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Analytical results for the Cogblin-Schrieffer model with generalized magnetic fields
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Using the approach alternative to the traditional thermodynamic Bethe ansatz, we derive analytical expres-
sions for the free energy of Cogblin-Schrieffer model with arbitrary magnetic and crystal fields. In the Appen-
dix we calculate the zero-temperature magnetic susceptibility for two concrete crystal-field patterns. One of the
patterns describes the field generated crossover from the SU(4) to the SU(2) symmetry in the
SU(4)-symmetric model.
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The advances of nanotechnology have given an additional n
weight to the old problem of Kondo effect. Artificially manu- 2 H,=0. (2
factured structures such as quantum dots emulate the behav- a=1

ior of “natural” magnetic impurities though on different en-  ngte that the cases described above correspond to the sector

ergy scales. Using technological means one can widely vangs the Cogblin-Schrieffer model with the occupation number
the parameters of the dots thus getting an access to previ— 1

ously experimentally unexplored regions of the phase gjyce model(1) has a linear spectrum, it has to be

diagram. equipped with the ultravioletUV) cutoff A and a consistent

The most physically transparent situation corresponds t9smoya| of the UV divergences requires that the “bare” cou-
the case when magnetic impuritpr quantum dothas a  pjing g =nJp(0) [herep(0) is the conduction electron den-

perfect symmetry. This, however, is rarely achieved in rea ity of states at the chemical poteniidle given certain de-

systems due to the presence of the crystalline lattice. Let Uﬁendence of the cutoff momentsee, e.g. in Ref.)2
consider, for instance, magnetic impurities made of rare- ’

earth magnetic ions of Ce and Yb. In the presence of a strong dgo 3
spin-orbital coupling, arf'(Ce) or f13(Yb)-orbital is char- Ad—A:—géJr —t. .. ©)
acterized by the total angular momentuynGj =5/2 for Ce n
and 7/2 for YD such that an isolated ion has the 3Y( Equation (3) shows that for positiveg, the Cogpblin-

symmetry withn=2j + 1. In the crystalline environment this  schrieffer model acquires a physical energy scale, the Kondo
symmetry is broken. The interplay of these effects with theiemperature

Kondo screening can be studied using the Coqgblin-Schrieffer
modef Te~Agy e Yoo, 4

J and renormalization trades the bare coupling consigrior
H=, ke .Ccat o 2 Cf G bfifat X Hafifa, (1) the renormalization group invariant scdlg . Therefore the

ka ’ Vige a partition functions of the model in the sector with a given
occupation numbeg, Z,, actually depends on the dimen-
sionless combination®/Tx andH, /T . Of course, formula
F4) does not specify the physical energy scale uniquely and
in order to defineTx unambiguously we shall impose the
conventional normalization conditidn

ab

where Cl,a and ¢, , are creation(annihilation operators of
the conduction electrons partial harmonics with the angula
momentum projectiorm=j+1—a(a=1, ...n), f. andf,
operators describe the impurity spin, avids the volume of

the system. The generalized magnetic field originates -1

from crystal fields inherent to the material and the external IMCy(MITly —o=5 =, (5)
magnetic field. Since Hamiltoniafil) commutes with the T—0 a 3 Tk

operator

whereCy(T)=T(4%JT?)(T logZ,_,) is the heat capacity of
n the impurity in the sector with the occupation number
q= fif =1 . o
P If the fields are weak in comparison with the Kondo tem-
perature(5), the behavior of the system is governed Hy)’
one can assume without loss of generality that [the Kondo temperature of the fully Sh)(-symmetric
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model] which for rare earth impurities may be as large as Wo(v,0)—(—iefythev/m=(n-12)
several hundred degrees. On the other extreme, if the gener-
; g n) ) v
alized magnetic fields exceet{” and break down the de % expl ie? C+f duutheun| ®)
generacy to one Kramers doublet, one gets the Kondo tem- 0

perature of the order of several degrees. As an illustration let

us estimate the new Kondo temperature for the case when thi#gere C is an arbitrary constant, whose explicit value is not
original SUM) symmetry is broken down to S{) by the  essential for our purposes. Note that_ Eg. is invariant un-
fieldsHy, ... Ho_m>T{. The estimate is easy if all the der the transformation, 6— 6+2mi/n, whereas the

