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Long-range dynamics related to magnetic impurities in the two-dimensional Heisenberg
antiferromagnet
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We consider a magnetic impurity in the two-dimensional Heisenberg antifferomagnet with long-range anti-
ferromagnetic order. The present work employs three different methods: finite cluster considerations, spin-
wave perturbation theory, and semiclassical nonlineanodel. At low temperature the impurity magnetic
susceptibility has a Curie term<(L/T) and a logarithmic correctiofec In (T)]. We calculate the Curie term and
the logarithmic correction and derive related Ward identity for the impurity-spin-wave vertex.
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[. INTRODUCTION model. In the leading & approximation both methods give
the same result. However, the results must be identical in all
The problem of magnetic impurities interacting with a orders in 16 and hence the comparison allows us to derive
system of strongly correlated electrons has attracted mucthe Ward identity for the impurity-spin-wave vertex. The
interest recently, mainly due to the experimental discoverieyalue of the logarithmic correction to the magnetic suscepti-
of the highT, superconductors and new heavy fermion com-bility is in agreement with Ref. 9.
pounds. In the field of the high; materials, the parent com- A crossover from quantum to classical Curie law for a
pounds are known to be two-dimensiof2D) antiferromag- finite AFM clugter W|th_ impurity is dlsc_u§§ed in Sec. Il I_n
netic (AFM) Mott-Hubbard insulators based on Cuflanes Sec. Il we derlye the impurity 'susceptlblllty using the spin-
which are driven to a superconducting state by dofging., wave perturbation theory, and in Sec. IV we obtain the same

with holes.>2 Even though the holes can hop, thus destroy_result using the semiclassical nonlineamodel and derive

ing the AFM long-range order and causing the deveIopmenEhe Ward identity.

of superconducting pairing, the extreme limit of static holes

also has a physical relevance. Systems with static holes have Il. CURIE TERM

been also realized experimentally in cuprates. _ ~ The Hamiltonian of the system under consideration is
Several theoretical studies have addressed isolated static

holes~®and added spifis*!in 2D Heisenberg antiferromag- H=Ho+Hi+Hg,

nets with long-range AFM order. A singular logarithmic fre-

guency behavior of the perpendicular magnetic susceptibility

at zero temperature has been found in Ref. 5, see also a Ho=JZ S-S,
discussion in Ref. 12. A very interesting problem is a mag- (i
netic impurity in 2D Heisenberg antiferromagnet at3D
quantum critical point:**'*However, this problem is out of

the scope of the present paper. The low-temperature behavior
of the ir'npu.rit.y sFatic magnetic' susceptipility in a gapped Hg=—B-
system is trivial, it obeys the simple Curie lady=Q(Q

+1)/3T, whereQ is the impurity spin. However, for 2D . . . . . .
systems which possess the long-range AFM order at zerynereS is spin 1/2 at the site of square lattice with anti-
temperature, the excitation spectrum is gapless due to Goldérromagnetic interactionJ¢>0), € is the impurity spin
stone spin waves and the Curie law is not obvious. A verycoupled to the lattice spin at site 0, aBds magnetic field.
interesting predictiochfor such a regime is the classical Curie 10 be specific we will assume that >0, but all results are
law, Sy=Q2/3T. The behavior is classical because of thein the end independent of the sign &f . Consider anL
alignment of the impurity moment with the local Neel order. X L cluster (> 1 is even described by the Hamiltoniaif,,

This behavior has been recently confirmed in Monte Carlg®C there are no impurities for the beginning. The energy
simulations for 2D S=1/2 Heisenberg antiferromagnetic SPectrum of the system is known very welt: The spin of
clusters with magnetic impurif/Moreover, in these simula- the ground state is 0, and the Iowgst equtatlons are described
tions a logarithmic correctiors; In (T), to the classical Curie PY rotational spectrum of the solid topliatomic molecule

law has been found. Both the classical Curie law and th&ith zero projection of spin on axis of the moleculg,
logarithmic correction are related to the nontrivial long-range™ 0),

dynamics in the system. In the present work we calculate the

logarithmic correction using two different methods: spin- E_ JT+1) @
wave perturbation theory(ii) semiclassical nonlinear T 21

