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Specific heat of quasi-two-dimensional antiferromagnetic Heisenberg models
with varying interplanar couplings
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~Received 2 June 2003; published 19 September 2003!

We have used the stochastic series expansion quantum Monte Carlo method to study the three-dimensional
~3D! antiferromagnetic Heisenberg model on cubic lattices with in-plane couplingJ and varying interplane
couplingJ',J. The specific heat curves exhibit a 3D ordering peak as well as a broad maximum arising from
short-range 2D order. ForJ'!J, there is a clear separation of the two peaks. In the simulations, the contri-
butions to the total specific heat from the ordering across and within the layers can be separated, and this
enables us to study in detail the 3D peak aroundTc ~which otherwise typically is dominated by statistical
noise!. We find that the peak height decreases with decreasingJ' , becoming nearly linear belowJ'50.2 J.
The relevance of these results to the lack of an observed specific-heat anomaly at the ordering transition of
some quasi-2D antiferromagnets is discussed.

DOI: 10.1103/PhysRevB.68.094423 PACS number~s!: 75.40.Gb, 75.40.Mg, 75.10.Jm, 75.30.Ds
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I. INTRODUCTION

Spatially anisotropic systems and dimensional crosso
have been issues of theoretical and experimental interes
many decades, especially in context of classical criti
phenomena.1,2 In recent years, a large number of quasi-lo
dimensional, low-spin, spatially anisotropic materials ha
been synthesized and their properties investigated in g
detail. This has led to a renewed interest in these issue
cluding the role of enhanced quantum fluctuations.3–6 Per-
haps the most studied of these are the cuprate family of
terials, whose parent stoichiometric compounds
antiferromagnetic insulators which upon doping beco
high-temperature superconductors. These are layered c
pounds, where exchange coupling between the plane
many orders of magnitude smaller than the exchange c
pling in the planes.7,8 However, these are by no means t
only systems where spatial anisotropy and dimensio
crossovers are important. The list of just novel transitio
metal oxide materials, which despite their low dimension
ity often develop three-dimensional long-range order,
cludes several cuprates, vanadates, copper-germen
pnictide oxides, manganites, etc.9

In these materials both spatial anisotropy and anisotr
in spin space can be important in the development of th
dimensional~3D! order. For example, it is quite possible th
in some cuprate familiesXY anisotropy plays an importan
role in bringing about long-range order, while in others it
the interplanar coupling which is primarily responsible f
the transition. Here, we will focus on layered systems w
SU~2! symmetry in spin space. This is believed to be r
evant to the material La2CuO4. At the finite-temperature 3D
transition, one expects the universality class for such a
tem to be that of a classical 3D Heisenberg model. Howe
in La2CuO4 no specific-heat anomaly is seen at the
transition,10 contrary to expectations for the 3D classic
Heisenberg model. In this paper we use a quantum Mo
Carlo ~QMC! method to verify that the transition in spatial
0163-1829/2003/68~9!/094423~7!/$20.00 68 0944
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anisotropic systems remains in the universality class of
3D classical Heisenberg model. Our primary goal is
clarify how the amplitude for the specific-heat anomaly
the transition is diminished in systems with weak interplan
couplings. This would help us predict which of the new
synthesized systems should show such anomalies, given
finite experimental resolution.

A simple way to understand the reduction in the amp
tude for the specific-heat anomaly, in these systems, i
consider the effect of preexisting short-range order at
transition. In a spatially anisotropic system, short-range or
in the planes can develop at temperatures much above th
ordering temperature. And if the system is highly anis
tropic, substantial spin correlations can develop in the pla
before the eventual 3D transition. This means that the ef
tive number of degrees of freedom involved in the 3D ord
is substantially reduced. Hence, the specific-heat anom
must diminish. Our goal is to obtain a quantitative estim
for this effect.

The rest of the paper is organized as follows. We int
duce the model and computational techniques used in Se
The results of the simulations and related discussions
presented in Secs. III and IV. We conclude in Sec. V with
summary of the results.

