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Critical thermal diffusivity in anisotropic magnets
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We derive nonasymptotic expressions for the frequency- and temperature-dependent thermal diffusivity near
a critical point in an Ising-type magnet. We consider a dynamic model which takes also into account the
longitudinal sound mode. The asymptotic scaling function of the thermal diffusion constant at long wave-
lengths is given within the renormalization group formalism in one-loop order. A relation connecting longitu-
dinal sound velocity and thermal diffusivity in a broad range of frequency and reduced temperature is obtained.
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I. INTRODUCTION ibilities and the ratio of specific heats at a constant pressure
and volume, respectively.

The critical phenomena associated with heat transport at This paper is organized as follows. In Sec. Il our model
phase transitions have been extensively studied using tt&d method are explained. In Sec. Il the temperature- and
renormalization group methddin the case of anisotropic frequency-dependent thermal diffusivity is derived. Two lim-
magnetgwith conserved energy densifyhe critical dynam-  iting cases are discussed and a relation between them is ob-
ics can be explained in terms of model(Ref. 2 and the tained. The summary and discussion are given in Sec. IV.
thermal conductivityx has been found there to be finite at
the critical point. This does not mean that there is no singu- Il. MODEL

larity in the heat transporF at the critical temp.eratmge In To study the hydrodynamics of a fluid we need only to
the zero-frequency limit, the thermal diffusiviyDr  consider densities of conserved quantities which decay
=«/Cp, whereC, is the constant-pressure specific heat pergiowly on long-length scales. There are five such conserved
unit volume, converges to zero because the specific he@fensities for three-dimensional pure fluid: momentum den-
critical exponent is positive for Ising-like systems. Recentlysity (three componentsmass density, and energy density. In
a sharp dip iD1, due to a critical slowing down, was found a solid, there are three additional broken-symmetry hydrody-
experimentally in a uniaxial antiferromagnet KefRef. 3 namic variablesas; . The number of independent degrees of
and also in CjO; (Ref. 4 (the uniaxial behavior was ob- freedom determines the number of modes) eight modes
tained in this weakly anisotropic antiferromagnet very closeare expected in monomolecular nonmagnetic crystals. These
to T¢) for very low frequencies. However, the detailed na-are two longitudinal sound modegropagating modes al-
ture of this singularity as well as the possible frequency deways occur in paifs composed essentially of longitudinal

pendence oD is still unclear from both experimental and Mmomentum and longitudinal displacement, and two pairs of
theoretical points of view. transverse sound modes associated with transverse compo-

In this paper we follow the phenomenological- Nents of displacement and momentum. In addition there is

hydrodynamical approach to critical dynamick such an  ©"€ diffusive mode for thermal conductivity and one corre-
approach the critical effects in the transport properties near apon‘?"”g to thle d|ffu5|(_)n_0f vf?canm%g.'l'ge vacant(:jyddl_ffu-
continuous phase transition are usually described by a set §f°0 IS Very slow, so it is often ignored as we did in our
stochastic equations neglecting the sound mode. Such an a@halysis. In Ising-like magnets near a critical point we must
proximation is not generally true for nonasymptotic behav- dd to this set the slow relaxational mode of the order pa-

ior, so here we study not only the effects of critical fluctua-"aMeter. In general, there are eight modes for an Ising-like

tions in the spin system on the thermal diffusivity but alsomagnetic crystal with no vacancies. However, it is known
; that in magnets the dominant interaction between the sound

energy fluctuations. The dynamic model considered here i§nd sp_in flugtuatio_ns i; the vglume magnetost.ricfiqn..an
an extension of the model €A general expression fdb Isotropic solid, which is considered here for simplicity, the

valid also at finite frequencies is obtained within the dynamictransverse sound decouples from the other modes and will be

renormalization group approach in one-loop order Tor neglected. Thus we need only to consider a model with four

=T . We show that additional terms are present in the thergegrees of freedom in which the longitudinal sound, energy,
mal diffusivity due to the sound mode. Subsequently we dis—and order-parameter modes are mutually coupled to each
cuss two limits of this expression corresponding to isother—Other'
mal and adiabatic propagation of the related sound mode, )

respectively. An interesting relation connecting the “low- A. Statics

frequency” and “high-frequency” diffusivities, as wellasthe  We start from a Hamiltonian describing an Ising-type
isothermal and adiabatic sound velocities, is obtained whiclnagnet on ai-dimensional elastic soliél:

is a generalization of the static relatigknown for fluidg

between the ratio of the adiabatic and isothermal compress- H=Hgpt+Hg+H,+Hjx, (1)
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where Hop(®) is the Ginzburg-Landau part for the one- where u (k)=k-u(k), ur(k)=u(k)—ku (k), and k
component order parameter(x), =k/|k|. Only the longitudinal part, is coupled, in our
model, to the order parameter fluctuations, so we integrate
H :Ef ddx ) over the transverse modes as well as over homogenous de-
oPT2 formationsuy) in the partition function. This is equivalent to
considering the system under a fixed external pressus.

