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Optical symmetries and anisotropic transport in high-T. superconductors
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A simple symmetry analysis of in-plane and out-of-plane transport in a family of high-temperature super-
conductors is presented. It is shown that generalized scaling relations exist between the low-frequency elec-
tronic Raman response and the low-frequency in-plane and out-of-plane conductivities in both normal and
superconducting states of the cuprates. Specifically, for both normal and superconducting states, the tempera-
ture dependence of the low-frequenBy, Raman slope scales with tfeeaxis conductivity, while theB,q
Raman slope scales with the in-plane conductivity. Comparison with experiments in the normal states of
Bi-2212 and Y-123 implies that the nodal transport is largely doping independent and metallic, while transport
near the Brillouin Zone axes is governed by a quantum critical point near dgpi@22 holes per Cup
plaquette. Important differences for La-214 are discussed. It is also shown tlahxieeconductivity rise for
T<T, is a consequence of partial conservation of in-plane momentum for out-of-plane transport.
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[. INTRODUCTION directly test whether transport in the plane is intimately tied
to out-of-plane transport.
The strong anisotropy of in-planek) and out-of-plane A behavior similar to the resistivity anisotropy is reflected

(c) transport in the cuprate systems revealed by anglein electronic Raman-scattering measurements when compar-
resolved photoemission spectroscddRPES, NMR, resis- ing the temperature dependence of the low-energy con-
tivity, Hall, Raman, and optical conductivity measurementstinuum measured irB;, polarization orientations, which

is as unresolved and longstanding a problem as supercondygroject out charge fluctuations near the BZ axed g con-

tivity itself.1~® As a function of hole doping per CyO figurations, which probe charge fluctuations along the BZ
plaquettep the ab-plane resistivityp,,(T) [Fig. 1(a)] shows diagonals. Hacklet al?® and Blumberg and Kleft have

a metallic temperature dependenaip(dt>0) for a wide pointed out the close connection betwdp Raman and in
range of doping while the-axis resistivityp.(T) [Fig. 1b)]  theab-plane conductivity. Opett al?® and Venturiniet al?®
varies asT" with an exponent that changes from 2 te 2 as  compared the Raman relaxation rate in each channel, defined
p decreases. The resistivity ratig(T)/p,(T) is large and as the inverse of the slope of the low-energy Raman response
becomes increasingly temperature dependent in(tadle- Fi2=IimQAO[aX’;’V(Q,T)/&Q]‘l. For both YBaCu;O;_ 5
doped cuprate systems forp below =0.22 at low
temperature$:®

o0

It was pointed out early on that tleeaxis properties pro- g (B) \12;:
vided an useful spectral tool to examine in-plane charge & - 48 3
dynamics’ As a result, many approaches have been put for- % 4 T 1%
ward to address the nature of in-plane versus out-of-plane € S utt RO 1% g
transport in terms of anisotropy of the in-plane quasiparticle & |.<===="" [ ~ SR e
(gp) self-energies>, (k,T), c-axis hoppingt, (k), impurity T 001Dy © '
assisted hopping, interband transitions, or deconfinement of "g 4 oo TP © O 0010-}
electrons 2! Recently the issue of spectral weight transfers g [0~ Q- HOC" 1 & e I
in optical conductivity measurements brought about by su- %2 T A 1508
perconductivity has attracted a great deal of attenftidh. N T
The mechanism by which three-dimensiofD) supercon- 00 200 30 100 200 300 °

ducting phase coherence sets in is of continued interest and T [K]
debate which has been guided in a large part by the measure- FIG. 1. Experimental results for Bi-2212 fpgs(T) [panel(@],

ments of thec-axis transport properties. . .
. . . . pc(T) [panel(b)], the Raman-derive®,,,B;, qp relaxation rate

The ISSUe 1S still largely unsettled bas_,lcall_y due to therRl[paneI(c), panel(d)], respectively. Tghe s%lid lines, circles cor-
open question of whether electron hopping in the OUt'Of'reépond to underdoped samplgs<0.10) with T,~57 K; dotted
plane direction is coherefit™* If there were an at least par- jines squares correspond to optimally doped sampes0(15)
tial conservation of the in-plane momentum for qp tunnelingy,ith T.~92 K; dashed lines, diamonds correspond to slightly over-
along thec-axis, local density approximatiofLDA) (Ref.  goped samplesp=0.19) with T,~82 K; and the dotted-dashed
22) would indeed predict an interrelation betweefaxis |ines, triangles correspond to overdoped sampfes @.23) with
transport and the gp scattering rate close 1q0j in the  T_~52 K. All resistivities were measured in Ref. 4, except for the
Brillouin zone(BZ). What would be extremely useful would overdoped T,=52 K) sample which was measured in Ref. 5. The
be a transport measurement beside conductivity which mighRaman gp relaxation rates are taken from Ref. 25.
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(Y-123) and BiL,Sr,CaCyOg., 5 (Bi-2212), it was found that  shown in conductivity measurements are found in Raman-
for B,y symmetry,I'5 [Fig. 1(c)] approximately scales with Scattering measurements and vice versa.

pan(T) over a wide doping range, while f@;,, I'} [Fig. Shastry and Shraiman have noted the close similarity be-
1(d)] was found to cross over from metallic to insulator be-Ween the conductivity and the Raman response and have

havior forp less than~0.22. This crossover occurs at higher SU99ested that a scaling relation exists between the two
dopings than that usually attributed to the formation of a¥hich follow the same temperature and frequency
pseudogaf,and has recently been interpreted as evidencgependemég’
for an underlying quantum critical point lying near,
=0.22 of an unconventional metal-insulator transition
(MIT).28

At low frequencies for underdoped systemas,(T) for
Y-123 and YBaCu,Og (Y-124) decreases rapidly with de- with A a constant independent of frequency and temperature.
creasing temperatufé.From this a pseudogap has been in-This Shastry-ShraimaSS relation holds if the gp self-
ferred and well documented. A much weaker spectral Weighénergyz is independent ok and has been shown to be exact
reduction is seen for La,Sr,CuQ, (La-214. Contrary to  for both Falicov-Kimbaff® and Hubbard® models in the
the out-of-plane conductivity, it is widely believed that there limit of large dimensions where the self-energy and vertex
is no direct indication of a pseudogapdn,,.?° The apparent corrections are local. Generally though dnglependence of
discrepancy between the weak dependence with temperatute and/or the irreducible Raman or current vertices invali-
of the ab-plane optical sum rule compared to the rapid de-dates the SS scaling relation making it inappropriate for
crease at low temperature of the integrateakis conductiv- ~ Strongly anisotropic systems such as the cuprates.
ity may be related to the anisotropy tf. quever, an approximate scaling .relation may holq for

Raman scattering has been widely used to address ttf@rtain cases and one purpose of this paper is to point out
pseudogap. Recently, the presence of a pseudogap has b&&e of the connections betw_een th_e conductivity and Ra-
derived fromc-axis A;, Raman measurements in Y131 man response fpr stron_gly anisotropic systems and derive
much weaker signature of a pseudogap is seen inBihe generalized scaling relations. In particular we will, based on
channel in Y-123 and Bi-22123LIn optimal and overdoped symmetry arguments, determine that a variant of the SS re-

systems, pair-breaking features appear only when supercoleftion can be formulated to show that scaling relations exist
Y ' y Eor all temperatures separately betweeg, and 1F2R and

Qo' (Q,T)=AY"(Q,T), (@]

ducting coherence is established. Their location at differen oW d 1R £ th ¢
energies for different symmetry channels has been wel etweeno, an 1 @s a consequence ol the momentum
ependence ot (k), in-plane self-energy2(k), and a

documented and interpreted in terms of Cooper pairs havm§XLy2 energy gap (k). Comparison with the available data