II. MODELS AND SIMULATION TECHNIQUE

We have studied the Heisenberg antiferromagnet on
anisotropic cubic lattice. This model is given by the Ham
tonian

H5J (
^ i , j &xy

Si•Sj1J' (
^ i , j &z

Si•Sj , ~1!

whereJ(J') is the strength of the intra-planar~inter-planar!
coupling. The first~second! summation refers to summin
over all nearest neighbors parallel~perpendicular! to theXY
plane. We will study the model as a function of the dime
sionless interplane couplinga5J' /J.
©2003 The American Physical Society23-1
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The stochastic series expansion~SSE! method11,12 is a
finite-temperature QMC technique based on importance s
pling of the diagonal matrix elements of the density mat
e2bH. There are no approximations beyond statistical err
Using the ‘‘operator-loop’’ cluster update,12 the autocorrela-
tion time for the system sizes we consider here~up to '3
3104 spins! is at most a few Monte Carlo sweeps even at
critical temperature.13

On the dense temperature grids that we need in orde
study the critical region in detail, we have further found th
the statistics of the data obtained can be significantly
proved by the use of a tempering scheme.14,15 A standard
single-process tempering method, where the temperatur
the simulation fluctuates on a grid of preselected temp
tures, was previously used in a study of the isotropic
Heisenberg model.16 Here we use parallel tempering,15

where several simulations are run simultaneously on a pa
lel computer, using a fixed value ofa and different, but
closely spaced, values ofT at and around the critical tem
perature. Along with the usual Monte Carlo updates, we
tempt to swap the temperatures of SSE configurations~pro-
cesses! with adjacent values ofT at regular intervals
~typically after every Monte Carlo step, each time attempt
several hundred swaps! according to a scheme that maintai
detailed balance in the space of the parallel simulations. T
has favorable effects on the simulation dynamics, as the t
perature of the SSE configurations will fluctuate across
critical temperature. More importantly in the case conside
here, a given configuration will contribute to measured
pectation values at several nearby temperatures, thereb
ducing the overall statistical errors~at the cost of introducing
correlations between the errors, which is of minor sign
cance here!. Implementation of tempering schemes in t
context of the SSE method have been discussed in Ref.

The thermodynamics of the 3D Heisenberg model on
isotropic simple cubic lattice are fairly well understood fro
both analytic and computational studies.18–20 Recent large
scale Monte Carlo studies13,16 have resulted in an accura
estimate of the critical temperature,Tc /J'0.946. Several
approximations also exist forTc of the anisotropic
model.7,21–25 For weak coupling between the planes, t
interplanar couplings can be treated in mean-field the
and lead to the relationTc;21/ln(a).7 We are not aware o
any previous calculations of the specific heat of anisotro
systems.

III. LOCATING THE TRANSITION TEMPERATURE

We first determine the transition temperature for t
model as a function ofa. An efficient way to do this is by
studying the scaling properties of the spin stiffness. We h
evaluated the spin stiffnesses both parallel to and perp
dicular to the planes. The stiffness can be defined26,27 as the
second derivative of the free energy with respect to a u
form twist f:

r5
]2F~f!

]f2
. ~2!
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The stiffness can also be related to the fluctuations of
‘‘winding number’’ in the simulations11,28–30and hence can
be estimated directly without actually including a twis
Since the twist can be applied parallel to or perpendicula
the planes, there are two different spin stiffnessesrx andrz
in the anisotropic system considered here.

For a system of weakly coupled Heisenberg chains, it
been shown that estimates for various observables for a
tially anisotropic system can depend nonmonotonically
the system size for square lattices.31 One can instead us
rectangular lattices to more rapidly obtain monotonic beh
ior of the numerical results for extrapolating to the therm
dynamic limit. We expect similar effects in the present mod
at a!1. Hence we have studied tetragonal lattices withLx
5LyÞLz . Lattices with an aspect ratioR5Lx /Lz54 have
been used to obtain the results presented here. We have
sen six different values ofa, of the form of a522n, n
51, . . . ,6.

Following Ref. 16, we use the finite-size and temperat
dependence of the spin stiffnesses to determine the cri
temperature.32 For a fixed aspect ratio, the stiffness atTc is
predicted to scale as

rm5Lm
22d , m5x,z, ~3!

whered is the dimensionality of the system. The above re
tion implies that for the 3D Heisenberg model, on a plot
Lmrm as a function ofT the curves for different system size
will cross each other atTc . Results fora51/4 are shown in
Fig. 1. The upper~lower! panel showsLxrx(Lzrz) versusT
for four different system sizes. The curves indeed inters
each other almost at a single point. Subleading correcti
are seen in the fact that the crossing points move slightly
the system size is increased. Interestingly, the behavio
opposite for the two stiffness constants; in the case ofrx the
crossings move down in temperatures, whereas therz cross-
ings move up. Hence, we believe that the crossings for
two largest system sizes bracket the trueTc and we view
them as the upper and lower bounds. From these results
estimateTc50.616060.0005 fora51/4.

