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Hall effect in the marginal Fermi liquid regime of high- T, superconductors
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The detailed derivation of a theory for transport in quasi-two-dimensional metals, with small-angle elastic
scattering and angle-independent inelastic scattering is presented. The transport equation is solved for a model
Fermi surface representing a typical cuprate superconductor. Using the small-angle elastic and the inelastic
scattering rates deduced from angle-resolved photoemission experiments, good quantitative agreement with the
observed anomalous temperature dependence of the Hall angiinmally doped cuprates is obtained, while
the resistivity remains linear in temperature. The theory is also extended to the frequency-dependent complex

Hall angle.
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[. INTRODUCTION that the temperature dependence of the Hall angle may be

understood quantitatively by a proper application of transport

Soon after the discovery of high-temperature supercontheory using the measured single-particle relaxation rates.
ductivity in the cuprate compounds, it was found that all the The single-particle self energy(k,»,T) is measurable in
transport properties for compositions near those for theARPES experiment$? As stated above, within MFL, the
maximumT_ have anomalous temperature and/or frequencyrediction is that the inelastic part &f is k independent and
dependence, in contrast to what is expected for Landaof the MFL form} proportional tow for w>T and toT for
Fermi liquids. Most of the anomalies, in resistivity and opti- T>w. ARPES experimentslo find the inelastic part of this
cal conductivity, in the frequency dependence of Raman inform but find in addition an elastic part that varies in mag-
tensity, in the tunneling spectra, and in the temperature deiitude around the Fermi surface. Thus, as explained in detail
pendence of the copper nuclear relaxation could bearlier! on the Fermi surface«(=0), the experimentally
understood by the “marginal Fermi liquid”(MFL) measured self-energy consists of the MFL peft and an
phenomenology Within MFL, scale-invariant fluctuations in  anisotropicT-independent elastic part:
both the charge and magnetic sectors are assumed to have the

form IMm3(k, T)=AT+ y(Kk), (1.2

Im x(q,0,T)=—Ng(w/T), w<T R
According to experimenty(k) increases by about a fac-
=—No(sgnw), T<w<w. (1.D)  tor 4 to 5 going from the 4, ) to the (r,0) direction along
the Fermi surfacd.A crucial point is that even at its mini-
mum value, it is more than an order of magnitude larger than
energy states per unit volume ang is a high-frequency the transport scattering rate due_to_ ?mpurities obtained by
cutoff. At long wavelengths this form is observed directly in extrapolating the normal state reS|sAt|V|tyT(?0. As argued
Raman scatterin§A principal predictiort from this hypoth-  in Ref. 4, such behavior arises jf(k) comes from small-
esis is that at low energieso(T), the inelastic part of the angle impurity scattering. We discuss this point further in
single-particle relaxation rate has the MFL foraT with ~ Sec. VIL.
coefficient\ having negligible momentum dependence ei- In a previous communicatichwe described, for higf,
ther along or perpendicular to the Fermi surface. This fornSuperconductors, how E¢L.1) can be used in a Boltzmann
has been confrmed in angle-resolved photoemissiofduation analysis to account for observed anonfaifésn
(ARPES experimentg and leads direcﬂy to the observed the Hall effect. We performed a CalCUlati(ﬁp. 4655 of Ref.
linear temperature dependence of the resistivity. 1) using a simple Fermi surface in order to give an example
However, the temperature dependence of anomalies in ﬂ*fg how a new Contributio:ﬁ could dominate the conventional
normal state Hall effect and magnetoresistance could not b@sult and thus account for experimental observations. How-
understood by the MFL hypothesis alone. For example, for £Ver, it was pointed out to us by Yakoverikehat we erred
situation near optimal doping, where the resistivity is linearin the form we chose to parametriz€¢k).* The purposes of
in temperature, the expectation is that the cotangent of ththis paper are to give a more complete solution of the Bolt-
Hall angle @*/¢*¥) should also be linear. Experiment zmann equation, correct the above error, and to present a
shows it to be more nearly quadratic. This left open the posmodel calculation that illustrates how, with a proper param-
sibility that essential new physics near optimum doping mayetrization and a reasonable choice of parameters, the pres-
not be captured by the MFL scenario. In this paper we shovence of the anisotropic impurity scattering together with

