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Critical thermal diffusivity in anisotropic magnets

A. Pawlak*
Institute of Physics, A. Mickiewicz University, Poznan´, Poland

~Received 3 February 2003; revised manuscript received 24 June 2003; published 17 September 2003!

We derive nonasymptotic expressions for the frequency- and temperature-dependent thermal diffusivity near
a critical point in an Ising-type magnet. We consider a dynamic model which takes also into account the
longitudinal sound mode. The asymptotic scaling function of the thermal diffusion constant at long wave-
lengths is given within the renormalization group formalism in one-loop order. A relation connecting longitu-
dinal sound velocity and thermal diffusivity in a broad range of frequency and reduced temperature is obtained.

DOI: 10.1103/PhysRevB.68.094416 PACS number~s!: 05.70.Jk, 75.40.Gb, 62.65.1k, 64.60.Ht
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I. INTRODUCTION

The critical phenomena associated with heat transpo
phase transitions have been extensively studied using
renormalization group method.1 In the case of anisotropic
magnets~with conserved energy density!, the critical dynam-
ics can be explained in terms of model C~Ref. 2! and the
thermal conductivityk has been found there to be finite
the critical point. This does not mean that there is no sin
larity in the heat transport at the critical temperatureTC . In
the zero-frequency limit, the thermal diffusivityDT

5k/Cp , whereCp is the constant-pressure specific heat
unit volume, converges to zero because the specific
critical exponent is positive for Ising-like systems. Recen
a sharp dip inDT , due to a critical slowing down, was foun
experimentally in a uniaxial antiferromagnet FeF2 ~Ref. 3!
and also in Cr2O3 ~Ref. 4! ~the uniaxial behavior was ob
tained in this weakly anisotropic antiferromagnet very clo
to TC) for very low frequencies. However, the detailed n
ture of this singularity as well as the possible frequency
pendence ofDT is still unclear from both experimental an
theoretical points of view.

In this paper we follow the phenomenologica
hydrodynamical approach to critical dynamics.1 In such an
approach the critical effects in the transport properties ne
continuous phase transition are usually described by a s
stochastic equations neglecting the sound mode. Such a
proximation is not generally true for nonasymptotic beha
ior, so here we study not only the effects of critical fluctu
tions in the spin system on the thermal diffusivity but al
include the effect of a sound mode coupled to both spin
energy fluctuations. The dynamic model considered her
an extension of the model C.1 A general expression forDT
valid also at finite frequencies is obtained within the dynam
renormalization group approach in one-loop order forT
>TC . We show that additional terms are present in the th
mal diffusivity due to the sound mode. Subsequently we d
cuss two limits of this expression corresponding to isoth
mal and adiabatic propagation of the related sound mo
respectively. An interesting relation connecting the ‘‘low
frequency’’ and ‘‘high-frequency’’ diffusivities, as well as th
isothermal and adiabatic sound velocities, is obtained wh
is a generalization of the static relation~known for fluids!
between the ratio of the adiabatic and isothermal compr
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ibilities and the ratio of specific heats at a constant press
and volume, respectively.

This paper is organized as follows. In Sec. II our mod
and method are explained. In Sec. III the temperature-
frequency-dependent thermal diffusivity is derived. Two lim
iting cases are discussed and a relation between them is
tained. The summary and discussion are given in Sec. IV

