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Analytical results for the Coqblin-Schrieffer model with generalized magnetic fields

V. V. Bazhanov,1,2 S. L. Lukyanov,3,4 and A. M. Tsvelik5
1 Department of Theoretical Physics, Research School of Physical Sciences and Engineering, Australian National Universi

Canberra, ACT 0200, Australia
2Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

3Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855-0849, USA
4L. D. Landau Institute for Theoretical Physics, Chernogolovka 142432, Russia

5Department of Physics, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
~Received 8 May 2003; published 23 September 2003!

Using the approach alternative to the traditional thermodynamic Bethe ansatz, we derive analytical expres-
sions for the free energy of Coqblin-Schrieffer model with arbitrary magnetic and crystal fields. In the Appen-
dix we calculate the zero-temperature magnetic susceptibility for two concrete crystal-field patterns. One of the
patterns describes the field generated crossover from the SU(4) to the SU(2) symmetry in the
SU(4)-symmetric model.
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The advances of nanotechnology have given an additio
weight to the old problem of Kondo effect. Artificially manu
factured structures such as quantum dots emulate the be
ior of ‘‘natural’’ magnetic impurities though on different en
ergy scales. Using technological means one can widely v
the parameters of the dots thus getting an access to p
ously experimentally unexplored regions of the pha
diagram.

The most physically transparent situation correspond
the case when magnetic impurity~or quantum dot! has a
perfect symmetry. This, however, is rarely achieved in r
systems due to the presence of the crystalline lattice. Le
consider, for instance, magnetic impurities made of ra
earth magnetic ions of Ce and Yb. In the presence of a str
spin-orbital coupling, anf 1(Ce) or f 13(Yb)-orbital is char-
acterized by the total angular momentumj ( j 55/2 for Ce
and 7/2 for Yb! such that an isolated ion has the SU(n)
symmetry withn52 j 11. In the crystalline environment thi
symmetry is broken. The interplay of these effects with
Kondo screening can be studied using the Coqblin-Schrie
model1

H5(
k,a

kck,a
† ck,a1

J

V (
k,k8
a,b

ck,a
† ck8,bfb

†fa1(
a

Hafa
†fa , ~1!

where ck,a
† and ck,a are creation~annihilation! operators of

the conduction electrons partial harmonics with the angu
momentum projectionm5 j 112a(a51, . . .n), fa

† and fa

operators describe the impurity spin, andV is the volume of
the system. The generalized magnetic fieldHa originates
from crystal fields inherent to the material and the exter
magnetic field. Since Hamiltonian~1! commutes with the
operator

q5 (
a51

n

fa
†fa ,

one can assume without loss of generality that
0163-1829/2003/68~9!/094427~5!/$20.00 68 0944
al

av-

ry
vi-
e

to

l
us
-

ng

e
er

r

l

(
a51

n

Ha50. ~2!

Note that the cases described above correspond to the s
of the Coqblin-Schrieffer model with the occupation numb
q51.

Since model~1! has a linear spectrum, it has to b
equipped with the ultraviolet~UV! cutoff L and a consisten
removal of the UV divergences requires that the ‘‘bare’’ co
pling g05nJr(0) @herer(0) is the conduction electron den
sity of states at the chemical potential# be given certain de-
pendence of the cutoff momenta~see, e.g. in Ref. 2!:

L
dg0

dL
52g0

21
g0

3

n
1•••. ~3!

Equation ~3! shows that for positiveg0 the Coqblin-
Schrieffer model acquires a physical energy scale, the Ko
temperature

TK;Lg0
1/ne21/g0, ~4!

and renormalization trades the bare coupling constantg0 for
the renormalization group invariant scaleTK . Therefore the
partition functions of the model in the sector with a give
occupation numberq, Zq , actually depends on the dimen
sionless combinationsT/TK andHa /TK . Of course, formula
~4! does not specify the physical energy scale uniquely
in order to defineTK unambiguously we shall impose th
conventional normalization condition3

lim
T→0

C1~T!/TuHa505
p

3

n21

TK
, ~5!

whereC1(T)5T(]2/]T2)(T logZq51) is the heat capacity o
the impurity in the sector with the occupation numb
q51.