Hine=3,5-Q,

@
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where 7=0,1,2 ... is the spin of the state7€0 corre- The first two terms of the expansion have been found by
sponds to the ground staté=L?y, is the moment of iner- reducing summation to integration using the Simpson
tia of the top, angy, ~0.0660 is the perpendicular magnetic method. The method is not sufficient to determine the con-
susceptibility*®!® The spectrum(2) is valid as soon as the stantA and we have found it using direct numerical summa-
rotation is solid, i.e., internal degrees of freedom of the toption, A~0.003 645. The numerator in E¢p) is

are not excited. The first internal excitation is the spin wave

[

with wavelengthA =L (periodic boundary condition The B 2 dD(IT)
energy of this excitation is N(IT)= jzo (J+1/2)% (T V2T = a(1/2T)
Ag=2mclL, c~y2J. 3 =2(IT)2—2A+---. 7)
There are eight degenerate spin-wave excitatioBs: Using Egs.(7) and(6) we find from(5)
==+1, x andy directions, and two excitations (cos and sin)
in each direction. If we considar<Ag,, then only rotations 1
(2) are important. A more accurate criterion for solid rotation Xo=37| 2T -3 7 oy 2A |+
is: 8expAg,/T)<1, i.e.,
A T Tro L jonl+ 8
T<Ty~ m(_ssw)' 4) T3 X7 T |96 N ®

) ) ) o The expansion is in integer powersf,;/T. We would like
In this temperature regime magnetic susceptibility of they, point out that in the thermodynamic limlt,—c, only the

cluster is determined by the spectru@). first term in Eq.(8)survives, yo— 2L2y, . This agrees with
the result known from the spin-wave theogg— 2L%y, [1
2 J,e” Er IBIT 2 jze—j(j+1)/2IT +T/(2mps)], see, e.g., Ref. 17. We have not obtained the
a 73, 173, linear in temperature term, because in the thermodynamic
Xo=5g T limit the inequality(4) means thaf =0.
;;, e (B 7BIT j}; e~ ATHLAT Now let us put an impurity with spi€2 which interacts

with the cluster viaH;,;, see Eq.1). The excitation spec-
trum of the cluster with impurity is slightly different from

1 > AJ+1)(2J+1)e ATHDR2T Eq. (2). Now this is a symmetric top with spin projection on
-7 axis of the topK=. This is like a diatomic molecule with
3T E (27+ 1)~ AT+ DT uncompensated electron spin and strong spin-axis interac-
~ tion. The rotational spectrum of such a topis
J(T+1)—202+(Q?)
; [(J+ 1/2)2— 1/4]( T+ 1/2)e~ T+ V22T Es~ 5 ' ©)
~3T 2 where7=Q,Q+1Q0+2, ... istotal spin of the cluster, and
—(J+12)%121T ’ , ' ’
% (J+12)e (Q?) is the average value d? in the intrinsic reference
frame. Similar to the previous case the spin waves are not
S (F+1/2)% 1227217 excited as soon as the inqual@ is valid. The magnetic
1 1 susceptibility of the clusteg; is given by the same Ed5),
=37 “a | (5 the only difference is that summation ovgris performed
S (T 1/2)e*(7”’2)2’2” not from O tooe, but from Q to . If T<T,, the cluster
J

susceptibility isy;=Q(Q+1)/3T. If T,,;<T<T,,, evalua-

where the summation ovef, is performed usingX j§ tion of the denominator in Ed5) gives

=N J+1)(27+1)/3, and the summation ovef should be

* 2
performed in limits B< J<<. Strictly speaking total spin of DIT)= >, (J+ 1/2)e~ WTHUPRT = | T4 | = — _)
the cluster is limited,7< J,,.,=L?%/2, however, because of J=a 24 2
the exponential convergence of summations in &g. and 4 2

" 1/0% Q
because of conditior{4) we can replace/ma—. If T A+ 10
A (10

<T,o:=1/l the susceptibility(5) is zero. For the casg,; IT\ 8 16

<T<T,, let us first consider the denominator in E®).

Expanding the denominator we find All the terms of the expansion except Afthave been found

by reducing summation to integration using the Simpson

w method. TheA term is exactly the same as in E(), A
DUIT)=D (J+ 1/2)e*(3+1’2)2’2'T=|T+ i+ AJF . ~0.003 645. Calculating the numerator similar to Ed)
J=0 24 1T and substituting all the expressions to Ef) we find the

(6) following formula for the cluster susceptibility:
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FIG. 1. Schematic picture of an AFM cluster with impurity
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(11

Hence the impurity susceptibility defined g$— xo reads

2
TI’O'[

2T

1+ 2. (12)

Ximp:Xl_XO:3_-|—

The expansion goes in integer powersiqf;/T. The leading

term in Eq.(12) agrees with Refs. 8 and 9. Plots of suscep-

tibilities are presented in Ref. 9.
It is interesting to note that if there areimpurities with
spin () on the same sublattice, then in E4.2) one shall

replace()—n(). The impurities are not independent becausé

the cluster is rigid. In the thermodynamic limit it means that
all the impurities within the correlation length are not inde-
pendent.

Ill. LOGARITHMIC CORRECTION TO SUSCEPTIBILITY,
THE SPIN-WAVE DERIVATION

The above consideration is valid for the case when th
inequality (4) is valid and hence there are neal spin-wave

excitations. However virtual spin-wave excitations are al-

ways there. In the intrinsic reference frame the cluster look
like the picture in Fig. 1.

