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Strong-coupling fixed point instability in a single-channel SU„N… Kondo model
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We study a generalized SU(N) single-impurity Kondo model in which the impurity spin is described by a
combination ofq Abrikosov fermions and (2S21) Schwinger bosons. Our aim is to describe both the quasi-
particlelike excitations and the locally critical modes observed in various physical situations, including non-
Fermi-liquid behavior in heavy-fermion systems in the vicinity of a quantum critical point. We carry out an
analysis of the strong-coupling fixed point, from which an effective Hamiltonian is derived containing both a
charge interaction and a spin coupling betweennd nearest-neighbor electrons and the screened impurity. The
effective charge interaction is already present in the case of a purely fermionic impurity and it changes from
repulsive to attractive atq5N/2, due to theq→N2q symmetry. The sign of the effective spin coupling
determines the stability of the strong-coupling fixed point. Already in the single-channel case and in contrast
with either the pure bosonic or the pure fermionic case, the strong-coupling fixed point is unstable against the
conduction electron kinetic term in the large-N limit as soon asq.N/2. The origin of this change of regime
is directly related to the sign of the effective charge interaction.
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I. INTRODUCTION

Recent experiments in heavy-fermion compounds h
shown the existence of a quantum phase transition fro
magnetically disordered to a long-range magnetic orde
phase, driven by change in chemical composition, press
or magnetic field.1 For an extensive survey of the experime
tal situation we refer the reader to the review paper
Stewart.2 In a very unusual way, the behavior of the syste
in the disordered phase close to the quantum critical p
~QCP! differs from that of a Fermi liquid. For exampl
CeCu62xAux ~Refs. 3 and 4! and (Ce12xLax)Ru2Si2 ~Ref. 5!
present an antiferromagnetic transition, respectively, atx

C

50.1 andx
C
50.08. While far from the QCP, the magnet

cally disordered phase is a Fermi liquid with a large effect
mass, the temperature dependence of the physical quan
in the disordered phase in the vicinity of the QCP is of no
Fermi-liquid-like type. Typically, in CeCu5.9Au0.1,4 the spe-
cific heatC depends onT asC/T;2 ln(T/T0), the magnetic
susceptibility asx;12aAT, and theT-dependent part o
the resistivity asDr;T instead ofC/T;x;Const andDr
;T2 as in the Fermi-liquid state. Once a long-range m
netic order is set up, the effect of a pressure or of a magn
field is to drive the system back to a magnetically disorde
phase with a Fermi-liquid behavior. The same type of beh
ior has been observed in other systems such as YbRh2Si2 ,6

CeNi2Ge2 ,7 CeCu2(Si12xGex)2 ,8 CeIn3 , CePd2Si2 ,9 and
U12xYxPd3.10 The associated breakdown of the Fermi-liqu
theory poses fundamental questions about the possible
mation of novel electronic states of matter with new types
elementary excitations resulting from the presence of str
correlations among electrons.

On the theoretical side, two scenarios are in competit
to describe quantum phase transitions: either the itine
magnetism scenario~i!, or more recently proposed, the lo
cally critical picture~ii !.
0163-1829/2003/68~9!/094410~24!/$20.00 68 0944
e
a
d

re,

f

nt

e
ies
-

-
tic
d
v-

or-
f
g

n
nt

In the former case,~i!, the quasiparticles still exist at th
QCP and the theory focuses on the study of the low-lyi
large-wavelength~low-v, low-q) fluctuations of the order
parameter close to the transition. The calculations have b
performed within the renormalization-group scheme11–13 or
in the self-consistent spin-fluctuation theory,14 and have been
recently extended15 to the microscopic model which is be
lieved to describe the heavy fermions, the Kondo lattice.
all the cases, they lead to aF4 theory with an effective
dimensionde f f5d1z whered is the spatial dimension andz
is the dynamic exponent. In the experimental situations,de f f
is above its upper critical value equal to 4, sinced is equal to
3 or 2, andz varies from 2 to 3 depending on whether th
spin fluctuations are staggered or uniform. Hence the sys
is described by a Gaussian fixed point with anomalous te
perature dependence ofC/T anda5Dr/T but with predic-
tions that cannot account for the non-Fermi-liquid behav
observed experimentally.

The second scenario,~ii !, has been motivated by the re
cent results obtained by inelastic neutron-scattering exp
ments performed on CeCu5.9Au0.1. The dynamical spin sus
ceptibility x9(q,v) near the magnetic instability wave vecto
Q has been found to obey an anomalousv/T scaling law16,17

as a function of temperature:x9(Q,v);T2ag(v/T) with an
exponenta of order 0.75. Moreover, such av andT depen-
dence appear to stand over the entire Brillouin zone rev
ing in the bulk susceptibility too. This fact strongly sugges
that the spin dynamics are critical not only at large leng
scales18,19 but also at atomic length scales, contrary to wh
happens in the traditional itinerant magnetism picture,~i!.
From these results, one can deduce that local critical mo
coexist with large-wavelength fluctuations of the order p
rameter implying a non-Gaussian fixed point beyond theF4

theory.
Alternative theories to the spin-fluctuation scheme

needed to describe the local feature of the quantum crit
point characterized by the simultaneous disappearance o
©2003 The American Physical Society10-1
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quasiparticles and the formation of local moments. This
been the subject of much interest these last years with
consideration of single-impurity Kondo models includin
coupling either to soft-gap fermionic bath or to both ferm
onic and bosonic baths~for a review, see Ref. 20!. The
former case corresponds to a fermionic bath with a vanish
density of states at the Fermi level21 following a power law
r(e);ueur (r .0). It is known to display a quantum critica
point QCP driven by critical local-moment fluctuations, fro
a strong-coupling~SC! phase with complete Kondo scree
ing to a local moment~LM ! phase.21–23The QCP is charac
terized by nontrivial behavior of the system as, for instan
scaling law for the dynamical spin susceptibility22 following
x9(v);g(v/T). The second case corresponds to coupl
to both fermionic and bosonic baths where bosons repre
collective spin excitations~see Refs. 20 and 19, and refe
ences within!. As expected, the bosonic excitations beco
gapless at the QCP and the spectral density follows a po
law in v. This model shows strong similarities with the so
gap model mentioned just above with suppression of
Kondo effect due to critical local-moment fluctuations lea
ing to a local-moment phase. Here again recent calculat
based on numerical renormalization group~NRG! or dy-
namical mean field theory approaches19 seem to indicate the
existence of scaling law inv/T for the dynamical spin sus
ceptibility in the vicinity of the QCP.

The other theories developed so far in order to desc
the local QCP, are based on the idea of supersymmetry.24–27

In these theories, the spin is described in a mixed fermio
bosonic representation. The interest of the supersymm
approach is to allow to describe the quasiparticles and
local moments on an equal footing through the fermionic a
the bosonic part of the spin, respectively. It appears to
specially well indicated in the case of the locally critic
scenario in which the magnetic temperature scaleTN and the
Fermi scaleTK ~the Kondo temperature! below which the
quasiparticles die, vanish at the same point,dC .

An important aspect in the discussion of the breakdown
the Fermi-liquid theory is related to the question of the s
bility of the SC fixed point. Whereas all the issues presen
previously concerning heavy-fermion systems have to
with properties of the lattice, the instability of the SC fixe
point can be regarded already by studying the sing
impurity problem.

The traditional source of instability in the single-impuri
Kondo model is the presence of several channels for
conduction electrons with the existence of two regimes,
derscreened and overscreened, with very different behav
as we are about to recall. Indeed we will see that this is
the only possible source of instability of the strong-coupli
fixed point. Recent works have shown that more gene
Kondo impurities of symmetry group SU(N) may also lead
to an instability of the SC fixed point already with one cha
nel of conduction electrons.26,27

In order to fix ideas, let us start with the antiferromagne
single-channel Kondo impurity model. It is well known th
within a renormalization group~RG! analysis,28–30 the flow
takes the Kondo couplingJ all the way to strong coupling
09441
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The weak-couplingb function follows the renormalization
group equation

b~g!5
dg~L!

dL
52g2, ~1!

whereg5r0J andr0 is the density of states of conductio
electrons. The system flows to a strong coupling fixed po
which is stable and the associated behavior of the syste
that of a local Fermi liquid.

The situation is rather different when one considers s
eral channels for the conduction electrons. In the case
spin S in Kondo interaction with conduction electrons b
longing toK different channels, Blandin and Nozie`res31 have
shown that the multichannel Kondo model can lead to t
very different situations depending on howK compares to
2S. Their calculation corresponds to a second-order per
bation theory in the hopping amplitudet of the conduction
electrons, around the strong-coupling fixed point. They a
lyze their results by deriving an effective couplingJe f f be-
tween the spin of the composite formed by the impur
dressed by the conduction electrons in the strong-coup
limit, and the spin of the conduction electron on the neig
boring sites. They are then able to apply the same RG an
sis to Je f f as indicated in Eq.~1!. In the underscreened re
gime, whenK,2S, the effective coupling is found to be
ferromagnetic and the strong coupling fixed point is stab
In the overscreened regime whenK.2S, the effective cou-
pling is found to be antiferromagnetic and hence the stro
coupling fixed point is unstable. The formerK,2S regime
corresponds to the one-stage Kondo effect with the forma
of an effective spin (S21/2) resulting from the screening o
the impurity spin by the conduction electrons located on
same site. The system described by the strong-coupling fi
point, behaves as a local Fermi liquid. The instability of t
strong-coupling fixed point in the overscreened regime is
indication of the existence of an intermediate coupling fix
point which has been then investigated32–34 by means of
other methods. As is well established now, the intermed
coupling fixed point leads to non-Fermi-liquid excitatio
spectrum with an anomalous residual entropy at zero t
perature.

It has recently been put forward that other sources of
stability of the SC fixed point may exist besides the mu
plicity of the conduction electron channels. Recent works26,27

have shown that the presence of a more general Kondo
purity where the spin symmetry is extended from SU(2)
SU(N), and the representation is given by a L-shaped You
tableau, may also lead to an instability of the SC fixed po
already in the one-channel case. In the largeN limit, Cole-
man et al. ~Refs. 26 and 27! have found that the SC fixed
point becomes unstable as soon asq ~the number of boxes in
the Young tableau along the first column! is larger thanN/2,
whatever may be the value of 2S ~the number of boxes in the
Young tableau along the first row!. The consideration of a
L-shaped Kondo impurity fits in with the supersymmetry a
proach that we have evoked before since both spin opera
and states can be expressed in terms of bosons and ferm
0-2
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At that point, it is worth noting that the supersymmet
theory, or specifically taking into consideration more gene
L-shaped Kondo impurities, appears to offer valuable
sights into the two issues raised by the breakdown of
Fermi-liquid theory that we have summarized above, i
both the existence of locally critical modes and the ques
of the instability of the SC fixed point. In the same way
large N expansions may provide insights into real syste
even at finite value of the degeneracy, the study of m
general impurities may enlighten the understanding of
perimental situations with the coexistence of quasipartic
and localized moments that may eventually lead to a ph
transition as the coupling to other impurities become do
nant.

