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We study a generalized SNJ single-impurity Kondo model in which the impurity spin is described by a
combination ofg Abrikosov fermions and (8—1) Schwinger bosons. Our aim is to describe both the quasi-
particlelike excitations and the locally critical modes observed in various physical situations, including non-
Fermi-liquid behavior in heavy-fermion systems in the vicinity of a quantum critical point. We carry out an
analysis of the strong-coupling fixed point, from which an effective Hamiltonian is derived containing both a
charge interaction and a spin coupling betwegmearest-neighbor electrons and the screened impurity. The
effective charge interaction is already present in the case of a purely fermionic impurity and it changes from
repulsive to attractive afj=N/2, due to theq—N—q symmetry. The sign of the effective spin coupling
determines the stability of the strong-coupling fixed point. Already in the single-channel case and in contrast
with either the pure bosonic or the pure fermionic case, the strong-coupling fixed point is unstable against the
conduction electron kinetic term in the larelimit as soon agj>N/2. The origin of this change of regime
is directly related to the sign of the effective charge interaction.
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[. INTRODUCTION In the former caseli), the quasiparticles still exist at the
QCP and the theory focuses on the study of the low-lying,
Recent experiments in heavy-fermion compounds havéarge-wavelengthlow-w, low-q) fluctuations of the order
shown the existence of a quantum phase transition from parameter close to the transition. The calculations have been
magnetically disordered to a long-range magnetic ordere@erformed within the renormalization-group schétné& or
phase, driven by change in chemical composition, pressuré';l the self-consistent spin-fluctuation theé?‘yand have been
or magnetic field. For an extensive survey of the experimen- fecently extended to the microscopic model which is be-
tal situation we refer the reader to the review paper ofieved to describe the heavy fermions, the Kondo Iatti_ce. In
Stewart In a very unusual way, the behavior of the systemall the cases, they lead to &* theory with an effective
in the disordered phase close to the quantum critical poirfimensionde;=d+z whered is the spatial dimension ard
(QCP differs from that of a Fermi liquid. For example IS the dynamic exponent. In the experimental situatiois,
CeCy_,Au, (Refs. 3 and #and (Ce_,La,)Ru,Si, (Ref. § is above its upper critical value equal to 4, sintis equal to

present an antiferromagnetic transition, respectivelyx at 3 or 2, and; varies from 2 to 3 depgnding on whether the
. dx — hile far f h h ¢ spin fluctuations are staggered or uniform. Hence the system
=0.1 andx =0.08. While far from the QCP, the magneti- j5 jescribed by a Gaussian fixed point with anomalous tem-

cally disordered phase is a Fermi liquid with a large effectiveperature dependence 6T anda=Ap/T but with predic-
mass, the temperature dependence of the physical quantitiggns that cannot account for the non-Fermi-liquid behavior
in the disordered phase in the vicinity of the QCP is of non-ghserved experimentally.
Fermi-liquid-like type. Typically, in CeGipAug 1,* the spe- The second scenaridij), has been motivated by the re-
cific heatC depends ol asC/T~ —In(T/To), the magnetic  cent results obtained by inelastic neutron-scattering experi-
susceptibility asy~1—a+/T, and theT-dependent part of ments performed on CeGgAu ;. The dynamical spin sus-
the resistivity asA p~T instead ofC/T~ y~Const andAp  ceptibility x”(q,») near the magnetic instability wave vector
~T? as in the Fermi-liquid state. Once a long-range mag-Q has been found to obey an anomalaud scaling law®
netic order is set up, the effect of a pressure or of a magnetigs a function of temperaturg”(Q, w) ~ T~ “g(w/T) with an
field is to drive the system back to a magnetically disordere@xponenta of order 0.75. Moreover, such@ and T depen-
phase with a Fermi-liquid behavior. The same type of behavdence appear to stand over the entire Brillouin zone reveal-
ior has been observed in other systems such as BRI  ing in the bulk susceptibility too. This fact strongly suggests
CeNipL,Ge,,” CeCuy(Si;_,Ge),,® Celn;, CePdSi,,° and that the spin dynamics are critical not only at large length
U;_Y,Pd;. 2% The associated breakdown of the Fermi-liquid scale$®*° but also at atomic length scales, contrary to what
theory poses fundamental questions about the possible fohappens in the traditional itinerant magnetism pictuig,
mation of novel electronic states of matter with new types ofFrom these results, one can deduce that local critical modes
elementary excitations resulting from the presence of strongoexist with large-wavelength fluctuations of the order pa-
correlations among electrons. rameter implying a non-Gaussian fixed point beyonddife