characteristic of a quantum critical poifd.is the frequency
andq the momentum of the fluctuationd, is the density of
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other anisotropies can account for the observed behavior d¢dereC, . is the “scattering-in” term in the collision opera-
the Hall angle™* Further, we generalize our results to the tor for the Boltzmann equation ad (k) ==, Cy \ , is the
complex Hall angle at finite frequencies, which has beerfscattering-out” term equal to the single-particle relaxation
recently measuretf. rate. It is evident that the distributiay(k) is not only deter-

A point about the experimental results needs stressing. Imined by the energy of the statebut also by the anisotropy
many presentations of the data, for example Refs. 9 and 1@f the scattering. The distribution is depleted in directions of
single-temperature noninteger power-law fits to the Halllarge net scattering and augmented in directions of small net
number or the Hall angle have been made, with varying sucscattering.
cess, while integer power law fitslo not usually faithfully We calculate the conductivities using the single-particle
represent the data. There is no physical reason to expestattering rate of Eq1.2). The conductivity tensor is
integer power-law behavior, and our analysis shows quite

generally that the solution of the Boltzmann equation can e2# )
give a sum of contributions with different temperature de- 0"‘”’=U E UM,kAl:,k’vV,k’ -—, (2.9
pendences. In particular, it is usually fodri that a tem- Kk’ €k’

perature power law with a power less than 2 can fit the data .

for the cotangent of the Hall angle. As we show here, this istvr,"frfeQ |sEthezsz;mlpla§taken 0 P;S planerea. We expand

indistinguishable from the ratio of terms each of which is a rom Eq.(2.2) in powers ofB:

zgwce(;f' contributions with different temperature depen- A~1=T—(e/c)TvXB-V)T
Our results have two significant conclusions. First, +(e/c)?T(vXB-V)T(vXB- V)7, (2.5

anisotropies, especially in the scattering rate, introduce cor-

rections to the calculation of magnetotransport properties sahere[from Eq.(2.12 of Ref. 17

that conventional results such &,=(nec¢ ! or tand,

= w7, are not in general valitf Second, the fact that the 1

Hall effect in the cuprates can be understood within transport T 7z Tk T 2 TCuer T k7 |- (2.6

theory, with only the measured single-particle relaxation rate, K

the measured resistivity, and Fermi surface quantities as inrhe first term inA~? gives the longitudinal conductivity, the
puts, implies that no new physics is involved other than whateond the Hall conductivity™, and the magnetoconduc-
leads to the behavior of those quantities. We conclude tha&vity may be calculated from the third term.

the MFL, which gives the experimentally observed tempera-  Aq giscussed above, thg is the MFL scattering plus the
ture dependence of the relaxation rate, is sufficient to accou%gle-dependent impurity piece:

for all the anomalous magnetotransport near optimal doping.
This point of view is reinforced by recent frequency- _ S
dependent complex Hall effect measureméntghose re- U= Ury+ (k). 2.7

sults are consistent with the analysis presented here, as digy,, approach to solving E@2.5) is to take advantage of the
cussed in Sec. IV, properties of 14, and 1. The kernelC in Eq. (2.6) com-
prises the vertex corrections for the various scattering
Il. TRANSPORT EQUATION mechanisms. Within the MFL regime, therjy/ is ans-wave
At long wavelengths and low frequencies the derivationScattering process so the MFL interaction does not appear in

of Boltzmann equation relies only on conservation laws and-- That leaves
is valid whether the system is a Fermi liquid or not. There- 2
fore we start with the linearized Boltzmann equation for the Cixr =275 ex— €r)|ui(6,6")]%, (2.8

deviation g(k,t) of the momentum distribution function _ . _
from its equilibrium valuef (k) in the presence of uniform Where, €.g.f is the angle ok along the Fermi surface. We

static electric and magnetic fields, have arguet* that the impurity scattering matrix element
u;(0,0") involves scattering through small angles only. This
d9k of e property allows an expansion of the right-hand side of Eq.

