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Long-range dynamics related to magnetic impurities in the two-dimensional Heisenberg
antiferromagnet
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We consider a magnetic impurity in the two-dimensional Heisenberg antifferomagnet with long-range anti-
ferromagnetic order. The present work employs three different methods: finite cluster considerations, spin-
wave perturbation theory, and semiclassical nonlinears model. At low temperature the impurity magnetic
susceptibility has a Curie term (}1/T) and a logarithmic correction@} ln (T)#. We calculate the Curie term and
the logarithmic correction and derive related Ward identity for the impurity-spin-wave vertex.
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I. INTRODUCTION

The problem of magnetic impurities interacting with
system of strongly correlated electrons has attracted m
interest recently, mainly due to the experimental discove
of the high-Tc superconductors and new heavy fermion co
pounds. In the field of the high-Tc materials, the parent com
pounds are known to be two-dimensional~2D! antiferromag-
netic ~AFM! Mott-Hubbard insulators based on CuO2 planes
which are driven to a superconducting state by doping~e.g.,
with holes!.1,2 Even though the holes can hop, thus destr
ing the AFM long-range order and causing the developm
of superconducting pairing, the extreme limit of static ho
also has a physical relevance. Systems with static holes
been also realized experimentally in cuprates.3,4

Several theoretical studies have addressed isolated s
holes5–9 and added spins9–11 in 2D Heisenberg antiferromag
nets with long-range AFM order. A singular logarithmic fr
quency behavior of the perpendicular magnetic susceptib
at zero temperature has been found in Ref. 5, see al
discussion in Ref. 12. A very interesting problem is a ma
netic impurity in 2D Heisenberg antiferromagnet at O~3!
quantum critical point.8,13,14However, this problem is out o
the scope of the present paper. The low-temperature beha
of the impurity static magnetic susceptibility in a gapp
system is trivial, it obeys the simple Curie law,dx5V(V
11)/3T, where V is the impurity spin. However, for 2D
systems which possess the long-range AFM order at z
temperature, the excitation spectrum is gapless due to G
stone spin waves and the Curie law is not obvious. A v
interesting prediction8 for such a regime is the classical Cur
law, dx5V2/3T. The behavior is classical because of t
alignment of the impurity moment with the local Neel orde
This behavior has been recently confirmed in Monte Ca
simulations for 2D S51/2 Heisenberg antiferromagnet
clusters with magnetic impurity.9 Moreover, in these simula
tions a logarithmic correction,} ln (T), to the classical Curie
law has been found. Both the classical Curie law and
logarithmic correction are related to the nontrivial long-ran
dynamics in the system. In the present work we calculate
logarithmic correction using two different methods:~i! spin-
wave perturbation theory;~ii ! semiclassical nonlinears
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model. In the leading 1/S approximation both methods giv
the same result. However, the results must be identical in
orders in 1/S and hence the comparison allows us to der
the Ward identity for the impurity-spin-wave vertex. Th
value of the logarithmic correction to the magnetic susce
bility is in agreement with Ref. 9.

A crossover from quantum to classical Curie law for
finite AFM cluster with impurity is discussed in Sec. II. I
Sec. III we derive the impurity susceptibility using the spi
wave perturbation theory, and in Sec. IV we obtain the sa
result using the semiclassical nonlinears model and derive
the Ward identity.

II. CURIE TERM

The Hamiltonian of the system under consideration is

H5H01Hint1HB ,

H05J (̂
i j &

Si•Sj ,

Hint5J'S0•V,

HB52B•S V1 (
i

Si D ~1!

whereSi is spin 1/2 at the sitei of square lattice with anti-
ferromagnetic interaction (J.0), V is the impurity spin
coupled to the lattice spin at site 0, andB is magnetic field.
To be specific we will assume thatJ'.0, but all results are
in the end independent of the sign ofJ' . Consider anL
3L cluster (L@1 is even! described by the HamiltonianH0,
so there are no impurities for the beginning. The ene
spectrum of the system is known very well.15–17The spin of
the ground state is 0, and the lowest excitations are descr
by rotational spectrum of the solid top~diatomic molecule
with zero projection of spin on axis of the molecule,K
50),

EJ5
J~J11!