Gy S;;T;Qew and - well-defined low-energy  dp .\ \'153 30 B-2212 in the normal state suggests that gp’s
excitations.™ Wh|le the Byg palr—preak|ng fgature appears |, ated near the BZ axes or “hot spots” become gapped
at and_ scales WItth for all dopings considered, closer above optimal dopirf§ while the gp’s located along the BZ
to optimal doping and for underdoped systems, loW-giagonals or “cold spots” are largely doping independent
frequencyB,4 spectral weight is lost at low temperatures andang' remain metallic. Thus the-axis transport is partially
the pair-breaking peak becomes difficult to distinguish fromjnfiuenced by a correlation gap near,0) because of partial
the background>*°~*This loss of spectral weight with tem- conservation of the in-plane momentum draxis transport
perature is very similar to the behavior seen in Kondo ancand not completely byg-axis diffusion. There are important
mixed-valent insulators and is indicative of gappeddifferences, however, with La-214. Various models for qp
excitations®® scattering as a function of doping are discussed, and it is
In the superconducting state, the temperature dependenémund that generally no single model can adequately capture
of the ab-plane low-frequencyor regular part of the dc  the complex nature of electron dynamics over a wide range
conductivity’®*! typically shows a peak around 35 K which of doping. Features of the theory in the superconducting state
is material dependent and has been attributed to the rapmgualitatively describe the behavior seen in thaxis conduc-
collapse of the gp inelastic-scattering rate belbwand the tivity, but there are important questions left unanswered. In
rise of the qp elastic scattering rate for IaW/>~°A similar  conclusion, experimental evidence in both normal and super-
peak seen in in-plane thermal-conductivity measurementsonducting states suggests that the in-plane momentum is at
was found to be sensitive to annealing conditifhhe least partially conserved in-axis transport over a very wide
c-axis low-frequency conductivity in YB&u;Og o5 mean-  doping range.
while does not show a peak in this region, but has an upturn The plan of the paper is as follows. Sections Il and Il
at temperatures below 25 K. The origin of the upturn is curpresent the formalism used and the results for the tempera-
rently not understood** The c-axis thermal conductivity ture dependence of the low-frequency in-plane and out-of-
was found to show a very weak peak also sensitive to anplane conductivity and Raman response in the normal and
nealing conditioné® Much less is known about the tempera- superconducting states, respectively, for the common model
ture dependence of Raman scattering in the static limit in thevheret, vanishes along the BZ diagonals, summarized in
superconducting state, although some theoretical treatmentise Appendix. The results are summarized and open points
have appearet:*® One would like to test whether features are discussed in Sec. IV.
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Il. NORMAL STATE of the band: y, z=d%€(k)/dk,dks.>* The vertices are

thus determined from the above band structure jgs
. =b,[cosk@)—cosk,a)],bsinka)sink,a) for B,g,B,gy ori-
The quantum chemistry of the tetragonal Cu-O SyStenlentations, respectively, while foc-axis A;,; Raman v

yields an out-of-plane hopping which is modulated by the ™ >

, a,,Cos cosk@)—cosk,a)]°. The prefactorsh,~t,b
in-plane_momentunt, (k) =t[ cosk@)—coska)’, as re- ~t’ZZ and((;C)EtOkéa)n also b?a] assumgd to be olnl m2iIdI
viewed in the Appendix. This form for the hopping has been_ "’ zz L ) y Y
widely used to study the penetration depihc-axis frequency dependent corresponding to off-resonant scatter-

conductivity” 415 and bilayer splitting? in ARPES! We ing and therefore are only multiplicative constants. Since the

note that inclusion of the Cu-O chains or O displacement§N€rgy range considered is very small in comparison to all
would lower the symmetry with the consequence that thetlectronic bandwidths involved, the assumption that and
out-of-plane hopping would no longer vanish along the BZaz; be constant is robust under all realistic circumstances.
diagonals which could only be noticeable at very low tem- As can be seen by the weighting of the vertices, we may
peratures. expect similar behavior for thB,, Raman and in-plane con-
In linear-response theory, expressions for the regular paductivity, and theB,4, c-axis A;; Raman, and the out-of-
of the conductivity and Raman response in the absence gflane conductivity as well. The former two quantities assign
vertex corrections are given #@sere and throughout we set weight around the Fermi surfa¢gS) to the diagonals while

A. Formalism

kg=h=1) the latter three assign weight along the zone axes.
In correlated electron systems the density of std&3S)
plays a strong role in determining transport properties. In
Qo' () dx Mott insulators, charge transport occurs via excitations
a8 ): f 0 — f(x+ Q)] across a Mott gap from the lower to upper Hubbard bands,
X’,,() 77 while in metallic systems the DOS near the Fermi level plays

the dominant role in low-frequency transport. The nature of
how the DOS evolves across a MIT has been an issue of
intense study for a large number of years as few exact results
are available. However, in the limit of large dimensions dy-
namical mean-field theory has a great deal of insight for
some model HamiltoniarS.Away from half filling the Hub-
bard model and the Falicov-Kimball both possess metallic
ground states. The DOS has a typical three-peak structure:
the separated upper and lower Hubbard bands and a qp DOS
tors. at the I_:ermi level em_erging_ from the Abrikosov-Suhl reso-
The inclusion of vertex corrections is crucial for satisfy- "@nce in the related impurity problem. As the system ap-
ing Ward identities for the conductivity and particle-numberProaches half filling and/or for larger values bf at fixed
conservation for the charge-density response. They conveftling, the gp DOS generally diminishes and vanishes in the
scattering lifetimes into transport lifetimes, and also add aMott insulating phase as spectral weight is transferred into
additional source of momentum and temperature dependené@ée Hubbard bands. Capturing this transfer in models in re-
to the corresponding response functions. Vertex correctionglistic dimensions is one of the most important and difficult
have recently been considered in fluctuation exchange agproblems in condensed-matter physics.
proximation(FLEX) treatments of the Hubbard modcfeand We thus consider charge transport in correlated systems
a spin-fermion modéf where it was shown that thB,,  having coherent gp's as well as large energy incoherent
Raman irreducible vertex is highly renormalized near thecharge excitations related to the Hubbard bands. We model
(7,0) regions of the BZ. In addition, vertex corrections havecoherent gp’s near the FS by a phenomenological
been calculated exactly in the limit of large dimensions formomentum-, frequency-, and temperature-dependent self-
the Falicov-Kimball model, where it was shown they areenergy derivable, in principle, from a renormalizable effec-
important in theAllg channel to properly .Iead to gauge in- tive low-energy theory: Gze(,)/?] k(w)sz(w,T)/[w—?k
variance and particle-number conservation but do not con- . — : i
tribute to other channef€ Generally, vertex corrections have — 1 1'k(@,T)]. Here e is the renormalized band structure,
not yet been generically or systematically investigated iZk(@.T)=[1=d%(@,T)/dw] " is the gp residue, and
two-dimensions and we thus neglect them since we are infk(»,T) is the momentum-, frequency-, and temperature-
terested in exploring simple symmetry properties of the varidependent gp scattering rate. The full Green’s function also

I
X D )
k Y

)GE(x)G@(xm). )
k

Heref is the Fermi functionGR* are the retarded, advanced
Green'’s functions, respectively =ede, /K, is the current
vertex for directiona given in terms of the band dispersion
€, and electron charge, andy, is the Raman vertex set by
choosing the incoming and outgoing light polarization vec-

ous experimental probes.
The current vertices are simplyx=v,sink.a), and
jﬁ=vz[cos(<xa)—cos(<ya)]2, wherev,~t and v,~t° have

includes an incoherent pa®;,. accounting for larger energy
excitations such as those involving the lower and upper Hub-
bard bands. In what follows we focus on low-frequency

only a mild momentum dependence. In the limit where thetransport in metallic phases and negl&t. and singulari-
incident and scattered photon energies are small compardigs of the self-energy indicative of an incipient phase tran-
to the bandwidth the Raman vertex is given as the curvatursition.
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Converting the momentum sum to an integral over anweight out regions of the FS where the scattering rate is

infinite band, we obtain in the limit of low frequencies

) = _ZNFJ anf(X)

IX
X<<mf
v

0 p(1—0.T)
ﬂX;VY(QHO,T)MQ

ZAX, DT (X, T)
Q2+[2I(x,T)]?/’

)

small, along the FS diagonals or cold spots. However, the
B4 andc-axisA;; Raman and the out-of-plane conductivity
assign no weight to the diagonals and thus will be governed
by the scattering at the hot spots.