The aim of the paper is to study the L-shaped, sing
impurity, single-channel, SU(N) Kondo model. We want to
understand how the system behaves, not only as a functio
the impurity parameters (2S,q), but also as a function of the
number of electronsnd available on neighboring sites, that
to say, of the filling. As long as the bosonic component
spin is of orderN, there is a transition around the point whe
the fermionic component of the impurity isq5N/2. At this
particular point, the energy shift is, to lowest order in pert
bation theory around the strong-coupling fixed point, eq
to (22t2/J), independently of the impurity parameters,q, S,
andN. Our study reveals that the phase diagram of the s
tem is not accidental, but is due to the relation of the eff
tive dressed impurity in the strong-coupling regime to t
conduction electrons in neighboring sites. Ifq,N/2, there is
a repulsive effective potential acting on the nearest-neigh
site of the impurity. This potential becomes attractive forq
.N/2. This change in behavior happens at the same p
where the strong-coupling fixed point becomes unsta
That is, in the repulsive regime the strong-coupling fix
point is stable. However, the attractive regime is not reali
as such since the strong-coupling fixed point becomes
stable forq.N/2.

The rest of the paper is organized as follows. In Sec.
we introduce the model and the main features of the stro
coupling limit, where the electron kinetic term is neglecte
In this limit the model is reduced to a single site proble
where the impurity is coupled tonc conduction electrons.27

We identify the ground state and the energies of the exc
states with one more or one less conduction electron, wh
will play a role in the lowest order in perturbation theory.
Sec. III, we derive the effective Hamiltonian resulting from
second-order perturbation calculation int around the strong-
coupling fixed point. It includes both an effective couplin
and an effective interaction between the dressed impurit
site 0 and the conduction electrons on the adjacent site.
sign of the effective spin couplingJe f f directly controls the
stability of the strong coupling fixed point in the sense th
Je f f can be incorporated in turn into the renormalizatio
group equations driving the renormalization flow of the s
tem. When the effective couplingJe f f is ferromagnetic, the
flow takes the system toJe f f50 and the strong-coupling
fixed point turns out to be stable. When the effective co
pling Je f f is antiferromagnetic, the flow takes the syste
away from the strong-coupling fixed point to an intermedi
09441
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coupling fixed point. The sign of the effective charge inte
action Ue f f informs on the repulsive or attractive effect o
the dressed impurity on the conduction electrons on the
jacent site. Section IV contains the discussion of the resu
In the largeN limit, we show howJe f f is derived from the
energy shift difference between the symmetric and the a
symmetric configurations, and how the analysis of thend

dependence of the energy shift provides information on
effective charge interactionUe f f . When the behavior of the
system is controlled by the strong-coupling fixed point, i.
whenq,N/2, the impurity in the ground state tends torepel
electrons on neighboring sites. Onceq.N/2, the repulsion
becomes attraction. We show how this feature is alre
present in the purely fermionic case, and is a consequenc
the particle-holesymmetry,q→N2q. The fact that there is
extra degeneracy in the supersymmetric impurity, due to
bosonic contribution, leads to the instability of the stron
coupling fixed point as soon asq.N/2. We finish the section
with a short discussion on the behavior of physical quanti
in the different regimes.

The appendixes contain the technical details of the ca
lations, which involve a higher level of complexity tha
those of Ref. 27, where only the explicit form of the grou
state was needed. Whennd.1, there is more than one inte
mediate state in some of the virtual processes conside
and we need to use the explicit form of the intermedi
states. In Appendix A we outline the construction of thr
particle states with SU(3) symmetry, as an introduction
the group theoretical formalism used. Explicit expressio
for the impurity states and the eigenstates of the model in
strong-coupling limit are derived in Appendix B. We als
include a general presentation of the different representat
of the spin, either bosonic, fermionic, orL shaped, as con
sidered in the paper. We will show how in the latter case
spin operators and the impurity states are expressed in te
of fermion and boson creation and annihilation operat
within two constraints. Appendix C contains a calculation
the energy shift at the strong-coupling fixed point to lowe
order in perturbation theory, for the completely antisymm
ric impurity. Since the ground state is a singlet, there is
splitting of levels. Nevertheless, the behavior of the ene
with the filling, nd , on the neighboring site shares man
common features with the problem that we have studi
Finally, we include the details of the calculation of the mat
elements needed in the second-order perturbation theory
culation in Appendix D. We also include several sets
SU(N) Clebsch-Gordan coefficients that we had to evalu
explicitely for arbitrary 2S, q, andnd .

II. THE MODEL AND ITS STRONG-COUPLING LIMIT

Here we present the model that we study as well as
ground state and elementary excitations in the stro
coupling (J5`) limit. The results summarized in this sec
tion were already obtained in Refs. 26 and 27. Howev
technical details such as the explicit form of the eigensta
included in Appendix B, are original.
0-3
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A. SU„N… single-impurity Kondo model

We consider a generalized, single-impurity, Kondo mo
with one channel of conduction electrons and a spin sym
try group extended from SU(2) to SU(N). An impurity spin
S is placed at the origin~site 0). In this paper we will dea
with impurities that can be realized by a combination
bosonic and fermionic operators, and are thus described
L-shaped representation in the language of You
tableaux,35–37as illustrated in Fig. 1~for details, see Appen
dix B!.

If 2S andq are the numbers of boxes along the first ro
and the first column, respectively, the representation is
noted by@2S,1q21#. Its degeneracy38 is reported in Table I.
The conduction electrons transform under the fundame
representation of SU(N) and can be represented by Youn
tableaux made out of single boxes. The dimension of
fundamental representation isN, which just means that eac
electron can be in one ofN states of spin.

The Hamiltonian describing the model is written as

H5(
k,a

«kck,a
† ck,a1J(

A
SA(

a,b
ca

†~0!tab
A cb~0!, ~2!

whereck,a
† is the creation operator of a conduction electr

with momentum k, SU(N) spin index a5a,b, . . . ,r N ,
ca

†(0)51/ANS(kck,a
† is the creation operator of a conductio

electron at the origin,NS is the number of sites, andtab
A

(A51, . . . ,N221) are the generators of the SU(N) group in
the fundamental representation, with Tr@tAtB#5dAB/2. In
the SU(2) case,tA5sA/2, where$sA% are the Pauli matri-
ces. The conduction electrons interact with the impurity s
SA (A51, . . . ,N221), placed at the origin, via Kondo cou
pling, J.0. When the impurity is in the fundamental repr
sentation, we recover the Coqblin-Schrieffer model30,39 de-
scribing conduction electrons in interaction with an impur

FIG. 1. Young tableau description of an impurity with mixe
symmetry,@2S,1q21#, realized by a combination of fermions an
bosons.
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spin of angular momentumj, (N52 j 11), resulting of the
combined spin and orbit exchange scattering. In our notat
a5 j , b5 j 21, . . . ,r N52 j .

B. Strong-coupling fixed point

In the strong-coupling limit, the Hamiltonian reduces
the local Kondo interaction term at site 0,

H5J(
A

SA(
a,b

ca
†~0!tab

A cb~0!. ~3!

The ground state,uGS&, is formed by binding the right
amount of conduction electrons to the impurity in order
minimize the Kondo energy. Let us denote byY ~Fig. 2! the
representation of thenc conduction electrons coupled to th
impurity, R that of the free impurity~Fig. 1!, and RSC the
representation of one of the strong-coupling states resul
of the direct productR^ Y ~cf. Fig. 3! ~see Appendix B for
details!.

WhenN52, the Kondo energy can be written in terms
conserved quantities

JS¢•(
a,b

ca
†~0!t¢abcb~0! uGS&

5
J

2
@SSC~SSC11!2SR~SR11!2SY~SY11!#uGS&,

whereS(S11) is the eigenvalue of the Casimir operatorŜ2

for N52. The generalization to SU(N) is given by

J(
A

sA(
a,b

ca
†~0!tab

A cb~0!uGS&

5
J

2
@C2̂~RSC!2C2̂~R!2C2̂~Y!#uGS&, ~4!

FIG. 2. Young tableau description ofnc conduction electrons,
localizedat the impurity site.
,

l

TABLE I. Dimensiond and eigenvalues of the Casimir operatorC2 for the symmetric, antisymmetric
L-shaped, and fundamental representations studied in this paper. In the L-shaped case,Q5(2S1q21) is the
total number of boxes in the Young tableau, andY85(q22S) measures the row-column asymmetry.

Symmetric Antisymmetric L shaped Fundamenta
@2S# @1q# @2S,1q21# @1#

d CN12S21
2S CN

q S 2S

2S1q21DC N12S21
2S C N21

q21
N

C2 1
2N

@2S(2S1N)(N21)#
1

2N
@q(N2q)(N11)#

Q

2
(N2Y82Q/N)

1
2N

(N221)
0-4
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whereC2(R̂) is the quadratic Casimir operator of the repr
sentationR̂, which commutes with all the generators of th
group. For a representation given by a Young tableau withmj
boxes in thej th row until the rowj 5h,N, the eigenvalue
C2($mj%) of the quadratic Casimir operator is

C2~$mj%!5
1

2 FQ~N22Q!

N
1(

j 51

h

mj~mj1122 j !G ,

where Q5( j 51
h mj is the total number of boxes.40 Table I

summarizes the expressions of the Casimir eigenvalues
the impurities described in this work and for the conduct
electrons, as well as the dimension of their spin represe
tions.

Minimization of the energy, Eq.~4!, leads to a ground
state withnc5(N2q) conduction electrons coupled to th
L-shaped Kondo impurity ensuring partial screening. The
sulting composite at site 0, with energyE0 , is made out of
the impurity dressed by the conduction electrons in orde
form a singlet along the first column. The associated You
tableau in the strong-coupling regime is given in Fig. 3. N
that the first column of lengthN can be removed withou
changing the representation since it is a singlet. When
strong-coupling fixed point is stable, this corresponds t
one-stage Kondo effect in which the impurity is screen
by the conduction electrons to form a bosonic (S21/2)
impurity.

C. Ground state

Let us now write the expression of the fundamental st
associated with this strong-coupling fixed point. The grou
state is degenerate. The states in the multiplet transform
completely symmetric representation of SU(N), described
by a Young tableau with (2S21) boxes, denoted by@2S
21# ~Fig. 3!. We choose a realization of the impurity i
terms of 2S bosonic operators and (q21) fermionic opera-
tors, which happens to be more convenient. We could h
constructed impurity states with the same SU(N) symmetry
using (2S21) bosons andq fermions~see Appendix B!. We
would like to emphasize that all the results that we estab
in this paper are independent of the operator representa
which we choose to work with. The highest weight state
then written as

uGS&$a%aa
[2S21]5

1

A~2S21!!
~ba

†!2S21uD& ~5!

with

FIG. 3. Young tableau description of the formation of the stro
coupling ground state. We denote the presence of conduction
trons at site 0 byc. Notice that the first column in the Young tablea
for RSC is a singlet and can be removed.
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AFbi 1

† S )
a5 i 2

i q

f a
† D S )

b5 i q11

i N

cb
† D G u0&, ~6!

g[A~2S1N21!CN21
q21 .