r(I)(x)2+(V(D)2+%(I)(x)4

and a result we get a new Hamiltonian whose elastic part takes a
1 1 2 simple form
He|=§f ddX(BUii(X)zﬁLZM Uij(X)_a5ijU|l(X) ] "
) He= f k%c3lu (k)|?,
el (ZﬂT)d O| L( )|

is the elastic contribution in the harmonic approximation, 5 '
with u;;(x) denoting the strain tensor related to the displaceWwith cg=B+2(d—1)u/d as the velocity square of the lon-
ment vector componentsg(x) by gitudinal sound mode of the noninteracting system.
Next with the aid of a static transformation
1
uij (x) = E(Viuj"‘vjui)- o ikcoCcose, —C\jllzsincpT
ij1=

®

. . . Lo ikcosin CyYcoser |’
The first term in Eq(3) describes the contribution due to the 0>l®Pa v e

volume changesin the absence of vacancies(x) is pro-  \wnere sine.=a/(v . c.). coso,=f /CO/U and
portional to the density fluctuati¢mnd the second due to the a=0/(v+Co). e Ve

shear distortion§.B and x are the(bare bqlk and shgar , gzcaz+f2C3—2wgfc52C3
modulus(we have assumekkT=1), respectively. For sim- vi= 50 ,
plicity, we have assumed the solid to be isotropic. The 1-w?c, “Cy
Hamiltonian

we transform the variablesi(o), whereu is the longitudinal
displacement component, into new on@s; (m,) of which

H :if d[ o(%)?2] 4) only the second is coupled to the order parameter:
7 2cY .
dk
describes the entropgyper massfluctuationso(x) (being the H(my,m,,®)= Ef ?[ml(k)z—’— m,(k)?
linear combination of the energy and density fluctuafipns (2m)
with CY being proportional to the specific heat at a constant +20,.my(K) @2, ]+ HEY D), (9)

volume. Finally, the interaction Hamiltonian is given by
where the effective order-parameter Hamiltonigly(®)
_ d 5 ) takes the Ginzburg-Landau form with the parameteasd\
Him—f d™X[guii )P (x)"+wu (X)o(X) +Fa()P(X)7],  ghifted andd2= [ (d9p/2m)d(p)®(k—p). We neglect here
(5)  a small nonanalyticitfwith respect to the wave vecjoof
._the coupling constants; as in magnets, the resulting instabil-

. . . ri‘[y can be neglected in the experimentally accessible tem-
with the bare coupling constagt We have taken also into perature rang&1?

consideration the entropo-elastic interaction with the cou-
pling constantw. This interaction is responsible for the fact

that the adiabatic longitudinal sound velocity differs from the
isothermal one also for nonmagnetic systems. The last term On the grounds of hydrodynamics and renormalization
in Eq. (5) is responsible for the critical behavior of the spe-group arguments, the following system of dynamic equa-

B. Dynamics

cific heat? tions, appropriate for the disordered phase, is considered:
In the first step a given elastic configuratiof(x) can be
separatet!® into a homogenous deformation and the id)—— ﬁ+ 0 (10)
constant-volume phonon part: ot Ysp TV
u--(x)=uA°-ﬁLi > ikiu; (k) + ki u; (k) Jexp(ik-x) AL
ij i oy &y LA jUi , EO‘—KV %4—0,,, (17
(6)
where V is the volume of the system at equilibrium. We iu:p’ (12)
decompose the displacement vectgk) into longitudinal ot
and transverse parts defined via H
J
- —P=——+0V2—+
u(k)=Kkug (K) + u(K), 7) b= e TOV s Tl (13
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where we have introduced the longitudinal momentem A DD (1, w)+i DD 1,0)
conjugated withu (we assume a unitary mass denpifjhis D(7,w)=
set of equations is an extension of the modélThe Fourier

components of the Gaussian white note(i=®, o, and h — (DD —0)/e2 i f ter. Th
P) have variances related to the bare damping tepmek?, ere¢=w(Dy )/Clag) IS a frequency parameter. The

and ©k? through the usual Einstein relations. Herede- coefficientsD " and DY™" are limiting values of the com-

notes the thermal conductivit@k? is responsible for the Plex thermal diffusivity in two regimes and
noncritical sound dumping, ang is a relaxation coefficient ~p 5 ,
of the order parameter. Clad 7 @) =3[ COS @t SIP QL i (T, 0)]  (18)