- eE-vkﬁ—ek + 2 (WXB)-Vig=Cy.  (2.1) (2.6) in powers of a “small-angle scattering parametet,’,

] o _ ] which can itself be a function of. We illustrate such an
Here Cy is the collision operator. The solution to this equa- expansion for the calculation of 4/
tion for the stationary casew(=0) is given by®

1 1
- of —(0)=— ui(6,0")]%28(e' —e)~6.U(86,0)N(6
slo=enS AL E'Vk,(_ H 22 (0= F 2 u(0,0)[°5(¢ )~ 0U(0,0)N(0)
K’ ! Gk/ 3
0 2
where + o ——U(6,0)N(0") (2.9
24 dp'2 v
Ao mhi|—t o XB V|8, 1 —C (2.3
e P R T Here we have used
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) Q dk/de
s :EJdej N(o)do, N(6)=5 - — 5=
(2.10

N(0) is the density of states per unit energy at the Fermi
surface at angl®@ anduv(6) is the Fermi velocitydk; is an
infinitesimal taken tangent to the Fermi surface at the angle
6. We have abbreviatefli;(6,6')|?> by U(6,6’). We shall
describe below how experiments show thats indeed suf-

J Q
ficiently small to justify such an expansion. \ /

IIl. LONGITUDINAL CONDUCTIVITY

We begin by determining the longitudinal conductivity
within the model. We first give the solution for a general
Fermi surface and then specialize to a particular example to
illustrate the results.

From Egs.(2.4) and(2.5), we have

FIG. 1. Schematic Fermi surface.

e’f, of
O'XX:WE vﬁ’fk,k:vﬁ,(——,). (31)
k! e M(8)= —————L(), 3.8
) ™m(—dflde)
Define the vectot. as
and
Lkzg Tk,K')(—dflde" )V, (3.2 U(8)= (6%124) (myy IHIN(B)U(6,6).
(3.9

so that

d
u'(0)=(6324)(y %) HN(G’)U(G,G’)

2
eh
O'XXZU Ek UﬁLﬁ. (33) 0'—0
This differential equation can be solved for the compo-
nents ofM, hencel, once thef dependences of, u, and

Using Eq.(2.6) in Eq.(3.2), we find the integral equation for
' u’ are known. This equation, which is basic to the evaluation

L

T of of both the longitudinal and the Hall conductivities, is com-
X . .
L=~ 7 vi+ > Cyprlir |- (3.4  pletely equivalent to Eq10) of Ref. 5. Althoughu contains
K a small parameter, an iterative solution of E8}.7), as in our

As discussed earlie€; contains only the small-angle scatter- Previous work; is not valid. We solve Eq(3.7) exactly in
ing so that this paper. _ _ _
As we discussed previousiy” the details of the anisotro-

T of , , , pies of the quantities entering the transport coefficients de-
L= Z\ T e Vk+J’ do'N(6")U(0,0")Ly |, 39  termine the magnitudes of the various contributions, in par-
. . . _ _ ticular to o™ in the presence of a magnetic field. The shape
which, sinceL is restricted to the Fermi surface, can beof the Fermi surface is especially important since it deter-
rewritten as mines the size of the contribution Y from the isotropic
marginal Fermi liquid scattering rate7l/. In what follows,
of fi ) ) . :
L(g):(__)v(g)+_L(g) we take the anisotropy of the impurity scattering from
(6) de 7i(0) ARPES data and we assume a simple form for the Fermi
surface velocity.
+j do'N(6)HU(8,0)[L(0")—L(0)], A schematic of the Fermi surface is shown in Fig. 1,