Here,uD& transforms itself as a SU(N) singlet and it will be
annihilated by any of the raising and lowering operato
T6uD&5U6uD&5•••50. This ‘‘state’’ would describe the
strong-coupling ground state for a purely fermionic impuri

D. Excited states

There are two types of excited states in the stro
coupling regime. Either the degenerate ground state acqu
an additional conduction electron at the impurity siteuGS
11&, or it loses one conduction electron,uGS21&. In the
former caseuGS11& the spin of the additional conductio
electron can be either symmetrically or antisymmetrica
correlated with the spin of the impurity as schematized
Fig. 4.

In the limiting case of SU(2) spin, these two configur
tions correspond to a spin of the conduction electron tha
either parallel or antiparallel to the impurity spin. In the ge
eral SU(N) case, we will keep on speaking of symmetric a
antisymmetric configurations, respectively.

States with one less electron will be denoted byuGS
21& and are represented by the Young tableau in Fig. 5.
us denote byDE1

S5E1
S2E0 , DE1

A5E1
A2E0 , andDE25E2

2E0 the energy differences, with respect to the ground-s
energy, associated with these three excited statesuGS11&S,
uGS11&A, and uGS21&. Using the same Casimirolog
method as presented at the beginning of this section for
determination of the ground-state energy, we have sum
rized our results in Table II, respectively, for arbitraryN and
in the large-N limit with (2S1q21)/N finite. One can

c-

FIG. 4. Excited statesuGS11&S and uGS11&A with an addi-
tional conduction electronnc5(N2q11), respectively, in the
symmetric and antisymmetric configurations.

FIG. 5. Excited stateuGS21& with one less conduction electro
nc5(N2q21).
0-5
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TABLE II. Strong-coupling excitation energies,DE1
S , DE1

A , and DE2 , in the case of an L-shape
impurity, measured with respect to the ground state, of the states with one more conduction electron
0, coupled symmetrically and antisymmetrically, respectively, to the dressed impurity on site 0, and
state with one less electron.

DE1
S DE1

A DE2

Arbitrary N J

2
(2S1N2q2Q/N)

J

2
(N2q2Q/N)

J

2
(q1Q/N)

LargeN limit
(Q/N finite! J

2
(N2q12S)

J

2
(N2q)

J

2
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check that the results in Table II coincide with Eqs.~25! and
~26! of Ref. 27, within aN/2 factor stemming from a differ-
ent definition of the Kondo couplingJ @cf. Eq. ~1!of Ref. 27#
and of the Casimir@cf. Eq. ~17! of Ref. 27#, and a change in
the notationsnf* 5q andnb52S.

Notice that the excitation energiesDE1
A andDE2 , in the

large N limit, are independent ofS, and related by the
particle-hole transformationq→N2q, characteristic of the
problem with a purely antisymmetric impurity, 2S51 ~see
Appendix C!.

III. STABILITY OF THE STRONG-COUPLING
FIXED POINT

We have identified the strong-coupling fixed point in t
preceding section. ForJ→`, the lowest energy state corre
sponds tonc5(N2q) electrons partially screening the im
purity at the origin, and isolated from the rest of the bu
which may be described by a chain of electrons, for con
nience.

In order to better understand the low-energy physics
the system, we can perform a strong-coupling analysis c
sidering a finite Kondo coupling and allowing virtual ho
ping from and to the impurity site. These processes gene
interactions between the composite at site 0 and the con
tion electrons on neighboring sites, which can be treated
perturbations of the strong-coupling fixed point. Applying
analysis similar to that of Nozie`res and Blandin31 to the na-
ture of the excitations, we can argue whether or not
strong-coupling fixed point remains stable once virtual h
ping is allowed.

We consider a system with an additional site next to
dressed impurity, filled withnd electrons. The ground stat
consists of two multiplets, with different symmetry prope
ties. Once the hopping is turned on, the degeneracy is lif
and each multiplet acquires a different energy shift deno
by DES and DEA, respectively~see Fig. 6!. We can repro-
duce this spectrum by considering an effective coupling
tween the spin of the dressed spin at site 0, and the spi
the nd electrons on site 1. IfES lies ~above! below EA, the
effective coupling is~antiferromagnetic! ferromagnetic.

Thus, if the coupling between the effective spin at t
impurity site and that of the electrons on site 1 is ferrom
netic we know, from the scaling analysis at weak coupli
that the perturbation is irrelevant, and the low-energy phys
09441
-

f
n-

te
c-
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e
-

e
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d
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-
,
s

is described by the strong-coupling fixed point. That is,
underscreened, completely symmetric, effective impu
weakly coupled to a gas of free electrons with a phase s
indicating that there are already (N2q) electrons screening
the original impurity. In the completely antisymmetric ca
(2S51), the phase shift corresponds to the unitary limit,d
5p/2, for SU(2), and is afunction41 of q/N for SU(N),
reaching the unitary limit forq5N/2.

If, on the contrary, the effective coupling is antiferroma
netic, the perturbation is relevant, this strong-coupling fix
point is unstable and it does not describe the low-ene
physics of the model.

In this section we explicitely calculate the effects of ho
ping on the strong-coupling fixed point to the lowest order
perturbation theory, that is, second order int. We will con-
sider the case with an arbitrary numbernd of conduction
electrons in site 1 generalizing the casend51 considered in
Ref. 27. This will allow us to understand the origin of th
instability of the strong-coupling fixed point.

Before switching on the hopping term, let us consid
ground statesof the form uGS,nd&5(uGS&0und&1 , with nd

FIG. 6. Second-order perturbation theory energy shift of
strong-coupling ground state in the cases of a ferromagnetic~a! and
antiferromagnetic~b! effective coupling.
0-6
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electrons on site 1. According to the SU(N) symmetry there
are two possible configurations, depending on whether thnd
electrons are coupled symmetrically or antisymmetrically
the composite on site 0. This corresponds to the Clebs
Gordan series@2S21# ^ @nd#→@2S,1nd21# % @2S21,1nd#.
We denote the states byuGS,nd&

S, and uGS,nd&
A, respec-

tively ~Fig. 7!.
The SU(N) symmetry is preserved by the hopping. Th

means that the perturbation will shift the energies

FIG. 7. Strong-coupling ground states in the presence ofnd

conduction electrons on site 1 coupled either symmetrically or
tisymmetrically to the dressed impurity on site 0.
e

e
rix
e
e

st
q.

09441
o
h-

t
f

uGS,nd&
S anduGS,nd&

A separately, without mixing the state
We will thus denote the shifts byDE0

S and DE0
A , respec-

tively.
The hopping term is of the form

Hh5H11H25t(
a

ca
†da1t(

a
da

†ca , ~H1!†5H2 ,

whereda
† creates an electron on site 1. We can distingu

two types of processes, corresponding to different interme
ate states.27 The first type, which we denote process 1, co
responds to an electron hopping from site 1 into site 0 fi
probing excited statesuGS11&S,A, and then hopping back to
site 1. The indicesS,A correspond to the two possible inte
mediate states depending on whether the conduction elec
that hops to site 0 is symmetrically or antisymmetrically co
related with the dressed impurity as we will see in det
below. The contribution of the process 1 to the energy shif
the following:

-

t2(
a,b

(
i

^GS,ndudb
†cbuGS11,nd21& i i ^GS11,nd21uca

†dauGS,nd&

~E02E1
i !

,

with i 5S,A ~see Appendix B!.
In process 2, the electron hops from site 0 to site 1 first and then back to site 0, probinguGS21&, leading to a contribution

to the energy shift of the form

t2(
a,b

^GS,nducb
†dbuGS21,nd11&^GS21,nd11uda

†cauGS,nd&

~E02E2!
.

an

tric
the

ron
he

of
ling
.

Hence, the energy shifts for the symmetric and antisymm
ric configurations are, respectively,

DE0
S5

M1
S

E02E1
S

1
M1

S

E02E1
A

1
M2

S

E02E2
, ~7!

DE0
A5

M1
A

E02E1
A

1
M2

A

E02E2
, ~8!

where the expressions in the denominators, (E02E1
S)

52DE1
S , (E02E1

A)52DE1
A , and (E02E2)52DE2 mea-

suring the energy of the excited states compared to the
ergy of the ground state are given in Table II. The mat
elementsM will be introduced below as we will study th
contribution of each process. The energy difference betw
the two states,

DE0
S2DE0

A5
M1

S

E02E1
S

1
M1

S2M1
A

E02E1
A

1
M2

S2M2
A

E02E2
, ~9!

determines the sign of the effective interaction and the
bility of the strong-coupling fixed point. If we compare E
t-

n-

en

a-

~9! to the nd51 result in Ref. 27, we see that there is

additional contributionM̄1
S , present fornd.1.

A. Process 1: Symmetric configuration

We consider first the case where thend electrons in the
site 1 are coupled to the site-0 state in the most symme
configuration. In the shorthand notation that we use for
Young tableaux, it corresponds to the state@2S21# ^ @1nd#
→@2S,1nd21#. Here, as opposed27 to the casend51, the
Hamiltonian transforms the ground state

uGS,nd&
S5~da

†db
†
•••du

†!uGS&, ~10!

into a linear combination of two excited states:uGS11,nd

21&S, with energyES , and uGS11,nd21&S, with energy
EA depending on whether the additional conduction elect
in site 0 is coupled symmetrically or antisymmetrically to t
dressed impurity. The state obtained by acting withcs

†ds on
the ground state defined by Eq.~10! has to be computed
explicitely, and the result written as a linear combination
the excited states, Fig. 8. The latter are obtained by coup
the site-0 states with (nd21) conduction electrons on site 1
0-7
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The explicit expressions for these states are given in App
dix D, and they lead to the result

S (
s

cs
†dsD uGS,nd&

S

5VA2S1nd21

2S
uGS11,nd21&S

1LAnd21A2S21

2S
uGS11,nd21&S, ~11!

where the normalization coefficients,27 V
5A(2S1q21)/(2S1N21) andL5A(q21)/(N21) are
independent ofnd , as we are considering hopping of a sing
electron. From here, we obtain the following matrix e
ments:

M1
S5uS^GS11,nd21uH1uGS,nd&

Su2

5t2S 2S1nd21

2S D S 2S1q21

2S1N21D , ~12!

M1
S5uS^GS11,nd21uH1uGS,nd&

Su2

5t2~nd21!S 2S21

2S D S q21

N21D . ~13!

We see right away thatM1
S is proportional to (nd21), and

vanishes fornd51, whereasM1
S depends noticeably onnd

only for 2S!nd,N.

B. Process 1: Antisymmetric configuration

Next, we consider the case where the electrons on si
are coupled to the effective spin on site 0 according to@2S
21# ^ @1nd#→@2S21,1nd#. In the preceding section it wa
easy to write the strong-coupling ground state by just putt
together the effective spin and thend electrons in the highes
weight state possible, to obtain Eq.~10!. Here we have to
work out the necessary SU(N) Clebsch-Gordan coefficients
We present some of these coefficients in Table VII of App
dix D. The explicit form of the ground state is

FIG. 8. Whennd conduction electrons are coupled symmet
cally to the dressed impurity at the origin, the termcs

†ds , acting on
the ground state, generates a linear combination of two exc
states with an additional conduction electron at the origin.
09441
n-

1

g

-

uGS,nd&abc . . . v
A 5

1

A2S1nd21
FA2S21S )

i 52

nd11

dyi

† D uGS&aa

1 (
j 52

nd11

~21! j 21S )
i 51,iÞ j

nd11

dyi

† D uGS&ayjG ,

~14!

in the notationy15a. As in the nd51 case, the hopping
term transforms the state defined by Eq.~14! into a state
proportional to a given strong-coupling excited state~Fig. 9!.
In order to obtain the corresponding matrix element, we h
computed explicitly

S (
s

cs
†dsD uGS,nd&

A }uGS11,nd21&A,

and then we have normalized the resulting state. The de
can be found in Appendix D. We have

S (
s

cs
†dsD uGS,nd&

A5LAnduGS11,nd21&A,

and the matrix element

M1
A5uA^GS11,nd21uH1uGS,nd&

Au25t2ndS q21

N21D .