II. MODEL

To study the hydrodynamics of a fluid we need only
consider densities of conserved quantities which de
slowly on long-length scales. There are five such conser
densities for three-dimensional pure fluid: momentum d
sity ~three components!, mass density, and energy density.
a solid, there are three additional broken-symmetry hydro
namic variablesui . The number of independent degrees
freedom determines the number of modes,5 so eight modes
are expected in monomolecular nonmagnetic crystals. Th
are two longitudinal sound modes~propagating modes al
ways occur in pairs!, composed essentially of longitudina
momentum and longitudinal displacement, and two pairs
transverse sound modes associated with transverse co
nents of displacement and momentum. In addition there
one diffusive mode for thermal conductivity and one cor
sponding to the diffusion of vacancies.5,6 The vacancy diffu-
sion is very slow, so it is often ignored as we did in o
analysis. In Ising-like magnets near a critical point we m
add to this set the slow relaxational mode of the order
rameter. In general, there are eight modes for an Ising-
magnetic crystal with no vacancies. However, it is know
that in magnets the dominant interaction between the so
and spin fluctuations is the volume magnetostriction.7 In an
isotropic solid, which is considered here for simplicity, th
transverse sound decouples from the other modes and wi
neglected. Thus we need only to consider a model with f
degrees of freedom in which the longitudinal sound, ener
and order-parameter modes are mutually coupled to e
other.

A. Statics

We start from a Hamiltonian describing an Ising-typ
magnet on ad-dimensional elastic solid:8

H5HOP1Hel1Hs1H int , ~1!
©2003 The American Physical Society16-1
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where HOP(F) is the Ginzburg-Landau part for the on
component order parameterF(x),

HOP5
1

2E ddxF rF~x!21~“F!21
l

2
F~x!4G , ~2!

and

Hel5
1

2E ddxH Buii ~x!212mFui j ~x!2
1

d
d i j ull ~x!G2J

~3!

is the elastic contribution in the harmonic approximatio
with ui j (x) denoting the strain tensor related to the displa
ment vector componentsui(x) by

ui j ~x!5
1

2
~¹iuj1¹jui !.

The first term in Eq.~3! describes the contribution due to th
volume changes@in the absence of vacanciesuii (x) is pro-
portional to the density fluctuation# and the second due to th
shear distortions.6 B and m are the~bare! bulk and shear
modulus~we have assumedkBT51), respectively. For sim-
plicity, we have assumed the solid to be isotropic. T
Hamiltonian

Hs 5
1

2CV
0E ddx@s~x!2# ~4!

describes the entropy~per mass! fluctuationss(x) ~being the
linear combination of the energy and density fluctuation6!
with CV

0 being proportional to the specific heat at a const
volume. Finally, the interaction Hamiltonian is given by

H int5E ddx@guii ~x!F~x!21wuii ~x!s~x!1 f s~x!F~x!2#,

~5!

where the first term describes the volume magnetostric
with the bare coupling constantg. We have taken also into
consideration the entropo-elastic interaction with the c
pling constantw. This interaction is responsible for the fa
that the adiabatic longitudinal sound velocity differs from t
isothermal one also for nonmagnetic systems. The last t
in Eq. ~5! is responsible for the critical behavior of the sp
cific heat.2

In the first step a given elastic configurationui j (x) can be
separated9,10 into a homogenous deformation and t
constant-volume phonon part:

ui j ~x!5ui j
0 1

1

2V (
kÞ0

i @kiuj~k!1kjui~k!#exp~ ik"x!,

~6!

where V is the volume of the system at equilibrium. W
decompose the displacement vectoru(k) into longitudinal
and transverse parts defined via

u„k…5 k̂uL~k!1uT~k!, ~7!
09441
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where uL(k)5 k̂•u„k…, uT(k)5u„k…Àk̂uL(k), and k̂
5k/uku. Only the longitudinal partuL is coupled, in our
model, to the order parameter fluctuations, so we integ
over the transverse modes as well as over homogenous
formationsui j

0 in the partition function. This is equivalent t
considering the system under a fixed external pressure.11 As
a result we get a new Hamiltonian whose elastic part take
simple form

Hel5E ddk

~2p!d
k2c0

2uuL~k!u2,

with c0
25B12(d21)m/d as the velocity square of the lon

gitudinal sound mode of the noninteracting system.
Next with the aid of a static transformation

@Ri j
st#5F ikc0coswa 2CV

21/2sinwT

ikc0sinwa CV
21/2coswT

G , ~8!

where sinwa5g/(v1c0), coswT5fACV
0 /v1 , and

v1
2 5

g2c0
221 f 2CV

022wg f c0
22CV

0

12w2c0
22CV

0
,

we transform the variables (u,s), whereu is the longitudinal
displacement component, into new ones (m1 ,m2) of which
only the second is coupled to the order parameter:

H~m1 ,m2 ,F!5
1

2E ddk

~2p!d
@m1~k!21m2~k!2

12v1m2~k!F2k
2 #1HOP

eff ~F!, ~9!

where the effective order-parameter HamiltonianHOP
eff (F)

takes the Ginzburg-Landau form with the parametersr andl
shifted andFk

25*(ddp/2p)F(p)F(k2p). We neglect here
a small nonanalyticity~with respect to the wave vector! of
the coupling constants; as in magnets, the resulting insta
ity can be neglected in the experimentally accessible te
perature range.10,12

B. Dynamics

On the grounds of hydrodynamics and renormalizat
group arguments, the following system of dynamic equ
tions, appropriate for the disordered phase, is considered

]

]t
F52g

dH

dF
1uF , ~10!

]

]t
s5k¹2

dH

ds
1us , ~11!

]

]t
u5P, ~12!

]

]t
P52

dH

du
1Q¹2

dH

dP
1uP , ~13!
6-2
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where we have introduced the longitudinal momentumP
conjugated withu ~we assume a unitary mass density!. This
set of equations is an extension of the model C.1 The Fourier
components of the Gaussian white noiseu i ( i 5F, s, and
P) have variances related to the bare damping termsg, kk2,
and Qk2 through the usual Einstein relations. Here,k de-
notes the thermal conductivity,Qk2 is responsible for the
noncritical sound dumping, andg is a relaxation coefficien
of the order parameter.

It is convenient to analyze the dynamics of the model
terms of the equivalent functional form13,14 with a Lagrang-
ian L(F,s,u,P;F̃,s̃,ũ,P̃), where auxiliary ‘‘response’’
fields F̃, s̃, ũ, and P̃ are introduced.

III. TEMPERATURE- AND FREQUENCY-DEPENDENT
THERMAL DIFFUSIVITY ABOVE TC

The relations between the dynamic vertex functions,
our model, and the hydrodynamic transport coefficients
obtained by comparing the coefficient determinant of the
earized hydrodynamic equationsDH with the determinant of
the dynamic two-point vertex functions D th
5det@Ga i ã j

(k,v)# with a i5$F,m1 ,m2 ,m3%.
14–16 From the

hydrodynamics we get

DH5~2v22 ivDsk
21cs

2k2!~2 iv1DTk2!

3@2 iv1g~k21j22!#, ~14!

where cs and Ds are the longitudinal sound velocity an
damping coefficient, respectively. The thermal diffusivity

DT5k/Cp~t! ~15!

is given by the ratio of the thermal conductivity and spec
heat~per unit volume! at a constant pressure. The last fac
in Eq. ~14! describes the relaxation of the order parame
with j as the correlation length. On the other hand, fro
perturbation theory we obtain

D th5$ iv32v2@Qk21~sin2wT1cos2wTGm2m2
!DT

0k2#

2 iv@c0
2k2~cos2wa1sin2waGm2m2

!

1~sin2wT1cos2wTGm2m2
!DT

0Qk4#

1c0
2DT

0k4cos2~wa2wT!Gm2m2
%GFF̃~k,v!, ~16!

whereDT
05k/CV

0 and

Gm2m2
~t,v!5

1

k

]

]k2
Gm2m̃2

uk50

is a frequency-dependent extension of the static two-p
vertex functionGm2m2

(st) 5^m2m2&
21.14

Our main interest is the thermal transport which is det
mined by the temperature and frequency dependence of
mal diffusivity DT(t,v), wheret5(T2TC)/TC is the re-
duced temperature. From Eq.~16! a general expression fo
the complex diffusivity (DT5ReD̂T) can be obtained:
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D̂T~t,v!5
D̂T

(LF)~t,v!1 i zD̂T
(HF)~t,v!