2I
, ~2!
©2003 The American Physical Society26-1
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where J50,1,2 . . . is the spin of the state (J50 corre-
sponds to the ground state!, I 5L2x' is the moment of iner-
tia of the top, andx''0.066/J is the perpendicular magneti
susceptibility.18,19 The spectrum~2! is valid as soon as the
rotation is solid, i.e., internal degrees of freedom of the
are not excited. The first internal excitation is the spin wa
with wavelengthl5L ~periodic boundary condition!. The
energy of this excitation is

Dsw52pc/L, c'A2J. ~3!

There are eight degenerate spin-wave excitations:Sz
561, x andy directions, and two excitations (cos and si
in each direction. If we considerT!Dsw then only rotations
~2! are important. A more accurate criterion for solid rotati
is: 8exp(2Dsw/T)!1, i.e.,

T!Tsw'
Dsw

ln~8!
. ~4!

In this temperature regime magnetic susceptibility of
cluster is determined by the spectrum~2!.

x05
]

]B

(J,Jz

J ze
2(EJ2JzB)/T

(J,Jz

e2(EJ2JzB)/T

5
1

T

(J,Jz

J z
2e2J(J11)/2IT

(J,Jz

e2J(J11)/2IT

5
1

3T

(J J~J11!~2J11!e2J(J11)/2IT

(J ~2J11!e2J(J11)/2IT

5
1

3T

(J @~J11/2!221/4#~J11/2!e2(J11/2)2/2IT

(J ~J11/2!e2(J11/2)2/2IT

5
1

3TS (J ~J11/2!3e2(J11/2)2/2IT

(J ~J11/2!e2(J11/2)2/2IT

2
1

4D , ~5!

where the summation overJz is performed using( J z
2

5J(J11)(2J11)/3, and the summation overJ should be
performed in limits 0<J<`. Strictly speaking total spin o
the cluster is limited,J<Jmax5L2/2, however, because o
the exponential convergence of summations in Eq.~5!, and
because of condition~4! we can replaceJmax→`. If T
!Trot51/I the susceptibility~5! is zero. For the caseTrot
!T!Tsw let us first consider the denominator in Eq.~5!.
Expanding the denominator we find

D~ IT !5 (J50

`

~J11/2!e2(J11/2)2/2IT5IT1
1

24
1

A

IT
1•••.

~6!
09442
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The first two terms of the expansion have been found
reducing summation to integration using the Simps
method. The method is not sufficient to determine the c
stantA and we have found it using direct numerical summ
tion, A'0.003 645. The numerator in Eq.~5! is

N~ IT !5 (J50

`

~J11/2!3e2(J11/2)2/2IT52
]D~ IT !

]~1/2IT !

52~ IT !222A1•••. ~7!

Using Eqs.~7! and ~6! we find from ~5!

x05
1

3T S 2IT2
1

3
1

2

IT F 1

242
22AG1••• D

5
2

3
L2x'2

1

9T S 12
Trot

T F 1

96
212AG1••• D . ~8!

The expansion is in integer powers ofTrot /T. We would like
to point out that in the thermodynamic limit,L→`, only the
first term in Eq.~8!survives,x0→ 2

3 L2x'. This agrees with
the result known from the spin-wave theory,x0→ 2

3 L2x'@1
1T/(2prs)#, see, e.g., Ref. 17. We have not obtained
linear in temperature term, because in the thermodyna
limit the inequality~4! means thatT50.