~15!

Notice the dependence onnd , and the fact that the matrix
element does not depend on 2S. Combining togetherM1

S and
M1

A as it appears in Eq.~9!, we have

M1
S2M1

A52t2S 2S1nd21

2S D S q21

N21D . ~16!

This is a term with the samend dependence asM1
S but with

the opposite sign.

C. Process 2: The trick

Both in the symmetric and antisymmetric configuratio
in process 2 there is a one-to-one correspondence betw
the state obtained by the action ofH2 , and the excited state
with the same symmetry27 ~Fig. 10!. The evaluation of the
remaining matrix elements,M2

S and M2
A , associated with

process 2 is simplified by using the following trick connec
ing the matrix elements of processes 1 and 2, respectiv
On the one hand, we have in the process 1,

d

FIG. 9. Whennd conduction electrons are coupled antisym
metrically to the dressed impurity at the origin, the termcs

†ds ,
acting on the ground state, generates state proportional to a g
excited state, with additional conduction electron at the origin.
0-8
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M1
S1M1

S5t2(S

ss8
^GS,nduds8

† cs8cs
†dsuGS,nd&

S

5t2(S

ss8
^ds8

†
~dss82cs

†cs8!ds&S

5t2(S

s
^ds

†ds&S2dMS,

where dMS5t2(ss8
S^cs

†ds8
† dscs8&

S and the expectation
value S^&S should be considered over the ground sta
uGS,nd&

S. On the other hand, the following property hold
for the matrix elements of process 2

M2
S5t2(S

ss8
^GS,nducs8

† ds8ds
†csuGS,nd&

S

5t2(S
ss8^cs8

†
~dss82ds

†ds8!cs&S

5t2(S

s
^cs

†cs&S2dMS,

where in the last line, we have exchanged the dummy v
abless ands8. The same relation exists for the antisymm
ric configuration ~with expectation values taken o
uGS,nd&

A)

M1
A5t2(A

s
^ds

†ds&A2dMA,

M2
A5t2(A

s
^cs

†cs&A2dMA.

Thus, using the trick, we obtain

M2
S5t2~nc2nd!1~M1

S1M1
S!

5t2~N2nd!S N2q

N21D S 2S1N22

2S1N21D , ~17!

FIG. 10. The termds
†cs , acting on the ground state withnd

electrons on site 1, coupled symmetrically~a! or antisymmetrically
~b! to the impurity. The result is a state proportional to an exci
state with one less electron at the impurity site, coupled tond

11) electrons symmetrically~a! or antisymmetrically~b!.
09441
,

i-
-

M2
A5t2~nc2nd!1M1

A5t2@N2~nd11!#S N2q

N21D ,

~18!

M2
S2M2

A5M1
S1M1

S2M1
A5t2S 2S1nd21

2S1N21 D S N2q

N21D .

~19!

IV. DISCUSSION

Having computed the different matrix elements in the p
ceding section, we are now in the position of deriving t
expressions of the energy shiftsDE0

S and DE0
A of the sym-

metric and antisymmetric configurations, respectively, with
the second-order perturbation theory in the hopping term.
propose to transcribe the results in terms of an effec
Hamiltonian describing the charge and spin interactions
tween the dressed impurity at site 0, and the conduction e
trons in amountnd at site 1. We will then discuss the impli
cations of the derived effective Hamiltonian on the behav
of the system.

~i! The sign of the effective coupling—ferromagnetic ve
sus antiferromagnetic—controlling the stability of th
strong-coupling fixed point, determines the onset of two d
ferent regimes. Whenq,N/2, the effective coupling is
found to be ferromagnetic, the perturbation is proved to
irrelevant by use of scaling arguments@cf. Eq. ~1!#, and the
strong-coupling fixed point is stable. Whenq.N/2, on the
contrary, the effective coupling is found to be antiferroma
netic, the perturbation becomes relevant, and the stro
coupling fixed point is unstable.

~ii ! There is an effective charge interaction at site 1,
duced by the virtual hopping of electrons between the im
rity site and its nearest-neighbor site. The change in the
ture of this interaction—from repulsive to attractive—
found to happen at the same place where the strong-coup
fixed point becomes unstable. On the one hand, in the reg
when the strong-coupling fixed point is stableq,N/2, the
interaction is repulsive. On the other hand, in the regimeq
.N/2, the interaction is attractive. However, we emphas
the point that this attraction is never realized as such si
the strong-coupling fixed point is then unstable.

Even though the charge interaction remains a weak p
turbation of the full system, its study allows us to bett
understand the physical properties of the model and the o
of instability of the strong-coupling fixed point at a particul
value ofq. Indeed, this charge interaction is already pres
in the case of an antisymmetric impurity, as we will sho
below. There, the low-energy physics is controlled by t
strong-coupling fixed point for all values ofq. Nevertheless,
there is a change in the sign of the effective charge inte
tion atq5N/2, a consequence of theq→N2q symmetry in
the antisymmetric case. The fact that the couplingUe f f is the
same~in the largeN limit ! for the general L-shaped impurit
as for the completely antisymmetric case, indicates that
properties observed in the former case are linked to thq
→N2q transformation of the fermionic component of th
impurity.

d

0-9
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A. Energy shifts DE0
S and DE0

A

Incorporating the expressions of the matrix elements, E
~12!, ~16!, and ~19!, and those of the excitation energie
~Table II! into Eqs.~8! and ~9!, one finds

DE0
A52S 2t2

J D F S nd

N21D S q21

N2q2Q/ND
1S 12

nd

N21D S N2q

q1Q/ND G , ~20!

DE0
S2DE0

A

52~2S1nd21!S 2t2

J D
3H 2S1q21

2S~2S1N21!@2S1N2q2~2S1q21!/N#

1
N2q

~N21!~2S1N21!@q1~2S1q21!/N#

2
q21

2S~N21!@N2q2~2S1q21!/N#J . ~21!

The dependence of (DE0
S2DE0

A) on (2S1nd21) is lin-
ear and appears factored out. As 2S increases, the energ
difference (DE0

S2DE0
A) becomes smaller. Moreover, the e

fect of nd on (DE0
S2DE0

A) is weak as long asnd!2S.
Until now, we have presented results for arbitraryN. In

the rest of the paper, we will frequently consider the largeN
limit taking 2S/N and q/N finite. To leading order in 1/N,
we can write

DE0
A52

2t2

J F S N2q

q D2S nd

N D S N~N22q!

q~N2q! D G , ~22!

DE0
S2DE0

A52
2t2

JN S 2S1nd21

2S1N2q D S N~N22q!

q~N2q! D . ~23!

The energy difference (DE0
S2DE0

A) is O(1/N), and both
energy levels,DE0

S andDE0
A , have the same leading term

O(1) which is almost independent of 2S. The only depen-
dence in 2S appears in the difference (DE0

S2DE0
A).

B. Effective Hamiltonian

The energy shiftsDE0
S andDE0

A can be reproduced from
the following effective Hamiltonian, to within an additiv
constant termC to be defined later on,

He f f5Ue f f nd1Je f fS0
[2S21]

•S1
[1nd] ,

whereUe f f andJe f f are the effective charge and spin inte
actions, respectively, between the dressed impurity at si
in the strong-coupling limit and the conduction electrons

site 1. In the notations which are used,S0
[2S21] and S1

[1nd]

represent the corresponding spin operators in the repres
tions@2S21# and@1nd#, respectively. The spectrum consis
09441
s.

0
t

ta-

of two multiplets, according to the Clebsh-Gordan ser
@2S21# ^ @1nd#→@2S,1nd21#S

% @2S21,1nd#A, in which the
superindicesS and A indicate the symmetric and antisym
metric states, respectively. The energies shifts induced
He f f can be calculated as before with the aid of Casim
operators, Eq.~4!, and we get

DE[2S,1nd21]
S

2DE[2S21,1nd]
A

5
Je f f

2
$C2~@2S,1nd21# !2C2~@2S21,1nd# !%

52
Je f f

4
~2S1nd21!@Y8[2S,1nd21]2Y8[2S21,1nd] #

5
Je f f

2
~2S1nd21!,

where we have used the results of Table I. Since both st
have Young tableaux with the same number of boxes,Qe f f
52S1nd21, the energy difference depends only on the s
ond constraint~B7!, Ŷe f f5Qe f fY8 ~see Appendix B!. As a
consequence, the dependence on (2S1nd21) is factored
out exactly as in Eq.~21! and we get by identification

Je f f52S 4t2

J D
3H 2S1q21

2S~2S1N21!@2S1N2q2~2S1q21!/N#

1
N2q

~N21!@2S1N21!~q1~2S1q21!/N#

2
q21

2S~N21!@N2q2~2S1q21!/N#J , ~24!

Ue f f5
2t2

J

1

N21 S N2q

q1Q/N
2

q21

N2q2Q/ND ~25!

with the additive constant termC equal to (22t2/J)(N
2q)/(q1Q/N).

In the large-N limit with 2S/N andq/N finite, we have

Je f f52
4t2

J

~N22q!

q~N2q!

1

~2S1N2q!
, ~26!

Ue f f5
2t2

J

~N22q!

q~N2q!
~27!

with C equal to (22t2/J)(N2q)/q. Note that Je f f is
O(1/N2) and depends of 2S, while Ue f f is O(1/N) and in-
dependent of 2S. Furthermore,Ue f f is repulsive whenJe f f is
ferromagnetic, and attractive whenJe f f is antiferromagnetic.

C. Sign of the effective coupling and stability of the
strong-coupling fixed point

In Fig. 11 we plotJe f f in the large-N limit as a function of
q/N, for different values of 2S. The effective couplingJe f f
0-10
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changes of sign atq5N/2 as can be seen by inspection of t
numerator of the right-hand side of Eq.~26!. Notice that the
value of Je f f is independent of the number of conductio
electronsnd on site 1 and coincides with the result obtain
in Ref. 27 for the casend51. This is due to the cancellatio
of the (2S1nd21) factor in (DE0

S2DE0
A) that we have

mentioned above.
The effective coupling remains ferromagnetic as long

q,N/2 corresponding to the situationE0
S,E0

A . We can then
use the same scaling argument forJe f f that we used forJ in
the weak coupling regime. Incorporating the value of t
effective coupling in the renormalization-group equation@cf.
Eq. ~1!#, one can prove the perturbationJe f f to be irrelevant
and the strong-coupling fixed point to be stable. The lo
energy physics corresponds then to a system of free elec
that are weakly coupled to an effective impurity spin.

When q.N/2, on the contrary,E0
A,E0

S , the effective
coupling is found to be antiferromagnetic,Je f f grows in the
renormalization process, and the strong-coupling fixed p
(J5`) is unstable.