11 i z
, ~17!

wherez5v(D̂T
(LF)2Q)/ ĉ(ad)

2 is a frequency parameter. Th

coefficientsD̂T
(LF) and D̂T

(HF) are limiting values of the com-
plex thermal diffusivity in two regimes and

ĉ(ad)
2 ~t,v!5c0

2@cos2wa1sin2waGm2m2
~t,v!# ~18!

is the ~complex! adiabatic sound velocity.8,17

For ~strongly dumped! thermal waves19,20 with real fre-
quency and complex wave vectork̃5kth wav(v)1 im21(v),
where kth wav(v)5m21(v)52DT /v, the parameterz(v)
has a simple interpretation: neglecting the correction fr
the bare sound dumping coefficientQ, it can be rewritten as

z~v!'
vDT

c(ad)
2

5
1

2

v2

c(ad)
2 SA v

2DT
D 2 5

1

2

v2

vsound
2 @k5kth wav~v!#

~19!

52p2F m~v!

lsound~v!G
2

. ~20!

So it is ~to the unimportant factor! the square of the ratio o
the frequency of the thermal wave to the sound freque
with the same wave vectorkth wav(v) or, according to the
second line in this equation, it is the square of the therm
diffusion length m(v) by the wave lengthlsound(v)
52pc(ad) /v of the sound mode with given frequencyv.

For z!1 ~low frequency! the sound mode can be treate
as an ‘‘annealed’’ variable in the process of heat diffusio
One can also say that the related sound mode propag
adiabatically. In this low-frequency limit we have

D̂T~t,v!→D̂T
(LF)~t,v!5DT

0
cos2~wa2wT!Gm2m2

~t,v!

cos2wa1sin2waGm2m2
~t,v!

,

~21!

which is a finite-frequency generalization of the express
DT5k/Cp , whereCp;t2a is the static specific heat at
constant pressure giving a weakta singularity ofDT . It can
be shown that at zero frequency the second factor in Eq.~21!
is proportional to the inverse of the isobaric specific he
There is no perturbation contribution to the thermal cond
tivity in this model.2

The coefficient

D̂T
(HF)~t,v!5DT

0~sin2wT1cos2wTGm2m2
! ~22!

corresponds to the high-frequency limitz@1, where the lon-
gitudinal sound variables are ‘‘frozen’’~the related sound
propagates isothermally!. It can be shown that at frequencie
much lower than the characteristic frequency of the ord
parameter fluctuations the following holds:

DT
(HF)5k/CV~t!;const1ta, ~23!
6-3
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whereCV(t) is the constant-volume specific heat of the s
tem, which is finite atTC .21

The frequency-dependent vertex functionGm2m2
obeys the

scaling relation

Gm2m2
~t,v!5taC~y!

in the asymptotic regime, whereC is a scaling function and
y5v/vc is the reduced frequency with characteristic fr
quencyvc;tzn anda, n, z as critical exponents. We hav
calculatedC at one-loop order:

C~y!5F11S y

2D 2Ga/2znH 11
a

n F12 iy /2

y
arctan

y

2

1 i
ln@11~y/2!2#

2y G J . ~24!

We have neglected here the corrections to scaling due to
departure of the couplingsl and v1 from the asymptotic
values.

Usually, we havez!1 and asymptotically near the crit
cal point the frequency-dependent thermal diffusivity b
haves as

DT
(LF)~t,v!;taReC~y!.

The scaling function ReC(y) is plotted againsty in Fig. 1.
In the limit y→0 it goes to a constant, soDT

(LF)(t,0);ta,
converging slowly to zero. For a finite frequency, the therm
diffusivity saturates, when approachingTC (y→`), at a
valueDT

(ad)(0,v);va/zn. So it is always finite for finite fre-
quencies. This crossover from hydrodynamic (y!1) to criti-
cal (y@1) behavior may be difficult to be detected in expe
ments as frequencies of the order ofvc are required. In
magnets usually we havevc;1011tzn.106 s-1, where the
last inequality is obtained for the reduced temperaturet
;1024, so angular frequencies of the order of 106 s21 and
higher are needed.

