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Hall effect in the marginal Fermi liquid regime of high- Tc superconductors
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The detailed derivation of a theory for transport in quasi-two-dimensional metals, with small-angle elastic
scattering and angle-independent inelastic scattering is presented. The transport equation is solved for a model
Fermi surface representing a typical cuprate superconductor. Using the small-angle elastic and the inelastic
scattering rates deduced from angle-resolved photoemission experiments, good quantitative agreement with the
observed anomalous temperature dependence of the Hall angle inoptimally doped cuprates is obtained, while
the resistivity remains linear in temperature. The theory is also extended to the frequency-dependent complex
Hall angle.
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I. INTRODUCTION

Soon after the discovery of high-temperature superc
ductivity in the cuprate compounds, it was found that all t
transport properties for compositions near those for
maximumTc have anomalous temperature and/or freque
dependence, in contrast to what is expected for Lan
Fermi liquids. Most of the anomalies, in resistivity and op
cal conductivity, in the frequency dependence of Raman
tensity, in the tunneling spectra, and in the temperature
pendence of the copper nuclear relaxation could
understood by the ‘‘marginal Fermi liquid’’ ~MFL!
phenomenology.1 Within MFL, scale-invariant fluctuations in
both the charge and magnetic sectors are assumed to hav
form

Im x~q,v,T!52N0~v/T!, v!T

52N0~sgnv!, T!v!vc ~1.1!

characteristic of a quantum critical point.v is the frequency
andq the momentum of the fluctuations,N0 is the density of
energy states per unit volume andvc is a high-frequency
cutoff. At long wavelengths this form is observed directly
Raman scattering.2 A principal prediction1 from this hypoth-
esis is that at low energies (v!T), the inelastic part of the
single-particle relaxation rate has the MFL formlT with
coefficient l having negligible momentum dependence
ther along or perpendicular to the Fermi surface. This fo
has been confirmed in angle-resolved photoemiss
~ARPES! experiments3 and leads directly to the observe
linear temperature dependence of the resistivity.

However, the temperature dependence of anomalies in
normal state Hall effect and magnetoresistance could no
understood by the MFL hypothesis alone. For example, fo
situation near optimal doping, where the resistivity is line
in temperature, the expectation is that the cotangent of
Hall angle (sxx/sxy) should also be linear. Experimen
shows it to be more nearly quadratic. This left open the p
sibility that essential new physics near optimum doping m
not be captured by the MFL scenario. In this paper we sh
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that the temperature dependence of the Hall angle may
understood quantitatively by a proper application of transp
theory using the measured single-particle relaxation rate

The single-particle self energyS(k,v,T) is measurable in
ARPES experiments.3,4 As stated above, within MFL, the
prediction is that the inelastic part ofS is k independent and
of the MFL form,1 proportional tov for v@T and toT for
T@v. ARPES experiments3 do find the inelastic part of this
form but find in addition an elastic part that varies in ma
nitude around the Fermi surface. Thus, as explained in de
earlier,4 on the Fermi surface (v50), the experimentally
measured self-energy consists of the MFL partlT and an
anisotropicT-independent elastic part:

Im S~k,T!5lT1g~ k̂!, ~1.2!

According to experiment,g( k̂) increases by about a fac
tor 4 to 5 going from the (p,p) to the (p,0) direction along
the Fermi surface.4 A crucial point is that even at its mini
mum value, it is more than an order of magnitude larger th
the transport scattering rate due to impurities obtained
extrapolating the normal state resistivity toT50. As argued
in Ref. 4, such behavior arises ifg( k̂) comes from small-
angle impurity scattering. We discuss this point further
Sec. VII.