Now let us put an impurity with spinV which interacts
with the cluster viaHint , see Eq.~1!. The excitation spec-
trum of the cluster with impurity is slightly different from
Eq. ~2!. Now this is a symmetric top with spin projection o
axis of the topK5V. This is like a diatomic molecule with
uncompensated electron spin and strong spin-axis inte
tion. The rotational spectrum of such a top is20

EJ5
J~J11!22V21^V2&

2I
, ~9!

whereJ5V,V11,V12, . . . istotal spin of the cluster, and
^V2& is the average value ofV2 in the intrinsic reference
frame. Similar to the previous case the spin waves are
excited as soon as the inequality~4! is valid. The magnetic
susceptibility of the clusterx1 is given by the same Eq.~5!,
the only difference is that summation overJ is performed
not from 0 to`, but from V to `. If T!Trot the cluster
susceptibility isx15V(V11)/3T. If Trot!T!Tsw evalua-
tion of the denominator in Eq.~5! gives

D~ IT !5 (J5V

`

~J11/2!e2(J11/2)2/2IT5IT1S 1

24
2

V2

2 D
1

1

IT S V4

8
2

V2

16
1AD1•••. ~10!

All the terms of the expansion except ofA have been found
by reducing summation to integration using the Simps
method. TheA term is exactly the same as in Eq.~6!, A
'0.003 645. Calculating the numerator similar to Eq.~7!
and substituting all the expressions to Eq.~5! we find the
following formula for the cluster susceptibility:
6-2



p

s
a
e-

th

al
ok

th

t
d
p

.
r

by
ent

and
ed

g-

ula

lid
pin

to
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x15
1

3T S 2IT2
1

3
1V21

2

IT F 1

242
22A1

V2

12G1••• D
5

2

3
L2x'2

1

9T S @123V2#2
Trot

T2 F 1

96
212A1

V2

2 G
1••• D . ~11!

Hence the impurity susceptibility defined asx12x0 reads

x imp5x12x05
V2

3T S 11
Trot

2T
1••• D . ~12!

The expansion goes in integer powers ofTrot /T. The leading
term in Eq.~12! agrees with Refs. 8 and 9. Plots of susce
tibilities are presented in Ref. 9.

It is interesting to note that if there aren impurities with
spin V on the same sublattice, then in Eq.~12! one shall
replaceV→nV. The impurities are not independent becau
the cluster is rigid. In the thermodynamic limit it means th
all the impurities within the correlation length are not ind
pendent.

III. LOGARITHMIC CORRECTION TO SUSCEPTIBILITY,
THE SPIN-WAVE DERIVATION

The above consideration is valid for the case when
inequality~4! is valid and hence there are noreal spin-wave
excitations. However virtual spin-wave excitations are
ways there. In the intrinsic reference frame the cluster lo
like the picture in Fig. 1.

The interaction HamiltonianHint , Eq. ~1!, can be rewrit-
ten in terms of spin-wave operatorsa andb ~for a review of
the spin-wave theory see, e.g., Ref. 1!,

Hint5J'V•S0→
1

2
J'~V1S021V2S01!

5
1

2
J'~V1b01V2b0

†!

5
1

2
J'A 2

L2 (q
~V1bq1V2bq

†!

5
1

A2L2
J' (

q
~V1@uqbq1vqa2q

† #

1V2@uqbq
†1vqa2q# !

FIG. 1. Schematic picture of an AFM cluster with impurity
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A2L2
J' (

q
ZG~V1@uqbq1vqa2q

† #

1V2@uqbq
†1vqa2q# !. ~13!

Here bq
† and aq

† are creation operators for spin waves wi
spin projectionSz561, respectively,uq and vq are Bogo-
liubov parameters,

uq
25

J

vq
(0)

1
1

2
, vq

25
J

vq
(0)

2
1

2
, ~14!

andvq
(0)52JA12gq

2→A2Jq is the spin-wave dispersion in
the leading 1/S approximation. In Eq.~13! we assume tha
S51/2. In Eq.~13! the impurity-spin-wave vertex is derive
in the leading 1/S approximation. However, at the last ste
we have introduced the vertex renormalization factorZG that
takes into account all higher 1/S corrections to the vertex
Generally speakingZG depends onq, but here we conside
only the smallq limit, ZG5ZG(q50).