FIG. 1. The scaling function ReC(y) from Eq. ~24! vs the
scaling variabley5v/vc for a50.110, n50.630 (n51), andz
521a/n52.175~the dynamic model C!.
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The literature does not give many experimental data
the critical diffusivity in Ising-type magnets. However, re
cently high-resolution measurements ofDT in the uniaxial
antiferromagnet FeF2 ~Ref. 3! and in the weakly uniaxial
antiferromagnet Cr2O3 ~Ref. 4! were reported. The frequen
cies used in these experiments were of the order of 102 s21.
To be able to observe the crossover from hydrodynamic
critical behavior at so low frequencies, one would need
tremely small reduced temperatures which are now outs
the experimental capabilities. However, the present work
throw also some light on the detailed nature of the therm
diffusivity singularity in the hydrodynamic regime in thes
systems. For low frequencyGm2m2

(t,v) goes to its static

limit Gm2m2

(st) (t)5(11v1
2 ^F0

2F0
2&)21, where the angular

brackets denote the static average. Inserting it into Eq.~21!
we obtain

DT~t!5DT
(LF)~t,0!5

DT
0cos2~wa2wT!

11cos2wav1
2 ^F0

2F0
2&

5
Ṽ

11Ũt2a~11FtD!
, ~25!

where for the ‘‘energy operator’’ correlation functio
^F0

2F0
2& we have used the renormalization group nonasym

totic expression ^F0
2F0

2&5At2a(11FtD)1B ~Ref. 22!
with the leading nonanalytic correction exponentD.0.53
for the Ising system.Ṽ, Ũ, A, B, and F are nonuniversal
amplitudes and analytic corrections have been neglec
Near the critical point the diverging term dominates the n
merator and Eq.~25! can be expanded, giving

DT~t!5Uta~11Gta1Ht2a1•••1FtD!, ~26!

whereU;1/A, G, andH are some constants. It is seen fro
this equation that the dominant correction exponent for
thermal diffusivity isa.0.110,D. Unfortunately, the mea-
surements of thermal diffusivity in FeF2 ~Ref. 3! and Cr2O3
~Ref. 4! were fitted with the expression

DT~t!5V1Et1Ut2b~11FtD!, ~27!

with b,0. Apart from the unimportant analytic correction
Eq. ~27! also a constant-background termV appears, which
makes the thermal diffusion coefficient finite atTC . Equa-
tion ~27! differs from Eq.~26! mainly by this constant term
and the exponent of the leading correction. Fortunately,
the ideal Ising system FeF2, this constant term was found t
be extremely small.3 It may be a result of the calibration
procedure used by the authors, as the photopyroelectric t
nique gives only relative values of thermal diffusivity an
specific heat. Measurements over a wider reduced temp
ture interval would be necessary to check the usefulnes
the corrections predicted in our work:ta, t2a, . . . . The
theory presented confirms also the expectation3 that the
critical amplitude ratio for diffusivity in the Ising system
is equal to the inverse of the amplitude ratio for spec
heat, U/U85A8/A. For FeF2 the Ising-like exponent
6-4
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2b5a50.1160.02 andU/U851.9760.08 were found,3

whereas the theory23 predictsA8/A.1.96.
Unfortunately, no conclusive interpretation of the me

surements ofDT in Cr2O3 is possible in terms of our theory
First, a large background termV was found4 andb520.09
60.01 for the fits with the fitting function~27!. Having in
mind that Cr2O3 is almost an isotropic system, a formu
similar to Eq.~27! is obtained, with a constant term, by e
panding Eq.~25! ~which is also valid for the Heisenber
model! in powers oft2aH, whereaH denotes the negativ
Heisenberg model specific heat exponent. Then we ob
essentially Eq.~27! with b52aH and a simple relation for
the amplitude ratios,U/U85(A/A8)H , where the subscrip
‘‘H’’ denotes the Heisenberg point. Thus, the substantial c
stant term would rather suggest Heisenberg behavior tha
Ising one. However, the situation is additionally complicat
by the fact that Marinelliet al.4 obtained also a quite good fi
with the truly Ising behavior described by Eq.~25! with the
exponent describing the divergence of the denominator e
to 0.1160.02. Good fits with different functions in the cas
of Cr2O3 may be explained by the fact that the reduced te
perature interval chosen for the fitting procedure was m
narrower than that used for FeF2 as a consequence of th
assumed crossover from Heisenberg to Ising behavior. T
the situation here is still unclear and measurements ov
wider reduced temperature range would be highly desira