where the angular variablé is shown. A general Fermi sur-
(3.6)  face respecting the square symmetry of the €la@ers must

where 1#=1/7—1/r, is given in Eq.(2.9). Given the have Fermi velocities in the first quadrant of the form

small-angle scattering restriction &(6,6"), we expand the

difference L(6')—L(6) and find the differential equation vX:E v,sin (2n+1)46],

(primes indicate derivatives with respectp n
M(O)=v(0)+u(o)M"(6)+2u’(O)M'(0), (3.7

where

(3.10
vy=2>, vn(—1)"cog(2n+1)6].
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For our calculations we take a form fef6), which is the
simplest extension beyond the circular Fermi surfisbmilar
to that shown in Fig. lconsistent with Eq(3.10). In the first
qguadrant,

vy=vg(Sin#+ p sin 36),

(3.1
vy=0o(COSH—p COS ).
For this choice fow(6), the density of states of E(R.10
in all quadrants is
ko(1—p)*
2wl yo(1—p cos 49)%*

N(§)= (3.12

wherekg is the value ofkg(6) at #=0. Thus, according to
Eq. (3.3, o**is given by

Pry(1—p) ¥ Ky (2

°f

vx(O)M(6)

(1-pcos49)5*
(3.13

O,XX
UoJo

IV. HALL CONDUCTIVITY

For a magnetic field perpendicular to they plane,
VvXB-V=[Q/27AN(6)]B(d/36) and from Egs.(2.4) and
(2.5,

3 ’
9 &8 5 L Tkky dTkK) [ ot
27C KK K N(b’l) db’l Jde’ k
(4.1
We rewrite this using Eq(3.2):
e’B T(k,ky) d
Xy _— X )
7 " 2mc kalUk N(6;) do, < 4.2
We define
K= K)———Ly, (4.3
: kE T N(6') do’ <
so that
e’B
V=5 ; viKY. (4.4)

Using Eq.(3.4) in Eq. (4.3, we get an integral equation for
K:

Tk 1 ,
Kk— %[WLK +§ Ck‘kHKkH]

7| Ly , ) , ,
:?[N(eﬁf do'N(6")U(0,0")K (0 )]. (4.5

We proceed exactly as in the analysis Egr Egs. (3.4)—
(3.9). For the requireK,, we find the differential equation

Z(0)=My(6)(1—pcos49)>*+u(6)Z"(6)+2u’(6)Z'(0),
(4.6
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whereZ(6) determineX,(#) as

TM)227T fivg 1 ( of

and M, is obtained as the solution of E(B.7). As in that
case, an iterative solution of E¢.6) is not valid. Combin-
ing all our results into Eq(4.4), we find

o €B ( TM)ZJM de 02(6)
TR\ o (1—pcos4¢9)5’4vx '
(4.8

When there is no small-angle scattering, =v, and
Z(60)=—vo(sin6—3psin 36)(1—pcos #)°“. In that case,

Voc f " d6(si9— 3p7sir26), 4.9
0

which vanishes whep=1/,/3. This is the familiar result of
the vanishing ofc™¥ when the Fermi surface consists of
equal portions of positive and negative curvature. One sees
that the anisotropic small-angle contributions, which have a
leading contribution proportional tg, , i.e., to 1%, do not
vanish there.