In a previous communication,5 we described, for high-Tc
superconductors, how Eq.~1.1! can be used in a Boltzman
equation analysis to account for observed anomalies6–11 in
the Hall effect. We performed a calculation~p. 4655 of Ref.
1! using a simple Fermi surface in order to give an exam
of how a new contribution12 could dominate the conventiona
result and thus account for experimental observations. H
ever, it was pointed out to us by Yakovenko13 that we erred
in the form we chose to parametrizeg( k̂).14 The purposes of
this paper are to give a more complete solution of the B
zmann equation, correct the above error, and to prese
model calculation that illustrates how, with a proper para
etrization and a reasonable choice of parameters, the p
ence of the anisotropic impurity scattering together w
©2003 The American Physical Society02-1



r
e
e

.
1
a
u

pe
ui
a
e

a
i
a

n

st
co

s

e
o
te
i

ha
th
ra
u

in
y-

d

ion
n

re
he

a

-

n

of
net

cle

-

e

ing

r in

t
is
q.

ELIHU ABRAHAMS AND C. M. VARMA PHYSICAL REVIEW B 68, 094502 ~2003!
other anisotropies can account for the observed behavio
the Hall angle.6–11 Further, we generalize our results to th
complex Hall angle at finite frequencies, which has be
recently measured.15

A point about the experimental results needs stressing
many presentations of the data, for example Refs. 9 and
single-temperature noninteger power-law fits to the H
number or the Hall angle have been made, with varying s
cess, while integer power law fits6 do not usually faithfully
represent the data. There is no physical reason to ex
integer power-law behavior, and our analysis shows q
generally that the solution of the Boltzmann equation c
give a sum of contributions with different temperature d
pendences. In particular, it is usually found9,10 that a tem-
perature power law with a power less than 2 can fit the d
for the cotangent of the Hall angle. As we show here, this
indistinguishable from the ratio of terms each of which is
sum of contributions with different temperature depe
dences.

Our results have two significant conclusions. Fir
anisotropies, especially in the scattering rate, introduce
rections to the calculation of magnetotransport properties
that conventional results such asRH5(nec)21 or tanuH
5vct tr are not in general valid.16 Second, the fact that th
Hall effect in the cuprates can be understood within transp
theory, with only the measured single-particle relaxation ra
the measured resistivity, and Fermi surface quantities as
puts, implies that no new physics is involved other than w
leads to the behavior of those quantities. We conclude
the MFL, which gives the experimentally observed tempe
ture dependence of the relaxation rate, is sufficient to acco
for all the anomalous magnetotransport near optimal dop
This point of view is reinforced by recent frequenc
dependent complex Hall effect measurements,15 whose re-
sults are consistent with the analysis presented here, as
cussed in Sec. IV.

II. TRANSPORT EQUATION

At long wavelengths and low frequencies the derivat
of Boltzmann equation relies only on conservation laws a
is valid whether the system is a Fermi liquid or not. The
fore we start with the linearized Boltzmann equation for t
deviation g(k,t) of the momentum distribution function
from its equilibrium valuef (k) in the presence of uniform
static electric and magnetic fields,

]gk

]t
1eE•vk

] f

]ek
1

e

\c
~vk3B!•“kgk5Ck . ~2.1!

HereCk is the collision operator. The solution to this equ
tion for the stationary case (v50) is given by18

g~k!5e\(
k8

Ak,k8
21 FE•vk8S 2

] f

]ek8
D G , ~2.2!

where

Ak,k85\F 1

t~k!
1

e

\c
vk3B•“kGdk,k82Ck,k8 . ~2.3!
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HereCk,k8 is the ‘‘scattering-in’’ term in the collision opera
tor for the Boltzmann equation and\/t(k)5(k8Ck,k8 , is the
‘‘scattering-out’’ term equal to the single-particle relaxatio
rate. It is evident that the distributiong(k) is not only deter-
mined by the energy of the statek but also by the anisotropy
of the scattering. The distribution is depleted in directions
large net scattering and augmented in directions of small
scattering.

We calculate the conductivities using the single-parti
scattering rate of Eq.~1.2!. The conductivity tensor is

smn5
e2\

V (
k,k8

vm,kAk,k8
21 vn,k8S 2

] f

]ek8
D , ~2.4!

whereV is the sample~taken to be a plane! area. We expand
A21 from Eq. ~2.2! in powers ofB:17

A215T2~e/c!T~v3B•“ !T
1~e/c!2T~v3B•“ !T~v3B•“ !T, ~2.5!

where@from Eq. ~2.12! of Ref. 17#

Tk,k85
1

\F tkdk,k81(
k9

tkCk,k9Tk9,k8G . ~2.6!