If the fields are weak in comparison with the Kondo tem
perature~5!, the behavior of the system is governed byTK

(n)

@the Kondo temperature of the fully SU(n)-symmetric
©2003 The American Physical Society27-1
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model# which for rare earth impurities may be as large
several hundred degrees. On the other extreme, if the ge
alized magnetic fields exceedTK

(n) and break down the de
generacy to one Kramers doublet, one gets the Kondo t
perature of the order of several degrees. As an illustration
us estimate the new Kondo temperature for the case when
original SU(n) symmetry is broken down to SU(m) by the
fields H1 , . . . ,Hn2m@TK

(n) . The estimate is easy if all th

fields H1 , . . . ,Hn2m are of the same orderH̄. Since lnTK
(n)

;21/nJr(0), lnTK
(m);21/mJr(0), and thedimensionless

ground state energy depends only onHa /TK
(n) , we conclude

that the resulting Kondo temperature is4,5

TK
(m);H̄~TK

(n)/H̄ !n/m, ~6!

which may easily constitute a scale vastly different from
Kondo temperature of the unperturbed model. It is clear t
the detailed behavior in this crossover interval depends
the field ratiosHa /Hb and it would be highly desirable to
have analytical tools to handle a situation with an arbitr
pattern of fields.

Historically the thermodynamics of the Coqblin
Schrieffer model has been examined by the method of t
modynamic Bethe ansatz~TBA! ~Refs. 3,5–8!. Unfortu-
nately the TBA equations corresponding to Eq.~1! are rather
complicated to be studied analytically, and until now the m
jority of results have been obtained by means of their
merical integration~see Ref. 9 and references therein!.

This work is based on the approach alternative to
TBA. Here we just outline major steps of our analysis a
refer the reader to the papers10–12 where the method itsel
was developed~see also important works in Ref. 13!. Let us
make some remarks on the general spirit of the approac
uses the fact that integrable impurity models in general
the Coqblin-Schrieffer model in particular can be mapped
the (111)-dimensional bulk conformal field theory~CFT!
with a nonconformal boundary interaction~see e.g. in Ref.
14!. From this point of view, Eq.~1! belongs to the class o
exactly solvable boundary theories such that the associ
boundary state commutes with the infinite set of mutua
commutative local integrals of motion of the bulk system.
a matter of fact, one may say that the boundary state ‘‘g
erates’’ this set in the sense that it admits the asympt
large distance expansion in terms of these local integr
More precisely, the Hilbert space of the bulk CFT associa
with Eq. ~1! can be classified in accordance with t
WAn21-algebra15 with the central chargec5n21 and the
corresponding boundary state commutes with the set of l
integrals of motion introduced in Ref. 15.

In the approach adopted in this paper, the amplitude
the boundary state are related to monodromy characteri
of certain ordinary linear differential equations. The key
gredient is the equation of the form,

@~2 i]v1h1! . . . ~2 i]v1hn!2enuevv#C50, ~7!

whereu andha are some~complex! parameters. For Im(u)
5p/2 the equation admits a solution which is specified u
ambiguously by the following asymptotic asv→1`:
09442
s
er-

-
et
he

e
at
n

y

r-

-
-

e
d

It
d
o

ed
y

n-
ic
ls.
d

al

of
ics
-

-

C0~v,u!→~2 ieuv1/nev/n!2(n21/2)

3expH ieuS C1E
0

v
duu1/neu/nD J . ~8!

Here C is an arbitrary constant, whose explicit value is n
essential for our purposes. Note that Eq.~7! is invariant un-
der the transformation, u→u12p i/n, whereas the
asymptotic~8! is not. Hence the analytic continuations
C0 ,

Cq~v,u!5C0~v,u12p iq/n!, ~9!

with integersq, generate new solutions of Eq.~7!. It is pos-
sible to show that the WronskianW@C0 ,C1 , . . . ,Cn21#
does not vanish, so that the set$Cq%q50

n21 is a fundamental
system of solutions of Eq.~7!. By virtue of this fact, solution
~9! with q5n can be decomposed as

Cn~v,u!5 (
q50

n21

~21!n2q21Zq~u1 ipq/n!Cq~v,u!.

~10!

Following the line of arguments similar to that of Ref
10,11, it is possible to show that if the parametersu andha
are identified with the dimensionless parameters of
Coqblin-Schrieffer model

eu5
1

2n1/nG~1/n!

TK

T
, ha5

Ha

2pT
, ~11!

then the functionZq(u) appearing in Eq.~10! coincides with
the analytic continuation of the partition function of th
modelZq for the sector with occupation numberq.

The subject of our current interest is the free energies

Fq52T log~Zq! ~12!

at the low temperature limit. In particular we study vacuu
energiesEq5FquT50 . It can be worked out by means th
semi-classical Wentzel, Kramer, and Brilouin~WKB! ap-
proximation for Eq.~7!. The leading terms in the WKB ex
pansion of the solutionC0 ~8! read

C0~v,u!.~2 iX~euv1/nev/n!!2(n21/2)

3expH ieuS C1E
0

v
duu1/neu/nD

2 iE
v

1`

du~X~Y!2Y!UY5euu1/neu/nJ . ~13!