The interaction Hamiltoniai;,,;, Eq. (1), can be rewrit-
ten in terms of spin-wave operataisandb (for a review of
the spin-wave theory see, e.g., Ref, 1

1
Hin =300 S 501(2, S +0-S5,)

1 T

2

=5 FE (Q.bg+Q_b))
1 T
ZEJL% (Q [ugBgtvgaq]

+Q_[ugBli+vga_q))
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FIG. 2. One-loop correction to the impurity energy. The solid
line shows the impurity and the dashed line shows virtual spin
wave.

NPT

+Q_[ugBli+vga_q).

J % Zr(Q.[ugBq+vqal ]

(13

Here ,82; and a;r‘ are creation operators for spin waves with
spin projectionS,= =1, respectivelyu, andv, are Bogo-
liubov parameters,

, J 1
ENCORES
“q

J

0®

1
EI

2

u vg= (14

ando{?=2J\1-y;—2Jq s the spin-wave dispersion in
the leading 1% approximation. In Eq(13) we assume that
S=1/2. In Eq.(13) the impurity-spin-wave vertex is derived
in the leading 1% approximation. However, at the last step
we have introduced the vertex renormalization fa&ptthat
takes into account all higher 3/corrections to the vertex.
Generally speaking depends org, but here we consider
only the smallg limit, Zr=2Z3(q=0).

To use perturbation theory we will assume tlat<J.
The one-loop correction to the impurity energy is given by
the diagram in Fig. 2. The diagram is infrared convergent

é)ecause it contains the denominatak=e,— e =J,(S,),

related to the flip of the impurity spin. HeréS,)=3Z,
~0.307 is the staggered magnetization of the lattice, and
<~0.61 is the renormalization factor for the staggered
magnetizatiort:'81°

The interaction of the impurity with perpendicular mag-
netic field is of the form

1
HB=—BQX=—§B(Q++Q,). (15
The leading contribution to the impurity energy relatedBto
is given by the diagram in Fig. 3. The corresponding formula

reads

€= —

(B/2)?

Ae (16

FIG. 3. Leading contribution to the impurity energy related to
magnetic field. The dot denotes interaction with magnetic field.
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X

FIG. 4. One-loop spin-wave corrections to the impurity energy
related to the magnetic field. The dot denotes interaction with the
field.

The contribution is finite becauske is finite. Now let us
look at one-loop corrections tée; shown in Fig. 4. These
corrections are infrared divergent because they contain the
energy denominator without spin flig; — €, . The diagrams

in Fig. 4 do not contain intermediate states which coincide
with the initial state. In this case the Schroedinger perturba-
tion theory formula for the fourth order energy correction is
trivial 2

<0|V|n)<n|V| m><m|V| k><k|V|0> FIG. 5. An impurity(dot) in the center of a disc of radils The
Se = 2 , (17 disc carries a fieldh described by the nonlinear model. Due to
nmkz0 (€0~ €n)(€o—€m)(€0— € magnetic fieldB= B, the impurity spin is tilted in thex direction.

whereV=H,,;+Hpg is the perturbation, see also Ed43)

and (15). Separating in Eq(17) the terms corresponding to If J>T> T, then the minimal frequency in E19) is of

the order of minimal Matsubara frequency,in~Cmin

Fig. 4 we find —T. Hence
2
( V203, Z . 20°22
52  -d _
Se;=—(\20B/2)2 Vet g ox.= 7222 (M- (21
q (Ae+ wq)zwq
In the leading 1% approximation one has to sé=Z
2 c
\/ZQJLZFU =Z.=1, hencedy, —20?/wJIn(---). This corresponds to
Jorz M the low-frequency susceptibility derived in Ref. 5. We have
S —— (18)  calculated the perpendicular susceptibili0) and (21) in

5 .
(A€)wq the intrinsic reference frame. The isotropic susceptibility is

iorfy = 2
Here wq—cq=2.12Jq, whereZ,~1.17 is the spin-wave related tooy, by the standard refatiody =3 ox. -

velocity renormalization due to higherS.torrections-18-19

Keeping only divergent terms we find from Ed.8) the fol- IV. NONLINEAR o-MODEL DERIVATION OF THE LOG
lowing expression for the susceptibility: CORRECTION, AND WARD IDENTITY FOR THE
IMPURITY SPIN-WAVE VERTEX
5 RZ80% o uito; ITZR0? 1 d’g An alternative derivation of Eq$20) and(21) is based on
XL LAAe)2 T w2z Ae)?) o2 (2m)? the o model. Let us consider a field, [n|=1, defined on a
¢ disc of radiusL. An impurity with spin{} is in the center of
z%gZ f dq the disc. The impurity spin is directed along thexis (per-
= | = (19 endicular to the planeand due to the magnetic field