fields H, H are of the same ordet. Since InT™ asymptotic(8) is not. Hence the analytic continuations of
o Hn-m . K
~=1/nJp(0), InT{"~—1/mJp(0), and thedimensionless ~ ©’
()
ground state energy depends onlyldp/Ty”, we conclude W o(v,0) =V (v, 0+ 2mig/n), 9)

that the resulting Kondo temperaturéis

o o with integersq, generate new solutions of E(). It is pos-
T~ HTE/H)Y™, (6)  sible to show that the WronskiaW[W¥y, ¥, ... ¥, 1]

] ] ) ) does not vanish, so that the s{elfq}g;(l) is a fundamental
which may easily constitute a scale vastly different from thesystem of solutions of Ed7). By virtue of this fact, solution
Kondo temperature of the unperturbed model. It is clear thafg) with g=n can be decomposed as
the detailed behavior in this crossover interval depends on

the field ratiosH,/H,, and it would be highly desirable to n-1
have analy'tlcal tools to handle a situation with an arbitrary v (y,9)= Z (—1)”_q_1Zq(0+iwq/n)\Ifq(v,e).
pattern of fields. q=0

Historically the thermodynamics of the Cogblin- (10

Schrieffer model has been examined by the method of therlfollowin the line of arguments similar to that of Refs
modynamic Bethe ansateTBA) (Refs. 3,5-8 Unfortu- 10,11 itgijs ossible to sh%w that if the parametérandh .
nately the TBA equations corresponding to EL).are rather aré identifigd with the dimens;ionlessp arameters oaf the
complicated to be studied analytically, and until now the ma-- oolin-Schrieff del P
jority of results have been obtained by means of their nu- ogblin-schrietier mode
merical integratior(see Ref. 9 and references thejein
This work is based on the approach alternative to the oot Tk _ Ha
TBA. Here we just outline major steps of our analysis and 2n (i) T & 27T’
refer the reader to the pap&s'? where the method itself
was developedsee also important works in Ref. 13 et us  then the functiorZ,(6) appearing in Eq(10) coincides with
make some remarks on the general spirit of the approach. the analytic continuation of the partition function of this
uses the fact that integrable impurity models in general anehodelZ,, for the sector with occupation number
the Cogblin-Schrieffer model in particular can be mapped to The subject of our current interest is the free energies
the (1+1)-dimensional bulk conformal field theofCFT)
with a nonconformal boundary interactigeee e.g. in Ref. Fq=—Tlog(Z,) (12
14). From this point of view, Eq(1) belongs to the class of
exactly solvable boundary theories such that the associateat the low temperature limit. In particular we study vacuum
boundary state commutes with the infinite set of mutuallyenergiesé,=F4|r—o. It can be worked out by means the
commutative local integrals of motion of the bulk system. Assemi-classical Wentzel, Kramer, and Brilou{ivKB) ap-
a matter of fact, one may say that the boundary state “genproximation for Eq.(7). The leading terms in the WKB ex-
erates” this set in the sense that it admits the asymptotipansion of the solutioW, (8) read
large distance expansion in terms of these local integrals.
More precisely, the Hilbert space of the bulk CFT associated Vo(v,0)=(—iX(elng/ny)~(n-1/2)
with Eg. (1) can be classified in accordance with the
WA, _;-algebrd® with the central charge=n—1 and the wexp ie’
corresponding boundary state commutes with the set of local
integrals of motion introduced in Ref. 15. .
In the approach adopted in this paper, the amplltude_s pf _if du(X(Y)—-Y)
the boundary state are related to monodromy characteristics v

of certain ordinary linear differential equations. The key in-
gredient is the equation of the form, Here X=X(Y) is the solution of the algebraic equation

11

C+ fvduul’”e”’”)
0

Yef)ul/neu/n] . (13)