HereX5X(Y) is the solution of the algebraic equation

Yn5~X1h1! . . . ~X1hn!, ~14!

such that

X~Y!→Y as Y→`. ~15!
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In fact, X5X(Y) is a multi-valued function of the
argument Y and Eq. ~15! uniquely specifies its branc
for a sufficiently large Y. The latter solution admits
a convergent 1/Y-power series expansion found b
Lagrange:16
m

ak

s
-
-

n

a

, a

r

09442
X~Y!5Y1
1

n (
k51

kÞ0(modn)

`

I k~h1 , . . . ,hn!Y2k. ~16!

Here I k are symmetric polynomials given by
I k~h1 , . . . ,hn!5 (
a1 , . . . ,an21>0

2a113a21 . . . nan215k11

~21!a11 . . . 1an21

a1!a2! . . . an21!

G~a11 . . . 1an212k/n!

G~12k/n!
G2

a1G3
a2 . . . Gn

an21 , ~17!
.

e 0

le
the
del
n-
l

se
rely

eld
where we use the following notation for the elementary sy
metric polynomialsGk :

Gk5 (
1<a1,a2 . . . ,ak<n

ha1
. . . hak

. ~18!

Note that according to constraint~2!, we have setG150, and
alsoG252 1

2 (a51
n ha

2 .
Using Lagrange formulas~16! and ~13! it is possible to

show that the vacuum energies admit the following we
field expansion17

Eq5E0sinS pq

n D1
TK

n

3 (
k51

kÞ0(modn)

`

CksinS pkq

n D I kS H1

2pTK
, . . . ,

Hn

2pTK
D ,

~19!

where

Ck52k11kk/nGk~1/n!G~2k/n!.

The first term in Eq.~19! is the vacuum energy for zero field
and the value ofE0;TK is related to the choice of the con
stantC in Eq. ~8!.18 Note thatI k ~17! are homogeneous sym
metric polynomials of the variablesha of the degreek11,
i.e.,

I k~lh1 , . . . ,lhn!5lk11I k~h1 , . . . ,hn!, ~20!

so Eq.~19! can be considered as a power series expansio
H̄/(2pTK), whereH̄5A1/n(a51

n Ha
2. Thus if the fields are

weak in comparison with the Kondo temperature the beh
ior of the system is governed by convergent series~19!. At
the same time the series has a finite convergence radius
defines the multi-valued function of complex variableH̄ ~see
the Appendix for examples!.

We have also examined the structure of the low tempe
ture expansion of the free energy~12! and found the follow-
ing asymptotic series:
-

-

in

v-

nd

a-

Fq5E0sinS pq

n D1
TK

n

3 (
k51

kÞ0(modn)

`

CksinS pkq

n D IkS H1

2pT
, . . . ,

Hn

2pTD S T

TK
D k11

1O~T`!. ~21!

Here the numerical coefficientsCk are the same as in Eq
~19! and Ik(h1 , . . . ,hn) is the symmetric polynomial of the
degreek of the form

Ik5I k1(
l 50

k

I k
( l ) , ~22!

whereI k is given by Eq.~17! and I k
( l )5I k

( l )(h1 , . . . ,hn) are
some homogeneous symmetric polynomials of the degre
< l<k. Currently the polynomialsIk are not known in a
closed form for arbitraryk. Nevertheless, they admit a simp
algebraic description. As has been mentioned before,
boundary state associated with the Coqblin-Schrieffer mo
commutes with the infinite set of mutually commutative i
tegrals of motion for theWAn21-algebra with the centra
chargec5n21. It turns out that the polynomialsIk appear-
ing in Eq. ~21! coincide with vacuum eigenvalues of the
conserved charges. Therefore they can be calculated pu
algebraically for any finitek. In particular we found

I152G21
n21

24
, I252G3 ,

I352G41
n23

2n
G2

22
n23

8n
G21

3~n21!~n23!

640n
,

I452G51
n24

n
G3G22

n24

3n
G3 . ~23!

Here Gk are elementary symmetric polynomials~18!. Note
that for the physically interesting case of the magnetic fi
configuration

ha5h~ j 112a!, j 5
n21

2
, ~24!
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all the polynomialsIk with evenk vanish, whereas using Eq
~23! one has

I15
n21

24
@n~n11!h211#,

I35
~n21!~n23!

1920n
@n2~n11!~n13!h4110n~n11!h219#.

~25!

In conclusion let us just repeat the basic results of
paper. We have outlined a method which allows to extr
analytical results for the thermodynamics of Coqbl
Schrieffer model in the presence of magnetic and cry
fields. The general formulas drastically simplify for th
SU(4) model~see the Appendix!.
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APPENDIX

In this appendix we illustrate the expansion~19! using
two examples.