The caseq5N/2 requires particular attention, since th
leading contribution toJe f f vanishes. Taking into account th
whole expression for the effective coupling, we find that t
strong-coupling fixed point for an impurity withq5N/2 is
stable as long as the bosonic parameterS is smaller than the
critical value

S* 5
1

4 S NA 2N

N21
2~N22! D .

In the large-N limit we have

S* 5SA221

4 DN1
41A2

8
1O~1/N!;

N

10
. ~28!

FIG. 11. Effective couplingJe f f as a function ofq/N, for dif-
ferent values of 2S, in the large-N limit.
09441
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The strong-coupling fixed point atq5N/2 becomes unstable
already at moderately large values ofS. The corresponding
phase diagram of the model in the large-N limit, as a func-
tion of the impurity parameters, 2S/N andq/N is reported in
Fig. 12.

D. Sign of the effective charge interaction

In Fig. 13 we report the dependance ofUe f f on q/N, in
the largeN limit. By comparisons of Eqs.~26! and~27!, one
can see that the change of sign of the effective interac
Ue f f is directly connected to the change of sign of the effe
tive couplingJe f f ~see also Fig. 11!. This result has the im-
mediate following physical consequence. In the former
gime, q,N/2, where the strong-coupling fixed point
stable, the effective interactionUe f f.0 is repulsive, and the
lowest energy expressed in Eq.~22! is obtained fornd51. In

FIG. 12. Phase diagram of the model~largeN, 2S/N finite!, as
a function of the impurity parameters, 2S/N andq/N. As soon as
q.N/2 the strong-coupling fixed point becomes unstable. Foq
5N/2, the strong-coupling fixed point remains stable only for mo
erate values of 2S/N ~short line ending in a point!.

FIG. 13. Effective charge interactionUe f f as a function ofq/N,
in the large-N limit.
0-11
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the latter regime,q.N/2, the effective interactionUe f f.0
is attractive, and the energy is minimized fornd5(N21).
We have plottedDE0

A in Fig. 14. The shaded region corre
sponds to the possible values ofDE0

A for the whole range of
nd , bounded by the limiting cases,nd51 andnd5(N21).
Note that atq5N/2, DE0

A(q5N/2)522t2/J for any value
of nd .

As has been noted before,DE0
A is independent of 2S.

Therefore,DE0
A coincides with the energy shift for a ferm

onic impurity ~completely antisymmetric representation! as
is checked in Appendix C. When the impurity is fermion
there is no degeneracy of the strong-coupling fixed po
which is always stable, and the lowest-order perturbat
theory just shifts the ground-state energy. Nevertheless, t
are two regimes, repulsive and attractive, depending on
value of q, and characterized by the value ofnd that mini-
mizes the energy. This behavior is a consequence of
particle-holesymmetry in the fermionic case, given by th
transformationsq→(N2q) andnd→(N2nd) ~cf. Appendix
C!. The behavior of a fermionic impurity withq is the same
as in the case (N2q), if we reinterpret the electrons as hole
and the impurity as made out of holes. Therefore, ifnd51
minimizes the energy forq,N/2 ~electron repulsion!, then
the energy for ahole impurity, made out of (N2q) fermions,
is minimized by the state that repels the holes, (N2nd)51,
implying an attraction of electrons,nd5(N21). This behav-
ior is shown in Fig. 15.

The addition of a bosonic component to the impuri
leading to the formation of a row in the L-shaped You
tableau representing the impurity, breaks this particle-h
symmetry. Whereas the two regimes described above are

FIG. 14. Leading-order term in the energy shift,DE0
A;DE0

S , as
a function ofq/N, for 1,nd,(N21) ~shaded region!, and in the
limiting casesnd51 ~dashed line! andnd5(N21) ~straight line!.
Notice that the value atq/N51/2 is equal to22t2/J, for anynd .
Note that forq/N,0.5 the energy is minimized fornd51, while for
q/N.0.5 the minimization is obtained fornd5(N21).
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present, due to the fermionic component, the degenerac
the states due to the bosonic component leads to the inst
ity of the strong-coupling fixed point at the same point
where the the dressed impurity starts attracting the cond
tion electrons on site 1.

E. Physical properties of the model

We finish by making some remarks on the physical pro
erties of the model in the different regimes. As is common
all models with an antiferromagnetic Kondo coupling, the
will be a crossover from weak coupling above a giv
Kondo scaleTK to a low-energy regime. When the stron
coupling fixed point is stable, we should expect forT!TK a
weak coupling of the effective impurity at site 0 with the re
of the electrons. The physical properties at low temperat
are controlled by the degeneracy of the effective impur
d(@2S21#)5CN12S22

N21 . Thus, we should expect a residu
entropy S i; lnCN12S22

N21 and a Curie susceptibility,x i

;CN12S22
N21 /T, with logarithmic corrections.41,42 This is the

result that we would expect for a purely symmetric impuri
The difference with respect to the case at hand is that in
L-shaped impurity model only (N2q) electrons are allowed
at the origin, instead of (N21). Thus, we would expect to
find different results for quantities that involve the scatteri
phase shift of electrons off the effective impurity. Consid
for instance, the 2S51 case. The phase shiftd, of the con-
duction electrons scattered off the impurity site, characteri
the impurity contribution to the resistivityr i . At zero tem-
perature and magnetic field, we have30

r i}sin2d. ~29!

The phase shift for antisymmetric impurities in SU(N) was
computed in Ref. 41. In the completely screened case it re

e2id52e2 ip(122q/N). ~30!

If we choose the phase shift so thatudu,p/2, we have

d55 pS q

ND , q,N/2

2pS N2q

N D , q.N/2.

~31!

FIG. 15. Strong-coupling ground-state configurations in the f
mionic case, where only hopping to the nearest-neighbor site
been included. Whenq.N/2, the impurity site attractsN21 con-
duction electrons.
0-12
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The unitary limit, udu5p/2 is reached in the particle-hol
symmetric case,q5N/2. We see that this corresponds to t
point whereDEf is independent ofnd , indicating the change
from the attractive to the repulsive regime.

In the q.N/2 regime, it is reasonable to think that the
would be a magnetic contribution to the entropy, and
Curie-like contribution to the susceptibility, since the imp
rity remains unscreened. This behavior is different from t
of the multichannel Kondo model, which is characterized
an intermediate coupling fixed point where the impur
magnetic degrees of freedom are completely quenched.43 It
is in the scattering properties that we might be able to see
anomalous features of this new fixed point more clearly.

V. CONCLUSIONS

In this paper, we have studied the SU(N), single-channel
Kondo model, with a general impurity spin, involving bo
bosonic and fermionic degrees of freedom~corresponding,
respectively, to the horizontal and vertical directions in
L-shaped Young tableau!. This model shows a transition be
tween two different regimes when the amount of fermio
degrees of freedom,q, becomes larger thanN/2, in the large-
N limit. The strong-coupling fixed point studied here d
scribes the low-energy physics of the model whenq,N/2,
and it becomes unstable forq.N/2. We have identified the
origin of this instability as related to the change, from rep
sive to attractive, of the effective interaction between
dressed impurity and the conduction electrons in the ne
boring sites. This change is already present in the pu
fermionic case, where it happens at the particle-hole sym
try point, q5N/2. The only role of the bosonic degrees
freedom of the impurity is to allow for a degeneracy of t
strong-coupling fixed point, which is lifted by hopping, lea
ing to an effective spin couplingJe f f . The properties of this
coupling, as well as the effective charge coupling, are t
controlled by the fermionic component of the impurity.

We have followed a systematic approach in order to
tain the explicit form of the states needed for our calcu
tions. As a result, our work can be used as the starting p
for the study of richer systems, such as the multichan
case.

Obviously, the interesting open problem now is to fu
understand the physics in theq.N/2 regime. This issue
might have important future applications for the lattice pro
lem, with potential consequences for the understanding
non-Fermi-liquid behavior observed in heavy-fermion s
tems. In order to gain some insight it would be desirable
carry out a nonperturbative study, either using NRG or Be
ansatz techniques. Here, we would like to point out some
the limitations of these methods when applied to the mo
under consideration. The effects described in our work
pear forN.5. That is, each lattice site can be filled with u
to five electrons. Furthermore, the simplest impurity that d
plays an intermediate fixed point corresponds to a multip
with 45 elements. Such a large Hilbert space limits the p
formance of a NRG study. The difficulties of the Bethe a
satz method are of a different nature. Due to the propertie
the impurity, the model with just a Kondo coupling is n
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integrable.44 In the cases studied until now, the electron c
couple to the impurity in two different ways: symmetrical
or antisymmetrically. This leads to the usualS matrix that
appears in impurity integrable models. The novelty of t
impurity studied here is that the electron can couple to it
three different ways. This is an important property, and
was already noticed in Refs. 26 and 27 that it leads to
instability of the strong-coupling fixed point. However, th
same property spoils integrability. Even though it is possi
to construct integrable models with a spin impurity in
arbitrary representations,45 this is done at the price of addin
extra electron-impurity terms, which will likely change com
pletely the physics of the system.
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APPENDIX A: COMPOSITION OF THREE
FUNDAMENTAL REPRESENTATIONS OF SU „3…

Before dealing with the general problem of constructi
the highest weight impurity states in SU(N) in Appendix B,
we will write in detail all the three-particle states with SU(3
symmetry.38 This will allow us to see how the states co
structed with different numbers of bosons and fermions
be the basis for representations with the same Young tabl
We will also see the role of the SU(3u3) and SU(1u1) su-
persymmetry groups induced by the realization in terms
bosons and fermions.

The direct product3^ 3^ 3 of three fundamental repre
sentations of SU(3) gives the following Clebsh-Gord
series:

3^ 3^ 35~3^ 6! % ~3^ 3̄!510% 81
% 82

% 1, ~A1!

where we identify each representation by its dimension.
terms of Young tableaux, we have

The representations6 and 3̄ result from the composition o
two fundamental representations

3^ 356% 3̄. ~A2!
0-13
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In addition to Young tableaux, we can use weight diagra
to describe the states in the representation, Fig. 16
SU(3), weassociate a triangle to the fundamental repres
tation,3. Each vertex corresponds to a particular state of
multiplet, and the different states are related by the action
the lowering operators. In Fig. 17 we include the weig
diagrams associated with Eq.~A2!.

The representation6 is completely symmetric. Its state
are realized in terms of Schwinger bosons. For instance
highest weight state can be written as

uaa&b
65

1

A2!
~ba

†!2u0&.

Here, and in the following, the values of SU(3) spin a
denoted bya, b, and c. Likewise, the representation3̄ is
completely antisymmetric, and its states are more con
niently expressed in terms of fermions. For the high
weight state, we have

uab& f
3̄5 f a

†f b
†u0&.

There is another way to realize both6 and3̄ using one boson
and a fermion. Being symmetric, the highest weight of6 is
easy to write, since

FIG. 16. Weight diagram for the fundamental representation
SU(3), with thestates and the relevant lowering operators.
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uaa& f
65 f a

†ba
†u0&

is already symmetrized. To obtain the highest weight of3̄,
we first have to find a state with the same quantum numb
in 6, by acting withTab

2 5( f b
†f a1bb

†ba) on uaa& f
6 , to get

uab& f
65

1

A2
~ f b

†ba
†1 f a

†bb
†!u0&,

and find a state orthogonal touab& f
6 ,

uab&b
3̄5

1

A2
~ f b

†ba
†2 f a

†bb
†!u0&.