On the theoretical side, two scenarios are in competitiortheory.
to describe quantum phase transitions: either the itinerant Alternative theories to the spin-fluctuation scheme are
magnetism scenari@), or more recently proposed, the lo- needed to describe the local feature of the quantum critical
cally critical picture(ii). point characterized by the simultaneous disappearance of the
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quasiparticles and the formation of local moments. This ha3he weak-coupling8 function follows the renormalization
been the subject of much interest these last years with thgroup equation

consideration of single-impurity Kondo models including

coupling either to soft-gap fermionic bath or to both fermi- dg(A)

onic and bosonic bathgfor a review, see Ref. 20 The ,g(g)zd—Az—gZ, (1)
former case corresponds to a fermionic bath with a vanishing

density of states at the Fermi le¥kfollowing a power law
p(e)~|e|" (r>0). Itis known to display a quantum critical Whereg=pyJ and p is the density of states of conduction
point QCP driven by critical local-moment fluctuations, from €lectrons. The system flows to a strong coupling fixed point
a strong-couplingSC) phase with complete Kondo screen- which is stable and'the gssociated behavior of the system is
ing to a local momentLM) phasé23The QCP is charac- that of a local Fermi liquid. _

terized by nontrivial behavior of the system as, for instance, |N€ Situation is rather different when one considers sev-
scaling law for the dynamical spin susceptibiityollowing eral channels for the conduction electrons. In the case of a
¥ (@)~g(w/T). The second case corresponds to couplin pin S in Kondo interaction with conduction electrons be-

. . . N . l
to both fermionic and bosonic baths where bosons represe nging toK different channels, Blandin and Nowés™ have

collective spin excitationgsee Refs. 20 and 19, and refer- shown that the_mulpchannel Ko_ndo model can lead to two
very different situations depending on hdcompares to