The first term inA21 gives the longitudinal conductivity, the
second the Hall conductivitysxy, and the magnetoconduc
tivity may be calculated from the third term.

As discussed above, thetk is the MFL scattering plus the
angle-dependent impurity piece:

1/tk51/tM11/t i~ k̂!. ~2.7!

Our approach to solving Eq.~2.5! is to take advantage of th
properties of 1/tM and 1/t i . The kernelC in Eq. ~2.6! com-
prises the vertex corrections for the various scatter
mechanisms. Within the MFL regime, the 1/tM is ans-wave
scattering process so the MFL interaction does not appea
C. That leaves

Ck,k852pd~ek2ek8!uui~u,u8!u2, ~2.8!

where, e.g.,u is the angle ofk̂ along the Fermi surface. We
have argued5,4 that the impurity scattering matrix elemen
ui(u,u8) involves scattering through small angles only. Th
property allows an expansion of the right-hand side of E
~2.6! in powers of a ‘‘small-angle scattering parameter,’’uc ,
which can itself be a function ofu. We illustrate such an
expansion for the calculation of 1/t i :

1

t i
~u!5

1

\ (
k8

uui~u,u8!u2d~e82e!'ucU~u,u!N~u!

1
uc

3

24F d2

du82
U~u,u8!N~u8!G

u85u

. ~2.9!

Here we have used
2-2
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(
k

5
1

2pE deE N~u!du, N~u!5
V

2p\

dkt /du

v~u!
.

~2.10!

N(u) is the density of states per unit energy at the Fe
surface at angleu andv(u) is the Fermi velocity.dkt is an
infinitesimal taken tangent to the Fermi surface at the an
u. We have abbreviateduui(u,u8)u2 by U(u,u8). We shall
describe below how experiments show thatuc is indeed suf-
ficiently small to justify such an expansion.

III. LONGITUDINAL CONDUCTIVITY

We begin by determining the longitudinal conductivi
within the model. We first give the solution for a gener
Fermi surface and then specialize to a particular exampl
illustrate the results.

From Eqs.~2.4! and ~2.5!, we have

sxx5
e2\

V (
kk8

vk
xTk,k8vk8

x S 2
] f

]e8
D . ~3.1!

Define the vectorL as

Lk5(
k8

T~k,k8!~2] f /]e8!vk8, ~3.2!

so that

sxx5
e2\

V (
k

vk
xLk

x . ~3.3!

Using Eq.~2.6! in Eq. ~3.2!, we find the integral equation fo
L :

Lk5
tk

\ F S 2
] f

]e D vk
x1(

k9
Ck,k9Lk9G . ~3.4!

As discussed earlier,C contains only the small-angle scatte
ing so that

Lk5
tk

\ F S 2
] f

]e D vk1E du8N~u8!U~u,u8!Lk8G , ~3.5!

which, sinceL is restricted to the Fermi surface, can
rewritten as

\

t~u!
L ~u!5S 2

] f

]e D v~u!1
\

t i~u!
L ~u!

1E du8N~u8!U~u,u8!@L ~u8!2L ~u!#,

~3.6!

where 1/t i51/t21/tM is given in Eq. ~2.9!. Given the
small-angle scattering restriction onU(u,u8), we expand the
difference L (u8)2L (u) and find the differential equation
~primes indicate derivatives with respect tou)

M ~u!5v~u!1u~u!M 9~u!12u8~u!M 8~u!, ~3.7!

where
09450
i

le

l
to

M ~u!5
\

tM~2] f /]e!
L ~u!, ~3.8!

and

u~u!5~uc
3/24!~tM /\!N~u!U~u,u!,

~3.9!

u8~u!5~uc
3/24!~tM /\!F d

du8
N~u8!U~u,u8!G

u8→u

.