To use perturbation theory we will assume thatJ'!J.
The one-loop correction to the impurity energy is given
the diagram in Fig. 2. The diagram is infrared converg
because it contains the denominator,De5e↑2e↓5J'^Sz&,
related to the flip of the impurity spin. HerêSz&5 1

2 Zs
'0.307 is the staggered magnetization of the lattice,
Zs'0.61 is the renormalization factor for the stagger
magnetization.1,18,19

The interaction of the impurity with perpendicular ma
netic field is of the form

HB52BVx52
1

2
B~V11V2!. ~15!

The leading contribution to the impurity energy related toB
is given by the diagram in Fig. 3. The corresponding form
reads

de052
~B/2!2

De
. ~16!

FIG. 2. One-loop correction to the impurity energy. The so
line shows the impurity and the dashed line shows virtual s
wave.

FIG. 3. Leading contribution to the impurity energy related
magnetic field. The dot denotes interaction with magnetic field.
6-3
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The contribution is finite becauseDe is finite. Now let us
look at one-loop corrections tode0 shown in Fig. 4. These
corrections are infrared divergent because they contain
energy denominator without spin flip,e↑2e↑ . The diagrams
in Fig. 4 do not contain intermediate states which coinc
with the initial state. In this case the Schroedinger pertur
tion theory formula for the fourth order energy correction
trivial20

de15 (
n,m,kÞ0

^0uVun&^nuVum&^muVuk&^kuVu0&
~e02en!~e02em!~e02ek!

, ~17!

whereV5Hint1HB is the perturbation, see also Eqs.~13!
and ~15!. Separating in Eq.~17! the terms corresponding t
Fig. 4 we find

de152~A2VB/2!2 (
q

S S A2VJ'ZG

A2L2
uqD 2

~De1vq!2vq

1

S A2VJ'ZG

A2L2
vqD 2

~De!2vq

D . ~18!

Here vq→cq5ZcA2Jq, whereZc'1.17 is the spin-wave
velocity renormalization due to higher 1/S corrections.1,18,19

Keeping only divergent terms we find from Eq.~18! the fol-
lowing expression for the susceptibility:

dx'→
J'

2 ZG
2V2

L2~De!2 (q

uq
21vq

2

vq
5

J'
2 ZG

2V2

Zc~De!2 E 1

q2

d2q

~2p!2

5
ZG

2V2

2pZcJ^Sz&
2 E dq

q
. ~19!

It is interesting that Eq.~18! is independent ofJ' . We have
to put some lower limit in the integral in Eq.~19!. Note that
the integration overq is equivalent to integration over fre
quencyv5cq. At low temperature, when inequality~4! is
valid, we have to substitute the spin-wave gap~3! as the
lower frequency limit, vmin;cqmin;Dsw52pc/L. This
gives a temperature-independent contribution to the impu
susceptibility,

dx'5
ZG

2V2

2pZcJ^Sz&
2

ln ~L !5
2V2ZG

2

pZcZs
2

ln ~L !. ~20!

FIG. 4. One-loop spin-wave corrections to the impurity ene
related to the magnetic field. The dot denotes interaction with
field.
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If J@T@Tsw then the minimal frequency in Eq.~19! is of
the order of minimal Matsubara frequency,vmin;cqmin
;T. Hence

dx'5
2V2ZG

2

pZcZs
2J

ln ~J/T!. ~21!

In the leading 1/S approximation one has to setZG5Zc
5Zs51, hencedx'→2V2/pJ ln (•••). This corresponds to
the low-frequency susceptibility derived in Ref. 5. We ha
calculated the perpendicular susceptibility~20! and ~21! in
the intrinsic reference frame. The isotropic susceptibility
related todx' by the standard relation,dx5 2

3 dx' .