ences withih As expected, the bosonic exqtanons becomezs. Their calculation corresponds to a second-order pertur-
gapl_ess at the QCP and the spectra_l d_en_5|_ty fol!ows a POWqation theory in the hopping amplitudeof the conduction
law in w. This mo_del sh(_)ws strong S|m|lar|t|es Wlth_the soft- electrons, around the strong-coupling fixed point. They ana-
gap model mentioned just above with suppression of the ;e their results by deriving an effective couplidg; be-
Kondo effect due to critical Iocal—momept fluctuations |e"’}d'tween the spin of the composite formed by the impurity
ing to a local-moment phase. Here again recent calculationgressed by the conduction electrons in the strong-coupling
based on numerical renormalization groldRG) or dy- |imit, and the spin of the conduction electron on the neigh-
namical mean field theory approacteseem to indicate the poring sites. They are then able to apply the same RG analy-
existence of scaling law im/T for the dynamical spin sus- sis toJ.; as indicated in Eq(1). In the underscreened re-
ceptibility in the vicinity of the QCP. gime, whenK<2S, the effective coupling is found to be
The other theories developed so far in order to describéerromagnetic and the strong coupling fixed point is stable.
the local QCP, are based on the idea of supersymrf&tfy. In the overscreened regime whin>2S, the effective cou-
In these theories, the spin is described in a mixed fermionicpling is found to be antiferromagnetic and hence the strong-
bosonic representation. The interest of the supersymmetricoupling fixed point is unstable. The formEr<2S regime
approach is to allow to describe the quasiparticles and theorresponds to the one-stage Kondo effect with the formation
local moments on an equal footing through the fermionic andf an effective spin $— 1/2) resulting from the screening of
the bosonic part of the spin, respectively. It appears to béhe impurity spin by the conduction electrons located on the
specially well indicated in the case of the locally critical same site. The system described by the strong-coupling fixed
scenario in which the magnetic temperature sdajend the  point, behaves as a local Fermi liquid. The instability of the
Fermi scaleT (the Kondo temperatuyebelow which the strong-coupling fixed point in the overscreened regime is an
quasiparticles die, vanish at the same podiat, indication of the existence of an intermediate coupling fixed
An important aspect in the discussion of the breakdown opoint which has been then investigated* by means of
the Fermi-liquid theory is related to the question of the sta-other methods. As is well established now, the intermediate
bility of the SC fixed point. Whereas all the issues presentedoupling fixed point leads to non-Fermi-liquid excitation
previously concerning heavy-fermion systems have to dspectrum with an anomalous residual entropy at zero tem-
with properties of the lattice, the instability of the SC fixed perature.
point can be regarded already by studying the single- It has recently been put forward that other sources of in-
impurity problem. stability of the SC fixed point may exist besides the multi-
The traditional source of instability in the single-impurity plicity of the conduction electron channels. Recent wotks
Kondo model is the presence of several channels for thbave shown that the presence of a more general Kondo im-
conduction electrons with the existence of two regimes, unpurity where the spin symmetry is extended from SU(2) to
derscreened and overscreened, with very different behavioSU(N), and the representation is given by a L-shaped Young
as we are about to recall. Indeed we will see that this is notableau, may also lead to an instability of the SC fixed point
the only possible source of instability of the strong-couplingalready in the one-channel case. In the lakgémit, Cole-
fixed point. Recent works have shown that more generaman et al. (Refs. 26 and 27have found that the SC fixed
Kondo impurities of symmetry group SN} may also lead point becomes unstable as soorgaghe number of boxes in
to an instability of the SC fixed point already with one chan-the Young tableau along the first colujria larger tharN/2,
nel of conduction electrorf$:?’ whatever may be the value o82the number of boxes in the
In order to fix ideas, let us start with the antiferromagneticYoung tableau along the first rowThe consideration of a
single-channel Kondo impurity model. It is well known that L-shaped Kondo impurity fits in with the supersymmetry ap-
within a renormalization groupRG) analysis’®—*°the flow  proach that we have evoked before since both spin operators
takes the Kondo coupling all the way to strong coupling. and states can be expressed in terms of bosons and fermions.

094410-2



STRONG-COUPLING FIXED POINT INSTABILITY IN . . . PHYSICAL REVIEW B68, 094410 (2003

At that point, it is worth noting that the supersymmetry coupling fixed point. The sign of the effective charge inter-
theory, or specifically taking into consideration more generahction U, informs on the repulsive or attractive effect of
L-shaped Kondo impurities, appears to offer valuable in-the dressed impurity on the conduction electrons on the ad-
sights into the two issues raised by the breakdown of thgacent site. Section IV contains the discussion of the results.
Fermi-liquid theory that we have summarized above, i.e.]n the largeN limit, we show howJ;; is derived from the
both the existence of locally critical modes and the questiorenergy shift difference between the symmetric and the anti-
of the instability of the SC fixed point. In the same way assymmetric configurations, and how the analysis of the
large N expansions may provide insights into real systemsjependence of the energy shift provides information on the
even at finite value of the degeneracy, the study of moreffective charge interactiobo¢;. When the behavior of the
general impurities may enlighten the understanding of exsystem is controlled by the strong-coupling fixed point, i.e.,
perimental situations with the coexistence of quasiparticlexc,vhenq<N/2, the impurity in the ground state tendsrépel

and localized moments that may eventually lead to a IOh";‘fsglectrons on neighboring sites. Onge-N/2, the repulsion

;r:rr:tsmon as the coupling to other impurities become doml'becomes attraction. We show how this feature is already