This differential equation can be solved for the comp
nents ofM , henceL , once theu dependences ofv, u, and
u8 are known. This equation, which is basic to the evaluat
of both the longitudinal and the Hall conductivities, is com
pletely equivalent to Eq.~10! of Ref. 5. Althoughu contains
a small parameter, an iterative solution of Eq.~3.7!, as in our
previous work,5 is not valid. We solve Eq.~3.7! exactly in
this paper.

As we discussed previously,5,14 the details of the anisotro
pies of the quantities entering the transport coefficients
termine the magnitudes of the various contributions, in p
ticular to sxy in the presence of a magnetic field. The sha
of the Fermi surface is especially important since it det
mines the size of the contribution tosxy from the isotropic
marginal Fermi liquid scattering rate 1/tM . In what follows,
we take the anisotropy of the impurity scattering fro
ARPES data and we assume a simple form for the Fe
surface velocity.

A schematic of the Fermi surface is shown in Fig.
where the angular variableu is shown. A general Fermi sur
face respecting the square symmetry of the CuO2 layers must
have Fermi velocities in the first quadrant of the form

vx5(
n

vnsin@~2n11!u#,

~3.10!

vy5(
n

vn~21!ncos@~2n11!u#.

FIG. 1. Schematic Fermi surface.
2-3
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ELIHU ABRAHAMS AND C. M. VARMA PHYSICAL REVIEW B 68, 094502 ~2003!
For our calculations we take a form forv(u), which is the
simplest extension beyond the circular Fermi surface~similar
to that shown in Fig. 1! consistent with Eq.~3.10!. In the first
quadrant,

vx5v0~sinu1r sin 3u!,
~3.11!

vy5v0~cosu2r cos 3u!.
For this choice forv(u), the density of states of Eq.~2.10!

in all quadrants is

N~u!5
V

2p\

k0~12r!1/4

v0~12r cos 4u!5/4
, ~3.12!

wherek0 is the value ofkF(u) at u50. Thus, according to
Eq. ~3.3!, sxx is given by

sxx5
e2tM~12r!1/4

p2\

k0

v0
E

0

p/2

du
vx~u!Mx~u!

~12r cos 4u!5/4
.

~3.13!

IV. HALL CONDUCTIVITY

For a magnetic field perpendicular to thexy plane,
v3B•“5@V/2p\N(u)#B(]/]u) and from Eqs.~2.4! and
~2.5!,

sxy5
e3B

2pc (
k,k8,k1

vk
x T~k,k1!

N~u1!

dT~k1 ,k8!

du1
S 2

] f

]e8
D vk8

y .

~4.1!

We rewrite this using Eq.~3.2!:

sxy5
e3B

2pc (
k,k1

vk
x T~k,k1!

N~u1!

d

du1
Lk1

y . ~4.2!

We define

Kk5(
k8

T~k,k8!
1

N~u8!

d

du8
Lk8, ~4.3!

so that

sxy5
e3B

2pc (
k

vk
xKk

y . ~4.4!

Using Eq.~3.4! in Eq. ~4.3!, we get an integral equation fo
K :

Kk5
tk

\ H 1

N~u!
Lk81(

k9
Ck,k9Kk9J

5
tk

\ H Lk8

N~u!
1E du8N~u8!U~u,u8!K ~u8!J . ~4.5!

We proceed exactly as in the analysis forL , Eqs.~3.4!–
~3.9!. For the requiredKy , we find the differential equation

Z~u!5M y8~u!~12r cos 4u!5/41u~u!Z9~u!12u8~u!Z8~u!,
~4.6!
09450
whereZ(u) determinesKy(u) as

Ky~u!5S tM

\ D 22p

V

\v0

k0

1

~12r!1/4S 2
] f

]e DZ~u!, ~4.7!

and M y is obtained as the solution of Eq.~3.7!. As in that
case, an iterative solution of Eq.~4.6! is not valid. Combin-
ing all our results into Eq.~4.4!, we find

sxy52
e3B

p2c S tM

\ D 2E
0

p/2 du

~12r cos 4u!5/4
vx~u!Z~u!.