The question also arises as to the extent to which
sound modes influence the heat mode. For the phonon
thermal diffusion modes uncoupled (g5w50) we have
cos2wa5cos2wT5cos2(wa2wT)51 and from Eqs.~17!, ~21!,
and ~22! one can see that there is no difference between
low- and high-frequency thermal diffusivity, which is the
equal toDT

0Gm2m2
;ta. The presence of phonons chang

the overall coefficient in front ofGm2m2
in Eq. ~21! and in-

troduces a singular correction in the denominator.
Comparing Eqs.~14! and ~16! we have also obtained a

interesting relation between the complex low-frequency a
high-frequency diffusivities and longitudinal sound veloc
ties:

D̂T
(LF)~t,v!ĉ(ad)

2 ~t,v!5D̂T
(HF)~t,v!ĉ(is)

2 ~t,v!

5c0
2DT

0Gm2m2
~t,v!cos2~wa2wT!

;taC~y!, ~28!

where

ĉ(is)
2 ~t,v!5c0

2
cos2~wa2wT!Gm2m2

~t,v!

sin2wT1cos2wTGm2m2
~t,v!

~29!
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is the isothermal sound velocity. The expressions~18! and
~29! for the sound velocities are found from analogous co
siderations of the acoustic mode.8,17,18The relation~28! is a
finite-frequency generalization of the known thermodynam
formula19 (]p/]r)sCv5(]p/]r)TCp .

IV. SUMMARY AND DISCUSSION

We have performed a detailed analysis of the critical
havior of the thermal diffusion mode in Ising-type magne
for T>TC . The coupling to the sound mode has been fu
taken into account in the prediction of the temperature a
frequency dependence of the thermal diffusivity. We we
able to expressDT(t,v) in terms of the vertex function
Gm2m2

(v) of the idealized phonon-free model C. The la
quantity can be relatively easily calculated by the renorm
ization group method. The dynamic scaling function is c
culated here in the one-loop approximation. The finite sp
phonon coupling leads to additional nonasymptotic effects
addition to the ones related to the deviation of the four-s
coupling constantl from the asymptotic value. The mos
important new effect is the existence of the two frequen
regimes in the behavior of thermal diffusivity with distinc
asymptotic singularities as the reduced temperature
proaches zero.

In the low-frequency limit the heat conduction mode
much slower than the related sound mode with the sa
wave vector. Even in this limit, the temperature and f
quency behavior ofDT(t,v) shows nonasymptotic correc
tions due to the finite values of the spin-phonon and entro
phonon couplings as shown in Eq.~21!. Otherwise, in the
high-frequency limit the sound variables can be treated
frozen. In principle, in each frequency limit one can disti
guish the hydrodynamic regionv!vc , where vc is the
characteristic frequency of the order-parameter fluctuatio
as well as the critical regionv@vc . However, the tempera
ture crossover from hydrodynamic to critical behavior, whi
takes place as a result of a critical slowing down, may not
observed in experiments for very low frequencies as v
small reduced temperatures are then required. In order to
the frequency-dependent formulas obtained in our paper
high-resolution measurements ofDT performed at higher fre-
quencies are highly desirable.

As a by-product of our analysis we have obtained a re
tion between the low- and high-frequency thermal diffusi
ties and isothermal and adiabatic velocities of the longitu
nal sound, which is a finite-frequency generalization of t
thermodynamic relation connecting the isothermal and a
batic compressibilities as well as the specific heats at a c
stant pressure and at a constant volume, respectively.
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