Neglecting thek dependence of the qp residdg=Z, the
resulting integrals can be easily performed to give

NgZ2 1

’ — 2
R W SINCIS Dve oy rane ok ®

whereNg is the density of states per spin at the Fermi level

and(- - -y denotes performing an average over the FS. It can

be immediately seen that the SS relation &g.follows if I'
is independent of momentum, as it is in local theorr=¥:>!

In what follows we neglect specific features on and off the
FS(such as van Hoyeand approximate the 2D FS as a circle

and expand the-axis dispersion for smatﬁ to obtain
j*=vesin(¢),
jZ:vZCO§(2¢)!

XX conductivity,
zz conductivity,

B;y Raman, VB, b, cog2¢),

B,y Raman, VByg™ b, sin(2¢),

zz Ay Raman, YAngZZZazzCOSZ(ZW- (4

We note that thec-axis conductivity andﬁxﬁ\lg J9Q are

’ _ 2 N|:22 1_FC(T)
"Z*T)‘”erm[i To(T)

“ ( 1- ! ) ] @
VI+TH(MIT(T)

IXe,, (T Nez? 1
=b? 1- , (10)
0 2Iy(T) VI+T(T)IT(T)
WX, (T) . Nez?

1
Q) _b22Fh(T) 1+Fh(T)/Fc(T){l
— 1+ T(MIT(T)+T(THT(T)}.

(11)
These results for thab plane andc-axis conductivity have

given by the same expressions, in accordance with the gpeen derived sgveral times, most recentl_y in R_efs. 14 and 15.
scattering rate not having k, dependence. Therefore we However, here it can be seen that there is a direct connection

confirm the SS relation for the-axis A;; Raman and-axis
conductivity, respectively,

lim QUQZ(T)OC)(Zlg ZZ(Q,T), (5)
Q-0 :

independent of the form falr' .
At low temperatures we find from E@3),

between conductivities and Raman response functions. It is
clear that the function form for the scattering rate determines
the temperature dependence of all four response functions,
and that the SS relation E¢l) does not hold in general.

Early on, ARPES measurements yield€d<I"y, from
smeared spectral functions seen near the BZ axes compared
to the BZ diagonal$.However, recent ARPES measurements
indicated that bilayer splitting may have led to an overesti-

, s - 1,56 . . . < . . .
ol 5(T) icif Zﬁ(T) mation ofl'y,, _ but still the limitI' <"y, is a useful limit to
, =Ng > |55/, (6)  explore. In this limit the response functions are
ax"y (T30 i ) 20(T)
2
showing the interplay of anisotropies of the scattering rate o (T)=v,2: NeZ (12
and the \_/ertlces governing the response functions. xx 2T (T)TH(T)
The simple expressions far and dx”/9€) allow for a
straightforward comparison of models for the qp scattering ) 5 NgZ2
rate. We choose a generic model which describes strong scat- o AT)=v; AT (1)’ (13
tering weighted largely along the BZ axes plus a h
temperature-dependent scattering rate taken to be uniform It (T) 5
around the FS, X84 2 NgZ 14
Q) 2r (1)’

[(T)=TK(T)cos(2¢)+T(T). (7)
This form for the gp scattering rate has been widely em- <9XE29(T) 2 NgZ?2 15
ployed in a number of models differing in the representations 20 25 T(TI(T) '

of I';, andT"; constrained only to possess the full symmetry
of the lattice @,4)."°"**Further parametrizations of the an- This directly shows the similarity between iy, Raman
isotropy do not lead to appreciable differences. ForBpg  slope and the-axis conductivity, and,; Raman slope and
Raman as well as the in-plane conductivity, the verticeghe in-plane conductivity, regardless of the functional form
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chosen for two contributions to the gp scattering rate. Thus TABLE I. Summary of the low-temperature dependence of the
in this model consistent with experiments, a variant of the S$erse conductivities, the Raman relaxation rdt8s and the scat-

relation for the cuprates may be expressed as tering ratio defined in the text.
lim Qo (T)ecxg. (Q,T), Response MFL Hot spot Cold spot
Q-0 2
L3(T), 00 (T) T2 Toia T
i (™), 0T Constant T2
lim QU;Z(T)ocxglg(Q,T). (16) é( )R,azz( ) orlsl/;em o COn_s;Iant
Q-0 LIITS ol oy, T T T

This demonstrates how out-of-plane transport can be directly

inferred from in-plane optical transport measurements. Furghe estimated width of the spectral function measured by
ther, this confirms the behavior shown in Fig. 1, indicatingmomentum- or energy-dispersion curves in ARPES
that the in-plane momentum must be at least partially congyperiments. In both a cold spdf and a hot spot modéf,
served for transport perpendicular to the Guilanes. More- T (T) describes weakly renormalized gp scattering primarily
over, with Eq.(5) this indicates that the-axis Ajg Raman  gjong the FS diagonals generally of the form

should scale wittB;4 Raman,

— 2
i A, (@)% xb, (Q.T). 17) Pl =Fimp T/To, (18
@0 wherel’;,, represents elastic impurity scattering anhglis

Equationg(16) and(17) are the central results of this section. the energy scale of a renormalized Fermi liquid. The impu-

When and how might the scaling relations E¢6) and  rity scattering may be chosen to reproduce the extrapolated
(17) break down? Clearly these scaling relations result froml =0 resistivity andT, is a parameter to be chosen to fit a
the momentum dependence of the respective response vergkossover fromT? to T in the resistivity. In the hot spot
ces, and since they are dictated solely on symmetry groundsjodell’>” T',(T)= T T represents scattering with ex-
changes in how one represents the momentum dependenceabfange of antiferromagnetic reciprocal lattice momen@m
the vertices can only lead to qualitative effects. Howeverwhich has been widely employed to determine the optical
there are a number of important factors to consider. First, theonductivity, in-plane and Hall resistivity in relation to
inclusion of G, will change the scaling relations if there is ARPES. However similar behavior is also obtained for scat-
appreciable spectral weight near the FS, but if we restrictering in systems lying near a charge ordering instaBflioy
ourselves to metallic systems and low frequencies, then thesear a FS Pomeranchuk instabifiy.In the cold spot
changes are expected to be small. They might, however, bmodel® I',(T) is taken to be a constafit,, presumed to
large for a system lying near a quantum critical point and thearise from strongd,2_,2 pairing fluctuations, and has been
scaling relations may be violated. Next, relating thaxis  employed in several works to describe in-plane and out-of-
conductivity to theA,, ¢ axis andB,4 Raman requires that plane optical conductivity and magnetotransp6rt:16:18
thec-axis coherent hopping vanishes along the BZ diagonalddowever, the microscopic origin df,s is unclear in this
Deviations would come from incoherent diffusive hopping, model. In the marginal Fermi liquidMFL) model most re-
or more complex coherent hopping paths such as via theently described in Ref. 19,.(T)~T andI',(T)~const due
Cu-O chains in Y-123, and would result in a mixing in the to impurity scattering in correlated systems whereby strong
scaling properties for in-plane conductivity aBd, Raman  correlation near a pointlike scatterer induce real-space exten-
transport. Lastly, vertex corrections can appreciably alter theions of the impurity potenti&f
scaling relations. Ward identities can be useful for the con- Following Ref. 25, the “Raman-scattering raté”fj(T)
ductivity to show that vertex corrections vanish for afor each channel is defined as the inverse of the Raman slope
momentum-dependent self-energy, but no Ward identities e><1—*5(T)=[aX;’L(Q—>0,T)/aQ]*1 in order to obtain informa-
ist for Raman with crossed polarization vectors. For eX-ion on the single-particle scattering rate on regions of the FS
ample, vertex corrections may renormalize even-parity moselected by polarization orientatiops=1,2 for Bigog, re-