V. CHOICE OF PARAMETERS AND COMPARISON
WITH EXPERIMENTS

We now describe the evaluation of the conductivities us-
ing experimental data from ARPES and from the longitudi-
nal transport in zero magnetic field. The strategy is as fol-
lows. The anisotropies in the problem will be determined
from the anisotropy of the impurity scattering 71/6)

=2y(R)/ﬁ as determined from ARPES. For simplicity, we
shall let the density of stateN(6) be responsible for the
anisotropy of 1#;, and hence for the quantity( 8) [see Eq.
(3.9]. The measured anisotropy ofrlfrom the (m,7) di-
rection to the ¢,0) direction in the Brillouin zone then de-
termines the velocity anisotropy paramegeirom Egs.(2.9)
and(3.12. These parametrizations give the correct behavior
at the edges of the Brillouin zone. The small-angle parameter
6. can then be found from the “residual resistance” ratio
(RR) of the resistivity atT. to the extrapolated value &t

=0. That is sufficient to determine th& dependence of
cotfy=c/a¥. The magnitude of cad, is then fixed by the
effective masdgiky/vg, which we leave as an adjustable pa-
rameter. It will be seen that the effective mass has a quite
reasonable value.

The conductivities are given by Eq8.13 and(4.8). The
quantity u, which appears in the differential equations for
M and Z, is defined as u(0;T)=(6§/24)TM/Ti(6)
= (v /1) (63124)N(6)U(6,6). The measured anisotrchyf

y(k)=%/27; is about 4.5. We assign this 8(6), thus de-
terminingp from Eq.(3.12 asp=0.54. Therefore, we have
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Resistivity :

(arb. units) YBaBCua_xZnXO.?_(S . °A ° .
Al 500 | ot
3t 400
2| o

D 300}
4
Q
1t @]
200
50 100 150 200 250 300 350 100
T (K)
FIG. 2. Linear temperature fit to calculated resistivitjoty .

from Eg. (4.8 for 6§/24:0.0014. The resistance ratio, 0

p(100)/p(0), is 8.
T (10" K)
— —5/
1ri(6)=(1/7)(1—p cos 40) "%, FIG. 3. Data of Chieret al. (Ref. 6.
u(6;T)=uo(T)(1— p cos 49) %4, (5.1) where we have usegl=0.54, w. is the cyclotron frequency

with the bare mass, ami( #) = (1—0.54 cos 4) >,

We now compare our result with the experiment of Chien
et al® They measured the Hall angle as a function of tem-
The quantityug(T) = ry(T)(62/24)/r. 7s(T) and 7o may perature for various concentrations of Zn |mpu_r|t|es in near-

. ; . optimally doped YBaCuO;_s5 Their data atB=8 T (w.

be determined from ARPES as described in Ref. 3. From_1 28x 10251y duced in Fig. 3
ARPES i/ 7,~0.24 eV atf= /8. Sofi/7,=0.24 eV. From . S ) isreproduced in Fig. 3. .

the sarﬁe slouréeﬁlr —0 0150_'/100) e(i/ v;/hereT. is in We examine the data for zero Zn concentration. In Fig. 4,
. : M ’ h lotted th&=0 points from Fig. 3(I dot
kelvin. This determinesu, as ug(T)=16(100T)(62/24). we have replorec e points from Fig. 3(large dots

.. ¢ ) , and the theoretical resufsmall dots of Eq. (5.2) with
The remaining parameter,, that is, 6., is determined from m*/m=1.5, so adjusted to give the best agreement. It is
the resistance ratio RR as follows. i

he lonaitudinal resistivity i i field* i important thatm* turns out to be reasonable. We emphasize
_The longitudinal resistivity in zero magnetic fieJd” is 5t the parameters we picked were determined from ARPES
given by the inverse o0& from Eq. (3.13. Unfortunately

; . - . experiments on BBr,CaCyOg, 5, While the Hall data is on
we do not have an analytic solution of the differential equa~ g, Cu0 Thus, our intent here is only to show that the
tion Eq. (3.7) for M,, although the coefficients are now 2 e '

tteri t
known from Eq.(5.1). Numerical integrations of Eq$3.7) scatiering rates
and (3.13 are performed for different values afy(T)

p=0.54.