Next we study the universality class of the transition.
this end, we consider the static magnetic susceptibility,
fined as

x~q!5
1

N (
^ i , j &

eiq•(r j 2r j )E
0

b

dt^Sj
z~t!Si

z~0!&, ~4!

where N5Lx
2Ly is the size of the system. At the critica

temperature, the staggered susceptibilityx~Q! should scale32

with the system length asLx
22h , whereQ5~p,p,p! is the 3D

ordering wave vector. For any nonzero value ofJ' , the tran-
sition is expected to belong to the classical 3D Heisenb
universality class, for which the critical exponents are kno
to a high degree of accuracy.33 The spin-spin correlation
function exponenth'0.037. Figure 2~a! showsa51/4 re-
sults for ln(x(Q)/Lx

2) versus ln(Lx) at temperatures close t
Tc . Asymptotically, we expect the data to fall on a straig
line with slope2h'20.037 atT5Tc and diverge upward
~downward! for T,Tc(T.Tc). This is indeed what we ob
3-2
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serve. The curves are completely consistent with the kno
value ofh and the estimate ofTc obtained from Fig. 1.

We have also tested the expected scaling forT.Tc . In
the thermodynamic limit,x(Q) should diverge ast2g, where
t5uT2Tcu and g5n~22h!. For a finite system, finite-size
scaling predictsxL(t)5x`(t) f @j(t)/L#, with the correlation
length diverging asj;t2n. Hence on a plot ofxL(t)tg ver-
sus Ltn, data for differentL should collapse onto a singl
curve. As shown in Fig. 2~b!, this is indeed the case with ou
estimatedTc and the known 3D Heisenberg exponents.

We have here discussed the determination ofTc and
checked the consistency with the expected universality c
for a51/4. Using the spin stiffness scaling, we have loca
Tc for several couplingsa. The results are graphed in Fig.
We compare our results with the expression obtained
Liu:22

1

Tc
5

1

p3E
0

pE
0

pE
0

p dkxdkydkz

22coskxcosky1a~12coskz!
. ~5!

We find that while this equation gives a reasonable estim
for Tc(a)/Tc(1) for a close to unity, it begins to deviat
substantially from the SSE results for smalla.

IV. CALCULATIONS OF THE SPECIFIC HEAT

Having determinedTc as a function ofa, we now present
the results for the specific-heat calculations. The specific h
is defined as the temperature derivative of the energy,Cv

FIG. 1. Spin stiffness vs temperature for different systems w
the same aspect ratio. The upper~lower! panel shows the stiffnes
perpendicular~parallel! to the planes.
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5(]E/]T)/N. As discussed in the Appendix, the SSE meth
allows us to obtain a direct estimate of the specific heat fr
the operator sequence in the simulation, so that any a
tional noise in the data due to numerical differentiation
the energy function can be avoided~although the two ap-
proaches in practice give very similar results!. The SSE es-
timator for the total specific heat~i.e., not normalized by the
lattice size! is

NCv5^n2&2^n&22^n&, ~6!

wheren is the power-series expansion order~the number of
bond operators in the SSE operator string!, which fluctuates
in the simulations. We will be interested in the contributio
to Cv from the spin-spin ordering across and within the la
ers close toTc . Decomposing the Hamiltonian into an in
plane termHp and an interlayer termHz , the specific heat

Cv5~]^Hp&/]T1]^Hz&/]T!/N5Cv
p1Cv

z . ~7!

The SSE estimators for the two terms are given in terms
the numbers of bond operators in the expansion acting wi
a single layer (np) and between two layers (nz):

NCv
p5^np

2&1^npnz&2^np&
22^np&^nz&2^np&, ~8!

h

FIG. 2. Finite-size scaling of the staggered susceptibility aa
51/4. ~a! Size dependence close toTc . At Tc , the data are ex-
pected to fall on a straight line with slope2h520.037, which is
indicated with the dotted line.~b! Scaling plot aboveTc , using
Tc /J50.616 and the 3D classical Heisenberg exponentsh50.037
andn50.711.
3-3
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NCv
z5^nz

2&1^npnz&2^nz&
22^np&^nz&2^nz&. ~9!

These expressions suggest the possibility of a different
composition of the specific heat. We will defineCv

planeas the
part of the estimator~8! that contains only purely in-plan
contributions:

Cv
plane5~^np

2&2^np&
22^np&!/N. ~10!

We refer to the remaining part of the total susceptibility
the 3D contribution, i.e.,

Cv
3D5Cv2Cv

plane5Cv
inter1Cv

cross, ~11!

where the purely interplane contributionCv
inter and cross term

Cv
crossare given by

Cv
inter5~^nz

2&2^nz&
22^nz&!/N, ~12!