mentum charge verticekaman but not odd-parity current  gpectively. In the hot spot model we obtaiff~ T2 and
vertices(conductivity. If these scaling relations are found to R _5/4 respectively, while in the cold spot model we ob-

hold, they would imply that vertex corrections at low fre- 2

; . . tain I'f~const and'R~T, respectively. The MFL model
quencies and-axis hopping along the BZ diagonals may ieldleR~const andzl“R~'\/T respectively. None of the
play only a very minor role in determining low-frequency y 1 2 ' P Y-

models considered have presented analytic forms for the

transport. . . : .
P scattering rate as a function of doping, and presumably in
all modelsI',, would be expected to be small in overdoped
B. Transport models systems.
The scaling relations of Eq16) can be seen from Fig. 1 It is often useful to look at the *“scattering ratio”

to be qualitatively obeyed. We now consider several model$ X(T)/TX(T)~ po(T)/pan(T)~T~ ™. The models discussed
for I'y(T) andI'(T) to explore the scaling relations Eqgs. give m=1/2,3/4, and 1 for MFL, hot, and cold spot models,
(12—(15) to address the role of anisotropic gp scattering. Inrespectively. These preceding exponents are summarized in
all models,I'(T) andI'(T) are generally constrained by Table I. As can be seen from Fig. 1, all of these models can
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qualitativelydescribe the experimental results for overdoped
systems, but important deviations occur for optimal and un-
derdoped systems. The hot spot model yields a stronger tem-
perature dependence, however, than that seen foBige
Raman and-axis conductivity.

[T Y B
T

C. Pseudogap

3}
T

Scattering Ratios

The upturn of botH™,(T) andp.(T) at low temperatures
for optimal and underdoped systems is indicative of gapped
gp’s and connected to an anisotropic pseudogap largest near L . .
the BZ axis® A major issué' is whether the pseudogap is 5o 100 200 300 400
caused by pairing without long-range phase coherence or due TIK]
to loss of well-defined qp’s at the FS related to the formation . . . o
of  precursor Mot gap. or spndensi, andor chargey 1% 2 4100100 Lt e Sanan tered scaters
density wave states, for example. 12 ; § ' roop

In the former case, the superconducting gap amplitudécircles: m=0.36), optimally dopedsquaresm=0.76), slightly
closes aff* while strong phase fluctuations force the super-2vérdopeddiamondsm=0.614), and appreciably overdopéd-
fluid density to appear a, 62 |, more exotic phases emerg- anglesm=—0.13) samples shown in Fig. 1, respectively. The ex-

. . : | L

ing from Z, gauge theories, electrons fractionalize awayponelntm 's determined from a least-squares fitlto™.

from the BZ diagonals, spinons become deconfined, and hcif | tall t t the functi b tel
lons condense and become gapfieth these scenarios one or aimost all temperatures, the function can be accurately

might expect a feature in the spectra appearing at a higfeScribed as the previous results, EQIQ);(lS), with the
energies which merges into the superconducting feature &0!€ exception that; (T), Eq.(13), anddyg, (T)/9Q, EQ.
T.. Itis not immediately clear whether this occurs in Raman(15), are multiplied bye 2%s/T. Thus we note that if gp’s
data due to the nature of the 600 chpeak®® located near the BZ axis become gapped or lose their spectral
In the spin and/or charge precursor scenario, anisotropigeight at the Fermi level, th&,, Raman slope and-axis
spin-density wave and/or charge-density wave fluctuationgonductivity will show activated behavior while tiB, Ra-
strongly affect the integrity of gp excitations near the BZman slope and the in-plane conductivity would continue to
axes:®°" Strong electron and Umklapp scattering, due to theshow metallic behavior. This is qualitatively the situation
nearness of a nesting condition can drive FS topologicafound for doping levels beloy.~0.22 in all the cuprates.
changes near the hot spots which pres¥ree lower®® the
symmetry of the FS. D. Comparison with experiments
It is clear that the pseudogap is a manifestation of strong
correlations regardless of which scenario is considered. Th
we take a simple approach and relate the pseudogap to
correlation gap as a precursor to the Mott insulating phas
characterized by the development®f,.. The gapping can

The data for the Raman derived scattering ratio for Bi-

12 are shown in Fig. 2. The data are derived from the
feasurements shown in Fig. 1. The ratio derived from the
measurements on three differently doped samples of Y-123

thus be crudely understood as the loss of well-defined qp’ rl;1€<s(;])()v\\;\:]it;‘1n '::elgﬁpi-ralzt%rrfI1:c2Jr21a2p:)r;gcriztl;(ljysg%ztrlgt;gggleassyf

located near the+#,0) and symmetry related regions of the 4 . .
; ; ; .~ tems, in agreement with the results obtained for La-$14.
FS, implying that the coherent part of the Green's functlonFor decreasing doping in both Bi-2212 and Y-123, the ex-

iminish way from the BZ diagonal. . o .
d shes away from the diagona ponentm is positive and increases as the hot qp’s become

Therefore in what follows the role of anisotropy in the gp ) .
residueZ is explored in a simple effort to model the effect of gapped and the cold qp’s do not appreciably change. The

a loss of qp transport for the hot gp’s with decreasmg

Taking Z(T)=Z,e (Ea/NSCH a5 a phenomenological SL
model of angular dependent gapping of gp’s with an energy w2l
scaleEy, the integrals are straightforward and the result can %
be expressed analytically in terms of a degenerate hypergeo- &5l
metric function of two variables: é”
Q
U)QX(T),r?ngg(T)/(?Q Ng S
o, AT),0xe, (T)0Q  2U¢(T) 1t .
N r, E 100 200 300
TP
2 r{(m: T
X FIG. 3. A log-log plot of the data obtained in Ref. 25 for the
® (§ 12— Iy _ E) Raman derived “scattering ratiosl”i*/l“zR (defined in the tejtfor
N2 1y T/ YBa,CuyOg 5 (circles,m=1), YBa,Cu;Og g5 (Squaresm=0.71),