The aim of the paper is to study the L-shaped Single_present in the purely fermionic case, and is a consequence of

impurity, single-channel, SUN) Kondo model. We want to the particle-holesymmetry,q—>N—q. Th_e fact that there is

understand how the system behaves, not only as a function §Ktra degeneracy in the supersymmetric impurity, due to the
the impurity parameters &q), but also as a function of the bosomc c.ontnbuyon, leads to the mstab!llt.y of the st_rong-
number of electrona, available on neighboring sites, that is COUPling fixed point as soon as>N/2. We finish the section
to say, of the filling. As long as the bosonic component ofyvlth as_hort dlscusslon on the behavior of physical quantities
spin is of ordem, there is a transition around the point where in the different regimes.
the fermionic component of the impurity g=N/2. At this The appendixes contain the technical details of the calcu-
particular point, the energy shift is, to lowest order in pertur-lations, which involve a higher level of complexity than
bation theory around the strong-coupling fixed point, equathose of Ref. 27, where only the explicit form of the ground
to (—2t%/J), independently of the impurity parametegsS,  state was needed. Wheg> 1, there is more than one inter-
andN. Our study reveals that the phase diagram of the sysmediate state in some of the virtual processes considered,
tem is not accidental, but is due to the relation of the effecand we need to use the explicit form of the intermediate
tive dressed impurity in the strong-coupling regime to thestates. In Appendix A we outline the construction of three
conduction electrons in neighboring sitesqk N/2, there is  particle states with SU(3) symmetry, as an introduction to
a repulsive effective potential acting on the nearest-neighbathe group theoretical formalism used. Explicit expressions
site of the impurity. This potential becomes attractive dor for the impurity states and the eigenstates of the model in the
>N/2. This change in behavior happens at the same plac&rong-coupling limit are derived in Appendix B. We also
where the strong-coupling fixed point becomes unstableiciude a general presentation of the different representations
That is, in the repulsive regime the strong-coupling fixedof the spin, either bosonic, fermionic, trshaped, as con-
point is stable. However, the attractive regime is not realizedjgered in the paper. We will show how in the latter case the
as such since the strong-coupling fixed point becomes urspin operators and the impurity states are expressed in terms
stable forq>N/2. _ . of fermion and boson creation and annihilation operators
The rest of the paper is organized as follows. In Sec. llyyithin two constraints. Appendix C contains a calculation of
we introduce the model and the main features of the stronghe energy shift at the strong-coupling fixed point to lowest
coup_ling Iimit, where th_e electron kinetic_term i_s neglected.grder in perturbation theory, for the completely antisymmet-
In this limit the model is reduced to a single site problem,yic impurity. Since the ground state is a singlet, there is no
where the impurity is coupled to. conduction electron®.  gpjitting of levels. Nevertheless, the behavior of the energy
We identify the ground state and the energies of the excitegiith the filling, ng, on the neighboring site shares many
states with one more or one less conduction electron, whicCBommon features with the problem that we have studied.
will play a role in the lowest order in perturbation theory. In Finally, we include the details of the calculation of the matrix
Sec. Ill, we derive the effective Hamiltonian resulting from a gjlements needed in the second-order perturbation theory cal-
second-order perturbation calculationtiaround the strong-  cylation in Appendix D. We also include several sets of

coupling fixed point. It includes both an effective coupling sy(N) Clebsch-Gordan coefficients that we had to evaluate
and an effective interaction between the dressed impurity alypiicitely for arbitrary 25, g, andng.

site 0 and the conduction electrons on the adjacent site. The
sign of the effective spin couplingd,s directly controls the
stability of the strong coupling fixed point in the sense that
Jets €can be incorporated in turn into the renormalization-
group equations driving the renormalization flow of the sys- Here we present the model that we study as well as its
tem. When the effective couplind;s is ferromagnetic, the ground state and elementary excitations in the strong-
flow takes the system td ;=0 and the strong-coupling coupling J=c°) limit. The results summarized in this sec-
fixed point turns out to be stable. When the effective coution were already obtained in Refs. 26 and 27. However,
pling Je¢s is antiferromagnetic, the flow takes the systemtechnical details such as the explicit form of the eigenstates
away from the strong-coupling fixed point to an intermediateincluded in Appendix B, are original.

Il. THE MODEL AND ITS STRONG-COUPLING LIMIT
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FIG. 1. Young tableau description of an impurity with mixed
symmetry,[2S,197 1], realized by a combination of fermions and
bosons.