Cv
cross52~^npnz&2^np&^nz&!/N. ~13!

We will show that the cross term, half of which appears
both Eqs.~8! and~9!, dominates in the 3D contribution~11!.
The advantage of considering separately the different co
butions toCv , either in the form Eq.~7! or ~11!, is that the
full specific heat is dominated by the in-plane term and
other contributions can be difficult to discern due to stati
cal fluctuations. We will here focus in particular on the 3
contribution~11!.

The specific heat for the 3D Heisenberg model on hig
anisotropic lattices~a!1! will have two separate peaks, re
flecting the 2D physics and the 3D ordering. The Merm
Wagner theorem dictates that there can be no long-rang
der at T.0 in a strictly 2D system with a continuou
symmetry. The correlation length then diverges expon
tially7 asT→0, and the specific heat has a broad maxim
at T/J'0.7.34 This broad maximum is the dominant featu
of the specific-heat curve also for small interplanar co

FIG. 3. Ratio of the critical temperature for the anisotropic s
tem to that for the isotropic system as a function of the anisotro
The circles denote the results from Eq.~5!.
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plings. On the other hand, for anya.0 there is a phase
transition to an ordered state atTc.0, as we have discusse
in Sec. III. The signature of this phase transition in the s
cific heat should be a peak atTc . Since the transition be
longs to the 3D Heisenberg universality class, there sho
be a cusplike singularity~instead of a divergent singularity!
and the peak height is finite.

SSE results for the specific heat over a wide tempera
range are shown in Fig. 4 for a system of sizeN548348
312. The effects of finite system size on the position of t
peak and peak height will be discussed later. The separa
of the 3D ordering peak from the broad maximum arising o
of the 2D physics is clearly seen fora<223. It is also seen
that the excess peak height over the 2D background
creases rapidly with decreasinga, becoming hard to discern
for a,225.

Since the specific-heat curve is dominated by its 2D c
tribution whena!1, it is extremely difficult to study the
nature of the 3D peak nearTc . However, the 3D contribution
~11! can be studied to a high degree of accuracy. Results
several couplingsa and system sizes are shown in Fig.
Several features are immediately apparent. The 3D contr
tion peaks at the Ne´el temperature and rapidly decreas
away from it. The peak position moves only slightly wit
increasing system size. The estimates ofTc obtained from
the position of the peaks are in close agreement with
more accurate estimates we obtained in Sec. III using
spin stiffness. In Fig. 5 we also show some results for
purely interplane contributionCv

inter to Cv
3D , which is seen to

be small and decreasing relative to the full 3D contributi
as a→0. This is expected, as the estimator~12! implicitly
contains a prefactor proportional toa2, whereas the cross
term ~13! contains a lineara dependence.

While the specific-heat anomaly is most pronounced

-
y. FIG. 4. The specific heat over a wide range of temperature
several different anisotropies. The system size is 48348312. The
separation of the 3D ordering peak from the broad maximum a
ing out of the 2D physics is clearly visible fora<223.
3-4
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SPECIFIC HEAT OF QUASI-TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 68, 094423 ~2003!
the 3D contribution, it is also present in the purely in-pla
term. This is shown in Fig. 6, where we have graphed
total specific heat and purely in-plane contribution ata
51/16, where the 3D ordering peak is well separated fr
the broad 2D maximum. We compare these results with

FIG. 5. The 3D contribution to the specific heat for seve
different anisotropiesa and for three different system sizes. Resu
for the purely interplane termCv

inter are also shown for the thre
largest couplings~for the largest system size only!.

FIG. 6. The specific heat and its in-plane contribution fora
5224. The anomalies at the transition temperature is clearly vis
for both. The system size is 48348312. For comparison, the spe
cific heat for the pure 2D Heisenberg model is also shown.
09442
e

e

specific heatCv
2D for a 2D system~a50!. As expected, the

in-plane term for the 3D system is dominated by a bro
maximum and coincides closely with the specific heat of
2D system away fromTc . However, there is also a distinc
peak at the 3D transition temperature. In order to quan
the relative sizes of the ordering peaks inCv

3D andCv
plane, we

next consider the excess atTc of the in-plane contribution
over the specific heat of the pure 2D system model at
same temperature. Its ratio to the 3D contribution is grap
as a function of the couplinga in Fig. 7. Asa→0, this ratio
appears to converge to a value'1, or, in other words, the
ordering peak in the in-plane contribution becomes nea
equal to that of the 3D contribution.