(19 and YBgCu,Og o5 (diamondsm=0.57), respectively.
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large variation of the data from the underdoped Bi-2212B,, Raman response would have a polarization component

sample is due to the small intensity at low frequencies fronperpendicular to the stripes and thus would project onto in-

which the slope is derived. Apart from this sample, howevercoherent gp transport channels while Bg, would have a

a power-law fit adequately describes the data for both comfinite projection of both the incident and scattering polariza-

pounds. Near optimum doping both MFL and cold spottion light vectors along a sector of coherent, conducting ex-

model give reasonable agreement for the scattering ratiéitations consistent with observations. These simple symme-

while on the underdoped side the cold spot model gives atfy considerations would change if the stripes were thought

exponent of 1 in agreement with the data on Y-123 and irfo be fluctuating in various different orientations or rotated

rough agreement with the data on Bi-2212. An exponentiaby 45°, as evidence suggests they might for more under-

dependence on temperature has been used in Ref. 4 for td@ped samples. More data and further calculations are essen-

resistivity ratio to determine the magnitude of a pseudogapiially needed to clarify this point. It is an important and open

for example. We note that the Raman measurements are nigsue to understand why this occurs for a wide range of dop-

yet of sufficient precision to determirig, from a fit since a  ing in La-214 and not Y-123 and Bi-2212.

straight line fit works well as shown in Fig. 2. The curvature ~We note that only limited experimental information exists

may be obscured by the small signals measured at low freconcerningc-axis Raman measurements due to the surface

quencies, however. More accurate data would be very usefuproblems, but recently Quiltgt al. have shown that the low-
Recent ARPES measurements have revealed that the diggquencyc-axis Raman spectral weight in YBau,Og de-

self-energy may not be as anisotropic as determined earligfetes as temperatures are lowef®th conjunction with the

due to the more accurate detection of bilayer splitting neagpectral weight depletion at low temperatures see g

the BZ axes® In addition, a more quantitative investigation measurements on the same compotirttie admittedly lim-

of the gp self-energy derived from recent ARPES measureited experimental evidence is also consistent wAtg ,, and

ments on overdoped and optimally doped Bi-22R2f. 66 B4 scaling. More data would of course be useful to check

has been used to argue that agreement with the magnitudieis further. In this regard, it should be mentioned that there

and temperature dependence of in-plane resistivity measurés recent evidence that tleaxis Raman may shed light on a

ments on similar compounds can only be obtained if theRaman activec-axis plasmorf?

transport scattering rate has no contributions filggand is

given solely by an MFT dependeriéen all regions of the

BZ. A similar conclusion has been reached regarding the lil. SUPERCONDUCTING STATE

self-energy and optical conductivity.t is, however, impor- A. Formalism

tant to note that the magnitude of the derived resistivity . . . .
We now consider how anisotropic transport in the normal

agrees with experiment to within a factor less than 2 for tat b flected in th ducti tate. |
temperatures between 100 and 300 K. A more or less isotrgz o May be retiected in the superconducting staté. in par-

pic gp self-energy cannot be reconciled with the Raman dat cSuIarI, \t/ye would I'!:edtp aEdd%eshs \I'éhe.thi: the vanantdof ;[he
unless vertex corrections are brought into play. This work is relation presented in E(L6) holds in the superconduct-

currently in progress. Ing state. . .
It is important to point out that the results obtained on In the absence of vertex corrections, the expressions for

La-214 are qualitatively different from Y-123 and Bi-2212 in the Raman response and the optical conductivity in the static

underdoped systenf&.For La, (St ,CUQ;, a clear Fermi- limit are given in terms of the Nambu Green’s functions as

liquid-like peak develops at low frequenciesthe B,, chan-

nel which sharpens as temperature is lowered so that
ax"(T)/dQ falls with decreasing temperature, similar to the
behavior ofthe B4 channelin Y-123 and Bi-2212. These
features appear more or less continuously with doping. How-
ever, the peak in th8,, channel seems to mimic they, +Gj3(k,x)2= G (k,x)?}. (20
response in Y-123 and Bi-2212. We note that this is consis-

tent with ARPES in which a more smeared spectral functio A Y e R S 1 L ~
is seen for ¢r/2,7/2) rather than £,0) crossing$® Recently Here AG(k'w)_llaiTo .G(k) 73— Ak Tl._GO(k’w) Tq
strong far-infrared peaks have been observeabiplane op- +Gl(k!“’) 71+ Ga(k, ) 75 \.N'th the renormalized quantities
tical respons® in La, ,Sr,CuO, for x=0.05-0.19 which Eietermmed fri)mNthe Pauli componsnts of th~e self-energy as
follow a dependence o consistent with a coexistence of ©=®~2o(k,0),e(k)=e(k)+23(k,@), and A(k)=A(k)
charge stripes and antiferromagnetic doméinsSimilar  +3,(k, o).

strong far-infrared peaks have also been observed in It is well known that vertex corrections appreciably alter
Bi,Sr,CuQ; (Bi-2201) (Ref. 71) and interprete® in terms of  universal results for transport properties and the Wiedemann-
instabilities of a Fermi liquid to charge ordering. While this Franz law ford-wave superconductofs-"°In addition, they
interpretation is still open to questions, both of these obserare crucially important for describing the back flow needed
vations can be reconciled with Raman-scattering measurée restore gauge invariance in the superconducting state and
ments if the stripes were aligned solely along the Cu-O bondppreciably alter the fully symmetrid,, response over a
directions. Whether the stripes are conducting or insulatingwide range of frequenci€$.Again we neglect them to ex-
and whether they are static or dynamically fluctuating, theploit simple symmetry considerations. Therefore we only

Ué,ﬁ(T)
ax’, (T)oQ

IR\ dxafoo
23 ( yﬁ)f o (k"
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considero,y,0,, and theB,4 andB,4 Raman response. The y2(K)A#(K)
reader is referred to Refs. 73—76 where these issues have Xry=( ——v—r— "),
v,p [ 2+A2(k)]v
been addressed at length. Y
The self-energy is usually broken into an inelastic term,
such as due to phonons or spin-fluctuations, and an elastic Caf_ v o(K)v g(K)A¥(K) -
term due to scattering from impurities3 =3 nelastic L= [2+A2K)]" | 22

+3elastic 77 gince the integrand in Eq20) is weighted out o
for small frequencies and sin& k,») coming from in- and the constart®”=2,0 for the Raman response and con-

. . S . _ductivity, respectively, due to the different coherence factors.
elastlti scattering are odd functions of frequency Wh'IeEquations(Zl) and(22) reduce to those found in Ref. 78 for
§g(k,9) is even, we only retaild. If one cpngders:lvi‘t’if the case of theb plane conductivity. The functions'7, are
impurity scattering in the Born or unitary limit, thex; 3 straightforward to compute for a cylindrical FS andqk)
can be neglected as well. However, generally in other limits= A ;cos(2p). For resonant impurity scatteringc€0), a
and in particular if the impurity potential is anisotropic as it =1/2b= —1/8y,, andvy, is determined self-consistently via
should be in correlated systems, one must keep these termg= /7" A /2 In(4Aq/y0).** Equations(21) and (22) then
as well’37477 yield