— 2 - XX : cot Oy

=(16001T)(6-/24). For a given value ob., p** is almost

precisely linear inT above T=100 K (see Fig. 2 The T A °®
=0 intercept ofp™*, py, is obtained by extrapolating the ...‘
found high-temperature linear dependence. The RR is de 400} "

fined asp™*(T=100)/p,, and is typically about 8, say. This
is obtained fory(T)~0.022(100T) so that the characteris- 3441

L]
tic small-angle parameter is indeed smaﬂ124~0.0014. ....‘
All parameters are now fixed with the exception rof ool ° 0@

=1#ko/vo. The numerical integrations of Eq€3.7), (4.6) './

and (4.8 for M, Z, and o™, respectively, can be carried . an®

out for different values ofr and combined with the previous 100} /

result for ™*(T) to give cotby(T)=(T)/a¥(T):

20000 40000 60000 80000
0.82 m* Jdan(e)ux(e)lle(e) T2(K?)
COtOHT)= s M - 03 heory(small dots f data(large dots of Ch
c™ FIG. 4. Theory(small dots fit to x=0 data(large dot$ of Chien
fdﬁn(ﬁ)vX(G)Z(G) et al (Ref. 6.
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cot Oy cot Oy
300 60 t .
[} [ ]
250 o ° 50 ¢ e
[ ] L ®
200 ° 40 [ .
L)
[ J o
150} ® 30} =
o' S
100 e 20 °
o .
50 [ ° 10¢ o°
4.
Toh TR0 b 80000 20000 40000 60000 80000
T2(K?) T2(K?

FIG. 5. Comparison of theorygsmall dotg including in-plane
scatterers with datélarge dot$ from Ref. 9, for optimally doped

Bi,Sr,_,La,CuG;.

FIG. 6. Theoretical prediction for cét; down toT=0. There is

a small intercept af=0 (cotfy~1.0) due to in-plane impurity
scattering.

characteristic of highF. superconductors in the normal state range. We used the same parameters as in Fig. 5 but the

near optimal doping can by themselves account for the temmagnetic field was taken to be 50 T, rather than 10 T.
perature dependence of the Hall angle, not to demonstrate

guantitative agreement with a particular experiment. It is
seen that the experimental temperature dependence is fairly
well reproduced. In this section, we comment on the recent ac Hall effect

Notice that the experimental curves have a negative curesults of Graysoret al.'® For low frequencies and>T.,
vature on aT? plot. While this might suggest a power law we can replace 4y~ 1/r, by l/r,—iw. This follows im-
less than 2 and several investigators have tried such’&’fit, mediately from Egs.(2.1)—(2.3): the distribution function
our picture indicates that this behavior is a consequence af(k,w) and therefore the transport properties are obtained
the fact that the conductivities are each the sum of two termfom the w =0 results by this replacement.
with approximate " and 1T""! (¢**, n=1; ¢*, n=2) From Fig. 2 it is seen that the resistivity is almost pre-
dependences. cisely linear inT in the normal stateg®*=a+bT, wherea is

The data of Ref. 6 and our theory both suggest that in th¢he (smal) residual resistivity due to the small-angle impu-
absence of in-plane impurities such as Zn, the extrapolatedty scattering. Thusa/b is about 10, say. We have also
cotéy atT—O0 is zero. In-plane impurities will in general not found thatc*¥(T) is, in the temperature range of interest,
give scattering restricted to small angles. Indeed, their influvery closely of the formc/T2+d/T3, with ¢/d~0.01 K™ 1.
ence is evident in the measured resistivity. We could includd herefore, neglecting quantities of order 0.1, our prediction
their effects by assuming them to be isotropic scatterers thdor the Hall angle is
add a constant %/ to the isotropic linear in temperature
MFL rate 1/, . This has the effect of an almost parallel
upward shift of coby so that it has a zero-temperature inter-
cept proportional to ,, i.e., to the in-plane impurity con- +=
centration. We illustrate this qualitatively using some data (Ury—iw)? dUry—iw)]|’
from Ref. 9. In Fig. 5, we show the daftarge dot$ for 6.1)
Bi,Sr,_,La,CuQ; with x=0.44 (optimal doping. It is seen '
that the data do not extrapolate with a zero intercept. WavhereA andc/d are constant in temperature. The latter ratio
interpret this as signaling the presence of in-plane scatterers now in units of seconds; for our example parameters it is
The theoretical curvésmall dot3 uses similar parameters as about 2<10™** s. We emphasize that a single relaxation rate
in Fig. 4 but with an in-plane impurity contribution added to 1/7, enters all our expressions. The constarin Eq. (6.1)
lry . corresponds to the quantity, (), of Ref. 15. In that refer-