~4.8!

When there is no small-angle scattering,M y5vy and
Z(u)52v0(sinu23r sin 3u)(12r cos 4u)5/4. In that case,

sxy}E
0

p/2

du~sin2u23r2sin2u!, ~4.9!

which vanishes whenr51/A3. This is the familiar result of
the vanishing ofsxy when the Fermi surface consists
equal portions of positive and negative curvature. One s
that the anisotropic small-angle contributions, which hav
leading contribution proportional totM

3 , i.e., to 1/T3, do not
vanish there.

V. CHOICE OF PARAMETERS AND COMPARISON
WITH EXPERIMENTS

We now describe the evaluation of the conductivities
ing experimental data from ARPES and from the longitu
nal transport in zero magnetic field. The strategy is as
lows. The anisotropies in the problem will be determin
from the anisotropy of the impurity scattering 1/t i(u)
52g( k̂)/\ as determined from ARPES. For simplicity, w
shall let the density of statesN(u) be responsible for the
anisotropy of 1/t i , and hence for the quantityu(u) @see Eq.
~3.9!#. The measured anisotropy of 1/t i from the (p,p) di-
rection to the (p,0) direction in the Brillouin zone then de
termines the velocity anisotropy parameterr from Eqs.~2.9!
and~3.12!. These parametrizations give the correct behav
at the edges of the Brillouin zone. The small-angle param
uc can then be found from the ‘‘residual resistance’’ ra
~RR! of the resistivity atTc to the extrapolated value atT
50. That is sufficient to determine theT dependence of
cotuH5sxx/sxy. The magnitude of cotuH is then fixed by the
effective mass\k0 /v0, which we leave as an adjustable p
rameter. It will be seen that the effective mass has a q
reasonable value.

The conductivities are given by Eqs.~3.13! and~4.8!. The
quantity u, which appears in the differential equations f
M and Z, is defined as u(u;T)5(uc

2/24)tM /t i(u)
5(tM /\)(uc

3/24)N(u)U(u,u). The measured anisotropy4 of

g( k̂)5\/2t i is about 4.5. We assign this toN(u), thus de-
terminingr from Eq. ~3.12! asr50.54. Therefore, we have
2-4
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1/t i~u!5~1/t0!~12r cos 4u!25/4,

u~u;T!5u0~T!~12r cos 4u!25/4, ~5.1!

r50.54.

The quantityu0(T)5tM(T)(uc
2/24)/t0 . tM(T) and t0 may

be determined from ARPES as described in Ref. 3. Fr
ARPES,\/t i'0.24 eV atu5p/8. So\/t050.24 eV. From
the same source,\/tM50.015(T/100) eV, whereT is in
kelvin. This determinesu0 as u0(T)516(100/T)(uc

2/24).
The remaining parameteru0, that is,uc , is determined from
the resistance ratio RR as follows.

The longitudinal resistivity in zero magnetic fieldrxx is
given by the inverse ofsxx from Eq. ~3.13!. Unfortunately
we do not have an analytic solution of the differential equ
tion Eq. ~3.7! for Mx , although the coefficients are no
known from Eq.~5.1!. Numerical integrations of Eqs.~3.7!
and ~3.13! are performed for different values ofu0(T)
5(1600/T)(uc

2/24). For a given value ofuc , rxx is almost
precisely linear inT aboveT5100 K ~see Fig. 2!. The T
50 intercept ofrxx, r0, is obtained by extrapolating th
found high-temperature linear dependence. The RR is
fined asrxx(T5100)/r0, and is typically about 8, say. Thi
is obtained foru0(T)'0.022(100/T) so that the characteris
tic small-angle parameter is indeed small,uc

2/24'0.0014.
All parameters are now fixed with the exception ofm*

5\k0 /v0. The numerical integrations of Eqs.~3.7!, ~4.6!
and ~4.8! for M y , Z, and sxy, respectively, can be carrie
out for different values ofT and combined with the previou
result forsxx(T) to give cotuH(T)5sxx(T)/sxy(T):

cotuH~T!5
0.82

vctM

m*

m

E dun~u!vx~u!Mx~u!