The peak heightCv
3D(Tc) decreases rapidly with decrea

ing a. To get a more quantitative estimate of the nature of
variation witha, we have extracted the thermodynamic pe
height for differenta. The specific-heat exponent, whic
governs the scaling of the peak to infinite size, is small~and
negative!,33 and the statistical errors of our data are relative
large for smalla. The extrapolation is therefore affected b
some uncertainty that is not easy to quantify precisely. O
results are shown in Fig. 8. For smalla, the peak height is
nearly linear ina. This behavior can be roughly understoo
by the argument that the specific-heat anomaly should s
as 1/j2, wherej is the correlation length of the 2D system
the 3D transition temperature. Furthermore, the 3D corre
tions become significant and lead to the 3D transition7 when
j2a'1. Thus the amplitude for the specific-heat anom
should vanish linearly witha. It would be interesting to com-
pare the specific-heat anomaly of various quasi-2D Heis
berg systems against this result.

V. CONCLUSIONS

In this paper we have studied the 3D ordering transition
a model of weakly coupled Heisenberg planes. Our results

l

e

FIG. 7. The excess inCv
plane(Tc) over the specific heat of the

pure 2D Heisenberg model at the 3DTc , normalized by the corre-
sponding 3D contribution to the total specific heat. The system
is 48348312.
3-5
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SENGUPTA, SANDVIK, AND SINGH PHYSICAL REVIEW B68, 094423 ~2003!
the transition temperature and universality class of the tr
sition are in accordance with general expectations. Our
mary focus here was on the specific heat and in particula
the specific-heat anomaly at the 3D ordering transition.
find that for smallJ' the amplitude for the specific-hea
anomaly is a nearly linear function ofJ' . It should be pos-
sible to compare this result directly against experiments
various anisotropic materials. However, it is clear that
highly anisotropic systems~such as La2CuO4, where the an-
isotropy maybe as small as 1026) such anomalies will be
very difficult to detect above the background.
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APPENDIX: THE SSE METHOD

The SSE method has been discussed in sev
papers.11–13Here we present a brief outline of the method
order to discuss the estimator for the specific heat. For
present case, the SSE approach starts by casting the H
tonian in the form

Ĥ52
1

2 (
b51

3N

@Ĥ1,b2Ĥ2,b#1C, ~A1!

where b denotes the bond connecting the nearest-neigh
sites^ i (b), j (b)&, C is an additive constant, and the operato
H1,b andH2,b are defined as

FIG. 8. The peak height for the 3D ordering extrapolated to
thermodynamic limit as a function of the anisotropy. For sm
anisotropies, the peak height increases approximately linearly
the anisotropy.
09442
n-
i-
n
e

n
r

.

e

al

e
il-

or
s

H1,b52J~b!F1

4
2Si (b)

z Sj (b)
z G , ~A2!

H2,b5J~b!@Si (b)
1 Sj (b)

2 1Si (b)
2 Sj (b)

1 #. ~A3!

The coupling constantJ(b)5J for bonds in the planes an
J(b)5J' for interplanar bonds. An exact and useful expre
sion for an operator expectation value at inverse tempera
b5J/T,

^Â&5
1

Z
Tr$Âe2bĤ%, Z5Tr$e2bĤ%, ~A4!

is obtained by expanding the density matrixe2bĤ in a Taylor
series and writing the trace as sum over the diagonal ma
elements in a basis$ua&%5$uS1

z , . . . ,SN
z &%. The partition

function can then be written as

Z5 (
n50

`

(
a

(
Sn

bn

n!
^au )

p51

n

Hap ,bp
ua& ~A5!

[ (
n50

`

bn(
a

(
Sn

W8~a,Sn!, ~A6!

whereSn denotes a sequence of index pairs defining the
erator string)p51

n Hap ,bp
:

Sn5@a1 ,b1#@a2 ,b2# . . . @an ,bn#, ~A7!

where aP$1,2,3%, bP$1, . . . ,N%. We have separated th
temperature dependence of the weight factor for con
nience. We can now write the expectation value of an ope
tor as

^Â&W5
1

Z (
n50

`

bn(
a

(
Sn

A~a,Sn!W8~a,Sn!. ~A8!

Taking Â5Ĥ, it can be shown11,35 that the energy is given
by the average length of the operator sequences

E52
1

bZ (
n50

`

nbn(
a

(
Sn

W8~a,Sn![2
1

b
^n&. ~A9!

A straightforward differentiation with respect to temperatu
gives the specific heatCv5]E/]T in the form of Eq.~6!.36

e
l
th
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