It is convenient to analyze the dynamics of the model in.

terms of the equivalent functional fofri™*with a Lagrang- is the (comple adiabatic sound velocn@r%zo .
_ o~ o~ . For (strongly dumpej thermal waveS'?° with real fre-
ian L(®,o,u,P;®,0,u,P), where auxiliary “response”

) ~ 2 ~ s quency and complex wave vecthr ke, wal @) +ip (o),
fields®, o, u, andP are introduced. where K, yal®) =~ X(@)=2D+/w, the parameter(w)
has a simple interpretation: neglecting the correction from

lll. TEMPERATURE- AND FREQUENCY-DEPENDENT the bare sound dumping coefficieft it can be rewritten as
THERMAL DIFFUSIVITY ABOVE  T¢

14ig - @7

2 2

=

The relations between the dynamic vertex functions, iné(w)meTz_ ® :1 »
g e >
our model, and the hydrodynamic transport coefficients ar chy 2 w 2 w2, i k= K wad @)1
obtained by comparing the coefficient determinant of the lin- C(Zad) —
earized hydrodynamic equations, with the determinant of 2D
the  dynamic  two-point  vertex  functions Ay, (19
=de(I', 7 (k,w)] with a;={®,m;,m,,ms}.2*" 8 From the 5
hydrodynamics we get — 2 o) ' (20)
) s oo ) Nsound @)
Ap=(- 0"~ T1oDK™+ k%) (—lw+Dk%) So it is (to the unimportant factarthe square of the ratio of
X[—iw+y(k?+£2)], (14)  the frequency of the thermal wave to the sound frequency

with the same wave vectd{, (@) or, according to the
where ¢s and D are the longitudinal sound velocity and second line in this equation, it is the square of the thermal
damping coefficient, respectively. The thermal diffusivity  diffusion length u(w) by the wave length\goud®)
_ =2mC(aq)/ © Of the sound mode with given frequenay
Dr=x/Cpy(7) (15 For <1 (low frequency the sound mode can be treated

is given by the ratio of the thermal conductivity and specific@ an “annealed” variable in the process of heat diffusion.
heat(per unit volume¢ at a constant pressure. The last factorOne can also say that the related sound mode propagates
in Eq. (14) describes the relaxation of the order parameteradiabatically. In this low-frequency limit we have

with ¢ as the correlation length. On the other hand, from

perturbation theory we obtain oS (¢a— 1) m,m,(7,®)

Dr(7,0)—D¢(7,0)=D9 : :
Ap={i 03— 0’[OK*+ (sirfpr+ co§<pTFm2m2)D$k2] coS gt szqparmzmz( 7 w()21)
which is a finite-frequency generalization of the expression
Dy=«/C,, whereC,~ 7" “ is the static specific heat at a
constant pressure giving a weak singularity ofDt. It can

be shown that at zero frequency the second factor in 2.

is proportional to the inverse of the isobaric specific heat.
whereD$= K/C?, and Therg is no perturlgation contribution to the thermal conduc-

tivity in this model:
1 9 The coefficient

—i o[ c3k?(coS atSiMPedl m m)
+(sirP@r+coS @1l i m,) DIOK’]

+cgDK oS (02— 1) T mym T ad (K, ), (16)

Fimy(T,0)=— — T i k=0 .
e K gk2 e B¢ (7,0)=DY(sipr+coferln m) (22

is a frequency-dependent extelnfion of the static two-poing,resnonds to the high-frequency lingi 1, where the lon-

vertex funCt'OnFEnszf(mZmZ) ' gitudinal sound variables are “frozen(the related sound
Our main interest is the thermal transport which is deterpropagates isothermallyit can be shown that at frequencies

mined by the temperature and frequency dependence of thefiuch lower than the characteristic frequency of the order-

mal diffusivity D(7,w), where 7=(T—T¢)/T¢ is the re-  parameter fluctuations the following holds:

duced temperature. From E(L6) a general expression for

the complex diffusivity Dy=ReD+) can be obtained: D{FP= k/Cy(7)~constt 7%, (23
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The literature does not give many experimental data on
16 the critical diffusivity in Ising-type magnets. However, re-
cently high-resolution measurements f in the uniaxial
antiferromagnet FeF(Ref. 3 and in the weakly uniaxial
144 antiferromagnet GO; (Ref. 4 were reported. The frequen-
cies used in these experiments were of the order 6fs1.

