparison to Ref. 10 is a dif
ferent case. In this experiment such a dense soliton lat
was created that no bulk peak was observable. Avenelet al.5

and Gould and Lee6 show soliton spectra measured b
sweeping temperature. In all cases a proper compariso
our calculations would require first estimation of the dens
of solitons and then correcting our calculations for that d
sity, which we have not done. What we can state that th
seems to be no obvious contradictions between theory
experiment concerning the linewidth.

A summary of our results atB053 mT is shown Fig. 10.
We see that the frequency of maximum absorption is shif

th

is

FIG. 9. Longitudinal absorption spectrum for a splay soliton
T50.95Tc ~solid line!. There is no dependence on the magne
field, and other parameters are the same as in Fig. 7. The effe
the two dissipation mechanisms is demonstrated by settingt50
~dash-dotted line! andtD50 ~dashed line!.
4-9
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R. HÄNNINEN AND E. V. THUNEBERG PHYSICAL REVIEW B68, 094504 ~2003!
towards higher frequencies, especially at temperatures
Tc . This alleviates the disagreement found between diss
tionless theory and the experiment by Gould and Lee6 in the
transverse mode of splay soliton. However, the experime
data does not show any sign of the divergence atTc predicted
by our model. The shift of the resonance frequency res
from spin diffusion. For the longitudinal mode it is fiel

FIG. 10. The resonance frequencies and linewidths as a func
of temperature atB053 mT. The solid lines give the frequency o
maximum satellite absorption, the dash-dotted lines 75%, and
ted lines 50% of the maximum. The dashed lines give resona
frequency in the absence of dissipation. Other parameters aL
550jd , t5@1.7016.71(12T/Tc)#(11F0

a)1027 s, tD51.25
31027T22 mK2 s, pressure 3.4 MPa (F1

s514.45, F1
a521, and

F0
a520.746 and weak-coupling!. The experimental points are th

same as in Fig. 4.
3

c

er

ys
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independent, but for the transverse mode it increases
increasing field. In high field this shift can be substant
even atT'0.7Tc , see Fig. 8. This poses a problem since
field-dependent shift has been observed experimentally. T
is the case particularly for the transverse mode of twist s
ton measured atB059.9 mT (h) ~Ref. 23! and 28 mT
(1).24 Similar evidence for transverse mode of splay solit
measured at 2.5–3.7 mT (s) ~Ref. 6! and at 15–20 mT (n)
~Ref. 10! is not so clear since the latter data is measu
under different conditions, as discussed above.

VII. CONCLUSIONS

The frequencies of soliton satellite peaks in the NM
spectrum are calculated at all temperatures. The agreem
of dissipationless theory with experiments is very goo
However, there is a small difference in the transverse-m
frequency of a splay soliton nearTc . This difference is partly
explained by taking into account spin diffusion. The sp
diffusion shifts up the reduced frequenciesa at high fields,
which has not been observed experimentally. We hope
new experiments could clarify this problem. We also po
out the relatively narrow longitudinal line of the splay so
ton, which has not been studied experimentally.

It would be of interest to extend the present calculatio
to vortex lines in3He-A. This requires two-dimensional ca
culation and thus would be computationally much more
manding than the present one.
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