The availability of very high magnetic fielthscapable of ~ence, Fig. 4 shows thah is indeed temperature and fre-
restoring the normal state below the transition temperature iquency independent. Tre#d term is the conventional term.
some cuprate superconductors makes it possible to investin Ref. 15, it was shown that by itself it cannot account for
gate the Hall effect down to very low temperatures. We conthe experimental data. Just as the dc data show deviations
clude this section with our prediction, in Fig. 6, for the be-from T2 behavior for co#,,, we expect that the ac data
havior of cotfy down to T=0 for the case in which the should be fitted by a combination of the two terms in Eq.
longitudinal resistivity is linear over the whole temperature(6.1). At higher frequencies or temperatures, the conven-

VI. COMPLEX HALL CONDUCTIVITY

9H(w,T)~tan0H

1 c 1

— O'XprXN A
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tional term should finally dominate. The complex Hall angleare not too meaningful; we only argue that we have shown
measurements convincingly demonstrate that just one inelathat the small-angle scattering scenario gives the qualitative
tic transport rate determines all the frequency and temperdeatures of the experiments.

ture dependences of the transport properties of the fijgh-  In our numerical analysis, we have chosen the simplest
superconductors in the marginal Fermi liquid region, i.e., inparametrization of the Fermi velocity to show the plausibility
their normal state near optimum doping. of the small-angle effect in relation to the experiments. Our

When calculating the ac conductivity, the limits of appli- parametrization should not be expected to represent the
cability of the Boltzmann equation should be kept in mind.Fermi surface adequately. For the actual Fermi surface sev-
The results are only valid fowr<1. In this regime the eral terms in Eq(3.10 for the Fermi velocity would have to
conservation lawsin terms of bare particlecompletely de- be included with coefficients smaller than We note, how-
termine transport and the Boltzmann equation deals witlever, that the successive terms give compensatingly larger
them properly. In a microscopic theory, the effects of small-coefficients since the higher harmonics produce larger de-
angle scattering calculated here appear as corrections to thigative terms in Eq(5.2) for o, . For a truer Fermi surface
coupling of the external magnetic field to the carriers. Atthe advantage of analytical calculations is lost. These re-
high enough frequency these vertex corrections must vanisimarks are of academic interest at the present time since the
The crossover frequency and the behavior of transport propactual Fermi surface is not accurately known.
erties in the intermediate regime can only be determined by a More relevant is the fact that the Fermi surface of
microscopic calculation. Experimental results at high fre-Bi,Sr,CaCyOg, 5 the ARPES data for which we have used
quencies do depart from the predictions of Egj1). here, has two sheets coming from the bilayer splitting. The

bilayer splitting varies as a function of angle, being largest in
the (,0) direction. This arises because of the geometry of
VIl. CONCLUDING REMARKS the interlayer orbitald? This angular variation is essentially

di ary | lated he th the same as that of the observed anisotropic elastic scatter-
Here we discuss sundry issues related to the theory anfly The fact that the bilayer splitting is not resolved in the

