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We have used the stochastic series expansion quantum Monte Carlo method to study the three-dimensional
(3D) antiferromagnetic Heisenberg model on cubic lattices with in-plane cougliagd varying interplane
couplingJ, <J. The specific heat curves exhibit a 3D ordering peak as well as a broad maximum arising from
short-range 2D order. Fal, <J, there is a clear separation of the two peaks. In the simulations, the contri-
butions to the total specific heat from the ordering across and within the layers can be separated, and this
enables us to study in detail the 3D peak arodidwhich otherwise typically is dominated by statistical
noise. We find that the peak height decreases with decreakingoecoming nearly linear belod;, =0.2 J.

The relevance of these results to the lack of an observed specific-heat anomaly at the ordering transition of
some quasi-2D antiferromagnets is discussed.
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[. INTRODUCTION anisotropic systems remains in the universality class of the
3D classical Heisenberg model. Our primary goal is to
Spatially anisotropic systems and dimensional crossoverglarify how the amplitude for the specific-heat anomaly at
have been issues of theoretical and experimental interest fée transition is diminished in systems with weak interplanar
many decades, especially in context of classical criticaFouplings. This would help us predict which of the newly
phenomena? In recent years, a large number of quasi-low- Synthesized systems should show such anomalies, given the
dimensional, low-spin, spatially anisotropic materials haveinite experimental resolution. o _
been synthesized and their properties investigated in great A Simple way to understand the reduction in the ampli-
detail. This has led to a renewed interest in these issues ifi¢de for the specific-heat anomaly, in these systems, is to
cluding the role of enhanced quantum fluctuatidrsPer- consider the effect of preexisting short-range order at the

haps the most studied of these are the cuprate family of mé[ansition. In a spatially anisotropic system, short-range order
terials, whose parent stoichiometric compounds ardn the planes can develop at temperatures much above the 3D

antiferromagnetic insulators which upon doping becom ordering temperature. And if the system is highly aniso-

hiah-t i duct Th | d %ropic, substantial spin correlations can develop in the planes
Igh-temperature superconductors. 1hese are 1ayered Coffasqy e the eventual 3D transition. This means that the effec-

pounds, where exchange coupling between the planes {80\ mper of degrees of freedom involved in the 3D order

many orders of maggmtude smaller than the exchange cous g pstantially reduced. Hence, the specific-heat anomaly
pling in the planes: However, these are by no means the st diminish. Our goal is to obtain a quantitative estimate

only systems where spatial anisotropy and dimensionaly this effect.

crossovers are important. The list of just novel transition- The rest of the paper is organized as follows. We intro-

metal oxide materials, which despite their low dimensional-dyce the model and computational techniques used in Sec. II.
ity often develop three-dimensional long-range order, in-The results of the simulations and related discussions are
cludes several cuprates, vanadates, copper-germenatgsesented in Secs. Il and IV. We conclude in Sec. V with a

pnictide oxides, manganites, étc. summary of the results.
In these materials both spatial anisotropy and anisotropy
in spin space can be important in the development of three- IIl. MODELS AND SIMULATION TECHNIQUE

dimensional3D) order. For example, it is quite possible that

in some cuprate familieXY anisotropy plays an important ~ We have studied the Heisenberg antiferromagnet on an
role in bringing about long-range order, while in others it isanisotropic cubic lattice. This model is given by the Hamil-
the interplanar coupling which is primarily responsible for tonian

the transition. Here, we will focus on layered systems with

SU(2) symmetry in spin space. This is believed to be rel- B
evant to the material L&uUO,. At the finite-temperature 3D H _J<E
transition, one expects the universality class for such a sys-

tem to be that of a classical 3D Heisenberg model. HowevervhereJ(J, ) is the strength of the intra-planénter-planay

in La,CuQ, no specific-heat anomaly is seen at the 3Dcoupling. The first(second summation refers to summing
transition’® contrary to expectations for the 3D classical over all nearest neighbors parallgerpendicularto the XY
Heisenberg model. In this paper we use a quantum Montplane. We will study the model as a function of the dimen-
Carlo (QMC) method to verify that the transition in spatially sionless interplane coupling=J, /J.

s~sj+Ji<i2j> S-S, (1)

i,j>>(y
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The stochastic series expansi®BSB method''?is a  The stiffness can also be related to the fluctuations of the
finite-temperature QMC technique based on importance sanfwinding number” in the simulations?®-3%and hence can
pling of the diagonal matrix elements of the density matrixbe estimated directly without actually including a twist.
e A", There are no approximations beyond statistical errorsSince the twist can be applied parallel to or perpendicular to
Using the “operator-loop” cluster updaté the autocorrela- the planes, there are two different spin stiffnesseandp,
tion time for the system sizes we consider haip to ~3 in the anisotropic system considered here.