E dun~u!vx~u!Z~u!

, ~5.2!

FIG. 2. Linear temperature fit to calculated resistivity~dots!
from Eq. ~4.8! for uc

2/2450.0014. The resistance ratio
r(100)/r(0), is 8.
09450
-

e-

where we have usedr50.54,vc is the cyclotron frequency
with the bare mass, andn(u)5(120.54 cos 4u)25/4.

We now compare our result with the experiment of Chi
et al.6 They measured the Hall angle as a function of te
perature for various concentrations of Zn impurities in ne
optimally doped YBa2Cu3O72d. Their data atB58 T (vc
51.2831012 s21) is reproduced in Fig. 3.

We examine the data for zero Zn concentration. In Fig
we have replotted thex50 points from Fig. 3~large dots!
and the theoretical result~small dots! of Eq. ~5.2! with
m* /m51.5, so adjusted to give the best agreement. I
important thatm* turns out to be reasonable. We emphas
that the parameters we picked were determined from ARP
experiments on Bi2Sr2CaCu2O81d, while the Hall data is on
YBa2Cu3O72d. Thus, our intent here is only to show that th
scattering rates

FIG. 3. Data of Chienet al. ~Ref. 6!.

FIG. 4. Theory~small dots! fit to x50 data~large dots! of Chien
et al. ~Ref. 6!.
2-5
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ELIHU ABRAHAMS AND C. M. VARMA PHYSICAL REVIEW B 68, 094502 ~2003!
characteristic of high-Tc superconductors in the normal sta
near optimal doping can by themselves account for the t
perature dependence of the Hall angle, not to demons
quantitative agreement with a particular experiment. It
seen that the experimental temperature dependence is
well reproduced.

Notice that the experimental curves have a negative
vature on aT2 plot. While this might suggest a power la
less than 2 and several investigators have tried such a fi9,10

our picture indicates that this behavior is a consequenc
the fact that the conductivities are each the sum of two te
with approximate 1/Tn and 1/Tn11 (sxx, n51; sxy, n52)
dependences.

The data of Ref. 6 and our theory both suggest that in
absence of in-plane impurities such as Zn, the extrapola
cotuH at T→0 is zero. In-plane impurities will in general no
give scattering restricted to small angles. Indeed, their in
ence is evident in the measured resistivity. We could inclu
their effects by assuming them to be isotropic scatterers
add a constant 1/tz to the isotropic linear in temperatur
MFL rate 1/tM . This has the effect of an almost parall
upward shift of cotuH so that it has a zero-temperature inte
cept proportional to 1/tz , i.e., to the in-plane impurity con
centration. We illustrate this qualitatively using some d
from Ref. 9. In Fig. 5, we show the data~large dots! for
Bi2Sr22xLaxCuO6 with x50.44 ~optimal doping!. It is seen
that the data do not extrapolate with a zero intercept.
interpret this as signaling the presence of in-plane scatte
The theoretical curve~small dots! uses similar parameters a
in Fig. 4 but with an in-plane impurity contribution added
1/tM .

The availability of very high magnetic fields18 capable of
restoring the normal state below the transition temperatur
some cuprate superconductors makes it possible to inv
gate the Hall effect down to very low temperatures. We c
clude this section with our prediction, in Fig. 6, for the b
havior of cotuH down to T50 for the case in which the
longitudinal resistivity is linear over the whole temperatu

FIG. 5. Comparison of theory~small dots! including in-plane
scatterers with data~large dots! from Ref. 9, for optimally doped
Bi2Sr22xLaxCuO6.
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range. We used the same parameters as in Fig. 5 but
magnetic field was taken to be 50 T, rather than 10 T.

VI. COMPLEX HALL CONDUCTIVITY

In this section, we comment on the recent ac Hall eff
results of Graysonet al.15 For low frequencies andT.Tc ,
we can replace 1tM'1/t tr by 1/t tr2 iv. This follows im-
mediately from Eqs.~2.1!–~2.3!: the distribution function
g(k,v) and therefore the transport properties are obtai
from thev50 results by this replacement.