calculation_s presented in this paper. We emphasize that thlé%(perimental data we have used indicates the presence of an
work pertains only to the Hall effect in optimally or over- o qtic scattering mechanism that couples the layers. We sur-
doped samples. For the latter, the linear-in-temperature scfise tha for interlayer or intralayer scattering due to impu-
tering rate 1#y should be replaced in the theory by a rate jieq petween the planes, the same orbitals are involved and
with the T dependem_:g of the ob_served resistivity. In underyorefore the same angular dependence arises in scattering.
doped cuprates, additional physical considerations appear i ; single-layer model as treated here, this effect is param-
determine the transport and equilibrium properties. etrized through the choice of the angle dependence of the
Fermi velocity as in Eq(3.11).

A. Magnetoresistance
Earlier? we gave a plausibility argument that the observed C. Comments on related work

magnetoresistance would follow quantitatively from the — ag 5ieady remarked, although the analytical expressions
same considerations that lead to the observed Hall effect. Wgarived in our earlier wofkare correct. we erred. as pointed
leave it as a future exercise to calculate this quantity directl;but by Yakovenkd? in our choice of the paramétrization in

from the solution of the Boltzmann equation as an extensiot) .-y they were evaluated. This error has been remedied

of the present theory. here. Our more complete analysis with a simpler parametri-
zation in fact gives results consistent with experiment. We
have shown that not only do we get the right temperature
dependence but that with a reasonable effective mass, the
absolute value of the cotangent of the Hall angle is obtained
We have modeled the Fermi velocity through E8.11),  within 10% of the data from the same parametrization.
which with p~0.54 is in itself enough to give the observed In Ref. 20, Hlubina argues that the term discovered by us,
angular variation of the elastic part of the single-particle re4f adequate to explain the Hall angle, would make an unac-
laxation rate. As we have seen, this also gives agreemeitptable contribution to the longitudinal resistivity. Since our
with the observed temperature dependence of the Hall anglparameters are actually determined by the measured resistiv-
This value ofp is 10% away from the value at which the ity, this criticism is invalid. It is difficult to make a direct
customary Hall coefficient would be zero. This seems to usomparison with the calculations of Ref. 20 since a quite
reasonable, since in a model with nearest-neighbor Cu-@ifferent parametrization of the Fermi surface is used there.
hopping alone, the Hall effect is zero at half-filling, and with However, we can note that the parametrization family used
0O-0 hopping included, the density for zero Hall effect shiftsin Hlubina’s evaluation does not include ours and gives a
substantially towards hole doping. The optimal doping com-much larger conventional contribution @Y than the one
position lies in the range 15-20 % hole doping. In this con-we have used.
nection, it is important to remember that we are using param- A recent paper of Carter and Schofféichddresses the
eters obtained from experiments on,®,CaCuyOg, 5 to fit  main point of our original pap&rTheir work consists of two
Hall data on YBaCu;O;_s Therefore the precise numbers parts. One is analytical, the other is a numerical solution of

B. Small-angle scattering, Fermi surface geometry, bilayer
splitting, etc
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equations we derived in Ref. 5. We cannot comment on thanisotropies required to show the effect we have derived.
adequacy of the numerical work, but Carter and Schofieldrheir calculation fora™¥ is equivalent to retaining only the
are indeed correct that the customary tdwith a different  impurity scattering contribution to the conventional term, not
temperature dependence than our feisnzero only for a the contribution that we have derived. See Footnote 22 of
particular choice of Fermi surface. This is of course wellRef. 21 for a comment on this. Actually, the analytical cal-
known: the traditional Hall angle is zero only for “particle- culation of Ref. 21 is based on a circular Fermi surface and
hole symmetry” defined in terms of the curvature of thewe agree that such a parametrization never leads to a large
Fermi surface. However, as we have shown here, it is notnough effect.

necessary that the customary term be Zamd all the tem-

perature dependence come from our tetonget good agree- ACKNOWLEDGMENTS
ment with experiment. It is sufficient that the customary term
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