In the following subsection the role of disorder in deter-

mining the asymptotic low-temperature limit of the results w2 T2
functions is considered, and then in Sec. Il C, inelastic scat- oy (T<T*)= A + 2| (23
tering from spin fluctuations is used to determine the full T30 Yo
temperature dependence beldw.
2 2 2 T2
Uz Yo T
o T<T )= —2— —|1-—5—|, (29
B. Disorder ’ mmlo U|2= A(2) 12 7(2)
We first consider scattering from pointlike impurities to "
determine the low-temperature limit of the response func- XByg TeeT*)= Ne b2 W_ZT_Z 5
tions in the superconducting state. Fesvave impurity ETe) ( ) mhg 2 36 7% ! (29)
scattering w=w—Tg/(c?—g2), with go=21/(w/
Vw?—A?%(k)), T'=n;/7Ng, n; the density of impurities, P N 2 2 2
42 ; ; 1 F,270 m T
and ¢ the phase shift? The self-energy is determined self- 9(T<T*)= —bi—zln(4Ao/y0) 1- =,
consistently for temperatures beloli¥f ~n; due to the for- Q) Ao Ad 12 Yo
mation of a bound-state impurity band at the Fermi level. In (26)

this limit, the solution may be expanded for small frequen-
cies asw=aw+iy,+ibw? with a,b, and y, determined
from the impurity concentration and magnitude of the phas
shift*® Performing the standard integrals in Eg0) yields in
the limit of low temperature3 <T*,

wheren is the 2D electron density. Equatid23) for the
in-plane conductivity has been derived several tiffigs;"8 7
%nd Egs.(25) and (26) for the Raman slope are identical to
those found in Ref. 48. The result for the out-of-plane con-
ductivity for T=0 is also in agreement with the result from
Ref. 11, but the temperature dependent variation has not been
, N presented before. We note as in Refs. 33,43,48,73,78, and 79
0o g(T<T") N f dxﬁf(x)[ 2 Xy y e that both the in-plane conductivity and tBg, Raman slope
X"y, (T<T*)19Q - F ax | 70'a20 are universal numbers for resonant scattering independent of
the strength of the scattering, while both txaxis conduc-
byl Xoyr b 1 | Koy b tivity and theB,, Raman slope depend op,. The y, de-

3/2,0 52,0 pendence does not appear in txaxis conductivity if the
c-axis hopping is taken as a constant independent of direc-
tion around the F$'¥° The temperature dependencies are

15, , 5 positivefor both the in-plane conductivity and tii slope,
?a 70—3b3’o) but arenegative and identicalor the out-of-plane conduc-
tivity and theB,4 slope, giving a peak at zeffor the latter
5 , , o pair. We note that this result is in agreement with the rise of
—5a Yol7i20 the c-axis conductivity recently observed in YBaw;Og g5 at
low temperature8’
In the limit of higher temperatureg.>T>T* where the
' (2D DOS does not have an impurity induced weight at the Fermi
level and matches the DOS from the clean limit, the self-
consistency is not required for the self-energy and )
with the functions can be rewritten as

+x2

X

5
_ A2, 20x,01Xy,y'%a,B
S %Yot 750
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0, p(TF<T<T)
Xy (TH<T<T.)/9Q

N Jd af(x). 1
- F X (9)( m

Q—il7(x)

<Ua(k)vﬁ(k))
Y*(k)

|

X
Re{ WC—A(k)2

with 1/7(x) = —235(x). This is a generalization of the re-
sults obtained in Refs. 13,14, and 43 to the case of Ram

and optical conductivities. We note that fibwave supercon-
ductors in the resonant limit, the impurity scattering rate d
pends strongly on frequency,

Ur(ws0)= T80 1 28
T(w—0)= ,
20 n2(4Aq/w)
as shown in Ref. 43, which yields
0, g(TH<T<T) 4N TZJ e?
Xy (T*<T<T)I00] 72 Thg (€7+1)2
XIN%(4Ao/zTYH 8 Xr.%(ZT)
(29)
with the functions
v o(K)v g(K)
H7%«8(X)=Rel ——=), 30
(x) 0 (30)
HXv.»(x)=R 7 (31)
x*—A(K)?/
Performing the integrals for smatlgives
x2 5
HYo(x)={ ~° (32)
1
A_Oi BZg;
1
ZTAO, Oyx»
H7as(x) =1, (33)
> 0227

The remaining integrals in E¢29) can be easily performed,

2ne? [ T\? [4Ag
——|—] I =], ox,
3ml\ A T

! * < < =

Tapl T <T<Te) 147r2ne2u§( T>4 2(4A0)
— | — | N7 —, 057,
15mI'v2 \Ao T “

(34)
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4b§NF(T)2 2(4A0) 5
X (TH<T<T) 3r A T T
FTo) | 147%02NE [ T4 144,
T(A_O) In (T) Big-

(35
The expression for the in-plane conductivity was derived
in Ref. 43 but to our knowledge the other terms are new. We
note that the results far,, and o, in this limit differ from
those obtain in Ref. 14, where a frequency independent scat-
tering time was used rather than that of E28). As a con-

an

sequence they concluded that, ,AT)*ny,AT) with

e_nXXYZZ(T) the normal-fluid density which decreases uniformly

with temperature in contrast to experimefft&rom that they
concluded that the scattering time must be anisotropic. We
note that any frequency dependence of the scattering time
would qualitatively change this conclusion.

The results of Eq923) and(24) and(32) and(35) imply
that the SS relations in the normal state, Bd), hold in the
superconducting state. The exponent of the low-temperature
riseas well as the sign of the correctiao obey the general
scaling relation, following simply from the interplay of
anisotropies ofA (k) and the respective vertices.

Again these relations, Eq$23) and (24) and (32) and
(35), would be expected to be violated for the same reasons
discussed in the normal state in Sec. Il. However, additional
considerations should be mentioned here as well. It is well
known that at low temperaturds<T* theab-plane conduc-
tivity in Y-123 varies asT“ with an exponentr<1 (Ref. 4]
and notT? predicted by Eq(23), and has been found gener-
ally to be nonuniversal in the zer® limit.8* While vertex
corrections can address nonuniversal nunfBersd scatter-
ing away from the unitary limit changes from 148! sys-
tematic agreement has not been reached at low temperatures.
To address this discrepancy, recently Atkinson and
Hirschfeld have shown that a reducedb-plane conductiv-
ity emerges at low temperatures when real-space variations
of the order parameter in the neighborhood of the impurities
and impurity interference effects are considered in a semi-
classical Bogolubov—de Gennes framework. These effects
are not captured in the self-consist@ntatrix approach and
are thus beyond the scope of the present paper. It is not
immediately clear how the changes iny(T) are manifest
in other response functions considered in this paper and
how the derived scaling relations are affected. This work is
in progress. Our approach should be valid at not too low
temperatures where deviations of the conductivity from the
unitary limit results are found.

The response foflT<T, is calculated by numerically
solving Eg. (200 and the corresponding self-consistent
equations to determine the self-energies. The results for
aXX(T),anzg(T)/an, and chZ(T),anlg(T)/aQ are shown
in Figs. 4 and 5, respectively, for resonant scattering and
different values of the impurity scattering strength&\ .
Generally at higher temperaturds>T* all quantities in-
crease rapidly with temperature, rising @ and T* for
axx,aXBzg/aQ andozz,a)(Blg/&Q, respectively. The rise of

the c-axis conductivity and th&,; Raman slope at low tem-
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10 - ‘ . ‘ peak seen irab-plane measurements and the lack of peak
(A) i . . - )
e seen inc-axis measurements. Ref. 43 included inelastic scat
@ st ] tering from spin fluctuations in random-phase approximation
& s (RPA) to reproduce thab-peak in the conductivity observed
L Rt T in Refs. 40 and 41. In Refs. 14 and 43 it was shown that Eq.
0 ' ' ' ’ " (27) for the conductivities forT,>T>T* may be reex-
g ® pressed in terms of the normal gp density which can be gen-
e, 5 B eralized as
s ]
I o R A TR TR T ngg(T)ez_
% 0. 02 03 Tap(T)= (36)
T/Tc
with
FIG. 4. Temperature dependence of the in-plane conductivity
[pgnel(a)] and theBzg Raman s]opépanel(p)] for resonant scat- 1 V(K)o 5(K) o of
tering and different impurity scattering strength$'/A, ngbﬁ(T)z - dol R ———| )| ——
=0.004,0.008,0.016,0.024, and 0.0eolid, dotted, short-dashed, U= w=A(k) dw
long-dashed, and dotted-dashed linesspectively, forAy/T.=4. (37)
— 2 2 n_n 2 H H .
Hj;?]t(iii(:s_s Zr':'gv?va/Ao and x"=x"/Neb are the dimensionless projected normal quasiparticle density. The average
q ' derived from the frequency-dependerftw) and the super-
. . . conducting DOSN as
peratures shown in the insets of Fig. 5 are generally on the 9 (@)
order of a few percent for the parameters shown. This height
rises for smaller values df but onsets at smaller tempera- o J doN(w)(=df/ldw)m(w)
tures due to the concomitant reductionTii. In particular, T= . (38
the rise and the onset of the-axis conductivity low- f doN(w)(—dfldw)