X 10* sping is at most a few Monte Carlo sweeps even atthe For a system of weakly coupled Heisenberg chains, it has
critical temperaturé® been shown that estimates for various observables for a spa-

On the dense temperature grids that we need in order tally anisotropic system can depend nonmonotonically on
study the critical region in detail, we have further found thatthe system size for square latticésOne can instead use
the statistics of the data obtained can be significantly im+ectangular lattices to more rapidly obtain monotonic behav-
proved by the use of a tempering scheth& A standard ior of the numerical results for extrapolating to the thermo-
single-process tempering method, where the temperature dfynamic limit. We expect similar effects in the present model
the simulation fluctuates on a grid of preselected temperaat a<<1. Hence we have studied tetragonal lattices with
tures, was previously used in a study of the isotropic 3D=L,#L,. Lattices with an aspect rati@=L,/L,=4 have
Heisenberg modéf Here we use parallel temperiftt, been used to obtain the results presented here. We have cho-
where several simulations are run simultaneously on a parasen six different values ofy, of the form of a=27", n
lel computer, using a fixed value at and different, but =1,...,6.
closely spaced, values df at and around the critical tem- Following Ref. 16, we use the finite-size and temperature
perature. Along with the usual Monte Carlo updates, we atdependence of the spin stiffnesses to determine the critical
tempt to swap the temperatures of SSE configuratipns-  temperaturé? For a fixed aspect ratio, the stiffnessTatis
cessep with adjacent values ofT at regular intervals predicted to scale as
(typically after every Monte Carlo step, each time attempting
several hundred swapaccording to a scheme that maintains Pu= Li‘d, n=X,Z, 3
detailed balance in the space of the parallel simulations. This
has favorable effects on the simulation dynamics, as the tenvhered is the dimensionality of the system. The above rela-
perature of the SSE configurations will fluctuate across thdion implies that for the 3D Heisenberg model, on a plot of
critical temperature. More importantly in the case considered-.P,. @s a function off the curves for different system sizes
here, a given configuration will contribute to measured exWill cross each other af.. Results fora=1/4 are shown in
pectation values at several nearby temperatures, thereby reig. 1. The uppefiower) panel shows.,p,(L,p,) versusT
ducing the overall statistical errofat the cost of introducing for four different system sizes. The curves indeed intersect
correlations between the errors, which is of minor signifi-€ach other almost at a single point. Subleading corrections
cance here Implementation of tempering schemes in theare seen in the fact that the crossing points move slightly as
context of the SSE method have been discussed in Ref. 12he system size is increased. Interestingly, the behavior is

The thermodynamics of the 3D Heisenberg model on a®pposite for the two stiffness constants; in the casg,dhe
isotropic simple cubic lattice are fairly well understood from crossings move down in temperatures, whereagiheoss-
both analytic and computational studi€s?° Recent large ings move up. Hence, we believe that the crossings for the
scale Monte Carlo studit'® have resulted in an accurate two largest system sizes bracket the tieand we view
estimate of the critical temperatur&,/J~0.946. Several them as the upper and lower bounds. From these results we
approximations also exist forT, of the anisotropic estimateT.=0.616Qt0.0005 fora=1/4.
model/?1=2% For weak coupling between the planes, the Next we study the universality class of the transition. To
interplanar couplings can be treated in mean-field theoryhis end, we consider the static magnetic susceptibility, de-
and lead to the relatioi,~ — 1/In(e).” We are not aware of fined as
any previous calculations of the specific heat of anisotropic

systems. 1 air—ry [P , ,
g Q=g 2 e J>fodr<sj<r>3<0>>, @)

lll. LOCATING THE TRANSITION TEMPERATURE where N=L)2(Ly is the size of the system. At the critical