FIG. 2. Young tableau description of, conduction electrons,
localizedat the impurity site.

spin of angular momenturjy (N=2j+1), resulting of the
combined spin and orbit exchange scattering. In our notation,
We consider a generalized, single-impurity, Kondo modela=j, b=j—1,... ry=—j.
with one channel of conduction electrons and a spin symme-
try group extended from SU(2) to SNJ. An impurity spin
Sis placed at the origirisite 0). In this paper we will deal o o
with impurities that can be realized by a combination of In the strong-coupling limit, the Hamiltonian reduces to
bosonic and fermionic operators, and are thus described bytge local Kondo interaction term at site 0,
L-shaped5 3r7epresentation in the language of Young
':ja}bleauﬁ as illustrated in Fig. 1for details, see Appen- H=JZ SAE cT(0) 7 ,c4(0). 3)
ix B). oy IRl
If 2S andq are the numbers of boxes along the first row
and the first column, respectively, the representation is defhe ground state|GS), is formed by binding the right
noted by[2S,1971]. Its degeneracy is reported in Table I. amount of conduction electrons to the impurity in order to
The conduction electrons transform under the fundamentahinimize the Kondo energy. Let us denote YyFig. 2) the
representation of SW) and can be represented by Young representation of tha. conduction electrons coupled to the
tableaux made out of single boxes. The dimension of thémpurity, R that of the free impurity(Fig. 1), and Rg¢ the
fundamental representationli§ which just means that each representation of one of the strong-coupling states resulting
electron can be in one i states of spin. of the direct producR®Y (cf. Fig. 3 (see Appendix B for
The Hamiltonian describing the model is written as details.
WhenN=2, the Kondo energy can be written in terms of
conserved quantities

A. SU(N) single-impurity Kondo model

B. Strong-coupling fixed point

H=2 40l (CuatID S*X cl(0)7h45c4(0), (2)
o ook 183, cl(0)7,565(0) |69

Wherec;a is the creation operator of a conduction electron 3

with momentumk, SU(N) spin index a=a,b, ... ry, = -[S54S°C+1) - SR(SR+1)-S"(S'+1)]|GS),
c!(0)=1/Ns=cf , is the creation operator of a conduction 2
electron at the originNg is the number of sites, andgﬁ
(A=1,... N?>—1) are the generators of the SU) group in
the fundamental representation, with[ #}75]=6,g/2. In
the SU(2) caser* = 0”/2, where{o”} are the Pauli matri-
ces. The conduction electrons interact with the impurity spin t

S* (A=1,... N?—1), placed at the origin, via Korr:do g/our-) JEA: SAaE,;J ¢a(0)74504(0)|GY

pling, J>0. When the impurity is in the fundam%r%jtg repre- 3

sentation, we recover the Cogblin-Schrieffer m de- _ Y3 = =

scribing conduction electrons |?f1 interaction with an impurity - E[CZ(RSC)_CZ(R)_CZ(Y)“GS>’ @

whereS(S+1) is the eigenvalue of the Casimir opera&sr
for N=2. The generalization to SB) is given by

TABLE |. Dimensiond and eigenvalues of the Casimir operafirfor the symmetric, antisymmetric,
L-shaped, and fundamental representations studied in this paper. In the L-shap&~=638;+q—1) is the
total number of boxes in the Young tableau, afid= (q—2S) measures the row-column asymmetry.

Symmetric Antisymmetric L shaped Fundamental
[29] [19] [25,1971] [1]
d CRizs 1 CY 25 cs ot N
28+q_1 N+2S-1%~ N-1
C 1 25(2S+N)(N—-1 1 N—qg)(N+1 g N-Y'—-Q/N L N2—1
[ 2S(2S+N)(N=1)] 5 [d(N=a)(N+1)] > ( Q/N) ox; (N2=1)
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FIG. 3. Young tableau description of the formation of the strong 1]
coupling ground state. We denote the presence of conduction elec-
trons at site 0 by. Notice that the first column in the Young tableau
for Rgc is a singlet and can be removed.

GS+1)* = - (U

olole]

whereC,(R) is the quadratic Casimir operator of the repre- LC
sentationR, which commutes with all the generators of the ~ FIG. 4. Excited state$GS+1)® and |GS+1)* with an addi-
group. For a representation given by a Young tableau mijth  tional conduction electrom=(N—q-+1), respectively, in the
boxes in thejth row until the rowj=h<N, the eigenvalue Symmetric and antisymmetric configurations.