IV. NONLINEAR s-MODEL DERIVATION OF THE LOG
CORRECTION, AND WARD IDENTITY FOR THE

IMPURITY SPIN-WAVE VERTEX

An alternative derivation of Eqs.~20! and~21! is based on
the s model. Let us consider a fieldn, unu51, defined on a
disc of radiusL. An impurity with spinV is in the center of
the disc. The impurity spin is directed along thez axis ~per-
pendicular to the plane! and due to the magnetic fieldB
5Bx it is tilted by angleu in thex direction, see Fig. 5. The
energy of the medium is

Es5
1

2
rs E ~¹n!2d2r , ~22!

wherers5Zr(J/4) is the spin stiffness. HereJ/4 is the lead-
ing 1/S value for the stiffness, andZr'0.72 is the renormal-
ization factor due to higher 1/S corrections.1,18,19The field is
of the formn'(nx,0,1). Due to Eq.~22! the fieldnx obeys
the usual Poisson equation, the solution of the equation

nx~r !5a ln ~L/r !. ~23!

y
e

FIG. 5. An impurity~dot! in the center of a disc of radiusL. The
disc carries a fieldn described by the nonlinears model. Due to
magnetic fieldB5Bx the impurity spin is tilted in thex direction.
6-4
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To find the constanta we have to remember thatnx(r;1)
5u, whereu is tilting angle of the impurity, and 15lattice
spacing. Thereforea5u/ ln (L). Substituting Eq.~23! in Eq.
~22! we find the elastic energyEs5prsu

2/ ln (L). The total
energy related to the impurity consists of the magnetic
ergy and the elastic energy,

E52B V u1
prsu

2

ln ~L !
. ~24!

Minimizing it with respect to u we find u
5BV ln (L)/(2prs), magnetic momentM5Vu, and the
magnetic susceptibility,

dx'5
V2

2prs
ln ~L !→ 2V2

pZrJ
ln ~L !. ~25!

At the final step we have substitutedrs5JZr/4. In the lead-
ing 1/S approximation,ZG5Zc5Zs5Zr51, hence Eq.~25!
agrees with the spin-wave results~20! and~21!. Moreover, a
comparison of these equations gives a nontrivial Ward id
tity relating renormalization factors for the spin-wave vert
ZG , the spin-wave velocityZc , the staggered magnetizatio
Zs , and the spin stiffnessZr ,

ZG
2

ZcZs
2

5
1

Zr
. ~26!

This gives the previously unknown value ofZG ,

ZG5AZcZs
2

Zr
'0.76. ~27!

Similar to Eq.~19!, ~20!, and ~21! typical scales~or typical
momenta! are equivalent to typical frequencies,cq;v.
Therefore, ifJ@T.Tsw one has to substitute ln (J/T) instead
of ln (L) in Eq. ~25!. If the external magnetic field has
nonzero frequencyv, andv.T,Tsw , then ln (L)→ln (J/v).
Equations~20!, ~21!, and ~25! are in agreement with Ref. 5
and with recent results.9,21

The spin-wave approach in Sec. III assumes thatJ'!J.
There are numerous two-loop diagrams which
proportional to @J' /(2p)2J2# ln (L) and even to
@J' /(2p)2J2# ln2(L). Some of the diagrams which conta
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the logarithm squared are shown in Fig. 6. The calculation
all the diagrams is quite an involved problem. On the oth
hand, the semiclassical derivation based on thes model is
independent ofJ' /J. The only assumption in the derivatio
is that the impurity magnetic moment is localized in the
cinity of the impurity. To check this assumption we ha
calculated the magnetic cloud around the impurity using
spin-wave theory. We have found that density of the induc
magnetizationdmz drops down faster than 1/r 2, dmz(r )
,1/r 2. Therefore the magnetic moment of the cloudm
5 * dmz(r )d2r is convergent at large distances, and it mea
that the above assumption is valid. This implies thatall
higher order inJ' infrared divergent diagrams must canc
out. This is a highly unusual situation and it would be inte
esting to check the cancellation by a direct calculation.

V. CONCLUSIONS

We have analyzed the excitation spectrum of a finite
tiferromagnetic cluster with magnetic impurity, and cons
ered a crossover between quantum and classical Curie
for the impurity magnetic susceptibility. We have also d
rived a logarithmic correction to the impurity magnetic su
ceptibility. Depending on the parameters this can be a lo
rithm of system size, temperature, or frequency of
external magnetic field. Using the results for the logarithm
correction we have derived the Ward identity for th
impurity-spin-wave vertex.
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