We first determine the transition temperature for thetemperature, the staggered susceptibjfit@) should scaf&
model as a function of. An efficient way to do this is by With the system length ds;~ 7, whereQ=(,m,m) is the 3D
studying the scaling properties of the spin stiffness. We haverdering wave vector. For any nonzero valuelof the tran-
evaluated the spin stiffnesses both parallel to and perpersition is expected to belong to the classical 3D Heisenberg
dicular to the planes. The stiffness can be defifiétas the  universality class, for which the critical exponents are known
second derivative of the free energy with respect to a unito a high degree of accuray.The spin-spin correlation
form twist ¢: function exponent~0.037. Figure £a) shows a=1/4 re-

sults for Inq(Q)/L2) versus In,) at temperatures close to

T.. Asymptotically, we expect the data to fall on a straight
) ) line with slope—#»~—0.037 atT=T, and diverge upward
ap? (downward for T<T,(T>T,). This is indeed what we ob-

FPF(¢)
p=
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FIG. 1. Spin stiffness vs temperature for different systems with L(T-T.)"
the same aspect ratio. The upglwer) panel shows the stiffness ¢
perpendicularparalle) to the planes. FIG. 2. Finite-size scaling of the staggered susceptibilityr at

=1/4. (a) Size dependence close 1@ . At T., the data are ex-

serve. The curves are completely consistent with the knowpected to fall on a straight line with slopez=—0.037, which is
value of » and the estimate of . obtained from Fig. 1. indicated with the dotted line(b) Scaling plot aboveT,, using

We have also tested the expected scalingTorT.. In T./J=0.616 and the 3D classical Heisenberg exponent.037
the thermodynamic limity(Q) should diverge as™?, where  and»=0.711.
t=|T—T.| and y=v(2— 7). For a finite system, finite-size
scaling predictsy, (t) = x..(t) f[ £&(t)/L], with the correlation =(dE/JT)IN. As discussed in the Appendix, the SSE method
length diverging ag~t~". Hence on a plot o (t)t” ver-  allows us to obtain a direct estimate of the specific heat from
susLt”, data for differentL should collapse onto a single the operator sequence in the simulation, so that any addi-
curve. As shown in Fig. ®), this is indeed the case with our tional noise in the data due to numerical differentiation of
estimatedT, and the known 3D Heisenberg exponents.  the energy function can be avoidédlthough the two ap-

We have here discussed the determinationTgfand  Proaches in practice give very similar resultShe SSE es-
checked the consistency with the expected universality clagémator for the total specific hedite., not normalized by the
for a=1/4. Using the spin stiffness scaling, we have locatedattice siz is
T. for several couplings. The results are graphed in Fig. 3.
We compare our results with the expression obtained by NC,=(n?)—(n)*=(n), ®)

Liu:?? wheren is the power-series expansion orddére number of
bond operators in the SSE operator styjnghich fluctuates

iz ifijf” dkedk,dk, (5) in the simulations. We will be interested in the contributions
T. 7 Jo Jo Jo 2—cosk,cosk,+a(1—cosk,) to C, from the spin-spin ordering across and within the lay-
) ) ) ) ) ~ ers close tol.. Decomposing the Hamiltonian into an in-

We find that while this equation gives a reagonable e§t|mat9|ane termH,, and an interlayer terri,, the specific heat

for To(a)/T.(1) for a close to unity, it begins to deviate

substantially from the SSE results for small C,=(HHp/dT+d(H,)/IT)IN=CP+C; . (7)

The SSE estimators for the two terms are given in terms of

the numbers of bond operators in the expansion acting within
Having determined, as a function ofx, we now present a single layer ;) and between two layers):

the results for the specific-heat calculations. The specific heat 5

is defined as the temperature derivative of the ene@y, NCBZ<np>+<npnz>_<np>2_<np><nz>_<np>7 8

IV. CALCULATIONS OF THE SPECIFIC HEAT
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FIG. 3. Ratio of the critical temperature for the anisotropic sys-

tem to that for the isotropic system as a function of the anisotropy. FIG. 4. The specific heat over a wide range of temperature for
The circles denote the results from H§). several different anisotropies. The system size i548<12. The
separation of the 3D ordering peak from the broad maximum aris-

; L . 3
NClZ;:<n§>+<npnz>_<nz>2_<np><nz>_<nz>- 9) ing out of the 2D physics is clearly visible far<2"°.