=B, it is tilted by angleé in the x direction, see Fig. 5. The

It is interesting that Eq(18) is independent o, . We have energy of the medium is

to put some lower limit in the integral in EG19). Note that
the integration oveq is equivalent to integration over fre- :E 242

. o E,==ps | (Vn)<d-r, (22
quencyw=-cq. At low temperature, when inequality) is 2
valid, we have to substitute the spin-wave g&p as the ) o )
lower frequency limit, wmin~COmin~Asw=27Cc/L. This yvhereps= Z,(J/4) is th.e spin stiffness. He!:b’4 is the lead-
gives a temperature-independent contribution to the impuritynd 1/S value for the stiffness, and,~0.72 is the renormal-

susceptibility, ization factor due to higher $/corrections-'®19The field is
of the formn=(n,,0,1). Due to Eq(22) the fieldn, obeys
) Z%Qz L Zﬂzz%l " 20 the usual Poisson equation, the solution of the equation is
Y, =——In(L)= n(L).
2wZ.X(S,)? wZZ5 n(r)y=aln(L/r). (23
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To find the constana we have to remember that(r ~1)
=6, where is tilting angle of the impurity, and %lattice e
spacing Thereforea= 6/ In (L). Substituting Eq(23) in Eq.

(22) we find the elastic energl, = mps6%/ In(L). The total ~ 1 itgt! ¢ ittt A R S P DU
energy related to the impurity consists of the magnetic en-
ergy and the elastic energy, FIG. 6. Two-loop double logarithmic contributions &, pro-
portional toJ, /J2.
N
E=-BQ o+ In(L)" 24 the logarithm squared are shown in Fig. 6. The calculation of

all the diagrams is quite an involved problem. On the other
hand, the semiclassical derivation based ondhmodel is
independent of, /J. The only assumption in the derivation
is that the impurity magnetic moment is localized in the vi-

Minimizing it with respect to 6 we find 4@
=BQ In(L)/(2mp), magnetic momentM=Q4, and the
magnetic susceptibility,

02 202 cinity of the impurity. To check this assumption we have
Sx. = In(L)— In(L). (25)  calculated the magnetic cloud around the impurity using the
2 ZJ i i i
TPs Ly spin-wave theory. We have found that density of the induced

At the final step we have substitutpg=JZ,/4. In the lead- ~Magnetizationsu, drops down faster than (E, Su(r)

ing 1/S approximationZ;=Z,=Z,=7,=1, hence Eq(25) <1/r<. Therztafqre the magnetic moment of the c'lo;ud
agrees with the spin-wave resul0) and(21). Moreover, a = J du(r)d°r is convergent at large distances, and it means
comparison of these equations gives a nontrivial Ward identhat the above assumption is valid. This implies thdt

tity relating renormalization factors for the spin-wave vertexhigher order inJ, infrared divergent diagrams must cancel
Zr, the spin-wave velocitZ,, the staggered magnetization OUt: This is a highly unusual situation and it would be inter-

Z., and the spin stiffnesg esting to check the cancellation by a direct calculation.
L p 1
2
Zr 1 (26 V. CONCLUSIONS
2 — -y .
Z.zg % We have analyzed the excitation spectrum of a finite an-
This gives the previously unknown value B, tiferromagnetic cluster with magnetic impurity, and consid-
ered a crossover between quantum and classical Curie law
ZCZ§ for the impurity magnetic susceptibility. We have also de-
Zr=\— ~0.76. (27)  rived a logarithmic correction to the impurity magnetic sus-

P ceptibility. Depending on the parameters this can be a loga-

Similar to Eq.(19), (20), and(21) typical scaleqor typical  rithm of system size, temperature, or frequency of the
momenta are equivalent to typical frequenciesg~ w. external magnetic field. Using the results for the logarithmic
Therefore, ifJ>T>Ts,, one has to substitute 1d/T) instead  correction we have derived the Ward identity for the
of In(L) in Eq. (25). If the external magnetic field has a impurity-spin-wave vertex.

nonzero frequencw, and w>T,Tg,, then In )—In (Jw).
Equations(20), (21), and(25) are in agreement with Ref. 5
and with recent results?!

The spin-wave approach in Sec. lll assumes thakJ. | am very grateful to A. W. Sandvik and G. Khaliullin for
There are numerous two-loop diagrams which aremportant discussions. | am also very grateful to K. H.-Ho
proportional to [J,/(2m)%J?]In(L) and even to glund, A. W. Sandvik, and S. Sachdev for communicating to
[J, /(27)23?]In?(L). Some of the diagrams which contain me their results prior to publication.
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