This process is described in Fig. 17. It is easy to see that
states with the subindexf are related to those with the sub
Uindex b by the SU(1u1) supersymmetric operatoru
5(aba

†f a , so thatuu(•••)& f5A2 u(•••)&b .
Consider now the three-particle states. The easiest sta

write is the highest weight state in the most symmetric r
resentation,10 ~cf. Fig. 18!,

uaaa&105ua&3uaa&6.

It can be easily expressed in terms of bosons in agreem
with Eq. ~B1!,

uaaa&b
105

1

A3!
~ba

†!3u0&.

Alternatively, we can use a realization with two bosons~from
6) and a fermion~from 3),

uaaa& f
105

1

A2!
f a

†~ba
†!2u0&.

Other states of the representation are obtained by the
peated action of lowering operators. For instance,

uaab&105
1

A3
~A2ua&3uab&61ub&3uaa&6), ~A3!

which leads to

uaab&b
105

1

A2!
~ba

†!2bb
†u0&,

f

FIG. 17. Weight diagram for the Clebsch-Gordan series of the product of two fundamental representations of SU(3).
0-14
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FIG. 18. Weight diagram for the Clebsch-Gordan series of the product3^ 6. We indicate some of the states and outline the proces
obtaining Clebsch-Gordan coefficients.
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uaab& f
105

1

A6
@2 f a

†ba
†bb

†1 f b
†~ba

†!2#.

The octets,8 are mixed symmetry representations th
have to be built by a combination of fermions and boso
The Clebsch-Gordan series~A1! indicates that81, built from
the product3^ 6 is naturally realized by states with one fe
mion and two bosons, Fig. 18, whereas82 is realized by the

product of one boson and two fermions (3^ 3̄), Fig. 19. The

highest weight state,uaab&81
, of the octet81 is orthogonal to

uaab&10 defined in Eq.~A3!,

uaab&b
81

5
1

A3
~ ua&3uab&62A2ub&3uaa&6)

5
1

A3
ba

†~ f a
†bb

†2 f a
†bb

†!u0&,

in agreement with the general expression of the statecb

given in Eq.~B3!.
As usual, the other states of the octet are built by

repeated action of generatorsT25( f b
†f a1bb

†ba), U2

5( f b
†f c1bb

†bc), andV25( f a
†f c1ba

†bc), of SU(3). For in-
stance,

FIG. 19. Weight diagram for the Clebsch-Gordan series of

product3^ 6̄.
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uabc&b
81

5
1

A2
T2uaac&81

5
1

A6
~ ua&3ubc&61ub&3uac&622uc&3uab&6)

5
1

A6
~ f a

†bb
†bc

†1 f b
†ba

†bc
†22 f c

†ba
†bb

†!u0&.

This state is degenerate, since there is another state in
multiplet with the same quantum numbers. In order to fi
this last state,uacb&81

, we have to combine the action o
lowering operators with orthogonality with respect
uabc&81

. Acting with U2 on uabb&81
leads to a state that i

not orthogonal touabc&81
. Therefore, we write

U2uabb&81
5A2~a uabc&81

1b uacb&81
).

There are two ways of reaching states with quantum numb

$abc% starting fromuaab&81
. We use this and the fact tha

@T1,U2#50, @T15(T2)†#, to derivea,

2a5A281
^abcuU2uabb&81

581
^aacuT1U2T2uaab&81

581
^aabuU1T1U2T2uaab&81

581
^aabuT1T2U1U2uaab&81

51.

Hence one deducesa51/2 andb5A3/2 and one gets the

expression of the last stateuacb&b
81

of the octet

uacb&b
81

5
1

A2
~ ua&3ubc&62ub&3uac&6)

5
1

A2
~ f a

†bb
†bc

†2 f b
†ba

†bc
†!u0&.

To summarize, the rule is to describe the highest wei
state of the octetuaab&b using the bosonic representatio
cb , and hence to derive the other states of the octet by
above construction allowing to recover the Clebsch-Gord
coefficients involved in the spin composition related to t
direct product 3̂ 6.

e

0-15



t

m

t

om

e

ns

en
ed
th

te

a
din

io

20
w

tor,
tes

the

tab-
cted

h-

f
of

-

ng
m-

the

ted

t of

in
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The highest weight state of the octet82 is also the highes
weight state of3^ 3̄,

uaab& f
82

5ua&3uab& 3̄5ba
†f a

†f b
†u0&,

in agreement with the general expression of the statec f , Eq.
~B4!. The construction of the other states follow the sa
lines as in the case of the81 octet. For instance,

uabc& f
82

5
1

A2
~ ua&3ubc& 3̄2ub&3uca& 3̄)

5
1

A2
~ba

†f b
†f c

†2bb
†f c

†f a
†!u0&,

uacb& f
82

5
1

A6
~ ua&3ubc& 3̄1ub&3uca& 3̄22uc&3uab& 3̄)

5
1

A6
~ba

†f b
†f c

†1bb
†f c

†f a
†22bc

†f a
†f b

†!u0&.

Once again, the two basis of states corresponding to
same Young tableau, are related by the SU(1u1) operators,
u† andu.

Finally, the singlet stateuabc&1 is built by orthogonality
with the statesuabc&82

, and uacb&82
, from the octet in the

product3^ 3̄ ~Fig. 19!,

uabc&15
1

A3
~ ua&3ubc& 3̄1ub&3uca& 3̄1uc&3uab& 3̄), ~A4!

in agreement with the expression of the states in the c
pletely antisymmetric representation of the spin~B2!. The
simplest way to realize this state is with three fermions. Th

uabc& f
15 f a

†f b
†f c

†u0&. ~A5!

But it can also be written with one boson and two fermio
either by acting withu on Eq.~A5! or by substituting on Eq.
~A4!,

uabc&b
15

1

A3
~ba

†f b
†f c

†1bb
†f c

†f a
†1bc

†f a
†f b

†!u0&.

We have shown how to construct the states for differ
representations of SU(3). These results can be summariz
as tables of Clebsch-Gordan coefficients like the ones
we presented in Tables IV–VII for SU(N).

Let us make some comments about the number of sta
The direct product of three fundamental representations
SU(3) generates a space of dimension 27, which bre
down as a direct sum of irreducible representations accor
to the Clebsch-Gordan series~A1!. By considering all the
realizations of these states in terms of bosons and ferm
subject only to the constraintQ5nf1nb53, we are working
on the higher dimensional space of a representation
SU(3u3) with a total of 38 states, as represented in Fig.
The figure also reports the relation between these states
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the introduction of an additional supersymmetric opera
Zarq

2 5 f r q

† ba , acting on the highest weight states. The sta

10 and108, respectively, are identical~as well as1 and18)
as far as the SU(3) symmetry is concerned. This is not
case of the two states81 and82, which correspond to differ-
ent spin representations even if the associated Young
leaux are the same. Altogether, one recovers the expe
total of 27 different states.

APPENDIX B: IMPURITY STATES AND LOW-LYING
STATES IN THE STRONG-COUPLING LIMIT

We present in this appendix the explicit form of the hig
est weight~spin! states for the impurity and for the low-lying
states in theJ→` limit. We discuss in detail the use o
Young tableaux both to describe the symmetry properties
the states and to study the SU(N) generalization of the com
position of several spins.

1. Impurity state

Before studying the general case of a L-shaped You
tableau representation of spin, we will consider the two li
iting cases of a completely symmetric~bosonic! and an an-
tisymmetric~fermionic! representation of the spin in SU(N).

The case of a completely symmetric representation of
spin is equivalent to a system of 2S identical particles sym-
metric under the permutation of two of them. The associa
Young tableau is made of a single line of 2S boxes

expressed in shorthand notation as@2S#. Associated with the
Young tableau, there is a symmetrizer operator made ou
the sum of all the permutations of 2S elements. It is conve-
nient to use an explicit representation of the localized spin

FIG. 20. States withQ5(nb1nf) grouped according to SU(3)
representations.
0-16
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terms ofN species of Schwinger bosons~see, for instance
Ref. 46!, ba (a5a,b, . . . ,r N) subject to the constraint

n̂b5(
a

ba
†ba52S.

The (N221) components of the spin operator can be rep
sented asSA5(abba

†tabbb , while the highest weight stat
@the analog of the state with the largest value ofSz in
SU(2)], can bewritten as

u~a!2S& [2S]5
1

A~2S!!
~ba

†!2Su0&, ~B1!

where u0& denotes the vacuum state for the bosons. Ot
states of the representation can be obtained from this on
the repeated action of lowering operators, taking advant
of the underlying SU(2) subalgebras within SU(N). Take,
for instance, the (2S11) states$u(a)x(b)y& [2S]% with x1y
52S. They transform as a regular, SU(2), spin-S multiplet
under the action of the SU(N) operatorsTab

2 5bb
†ba , Tab

1

5ba
†bb , andTab

z 5(ba
†ba2bb

†bb)/2. In particular,

Tab
2 ua2S& [2S]5A2S u~a!2S21b& [2S] ,

or, in terms of bosons,

u~a!2S21b&
[2S]

5
1

A~2S21!!
~ba

†!(2S21)bb
†u0&.

Note that each index in the set of quantum numbe
$a,b . . . ,r2S%, describing the states of the representati
can takeN values independently of the rest of the set, a
that for each set of values there is only one state. The dim
sion of the representation is thus given byCN12S21

2S , corre-
sponding to the number of ways of choosing 2S elements out
of a group of (N12S21).

The other limiting case corresponds to a completely a
symmetric representation of the spin. It is equivalent to
case ofq identical particles antisymmetric under the perm
tation of two of them. The associated Young tableau is m
out of a single column ofq boxes,

and expressed in shorthand notation as@1q# with q,N. As-
sociated with the Young tableau, there is an antisymmetr
operator made out of the sum of all the permutations oq
elements weighted by adP5 61 factor as for antisymmetric
identical particles. It is convenient to use an explicit rep
sentation of the localized spin in terms ofN species of Abri-
kosov pseudofermions47 f a (a5a,b, . . . ,r N) subject to the
constraint

n̂f5(
a

f a
† f a5q.
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The generators of SU(N) in this realization areSA

5(ab f a
†tab

A f b , and the highest weight state of the represe
tation can be written as

uab•••r q&
[1q]5 f a

†f b
†
••• f r q

† u0& ~B2!

involving a set$a,b, . . . ,r q% of q different indices. Other
states of the representation can be obtained from this on
the repeated action of lowering operators such asTab

2

5 f b
†f a , taking advantage of the underlying SU(2) subalg

bras. Note that the states are SU(2) doublets with respe
these subalgebras. The dimension of the representatio
given byCN

q .
An important property of both kinds of representations

that the states are nondegenerate. That is, each set of all
quantum numbers completely determine the state. This is
the case for mixed symmetry representations, as we are a
to see.