These expressions suggest the possibility of a different de-,. - .
composition of the specific heat. We will defi@®?"®as the plings. On the other hand, for any>0 there is a phase

art of the estimatof8) that contains only purely in-plane transition to an ordered state B{>0, as we have discussed
EOHtI’ibUtiOnS' y purely in-p in Sec. lll. The signature of this phase transition in the spe-

cific heat should be a peak @ . Since the transition be-
plane_ (/2 _ 2_ longs to the 3D Heisenberg universality class, there should
Co (M) = (p)"= (Np))/N. (10 be a cusplike singularityinstead of a divergent singularjty
We refer to the remaining part of the total susceptibility asand the peak height is finite.
the 3D contribution, i.e., SSE results for the specific heat over a wide temperature
3D plane_ ~inter , cross range are shown in Fig. 4 for a system of sie-48x48
C,=C,—C,m=C "+ C™, (1) x12. The effects of finite system size on the position of the

where the purely interplane contributim{f‘e’ and cross term peak and peak height will be discussed later. The separation

CC05S are given b of the 3D ordering peak from the broad maximum arising out
v 9 y of the 2D physics is clearly seen far<23. It is also seen
cier— ((n2— (n,\2—(n,})/N., 12 that the excess peak height over thg 2D backgr(_)und de-
v ((nz) ={nz)"= () (12 creases rapidly with decreasitag becoming hard to discern
-5
CEo=2((npn,) — (Mp)(N)IN. 1y fore=z

Since the specific-heat curve is dominated by its 2D con-

We will show that the cross term, half of which appears intribution when o<1, it is extremely difficult to study the
both Eqgs.(8) and(9), dominates in the 3D contributiail). nature of the 3D peak neag . However, the 3D contribution
The advantage of considering separately the different contricll) can be studied to a high degree of accuracy. Results for
butions toC,,, either in the form Eq(7) or (11), is that the  several couplingsr and system sizes are shown in Fig. 5.
full specific heat is dominated by the in-plane term and theSeveral features are immediately apparent. The 3D contribu-
other contributions can be difficult to discern due to statisti-tion peaks at the N temperature and rapidly decreases
cal fluctuations. We will here focus in particular on the 3D away from it. The peak position moves only slightly with
contribution(11). increasing system size. The estimatesTgfobtained from

The specific heat for the 3D Heisenberg model on highlythe position of the peaks are in close agreement with the
anisotropic latticesa<<1) will have two separate peaks, re- more accurate estimates we obtained in Sec. Ill using the
flecting the 2D physics and the 3D ordering. The Mermin-spin stiffness. In Fig. 5 we also show some results for the
Wagner theorem dictates that there can be no long-range gpurely interplane contributio®!™® to C3P, which is seen to
der at T>0 in a strictly 2D system with a continuous be small and decreasing relative to the full 3D contribution
symmetry. The correlation length then diverges exponenas a—0. This is expected, as the estimata®) implicitly
tially” asT—0, and the specific heat has a broad maximuncontains a prefactor proportional #@?, whereas the cross
at T/J~0.73* This broad maximum is the dominant feature term (13) contains a linearr dependence.
of the specific-heat curve also for small interplanar cou- While the specific-heat anomaly is most pronounced in
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sponding 3D contribution to the total specific heat. The system size
is 48x48%12.

FIG. 5. The 3D contribution to the specific heat for several specific heatC?® for a 2D systema=0). As expected, the
different anisotropies and for three different system sizes. Resu“Sin-pIane term Ufor the 3D system is dominated by a broad

for the purely interplane ternc!™®"

largest couplinggfor the largest system size only

are also shown for the three mayimum and coincides closely with the specific heat of the

2D system away fronT.. However, there is also a distinct
peak at the 3D transition temperature. In order to quantify

the 3D contribution, it is also present in the purely in-planethe relative sizes of the ordering peak<djP andC?"™", we
term. This is shown in Fig. 6, where we have graphed théext consider the excess &t of the in-plane contribution

total specific heat and purely in-plane contribution aat

over the specific heat of the pure 2D system model at the

=1/16, where the 3D ordering peak is well separated fronSame temperature. Its rati_o to the_ 3D contribution_is graphed
the broad 2D maximum. We compare these results with th&S & function of the coupling in Fig. 7. Asa—0, this ratio

0.0 -
0.25

0.50

0.75 1.00 1.25 1.50

T/

appears to converge to a vale€l, or, in other words, the
ordering peak in the in-plane contribution becomes nearly
equal to that of the 3D contribution.