To be able to observe the crossover from hydrodynamic to
critical behavior at so low frequencies, one would need ex-
12 - tremely small reduced temperatures which are now outside
the experimental capabilities. However, the present work can
throw also some light on the detailed nature of the thermal
diffusivity singularity in the hydrodynamic regime in these
systems. For low frequencymzmz(r,w) goes to its static

Re ¥(y)

0.01 01 1 10 100 1000 limit Fﬁﬁgmz(r)=(1+vi<d>§<1>5>)’1, where the angular
y brackets denote the static average. Inserting it into(Eg).
we obtain

FIG. 1. The scaling function R&(y) from Eq. (24) vs the

scaling variabley=w/w, for «=0.110, v=0.630 h=1), andz
’ e 0=b DYcog (.~ 1)

=2+ a/v=2.175(the dynamic model £ _nLP _
O = Dy T = 2w (0207
whereCy(7) is the constant-volume specific heat of the sys- _
tem, which is finite aff¢.? Y
The frequency-dependent vertex 1‘unctlb,t;12m2 obeys the - 1407 9(1+F )’ (25

scaling relation
where for the “energy operator” correlation function
szmz( T,0)=1"V(y) (@SCI)S) we have used the renormalization group nonasymp-
totic expression(®3P2)=Ar"%(1+F7*)+B (Ref. 22
in the asymptotic regime, wher is a scaling function and  with the leading nonanalytic correction exponeint=0.53
y=wl/w. is the reduced frequency with characteristic fre'for the Ising systemV, U, A, B, andF are nonuniversal

2% it . . .

qulen?yw&q,r and‘l"' vy Z;‘S critical exponents. We have ,mpjiydes and analytic corrections have been neglected.
calculatea¥” at one-loop order: Near the critical point the diverging term dominates the nu-
merator and Eq(25) can be expanded, giving

y 27 al2zv all— |y/2 y
P(y)=|1+|= — arctani 2 A
2 Di(r)=Ur*(1+Gr*+Hr+.--+F7%), (26
i In[1+(y/2)?] (24) whereU~ 1/A, G, andH are some constants. It is seen from
2y ' this equation that the dominant correction exponent for the

) ] thermal diffusivity isae=0.110<A. Unfortunately, the mea-
We have neglected here the corrections to scaling due to thg,rements of thermal diffusivity in FeRRef. 3 and C5Os

departure of the couplings andv, from the asymptotic (Ref. 4 were fitted with the expression
values.

Usually, we have/<1 and asymptotically near the criti- Di(7)=V+Er+U7r P(1+F7), (27)
cal point the frequency-dependent thermal diffusivity be-
haves as with b<<0. Apart from the unimportant analytic correction in
Eq. (27) also a constant-background teinhappears, which
D7, 0)~ 7 ReW (y). makes the thermal diffusion coefficient finite B . Equa-

_ _ ) ) o tion (27) differs from Eq.(26) mainly by this constant term
The scaling function R¥(y) is plotted againsy in Fig. 1. and the exponent of the leading correction. Fortunately, for
In the limit y—0 it goes to a constant, 7(7,0)~7*,  the ideal Ising system FeFthis constant term was found to
converging slowly to zero. For a finite frequency, the thermalpe extremely smafl. It may be a result of the calibration
diffusivity saturates, when approachinly (y—=), at a procedure used by the authors, as the photopyroelectric tech-
value D$P9(0,0) ~ 0. So it is always finite for finite fre-  nique gives only relative values of thermal diffusivity and

quencies. This crossover from hydrodynamye<(1) to criti-  specific heat. Measurements over a wider reduced tempera-
cal (y>1) behavior may be difficult to be detected in experi- ture interval would be necessary to check the usefulness of
ments as frequencies of the order @f are required. In the corrections predicted in our work®, 2¢, ... . The

magnets usually we have,~10'7%">10° s, where the theory presented confirms also the expectdtithmat the
last inequality is obtained for the reduced temperatures critical amplitude ratio for diffusivity in the Ising system
~10 4, so angular frequencies of the order ofP K0! and is equal to the inverse of the amplitude ratio for specific
higher are needed. heat, U/U'=A"'/A. For Febk the Ising-like exponent
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—b=w@=0.11+0.02 andU/U’=1.97+0.08 were found,
whereas the theofy predictsA’/A=1.96.