From Fig. 2 it is seen that the resistivity is almost pr
cisely linear inT in the normal state,rxx5a1bT, wherea is
the ~small! residual resistivity due to the small-angle imp
rity scattering. Thus,a/b is about 10, say. We have als
found thatsxy(T) is, in the temperature range of interes
very closely of the formc/T21d/T3, with c/d'0.01 K21.
Therefore, neglecting quantities of order 0.1, our predict
for the Hall angle is

uH~v,T!'tanuH

5sxyrxx'AF 1

~1/t tr2 iv!2
1

c

d

1

~1/t tr2 iv!G ,

~6.1!

whereA andc/d are constant in temperature. The latter ra
is now in units of seconds; for our example parameters i
about 2310214 s. We emphasize that a single relaxation ra
1/t tr enters all our expressions. The constantA in Eq. ~6.1!
corresponds to the quantityvHVp of Ref. 15. In that refer-
ence, Fig. 4 shows thatA is indeed temperature and fre
quency independent. Thec/d term is the conventional term
In Ref. 15, it was shown that by itself it cannot account f
the experimental data. Just as the dc data show deviat
from T2 behavior for cotuH , we expect that the ac dat
should be fitted by a combination of the two terms in E
~6.1!. At higher frequencies or temperatures, the conv

FIG. 6. Theoretical prediction for cotuH down toT50. There is
a small intercept atT50 (cotuH'1.0) due to in-plane impurity
scattering.
2-6
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tional term should finally dominate. The complex Hall ang
measurements convincingly demonstrate that just one ine
tic transport rate determines all the frequency and temp
ture dependences of the transport properties of the highTc
superconductors in the marginal Fermi liquid region, i.e.,
their normal state near optimum doping.

When calculating the ac conductivity, the limits of app
cability of the Boltzmann equation should be kept in min
The results are only valid forvt!1. In this regime the
conservation laws~in terms of bare particles! completely de-
termine transport and the Boltzmann equation deals w
them properly. In a microscopic theory, the effects of sm
angle scattering calculated here appear as corrections t
coupling of the external magnetic field to the carriers.
high enough frequency these vertex corrections must van
The crossover frequency and the behavior of transport p
erties in the intermediate regime can only be determined b
microscopic calculation. Experimental results at high f
quencies do depart from the predictions of Eq.~6.1!.

VII. CONCLUDING REMARKS

Here we discuss sundry issues related to the theory
calculations presented in this paper. We emphasize that
work pertains only to the Hall effect in optimally or ove
doped samples. For the latter, the linear-in-temperature s
tering rate 1/tM should be replaced in the theory by a ra
with the T dependence of the observed resistivity. In und
doped cuprates, additional physical considerations appe
determine the transport and equilibrium properties.

A. Magnetoresistance

Earlier,5 we gave a plausibility argument that the observ
magnetoresistance would follow quantitatively from t
same considerations that lead to the observed Hall effect
leave it as a future exercise to calculate this quantity dire
from the solution of the Boltzmann equation as an extens
of the present theory.

B. Small-angle scattering, Fermi surface geometry, bilayer
splitting, etc

We have modeled the Fermi velocity through Eq.~3.11!,
which with r'0.54 is in itself enough to give the observe
angular variation of the elastic part of the single-particle
laxation rate. As we have seen, this also gives agreem
with the observed temperature dependence of the Hall an
This value ofr is 10% away from the value at which th
customary Hall coefficient would be zero. This seems to
reasonable, since in a model with nearest-neighbor C
hopping alone, the Hall effect is zero at half-filling, and wi
O-O hopping included, the density for zero Hall effect shi
substantially towards hole doping. The optimal doping co
position lies in the range 15–20 % hole doping. In this co
nection, it is important to remember that we are using para
eters obtained from experiments on Bi2Sr2CaCu2O81d to fit
Hall data on YBa2Cu3O72d. Therefore the precise numbe
09450
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are not too meaningful; we only argue that we have sho
that the small-angle scattering scenario gives the qualita
features of the experiments.