Our first example is related to the casen54. Let us con-
sider the following configuration of the generalized magne
fields

H152H4 , H252H3 , ~A1!

with H1>H2>0. In this case Eq.~14! is especially simple
and can be written in the form

Y45~X22h1
2!~X22h2

2!. ~A2!

Its solutionX5X(Y) satisfying Eq.~15! reads explicitly

x5yAA11e/y411/y2, ~A3!

wherey5Y/h̄,x5X/h̄, and

h̄5Ah1
21h2

2

2
, e5S h1

22h2
2

h1
21h2

2D 2

.

All even coefficientsI 2l in series~16! vanish now, whereas
I 2l 21 can be expressed in terms of the hypergeometric fu
tion

I 2l 2152~21! l 21
G~ l 21/2!

Ap l !
h̄2

2lF1S 2
l

2
,
1

2
2

l

2
,
3

4
2

l

2
;e D .

~A4!

Combining this equation with Eq.~19! one obtains,
09442
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Eq5E0sinS pq

4 D1
TK

A2G~1/4!
(
l 51

`
~21! l

l !
~2l 21!( l /225/4)

3GS l

2
1

1

4D sin~p~2l 21!q/4!

sin~p~2l 21!/4! 2

3F1S 2
l

2
,
1

2
2

l

2
,
3

4
2

l

2
;e D S G~1/4!A2H̄

pTK
D 2l

, ~A5!

with

H̄5AH1
21H2

2

2
, e5S H1

22H2
2

H1
21H2

2D 2

<1.

Note that Eq.~A5! can be rewritten in the form of a conve
gent integral which is useful for an analytical continuation
the power series expansion outside its convergence disk

uH̄/TKu,
pe21/4

A2G~1/4!
min@e21/4,~12e!21/4#.

Explicitly one has (q51,2,3),

Eq5E0sinS pq

4 D1H̄sinS pq

4 D
3E

2`

` dv

2p
~ iv10! iv21

G~21/222iv!

G~1/22 iv!
S 2G~1/4!H̄

pTK
D

2

4iv

3F1S 1

4
2 iv,2

1

4
2 iv,

1

2
2 iv;

1

2
2~21!q

122e

2 D .

~A6!

It is particularly illuminating to extract the Kondo temper
ture from this expression for the SU(2) Coqblin-Schrieff
model to compare it with Eq.~6!. The Kondo temperature
TK

(2) can be extracted from the magnetic susceptibility in
limit when one of the fields is very large. Since the ener
depends on two fieldsH1 andH2 , one has to be careful in
choosing the right direction of differentiation. The righ
choice of variables isH65H16H2 such that]E1 /]H250
at H250. Then atH1→2H̄@TK , H2→0 we obtain forq
51 the following expression for the magnetic susceptibili

x52
]2E1

]H2
2

u H250

H152H̄
→ 1

2pTK
(2)

, TK
(2)5

p3/2

A8G2~1/4!

TK
2

H̄
.

~A7!

The above expression for the effective Kondo temperatur
a particular case of Eq.~6! for n54,m52.

Our second example is related to the case of an arbit
integern. In Ref. 3, the vacuum energyE1 was found for the
following fields configuration:
7-4
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Ha5A2H̄ cosS p~2a21!

2n D . ~A8!

For this pattern Eq.~14! is expressed in terms of the Cheb
shev polynomialsTn(x)5cos@narccos(x)#

yn5212n/2Tn~x/A2!, ~A9!

wherey5Y/h̄, x5X/h̄. Therefore

x5y2F1S 2
1

2n
,
n21

2n
,
n21

n
;
222n

y2n D
1

1

2y2F1S 1

2n
,
n11

2n
,
n11

n
;
222n

y2n D , ~A10!

and nonvanishing coefficients in Eqs.~16! and ~19! are
I 2nl21( l 51,2 . . . ) andI 2nl11( l 50,1,2, . . . ):
on

-

09442
I 2nl1s5s

GS s

n
12l D

l !GS 11
s

n
1 l D S h̄

A2
D 2ln111s

, s561.

~A11!

As in the first example, the vacuum energies~19! can be
written in the form of convergent integral:3

Eq5E0sinS pq

n D1
A2H̄ sin~pq/n!

4pn E
2`

` dv

2p
~ iv10! iv21

3GS 2
1

2n
2

iv

2 DGS 1

2n
2

iv

2 D S n1/nG~1/n!H̄

pA2TK
D inv

.

~A12!

It is easy to check that this equation forn54 is in agreement
with ~A6! providede51/2.
s.
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