temperature maximum for YB&u;Og o5 (Ref. 47) cannot be

adequately reproduced. There are as yet no Raman measutgmilarly one can reexpress the Raman slopes in the same
ments to compare to, and thus it would be extremely usefulaghion,

to have data on a wide range of compounds and doping

with

C. Spin fluctuations . yz(k)w
Ngp (M= | do| R ———xs (40)

levels as well as a systematic check of impurity doping ef- ax" (T)aQ=nR""(T)r (39)
7y ap
fects to test these results.
of
The different rate of descent of the response functions 2 AN
. . g w = A(k) w
below T, has an interesting consequence on the conductivity
the Raman projected normal gp density. Fod,a 2> gap,
from the results of Eq9428)—(31) the projected qp densities
at low T vary asT for ng";,n;’fz@ and T3 for néf),nsflg,
respectively. If the scattering time were independent of
frequency, them,, gives the full temperature dependence

and thUSUXX,ﬁngg/aQ would vary linearly with T and
azz,axglg/m would vary asT3. Reference 14 used this

result for o-,, and argued thal® accurately fit the data for
T>40 K, but they could not explain the rise at |ohwHow-
ever, the impurity scattering rate as well as the scattering due
to inelastic collisions, such as spin fluctuations, depend on
momentum and strongly depend on both temperature and
Te frequency. The latter is crucially needed in order to explain

FIG. 5. Temperature dependence of the out-of-plane conductivin® Peak in theab-plane conductivity. _ _
ity [panel(a)] and theB;; Raman slopdpanel (b)] for resonant References 42,43, and 74 utilized calculations of the in-

scattering ¢=0) and different impurity scattering strengtfiA elastic scattering due to spin fluctuations in the 2D Hubbard
=0.004,0.008,0.016,0.024, and 0.(eolid, dotted, short-dashed, model in the RPA folU =2t to describe the dc and IR con-
long-dashed, and dotted-dashed lipesspectively, forAy/T.=4. ductivities and the frequency dependent Raman response.
Here oo= mNre%2/A, and x”=x"/Ngb? are the dimensionless The lifetime calculated folJ =2t and A /T =3-4 (Ref.
quantities shown. Insets: low-temperature rise of beth and  83) was found to give reasonable agreement with the trans-

dx"19Q (normalized to their zero-temperature valuaith decreas-  port lifetime determined from conductivity measurements in
ing temperature. Y-123 (Ref. 41 and gave reasonable agreement with the
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ab-plane conductivity peaf® ab-plane IR conductivity at f(E —f(E a’
responsé? and simultaneously thab-plane IR and thé Xo(Q,iQ) =2 [ k2kN+q iS()—k(Jrlg) _(Ek)) :I(N+q
andB,4 Raman responses in Bi-221%We therefore use this k kg =k
approach to calculate the temperature dependence of the re- 1—f(Exsq)— F(Ep)
sponse functions for all temperatures bel®w [ OTE.. TE

In RPA, the self-energy., is given from the effective kgt =k
potentialV as l_f(Ek+q)_f(Ek)”

_ - — . (42
3 U2X0(q,iﬂ) IQ_Ek+q—Ek

V(q,iQ)) (41)

2 1-Uxo(qi)’ .
Here Ef= e+ Af and the coherence factors &g, =1

where U is a phenomenological parametave chooseU + € g€k Ay o/Ex-qExc. This yields a self-energy

=2t]. x0(q,iQ) is the noninteracting spin susceptibility,

~ . dx V”(q,X) Equ;o—’_ Equ;3+Ak7q;l _Equ;o—’_ Equ;3+Ak7q;l
Skiw)=- | 75 2 2E¢_q B grx—io  MOOHT(CERell- B gt X—iw
X[n(x)"'f(Ek—q)]} (43)
|
with n the Bose factor. ductivity [Fig. 7(a)] and theB,, Raman slopgFig. 7(b)]

The imaginary part of the, self-energy/(k,,T) nor- ~ Ppossess a peak nedr-0.3T; for I'/A,=0.004 which de-
malized to the hopping overlapas a function of frequency Ccreases in height and moves to higher temperatures for in-
and temperature for different points in the BZ is shown increasing impurity scattering. It is important to emphasize that

Fig. 6. Here we have used the band structgyeas in Eq.  this peak is not related to coherence effects and is a simple
(A4) in the Appendix witht'/t=0.45 and a fillingn=0.88,  balance of falloff of the inelastic-scattering rater and the

U=2t, and a d,2_,2 energy gap A.=Ag[coska) 9P DOS-Tand the rise of the impurity scattering ratel/T

—coska))/2 with A/t=0.4=4T/t. The solid line and at low temperatures. _ _

dotted line shows the frequency dependenc bht a tem- However, no corresponding peak is found for both the
peratureT=0.5T, for gap maximumk=(/a,0) and gap Out-of-plane conductivityiFig. 8@] and theB,; Raman
node (r/2a,m/2a), respectively, while the dashed and dot- Slope[Fig. 8b)], in agreement with experimental observa-
dashed lines correspond to the gap max and gap node poirf{§ns- The curves simply show a rapid falloff of both quan-
at T.. The differences for the gap maximum and gap noddities for T*<TC and a small rise of both quantities which
points are not too strong and can be adequately fit with &"SetS afT” and reaches a zero-temperature maximum as
threshold behavior-[w—3A(K)]? plus a temperature de- shown in Fig. 5. The main difference is due to the behavior

: ; zone-axis projected qp density, which variesTdsat low
pendent part which also depends, on momen_tum. The Insé)(imperatures, with a factor df coming from the nodes and
shows the zero-frequency part Bf; as a function of tem-

the additionalT?> coming from the matrix elements. This
perature. Except for low temperatures where the nodal ProRsompensates the T rise of the gp inelastic lifetime, and

erties of the interaction govern the behavior, the momentung ., - anday,. /9Q vary asT* for T>T* with x depen-
zZ 19

dependence of the self-energy is weak and can be adequate . . . .
P S gy W au chnt on the strength of the impurity scattering, and rise for

modeled by a temperature dependenf® term plus a -
y P P P T<T*, as shown in Fig. 5. For example, for the parameters

frequency-dependent partw®. I
In an effort to address the temperature dependence (zﬂ‘hosen in Fig. 8, the exponeptfor 0.3T.<T<0.9T, for the

these quantities, we employ a simple parameterized fit to thi%'ax_iS Con_dUCtiVityU.ZZ(T) varies from 2.7 t0 3.4 for increas-
numerical results for ,(w,T)= — 23/(k,,T) determined Ing impurity scattering. If the frequency dependence of the

from Eq. (43) and Fig. 8 and add that to the elastic Contri_scattering rate were neglected, then a universal expgaent

— 4 . . .
bution calculated in the preceding section. Assuming Mat-_3 would emerge:’ Therefore it would be highly useful if

thiessen’s law to hold in this case neglects vertex correction@thher systematic checks were performed and Raman data

and the joint influence of disorder on the spin fluctuations’'6"® available to compare to the conductivity and the theo-

and vice versa, but for weak disorder should be sufficient tgetlcal predictions.
gﬁptt#éelztge qualitative behavior of various quantities derived V. SUMMARY AND CONCLUSIONS