The peak heigh€3’(T,) decreases rapidly with decreas-
ing a. To get a more quantitative estimate of the nature of its
variation with «, we have extracted the thermodynamic peak
height for differenta. The specific-heat exponent, which
governs the scaling of the peak to infinite size, is sr(eaild
negative, and the statistical errors of our data are relatively
large for smalla. The extrapolation is therefore affected by
some uncertainty that is not easy to quantify precisely. Our
results are shown in Fig. 8. For smal] the peak height is
nearly linear ina. This behavior can be roughly understood
by the argument that the specific-heat anomaly should scale
as 1k2, where¢ is the correlation length of the 2D system at
the 3D transition temperature. Furthermore, the 3D correla-
tions become significant and lead to the 3D transitiwhen
&a~1. Thus the amplitude for the specific-heat anomaly
should vanish linearly witfw. It would be interesting to com-
pare the specific-heat anomaly of various quasi-2D Heisen-
berg systems against this result.

FIG. 6. The specific heat and its in-plane contribution &or
=2"%. The anomalies at the transition temperature is clearly visible
for both. The system size is 488x12. For comparison, the spe-
cific heat for the pure 2D Heisenberg model is also shown.

V. CONCLUSIONS

In this paper we have studied the 3D ordering transition in
a model of weakly coupled Heisenberg planes. Our results on
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T T 1
05 - | Hl,bzz‘](b)[z_Sf(b)sjz(b)}* (A2)
0.4 - 1 H2p=3(b)[S{(5)S; () + Si(n)Si 1y ]- (A3)
~ 03 - i The coupling constani(b)=J for bonds in the planes and
Dt‘/ J(b)=J, for interplanar bonds. An exact and useful expres-
g sion for an operator expectation value at inverse temperature
© o2t | p=aT,
0.1 . PO S a0
(A>=2Tr{Ae By Z=Tr{e PH}, (A4)
0.0 L 1 L 1 L | L Il n 1 .
0.0 0.1 0.2 0.3 0.4 0.5 is obtained by expanding the density matix®" in a Taylor
o series and writing the trace as sum over the diagonal matrix
elements in a basi$|a)}={|S], ....S{)}. The partition

FIG. 8. The peak height for the 3D ordering extrapolated to thefunCtion can then be written as
thermodynamic limit as a function of the anisotropy. For small
anisotropies, the peak height increases approximately linearly with
the anisotropy. w

7=
0

=

; é % a|pl:[1 Ha, b @) (A5)

the transition temperature and universality class of the tran-
sition are in accordance with general expectations. Our pri-
mary focus here was on the specific heat and in particular on
the specific-heat anomaly at the 3D ordering transition. We *

find that for smallJ, the amplitude for the specific-heat => B> X W(a,Sy), (A6)
anomaly is a nearly linear function df . It should be pos- n=0 @ S

sible to compare this result directly against experiments on

various anisotropic materials. However, it is clear that foryhereS, denotes a sequence of index pairs defining the op-
highly anisotropic systemsuch as LgCuQ,, where the an-  erator stringll?_,H, |, :

isotropy maybe as small as 1% such anomalies will be P PP

very difficult to detect above the background.

Sn:[alvbl][aZ!bZ] e [an 1bn]! (A7)
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APPENDIX: THE SSE METHOD (A= nzo s>, % A(a,S5)W'(a,S,). (A8)

NI~

The SSE method has been discussed in several
papers:'~*3Here we present a brief outline of the method in

order to discuss the estimator for the specific heat. For thEFakingAzﬂ it can be showH35 that the energy is given

present case, the SSE approach starts by casting the Hambl)-, the average length of the operator sequences
tonian in the form

A B 1 1
H=—§bzl [Hip—H2p]+C, (A1) E=—’§nzo nﬁng ; W'(a,Sn)E—E<n>. (A9)

where b denotes the bond connecting the nearest-neighbor
sites(i(b),j (b)), Cis an additive constant, and the operatorsA straightforward differentiation with respect to temperature
H,p, andH,, are defined as gives the specific heat,=dE/JT in the form of Eq.(6).%
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