Let us now consider the general L-shaped representa
of spin, Fig. 1, which interpolates between the previous t
limits. Its dimension can be easily obtained using Robinso
formula:48 the result is @2S/(2S1q21)#CN12S21

2S CN21
q21

~Table IV!. The L-shaped representation is the result of
direct product of a symmetric and an antisymmetric rep
sentation. This can be done in two nonequivalent ways~Fig.
21! : either as the@1q21# ^ @2S#→@2S,1q21# % ••• Clebsch-
Gordan series, or as@1q# ^ @2S21#→@2S,1q21# % •••. The
construction of the highest weight states for each of the ca
is detailed at the end of this subsection@cf. Eqs. ~B9! and
~B12!# and leads to

cb5u~a!2Sb•••r q&
[2S,1q21]

5
1

A2S1q21

~ba
†!2S21

A~2S21!!
A~ba

†f b
†f c

†
••• f r q

† !u0&

~B3!

and

c f5u~a!2Sb•••r q&
[2S,1q21]5

~ba
†!2S21

A~2S21!!
~ f a

†f b
†f c

†
••• f r q

† !u0&,

~B4!

whereA(•••) is the antisymmetrizer. The impurity spin op
erator has a form that is independent of either 2S or q and is
given by S5(ab(ba

†tabbb1 f a
†tab f b). The first constraint

has to do with the conservation of the number of particle

FIG. 21. Two ways of obtaining a L-shaped representation
of the direct product of a symmetric and an antisymmetric SU(N)
representation.
0-17
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Q̂5~ n̂f1n̂b!5~2S1q21!, ~B5!

where (2S1q21) denotes the number of boxes in th
L-shaped Young tableau. In the limiting cases discussed
viously, once the value ofQ is fixed, the representation i
completely determined. Here, however, it is necessary to
a second constraint to identify states with the right symme
To that end, it is worth noticing that the set of statescb and
c f form a basis for a representation of the larger, supers
metric group SU(NuN), with generators given as linear com
binations of the operatorsba

†bb , f a
† f b , ba

† f b , f a
†bb . Thus,

all the L-shaped impurities that interpolate between the s
metric and the antisymmetric case are related by the su
symmetric group. As a matter of fact, the constraints that
the SU(N) representation are obtained from operators
SU(NuN) diagonal in spin, such asn̂f , n̂b , u5(aba

† f a , and
u†. Consider, for instance, the action ofu† on cb ,

u†~ba
†!2S21A~ba

†f b
†f c

†
••• f r q

† ! u0&

5~2S1q21!~ba
†!2S21~ f a

†f b
†f c

†
••• f r q

† !u0&,

where the right-hand side corresponds toc f . This leads to
the relations

u†cb5A2S1q21 c f ,

u c f5A2S1q21 cb .

Notice also thatu†c f5ucb50. The operatorsu andu† re-
late states that transform under a representation of SUN)
given by the same Young tableau. Together withQ̂, they
form the SU(1u1) supersymmetric algebra26 $u,u†%5Q̂.
Furthermore, the operatorsPb5(1/Q)uu† and Pf
5(1/Q)u†u are the projectors out of the bosoniccb and the
fermionic c f states, respectively. The statesc f and cb are
the exact analog of the familiar example of the formation
the two octets,81 and 82, out of the composition of three
fundamental representations in SU(3). In Appendix A we
construct the states explicitely in this example and derive
corresponding Clebsch-Gordan coefficients.

The second constraint is then given byŶ, a bilinear com-
bination of the operators$n̂f ,n̂b ,u,u†% since it is a conse-
quence of the invariance of the Casimir operatorĈ2 @the
SU(N) generalization of S25S(S11)], which for a
L-shaped representation is given by
09441
e-

dd
y.

-

-
er-
x
n

f

e

C2~R̂!5(
A

SA
•SA5

1

2
F Q̂S N2

Q̂

N
D 2ŶG . ~B6!

Here,Ŷ5Q̂(n̂f2n̂b)1@u,u†#. Once the first constraint, Eq
~B5! is fulfilled, the invariance of the CasimirĈ2 is ensured
provided that the operatorŶ is invariant too. This leads to the
second constraint

Ŷ5Q~q22S!. ~B7!

It is easy to check that the operatorsu andu† commute with
Q̂ andŶ, which implies that the constraints are also comp
ible with the SU(1u1) supersymmetry. Note that this was n
the case for the operatorŶ85n̂f2n̂b1(1/Q)@u,u†# defined
in Eq. ~10! of Ref. 26.

The constraints completely determine the representat
but they cannot distinguish between the statesc f and cb .
The physical properties of the system depend only on
Young tableau associated with the Kondo impurity, and
on the particular way the representation basis is construc

We finish this section by describing in detail the constru
tion of the relevant states of the impurity multiplet.

The direct product of irreducible representations
SU(N) decomposes into a direct sum of irreducible repres
tations ~Clebsch-Gordan series!. A well-known example is
the addition of angular momentum in SU(2). In order to find
the states in the new basis@leading to the Clebsch-Gorda
coefficients~CGC!#, we follow a similar procedure to the on
used for angular momentum~see also Appendix A!. That is,
we first identify the highest weight state of the product
representations, which is always nondegenerate, with
highest weight state of the mostsymmetricof the represen-
tations in the Clebsch-Gordan series. Then, we use lowe
operators @particular combinations of the generators
SU(N)] to generate other states in the same representa
For arbitraryN there might be more than one state with t
same quantum numbers in the same representation@as in the
SU(3) octet,81 and82], and we will have to find orthogona
combinations. Finally, we find states in the next represen
tion by looking for additional orthogonal states with th
same quantum numbers, and acting on them with lower
operators.

The direct product of a symmetric and an antisymme
representation of SU(N) can be expressed as a direct sum
two L-shaped representations, according to the Cleb
Gordan series
with dimensions
0-18
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CN12S22
2S21 CN

q 5
2S

2S1q21
CN12S21

2S CN21
q21

1
2S21

2S1q21
CN12S22

2S21 CN21
q .

We proceed now to write the states in each L-shaped
resentation. Themost symmetric~highest weight state! of the
product@2S21# ^ @1q# is

u~a!2S21& [2S21]uabc•••r q&
[1q] ,

where 2S particles have the same quantum numbera. This
state is also the highest weight state of the most symmetr
the representations,@2S,1q21#,

u~a!2Sbc•••r q&
[2S,1q21]5u~a!2S21& [2S21]uabc•••r q&

[1q] .
~B8!

Notice that the lowering operators that transform the valua
into dP@b,r q# affect the@2S21# state only, since the@1q#
term is completely antisymmetric. Thus, these states are
nondegenerate

u~a!2S21bc•••~d!2
•••r q&

[2S,1q21]

5u~a!2S22d& [2S21]uabc•••r q&
[1q] . ~B9!

Other states with 2S of the a j equal toa, can be obtained
from Eq.~B8!. They are also nondegenerate. For instance
state with the valueg replaced byr q11 is

u~a!2Sbcd•••r qr q11~no g!& [2S,1q21]

5u~a!2S21& [2S21]uabcd•••r qr q11~no g!& [1q] .

~B10!

Altogether, there areq states of this type~if we restrict thea j
to the range@a,r q11#).

Next, we construct the states in@2S,1q21# where (2S
21) of the a j are equal toa and the rest of labels ar
different and take values in the range@b,r q11#. There areq
linearly independent states of this kind. For instance, ac
with Tac

2 on ~B10! we get

Tac
2 u~a!2Sbcd•••r qr q11~no g!& [2S,1q21]

5A2S u~a!2S21bcd•••r qr q11&
[2S,1q21]

5A2S21 u~a!2S22g& [2S21]uabc•••r qr q11~no g!& [1q]

1u~a!2S21& [2S21]ubcd•••r qr q11&
[1q] . ~B11!

The orthogonalization of theseq states leads to the firstq
rows of Table VII of CGC. The last line in the table corr
spond to a state with the same quantum numb
((a)2S21bcd•••r qr q11), and orthogonal to all the states
@2S,1q#. This state is the highest weight of@2S21,1q#. It is
easy to see that it must be of the form
09441
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u~a!2S21bcd•••r qr q11&
[2S21,1q]

5
1

A2S1q21
FA2S21 u~a!2S21& [2S21]ubcd•••r q&

[1q]

1 (
b5b

r q

~21!dabu~a!2S22b& [2S21]

3ubc•••r q~no b!& [1q] G . ~B12!

2. Ground state

The explicit form of the highest weight state for th
ground state corresponds to Eq.~5!,

uGS&$a%aa
[2S21]5

1

A~2S21!!
~ba

†!2S21uD&,

with

uD&[
1

g
AFbi 1

† S )
a5 i 2

i q

f a
† D S )

b5 i q11

i N

cb
† D G u0&,

g[A~2S1N21!CN21
q21 .

Notice the additional termCN21
q21 in the normalization factor

g, as compared to Eq.~B3!, due to the presence of two kind
of fermions,f a

† andca
† . We adopt the bosonic realization o

the impurity cb , which simplifies the calculations. W
would like to emphasize that all the results are independ
of the realization chosen, since only the form of the You
tableau is relevant to the interaction.

Other states in the same@2S21# multiplet can be ob-
tained by just acting on the (ba

†)2S21 term. For instance,

T2 uGS&$a%aa5A2S21 uGS&$a%ab

5~2S21!
1

A~2S21!!
bb

†~ba
†!2S22uD&,

~B13!

U2 uGS&$a%ab5uGS&$a%ac5
1

A~2S22!!
bc

†~ba
†!2S22uD&,

~B14!

and

uGS&$a%ab5
1

A~2S22!!
bb

†~ba
†!2S22uD&,

uGS&$a%bb5
1

A2~2S23!!
~bb

†!2~ba
†!2S23uD&,

uGS&$a%ac5
1

A~2S22!!
bc

†~ba
†!2S22uD&,
0-19
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uGS&$a%bc5
1

A~2S23!!
bb

†bc
†~ba

†!2S23uD&. ~B15!

3. Excited states

Let us now write the expression of the excited states
the strong-coupling fixed point. The states inuGS11&S trans-
form as the completely symmetric representation@2S#. The
highest weight state can be obtained by acting withca

† on the
ground state,

uGS11&$a%aaa
S 5

1

V
ca

†uGS&$a%aa ,

where the normalization factor, V
5A2S1q21/(2S1N21), appears27 because the additiona
c electron has to be antisymmetrized with respect to theN
2q) electrons already present on site 0. Other states in
multiplet can be obtained by repeated action of the lower
operators, as in Eqs.~B13! and ~B15!. For instance,

uGS11&$a%aab
S 5

1

V

1

A2S
@A2S21ca

†uGS&$a%ab

1cb
†uGS&$a%aa], ~B16!

uGS11&$a%abc
S 5

1

V

1

A2S
@A2S22ca

†uGS&$a%bc1cb
†uGS&$a%ac

1cc
†uGS&$a%ab].

States in uGS11&A transform as@2S21,1#. The highest
weight state isuGS11&$a%aab

A , and it will be orthogonal to
the state defined in Eq.~B16!. Thus,

uGS11&$a%aab
A 5

1

L

1

A2S
@ca

†uGS&$a%ab

2A2S21cb
†uGS&$a%aa],

with27 L5A(q21)/(N21). Notice the difference with re
spect to the normalization factor. OnlyV depends on 2S.