PHYSICAL REVIEW B68, 094416 (2003

is the isothermal sound velocity. The expressi¢h® and
(29) for the sound velocities are found from analogous con-

Unfortunately, no conclusive interpretation of the mea-siderations of the acoustic motté’8The relation(28) is a
surements oD in Cr,05 is possible in terms of our theory. finite-frequency generalization of the known thermodynamic
First, a large background teriiwas found andb=—0.09  formula® (9p/dp),C,=(3p/dp)1C,.
+0.01 for the fits with the fitting functiorf27). Having in
mind that CgO5 is almost an isotropic system, a formula
similar to Eq.(27) is obtained, with a constant term, by ex-

panding Eq.(25) (which is also valid for the Heisenberg ) ] »
mode) in powers of 7~ %+, whereay, denotes the negative We have performed a detailed analysis of the critical be-

Heisenberg model specific heat exponent. Then we obtaif@vior of the thermal diffusion mode in Ising-type magnets
essentially Eq(27) with b= —a}, and a simple relation for for T>.TC. The couplmg to thg s_ound mode has been fully
the amplitude ratiosy/U’ = (A/A),;, where the subscript taken into account in the prediction of th_e temperature and
“H” denotes the Heisenberg point. Thus, the substantial con{réquency dependence of the thermal diffusivity. We were
stant term would rather suggest Heisenberg behavior than £p!€ 10 expresD(7,w) in terms of the vertex function
Ising one. However, the situation is additionally complicated! m,m,(«) of the idealized phonon-free model C. The last
by the fact that Marinellet al* obtained also a quite good fit quantity can be relatively easily calculated by the renormal-
with the truly Ising behavior described by E@5) with the  ization group method. The dynamic scaling function is cal-
exponent describing the divergence of the denominator equ&ulated here in the one-loop approximation. The finite spin-
to 0.11+0.02. Good fits with different functions in the case phonon coupling leads to additional nonasymptotic effects in
of Cr,05 may be explained by the fact that the reduced tem-addition to the ones related to the deviation of the four-spin
perature interval chosen for the fitting procedure was muclgoupling constani from the asymptotic value. The most
narrower than that used for Fels a consequence of the important new effect is the existence of the two frequency
assumed crossover from Heisenberg to Ising behavior. Thugggimes in the behavior of thermal diffusivity with distinct
the situation here is still unclear and measurements over asymptotic singularities as the reduced temperature ap-

IV. SUMMARY AND DISCUSSION

wider reduced temperature range would be highly desirableroaches zero. o _ _
The question also arises as to the extent to which the In the low-frequency limit the heat conduction mode is
sound modes influence the heat mode. For the phonon arduch slower than the related sound mode with the same

thermal diffusion modes uncoupledy€£w=0) we have
cogp,= coSr=CcoF(p,— 1) =1 and from Eqs(17), (21),

wave vector. Even in this limit, the temperature and fre-
quency behavior oD(7,w) shows nonasymptotic correc-

and(22) one can see that there is no difference between théons due to the finite values of the spin-phonon and entropy-

low- and high-frequency thermal diffusivity, which is then
equal toDl y, m, ~
the overall coefficient in front of', m, in Eq. (21) and in-
troduces a singular correction in the denominator.
Comparing Eqgs(14) and (16) we have also obtained an
interesting relation between the complex low-frequency an
high-frequency diffusivities and longitudinal sound veloci-
ties:
bgrLF)( T, w)e(zad)( T, )= Ij-(rHF)( T, w)e(zis)( T,0)
= oD m,m, (T, )OS (@5~ @1)
~ 7V (y), (28)

where

0052( Pa— ‘PT)rmzmz( T,®)

sirfpr+coS eI mzmz( T,®)

E:(Zis)( T, W)= C(ZJ (29

phonon couplings as shown in E@Q1). Otherwise, in the

7*. The presence of phonons changeshigh-frequency limit the sound variables can be treated as

frozen. In principle, in each frequency limit one can distin-
guish the hydrodynamic regiom<w., where w. is the
characteristic frequency of the order-parameter fluctuations,
s well as the critical regiom> w.. However, the tempera-
ure crossover from hydrodynamic to critical behavior, which
takes place as a result of a critical slowing down, may not be
observed in experiments for very low frequencies as very
small reduced temperatures are then required. In order to test
the frequency-dependent formulas obtained in our paper new
high-resolution measurementsf performed at higher fre-
quencies are highly desirable.

As a by-product of our analysis we have obtained a rela-
tion between the low- and high-frequency thermal diffusivi-
ties and isothermal and adiabatic velocities of the longitudi-
nal sound, which is a finite-frequency generalization of the
thermodynamic relation connecting the isothermal and adia-
batic compressibilities as well as the specific heats at a con-
stant pressure and at a constant volume, respectively.
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