[(—ig,+hy)...(—id,+h,)—eYe’v]¥=0, (7) YU=(X+hy) ... (X+hy), (14)

where § andh, are somgcomplex parameters. For In#) such that
= 77/2 the equation admits a solution which is specified un-
ambiguously by the following asymptotic as— + «: X(Y)—Y as Y—ow. (15
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In fact, X=X(Y) is a multi-valued function of the *

argumentY and Eq. (15 uniquely specifies its branch X(Y)=Y+E E l(hy, ... hpY K (16
for a sufficiently large Y. The latter solution admits nk#o(?nodr)

a convergent NM-power series expansion found by

Lagrange'® Herel, are symmetric polynomials given by

(_:I.)a/l+ coetan—g F(al+ - +an,1_k/n) ay~ay an_1
e, - ha) = al,..%,@o alay ..y ! T(1—k/n) Gp'Gs%. .G (D)

2a1+3ap+ .. .na,_1=k+1

where we use the following notation for the elementary sym- o Tk
metric polynomialsG : Fq= Eosm(? +—
- [ wkq| [ Hy Hy | [ T2
Gk_lsa1<a22...<ak<n Na, - - -ha. (19 X k§=)l Cksm( . )ﬂk(zﬂ, 2 | T
k#0(modn
Note that according to constraiff), we have se6G,=0, and +0O(T7). (21

alsoG,=—33"_ h2.

Using Lagrange formulagl6) and (13) it is possible to
show that the vacuum energies admit the following weak
field expansiol

Here the numerical coefficientS, are the same as in Eq.
(19 andli(hy, ... h,) is the symmetric polynomial of the
degreek of the form

k
Tk Le=le+ 2 19, (22)
=0

wherel is given by Eq.(17) andl(k')=l(k')(h1, ...,h,) are
o some homogeneous symmetric polynomials of the degree 0
2nTy ' 27Ty’ <I|<k. Currently the polynomiald, are not known in a
closed form for arbitrark. Nevertheless, they admit a simple
(19 algebraic description. As has been mentioned before, the
boundary state associated with the Coqgblin-Schrieffer model
where commutes with the infinite set of mutually commutative in-
tegrals of motion for theW A, _;-algebra with the central
Cy =21 T (1) (—k/n). chargec=n—1. It turns out that the polynomialg appear-
ing in EqQ. (21) coincide with vacuum eigenvalues of these
The first term in Eq(19) is the vacuum energy for zero fields conserved charges. Therefore they can be calculated purely
and the value oE,~ T is related to the choice of the con- algebraically for any finit&k. In particular we found
stantC in Eq. (8).X Note thatl, (17) are homogeneous sym-

H, H,

wk

X 2 Cksin( q) Ik<

k=1 n
k#0(modn

metric polynomials of the variablds, of the degreek+1, _ n—1 _
) I,==Gy+ —+, bL=-0Gg3,
l.e., 24
LNy, ..o Ahy) =N (hy, ... by, (20) o n-3 , n-3 3(n—1)(n—3)
ls==Cat 5 Com gy G —am
so Eq.(19) can be considered as a power series expansion in
H/(27Ty), whereH=\/1/n=]_,H2. Thus if the fields are n—4 n—4
weak in comparison with the Kondo temperature the behav- l4=—=Gs+ n G3Ga— 3n Gs. (23

ior of the system is governed by convergent se(le3. At

the same time the series has a finite convergence radius, ahlitre G, are elementary symmetric polynomigls8). Note

defines the multi-valued function of complex variablgsee  that for the physically interesting case of the magnetic field

the Appendix for examples configuration
We have also examined the structure of the low tempera-

ture expansion of t_he.free ener@?2) and found the follow- h,=h(j+1-a), j= E (24)

ing asymptotic series: 2
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[ee]

all the polynomiald, with evenk vanish, whereas using Eq. T —1
(23) one has quEOsin(W—q)+ AT 1 (21 —1)(1/2=5/4)
4] erway = N
n—1
= 2 | 1)\si 21—-1)q/4
Iy 24 [n(n+1)h*+1], o sm(w( )q )2
2 4) sin(w(21—-1)/4)
n—1)(n—3 H\?
=TT e+ 1)(n 3)h*+ 10n(n+ 1)h?+ 9], 1 13 | \[T(4)2H
192 XF, 55 o e\ T ) (A5)
(25 Ik
In conclusion let us just repeat the basic results of thewith
paper. We have outlined a method which allows to extract
analytical results for the thermodynamics of Coqgblin- 02 H H2_ 42\ 2
Schrieffer model in the presence of magnetic and crystal H= 12 - ;_g
fields. The general formulas drastically simplify for the 2 Hi+H5

SU(4) model(see the Appendix
Note that Eq(A5) can be rewritten in the form of a conver-
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—1/4

[HIT|< min[e~Y4,(1—€)~Y4].