The results for the four response functions derived from In summary, based on symmetry arguments we have dem-
Eqg. (20) are shown in Figs. 7 and 8. Both the in-plane con-onstrated how the relaxational behavior of the gp in the cu-

094503-11



T. P. DEVEREAUX PHYSICAL REVIEW B68, 094503 (2003

[€=))
06 08 1

" TITe

FIG. 8. Temperature dependence of the out-of-plane conductiv-
ity o,, [panel(a)] and theB,;4 Raman slopg¢panel(b)] including
inelastic spin fluctuations and resonant impurity scattering for dif-
ferent impurity scattering strengthS/A,=0.004, 0.008, 0.016,
0.024, and 0.04(solid, dotted, short-dashed, long-dashed, and

FIG. 6. Frequency dependence of the imaginary part ofrthe
self-energy2.(k,®,T) normalized to the hopping overlapas a
function of frequency and temperature for different points in the
BZ. Th? solid line and dotted line are fd’r:O.SIfC for gap maxi- e d-dashed lings respectively, for Ag/T.=4. Here oy
mum k= (m/a,0) and gap nodesf/2a,mw/2a) point, respectively, > 2 = B ) . .
while the dashed and dot-dashed lines correspond to the gap max”NF€ UF/ Ao andx”=x"/Ngb} are the dimensionless quantities
and gap node points &, . The inset shows the zero-frequency part STOWN-
of 2§ as a function of temperature.

several models near optimal doping. However, no single

prates should manifest itself in the various experiments anf'0del can adequately describe the data over the entire dop-
how the results are expected to be interrelated. Therefore, 9 'ange, indicating that additional physics related to strong
single framework may relate the optically derived gp scatterorrelations is requireff’ The presence of a pseudogap is
ing rates to transport measurements to infer charge dynami€iscussed in simple symmetry terms, revealing thatBhe

on different regions of the Brillouin zone. Using forms for Raman scattering anctaxis conductivity are most affected
the interlayer hopping and gp self-energy consistent with emil agreement with experiments. This is a consequence of a
pirical evidence, a variant of the SS relation was shown td©SS of dp coherence near the BZ axes. , ,
relate the zone-diagonal and zone-axis transport properties 'N€ data on La-214 over a wide range of doping are in-
measured by the low frequency conductivity and the slope ofonsistent with th_e simple models for gp scattering discussed
the Raman response in the normal state, in agreement wiffréin. A connection can be made between the in-plane con-
experimental observations in Bi-2212 and Y-123, but not g ductivity and Raman response in light of stripe orientation.
214. Violations of the derived scaling relations were dis-However, more work is clearly needed to address this point.

cussed most specifically in connection with the role of vertex Ve note that a quantitative connection between the mag-
corrections. nitude and temperature dependence of the qp self-energy de-

The “scattering ratios” show power-law behavior for the _rived from ARPES, the in-plane and out-of-plane conductiv-

Raman response which can be reasonably accounted for {fy: @nd the Raman response can only be undertaken with an
understanding of the role of vertex corrections.

In the superconducting state, a similar SS relation is found
which arises from the momentum dependence of the energy
gap and conductivity and Raman matrix elements. In particu-
lar, we found that a zero-temperature peak is predicted to
arise ino,, and axglg/(m without the presence of a maxi-

mum near 0.8 found for oy, and &X’E;lg/aﬂ. The results

are in rough, qualitative agreement with the available data
for o,, but the strength of the elastic scattering cannot simul-
taneously account for in-plane and out-of-plane conductivi-
ties. However, the simple model presented does not account
C for anisotropies in impurity scattering, known to arise for
pointlike scatterers in correlated materials, or impurity inter-
ference effects. Unfortunately, Raman data in the supercon-
FIG. 7. Temperature dependence of the in-plane conductivitygucting state to further test the theory are lacking. In particu-
[Panel(a)] and theB,, Raman slopgpanel(b)] including inelastic  lar, it would be extremely useful to determine if the
spin fluctuations and resonant impurity scattering for different im-deviations from the derived SS relation observed in the nor-
purity scattering strengthE/A,=0.004, 0.008, 0.016, 0.024, and mal state of La-214 carry over into the superconducting
0.04 (solid, dotted, short-dashed, long-dashed, and dotted-dashestate.
lines), respectively, forA,/T.=4. Here oo=mNge’vi/A, and The agreement of the derived SS relations in both super-
X"=x"INgb3 are the dimensionless quantities shown. conducting and normal states with the available data on Bi-
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2212 and Y-123 indicates that the in-plane momentum is aing pd bands consistent with LDAZ

least partially conserved in-axis transport over the entire

After Fourier transforming, the Hamiltonian i

doping range studied. This shows that, in principle, a com=%, H, , with
parison of Raman and transport could eventually contribute

to the solution of thes-axis transport problem.
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APPENDIX
We start by considering a four-band model for the GuO
plane with ng-Opxy hopping amplitudetq, Cu43—Opr
hopping amplitude s, Opx'opy hopping amplitude,,, and
c-axis Cus-Cuys amplitudet, respectively,

— T T T
H= EdE dn,adn,a+ 652 sn,o-sn,a'_tpd 2 P&(dn,gan,é,o‘
n,o n,o n,o,o

S
+H.c)—typ 2 Pw,anﬁyoanﬁ,’g
n,é,é o

t t
—tpsg Pi(S! yansotHC)—ts 2 SN S o
n,o,o

(n,m),o

(A1)

tion (A2) can be diagonalized by defining “canonical
fermions,®*

. Sx(k)ax,k,o_sy(k)ay,k,a
m(k) ’

Ay o=

 Sy(K)ay ko T sx(K)ay ko
m(k) ’

where u(k)?=s(k) +s;(k). This gives antibonding, bond-
ing bands hybridized with the Cu orbitals. This four-band
model can be reduced to an effective one-band model by
eliminating theB band and the two bands with high energies
~€sq. This is achieved by defining two other sets of canoni-
cal fermions and expanding in powers ©f; pqss/€sd->
The single-band dispersion is approximately given by

ﬁk,o’z - (AS)

e(k)=—2t[cogk,a) + cog k,a) |+ 4t’ cogk.a)cog k,a)

where €5 = E; y— E,, represents the charge transfer energy

from the oxygenp to Cussy Orbitals, respectively. Here
s:ﬁvg,d:ﬁyg creates a €,3d,2_,2 electron, respectively, with
spino at a copper lattice site, while a, 5,0 annihilates an
electron at one of the neighboring oxygen sites 6/2 de-

termined by the unit vectob assuming the four values,
(%£1,0) and (0£1). The overlap factor® have the follow-
ing  properties: Py 0="P(10=1P01=P{o1=—1.Pxy

=P., _,=1P., =Py _,=—1, respectively. Lastly, the
bracket(- - -) notes a sum over the nearest neighbopCu
sites in thec direction. Thusc-axis hopping is mediated by

the Cuy, orbitals hybridizing with the bonding and antibond-

—2t"coq 2k,a)cog 2kya) —t, cogk,c)[ cogk,a)

—cogk,a)]*—u, (A4)
with the identification to lowest order ctf=tpg—t§d/ed t
= —tpy/2+t)JBe t"=15/16€;, and t, =tid5/es. This

form for the interplane hopping can also be derived in the
framework of the Hubbard model by projecting out the high-
lying Cu 4s orbitals and the high-lyingl-p spin triplets by
solving the correlation problem within the unit cell and treat-
ing the intercell hopping as a degeneracy lifting
perturbation->84
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