In our numerical analysis, we have chosen the simp
parametrization of the Fermi velocity to show the plausibil
of the small-angle effect in relation to the experiments. O
parametrization should not be expected to represent
Fermi surface adequately. For the actual Fermi surface
eral terms in Eq.~3.10! for the Fermi velocity would have to
be included with coefficients smaller thanr. We note, how-
ever, that the successive terms give compensatingly la
coefficients since the higher harmonics produce larger
rivative terms in Eq.~5.2! for sxy . For a truer Fermi surface
the advantage of analytical calculations is lost. These
marks are of academic interest at the present time since
actual Fermi surface is not accurately known.

More relevant is the fact that the Fermi surface
Bi2Sr2CaCu2O81d, the ARPES data for which we have use
here, has two sheets coming from the bilayer splitting. T
bilayer splitting varies as a function of angle, being larges
the (p,0) direction. This arises because of the geometry
the interlayer orbitals.19 This angular variation is essentiall
the same as that of the observed anisotropic elastic sca
ing. The fact that the bilayer splitting is not resolved in t
experimental data we have used indicates the presence
elastic scattering mechanism that couples the layers. We
mise that for interlayer or intralayer scattering due to imp
rities between the planes, the same orbitals are involved
therefore the same angular dependence arises in scatte
In a single-layer model as treated here, this effect is par
etrized through the choice of the angle dependence of
Fermi velocity as in Eq.~3.11!.

C. Comments on related work

As already remarked, although the analytical expressi
derived in our earlier work5 are correct, we erred, as pointe
out by Yakovenko,13 in our choice of the parametrization i
which they were evaluated. This error has been remed
here. Our more complete analysis with a simpler parame
zation in fact gives results consistent with experiment.
have shown that not only do we get the right temperat
dependence but that with a reasonable effective mass,
absolute value of the cotangent of the Hall angle is obtai
within 10% of the data from the same parametrization.

In Ref. 20, Hlubina argues that the term discovered by
if adequate to explain the Hall angle, would make an un
ceptable contribution to the longitudinal resistivity. Since o
parameters are actually determined by the measured res
ity, this criticism is invalid. It is difficult to make a direc
comparison with the calculations of Ref. 20 since a qu
different parametrization of the Fermi surface is used the
However, we can note that the parametrization family us
in Hlubina’s evaluation does not include ours and gives
much larger conventional contribution tosxy than the one
we have used.

A recent paper of Carter and Schofield21 addresses the
main point of our original paper.5 Their work consists of two
parts. One is analytical, the other is a numerical solution
2-7
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equations we derived in Ref. 5. We cannot comment on
adequacy of the numerical work, but Carter and Schofi
are indeed correct that the customary term~with a different
temperature dependence than our term! is zero only for a
particular choice of Fermi surface. This is of course w
known: the traditional Hall angle is zero only for ‘‘particle
hole symmetry’’ defined in terms of the curvature of t
Fermi surface. However, as we have shown here, it is
necessary that the customary term be zero~and all the tem-
perature dependence come from our term! to get good agree
ment with experiment. It is sufficient that the customary te
is about a factor of 4 smaller than our term atT'100 K. In
fact, the experimental data for cotuH , when plotted agains
T2, usually shows a slight downward curvature. This po
has been discussed in Sec. I and is adequately demonst
in the experimental data shown in Figs. 3–5.

The analytical calculation of Ref. 21, expressed in th
Eqs. ~7!–~10!, is not sufficiently general to contain th
nd

. B

Q

y
,
to

in

.A

a,

09450
e
ld

l

ot

t
ted

r

anisotropies required to show the effect we have deriv
Their calculation forsxy is equivalent to retaining only the
impurity scattering contribution to the conventional term, n
the contribution that we have derived. See Footnote 22
Ref. 21 for a comment on this. Actually, the analytical ca
culation of Ref. 21 is based on a circular Fermi surface a
we agree that such a parametrization never leads to a l
enough effect.
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