£ —E.si mq Hsi mq

APPENDIX o= EosSIN 7~ T Hsin 5~
In this appendix we illustrate the expansi¢i®) using * dw A

two examples. XJ’ 2—(iw+0)""*1
Our first example is related to the case 4. Let us con- —wem

(- 1/2-2iw) ( 2r(1/4)ﬁ) e

T(1/2—iw) 7Tk

2

sider the following configuration of the generalized magnetic 1 1 1 1 1-2¢
fields e —c—iw——iw=—(—1)9
><F14 i, 7 Ia),2 Iw,2 (-1 > )
H1:_H4, H2:_H3, (Al) (A6)
with H;=H,=0. In this case Eq(14) is especially simple ) ) ) o
and can be written in the form It is particularly illuminating to extract the Kondo tempera-
ture from this expression for the SU(2) Cogblin-Schrieffer
Y4=(X2—h3)(X?-h3). (A2)  model to compare it with Eq6). The Kondo temperature
) L . Tff) can be extracted from the magnetic susceptibility in the
Its solutionX=X(Y) satisfying Eq.(15) reads explicitly limit when one of the fields is very large. Since the energy
depends on two fieldsl; andH,, one has to be careful in
— 4 2
X=yVvl+tely'+1h7 (A3)  choosing the right direction of differentiation. The right

choice of variables i$1.=H;*=H, such thatv&;/dH =0

Wherey:Y/F,x=X/W, and — )
atH_=0. Then atH , —2H>Ty, H_—0 we obtain forq

o h§+ hg hi_ h% 2 =1 the following expression for the magnetic susceptibility:
- 2 7\ h%n2
. . . . PEL w —o 1 w2 T2
All even coefficientd 5 in series(16) vanish now, whereas x=———| = ——, &2):— —.
I,,_, can be expressed in terms of the hypergeometric func- JHZ Hi=2H 24T \8I'%(1/4) H
tion (A7)
L, T(=172), 1 | 3 | The above expression for the effective Kondo temperature is
l2-1=2(—1) Thz Fil =557 5.7 7 57€/: a particular case of Eq6) for n=4,m=2.
e (A4) Our second example is related to the case of an arbitrary
integern. In Ref. 3, the vacuum energf was found for the
Combining this equation with Eq19) one obtains, following fields configuration:
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— m(2a—1) o
Ha— \/EH CO{T). (A8) F(ﬁ+2| F 2ln+1+o
) ) ) lon+e=0 — , o==*1,
For this pattern Eq(14) is expressed in terms of the Cheby- o 2
. N1+ —+I
shev polynomialsT ,(x) = cognarccosk) | n
(A11)
y“=21‘”’2Tn(x/\/§), (A9)  As in the first example, the vacuum %nerg(a:g) can be
— — written in the form of convergent integral:
wherey=Y/h, x=X/h. Therefore g g
[mq\| V2HSsin(m7g/n) [* dw _—
1 n-1 n—-1 22—n) gq_EOSm(T)"' A _mﬂ(lw-f-O)
X:yZFl T A y ;
2n’ 2n n 2n . . —\ inw
y ><F( 1 Iw)r( 1 Iw) n"r(1myH\"
1 1 n+1 n+l1 220 2n 2/ \2n 2 2Ty '
+52F 1| 5=, , ; , (A10)

2y 2n" 2n 7 n 7 oy2n (A12)
and nonvanishing coefficients in Eg&l6) and (19) are Itis easy to check that this equation foe 4 is in agreement
lon—1(I=21,2...) andl,,+1(1=0,1,2...): with (A6) providede=1/2.
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