Other states inuGS11&A are obtained in a very simila
way to the construction of the octets,81 and82 in SU(3) ~see
Appendix A!. For instance,

uGS11&$a%abc
A 5

1

L

1

A2S~2S21!
@A2S22ca

†uGS&bc

1cb
†uGS&ac2~2S21!cc

†uGS&ab],

uGS11&$a%acb
A 5

1

L

1

A2S21
@ca

†uGS&bc 2A2S22cb
†uGS&ac].

We collect the coefficients for the states with quantu
numbers $$a%abc% in Table III, which shows Clebsch
Gordan coefficients corresponding to the direct product@1#
^ @2S21# in SU(N), following the notation of Ref. 49.
09441
f
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We finish this section with the excited states correspo
ing to the multipletuGS21&, characterized by one less con
duction electron than in the ground state. They transform
@2S21,1N21#, and the highest weight state is

uGS21&5
1

A~2S21!!
~ba

†!2S21uD8&

with

uD8&[
1

g8
AFbi 1

† S )
a5 i 2

i q

f a
† D S )

b5 i q11

i N21

cb
† D G u0&,

g8[A~2S1N22!CN21
q21 .

Here, uD8& transforms as theN-dimensional,@1N21#, repre-
sentation of SU(N).

APPENDIX C: THE CASE OF THE ANTISYMMETRIC
IMPURITY

The ground state for the strong-coupling fixed point o
Kondo model with a fermionic impurity~completely anti-
symmetric representation!, uGS& [1N] , is a singlet formed with
(N2q) conduction electrons at site 0, and has the same f
as uD&, in Eq. ~6!, but with a different normalization factor

uGS& [1N][
1

ACN
q
AF S )

a5 i 1

i q

f a
† D S )

b5 i q11

i N

cb
† D G u0&. ~C1!

The hopping Hamiltonian leads to two types of processes
described earlier, where the intermediate states have e
one more or one less conduction electron. With the help
Table I we can write the excitation energies

TABLE IV. Clebsch-Gordan coefficients for the process@1#
^ @2S21#→@2S# % @2S21,1#. The label u$a%aab& indicates a
state of@2S#, whereasu$a%aa,b& denotes the highest weight sta
in @2S21,1#.

aab N ua&u$a%ab& ub&u$a%aa&

u$a%aab& 2S 2S21 1
u$a%aa,b& 2S 1 2(2S21)

TABLE III. Clebsch-Gordan coefficients for the excited stat
with one additional electron, corresponding to the prod
@1#^@2S21#, and to states with quantum nubers$$a%abc%. The
normalization factor is 1AN, and aA is understood over each
coefficient ~Ref. 49!. The minus sign indicates a negative sign
from of the square root,2A .

N ca
†uGS&$a%bc cb

†uGS&$a%ac cc
†uGS&$a%ab

VuGS11&$a%abc
S 2S 2S22 1 1

LuGS11&$a%abc
A 2S(2S21) 2S22 1 2(2S21)2

LuGS11&$a%acb 2S21 1 2(2S22) 0
0-20
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DE15
J

2 S N11

N D ~N2q!, DE25
J

2 S N11

N Dq.

It is clear thatDE1 andDE2 are related by theparticle-hole
transformationq→(N2q).

The ground state withnd electrons on site 1 is

uGS,nd&5~da
†db

†
•••du

†!uGS&.

Since there is only one intermediate state for each proc
we can use the trick described in Sec. III C, and write

M15t2S nd2 (
s,s8

^GS,nducs
†ds8

† dscs8uGS,nd& D . ~C2!

As long asnd.1, the second term in Eq.~C2! vanishes for
sÞs8. cs acting on uGS,nd& just counts the number o
terms where there is acs

† . There areCN21
q such terms. Thus

(
s,s8

^GS,nducs
†ds8

† dscs8uGS,nd&5ndS CN21
q

CN
q D 5ndS N2q

N D
and

M15t2nd

q

N
.

Finally, following Eq. ~18!,

M25t2~nc2nd!1M15t2~N2nd!S N2q

N D .

M1 andM2 are related by the same transformations (q→N
2q, nd→N2nd) as the excitation energies. That means t
the energy shift is invariant under these transformations

TABLE V. Same as Table IV, but for states with quantum nu
bers (a)2S22bb.

abb N ua&u$a%bb& ub&u$a%ab&

u$a%abb& 2S 2S22 2
u$a%ab,b& 2S 2 2(2S22)
09441
ss,

t

DEf52S 2t2

J D F nd

N11 S q

N2qD1
N2nd

N11 S N2q

q D G .
In the large-N limit, this result is equivalent to Eq.~22!. To
leading order in 1/N, the energy shift of the strong-couplin
fixed point is determined by the fermionic component, a
the behavior under the particle-hole transformation.

APPENDIX D: DETAILS OF THE CALCULATIONS OF THE
MATRIX ELEMENTS

Here we construct explicitely the excited states that
involved in the second-order perturbation theory, and th
we compare them to the action of the hopping term, (cs

†ds),
on the ground state. First, we add ac electron to the ground
state, and then we combine it with (nd21) electrons from
site 1.

1. Symmetric process:zGS,nd‹
S

The strong-coupling excited stateuGS11&S is easy to
compute, since it is the highest weight state in the prod
@2S21# ^ @1#→@2S# % @2S21,1#. We have

uGS11&aaa
S 5

1

V
ca

†uGS&aa

with the normalization factorV25(2S1q21)/(2S1N
21). Other states within the same representation, wh
transform as@2S#, can be obtained by acting with the corr
sponding lowering operators. For instance,

uGS11&aab
S 5

1

VA2S
~A2S21 c†uGS&ab1cb

†uGS&aa).

- TABLE VI. Same as Table IV, but for states with quantu
numbers (a)2S22bc. Notice the degeneracy in@2S21,1#. We de-
note corresponding orthogonal states byu$a%ab,c& and u$a%ac,b&.

abc N ua&u$a%bc] ub&u$a%ac& uc&u$a%ab&

u$a%abc& 2S 2S22 1 1
u$a%ab,c& 2S(2S21) 2S22 1 2(2S21)2

u$a%ac,b& 2S21 1 2(2S22) 0
TABLE VII. Some of the CG coefficients for the product ofk5nd electrons, and an effective impurity@2S21#, (@1k# ^ @2S21#
→@2S,1k21# % @2S21,1k# % •••). Here we only keep the coefficients for the representations@2S,1k21# and @2S21,1k# ~last row!. States
from @1k# are denoted by a column of labels,uA&; those from@2S21# are denotedua&, and are statesclose to the highest weight
state, denotedua&. The states in@2S,1k21# are labeleduab,c,d, . . . & and those in@2S21,1k#, ua,b,c,•••&.
0-21
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The highest weight state of the antisymmetric multip
uGS11&A, which transforms as@2S21,1#, is a state or-
thogonal touGS11&aab

S , that is,

uGS11&aab
A 5

1

LA2S
~ca

†uGS&ab2A2S21 cb
†uGS&aa)
09441
twith a different normalization factor,L25(q21)/(N21).
Other states can be obtained from these three. The result
summarized in Tables IV–VI of Clebsch-Gordan coef
cients.

Next, we have to add the (nd21) electrons on site 1. The
results of the calculations are summarized in Table VII. W
have
uGS11,nd21&aab•••u
S 5

1

A2S1nd21
FA2S S )

i 52

nd

dxi

† D uGS11&aaa
S 1(

j 52

nd

~21! j 21S )
i 51,iÞ j

nd

dxi

† D uGS11&aaxj

S G
5

1

VA2S~2S1nd21!
F2S S )

i 52

nd

dxi

† D ca
†uGS&aa

1(
j 52

nd

~21! j 21S )
i 51,iÞ j

nd

dxi

† D ~A2S21 ca
†uGS&axj

1cxj

† uGS&aa)G ,

for the symmetric state in the symmetric configuration, and

uGS11,nd21&aab•••u
S 5

1

And21
F (

j 52

nd

~21! j S )
i 51,iÞ j

nd

dxi

† D uGS11&aaxj

A G
5

1

LA2S~nd21!
F (

j 52

nd

~21! j S )
i 51,iÞ j

nd

dxi

† D ~ca
†uGS&axj

2A2S21 cxj

† uGS&aaD ,

for the antisymmetric state in the symmetric configuration (x15a). From here, it is easy to show that the effect of (cs
†ds) on

the ground state is given by Eq.~11!.

2. Antisymmetric process:zGS,nd‹
A

The action of (cs
†ds) on the ground stateuGS,nd&

A, with nd electrons on site 1 coupled antisymmetrically, produces

S (
s

cs
†dsD uGS,nd&ab•••v

A 5
~21!nd21

A2S1nd21
FA2S21 (

l 52

nd11

~21! lS )
i 52,iÞ l

nd11

di
†D cxl

† uGS&aa

1 (
j 52

nd11

~21! j 21H (
l 51

j 21

~21! l 21S )
i 51,iÞ j ,l

nd11

di
†D 1 (

l 5 j 11

nd11

~21! lS )
i 51,iÞ j ,l

nd11

di
†D J cxl

† uGS&axjG ,

~D1!

which is proportional to a given strong-coupling excited state. Since we can write Eq.~D1! as

S (
s

cs
†dsD uGS,nd&ab•••v

A 5
~21!nd21

A2S1nd21
H (

l 52

nd11

~21! lS )
i 52,iÞ l

nd11

dxi

† D ~A2S21 cxl

† uGS&aa2ca
†uGS&axl D

1 (
j 52

nd11

~21! j 21F (
l 52

j 21

~21! l 21S )
i 51,iÞ j ,l

nd11

dxi

† D 2 (
l 5 j 11

nd11

~21! l 21S )
i 51,iÞ j ,l

nd11

dxi

† D Gcxl

† uGS&axj

after some algebra, we get
0-22
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S (
s

cs
†dsD uGS,nd&ab•••v

A 5
~21!nd21

A2S1nd21
(
l 52

nd11

~21! l H S )
i 52,iÞ l

nd11

dxi

† D ~A2S21cxl

† uGS&aa2ca
†uGS&axl D

2(
j 52

l 21

~21! j S )
i 51,iÞ j ,l

nd11

dxi

† D ~cxl

† uGS&axj
2cxj

† uGS&axl
).

This expression can be written using the antisymmetric statesuGS11&A, with the help of the following relations:

L~A2S uGS11&axlxj

A 2A2S22 uGS11&axjxl

A )5A2S21~cxl

† uGS&axj
2cxj

† uGS&axl
),

LA2S uGS11&aaxl

A 5ca
†uGS&axl

2A2S21 cxl

† uGS&aa ,

to obtain

S (
s

cs
†dsD uGS,nd&ab•••v

A 5
~21!nd21L

A~2S1nd21!~2S21!
(
l 51

nd11

~21! l 11H S )
i 52,iÞ l

nd11

dxi

† DA2S~2S21! uGS11&aaxl
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3. Tables of Clebsch-Gordan coefficients

The calculation of the excited states involves the use
some Clebsch-Gordon coefficients. We have evaluated t
quantities explicitely for arbitrary 2S, nd , andN, following
the steps outlined in Appendix B1. We summarize our res
in Tables IV–VII. In the tables, all the coefficients are a
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