Co({m;}) of the quadratic Casimir operator is :
N

b*(ﬁf*)( 1 c};”lox (6)

B:qurl

1
1[QIN2-Q) [A)=—A
CZ({mJ})=§ w—kjl mj(mj+1_2J) , Y

_ -1
where Q=3!_,m; is the total number of boxé$. Table | y=V(2S+N-1)C{ 1.

summariz_gs the express_ions. of the Casimir eigenvalueg f?—ﬁere |A) transforms itself as a SBY) singlet and it will be
the impurities described in this work and for the Conducuonannihilated by any of the raising and lowering operators,

glectrons, as well as the dimension of their spin representa|=i|A>:Ut|A>: .2.=0. This “state” would describe the
tlorI:/SIi.nimization of the energy, Eq(4), leads to a ground strong-coupling ground state for a purely fermionic impurity.
state withn,=(N—q) conduction electrons coupled to the _
L-shaped Kondo impurity ensuring partial screening. The re- D. Excited states

sulting composite at site 0, with ener@, is made out of There are two types of excited states in the strong-
the impurity dressed by the conduction electrons in order t@oupling regime. Either the degenerate ground state acquires
form a singlet along the first column. The associated Youngn additional conduction electron at the impurity di@S
tableau in the strong-coupling regime is given in Fig. 3. Note+ 1), or it loses one conduction electrofS—1). In the

that the first column of lengtfN can be removed without former casd GS+1) the spin of the additional conduction
changing the representation since it is a singlet. When thgjectron can be either symmetrically or antisymmetrically

strong-coupling fixed point is stable, this corresponds to &orrelated with the spin of the impurity as schematized in
one-stage Kondo effect in which the impurity is screenedrig. 4.

by the conduction electrons to form a boson$—(1/2) In the limiting case of SU(2) spin, these two configura-
impurity. tions correspond to a spin of the conduction electron that is

either parallel or antiparallel to the impurity spin. In the gen-

C. Ground state eral SUN) case, we will keep on speaking of symmetric and

Let us now write the expression of the fundamental stat@ntiSymmetric configurations, respectively.

associated with this strong-coupling fixed point. The ground States with one less electron will be denoted [IBS
state is degenerate. The states in the multiplet transform as al) @nd are re%resesnted by thf Young tableau in Fig. 5. Let
completely symmetric representation of SU( described US denote PAEP=E7—E,, AE;=E;—Ey, andAE,=E;

by a Young tableau with (8—1) boxes, denoted b§2S —E, the energy dlffer_ences, with respecF to the grouncsi-state
—1] (Fig. 3. We choose a realization of the impurity in €N€rgy, Aassouated with these three excited s{@&s-1)",
terms of 25 bosonic operators andj¢- 1) fermionic opera- |GS+1)", and [GS-1). Using the same Casimirology
tors, which happens to be more convenient. We could ha\,@ethoq as.presented at the beginning of this section for the
constructed impurity states with the same S)ysymmetry ~ determination of the ground-state energy, we have summa-
using (25— 1) bosons and fermions(see Appendix B We _rlzed our results_ in Tak_JIe I, respectively, f_or_ arbitraxyand
would like to emphasize that all the results that we establisi) the largeN limit with (2S+q—1)/N finite. One can

in this paper are independent of the operator representation
which we choose to work with. The highest weight state is [ [ []
then written as GS—1) = (N-1)

]
- 1 _ c|
e TR (5) <
' FIG. 5. Excited stat¢GS— 1) with one less conduction electron
with n=(N-g—1).
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TABLE II. Strong-coupling excitation energied E, AE}, and AE,, in the case of an L-shaped
impurity, measured with respect to the ground state, of the states with one more conduction electron on site
0, coupled symmetrically and antisymmetrically, respectively, to the dressed impurity on site 0, and of the
state with one less electron.

AES AEf} AE,
Arbitrary N J J J
5(28+N-g-Q/N) 5(N=g—Q/N) 5(a+Q/IN)
LargeN limit
(Q/N finite) J N—0+ 25 J N J
5(N—-qg+2S) 5(N=0q) 54

check that the results in Table Il coincide with E¢R5) and  is described by the strong-coupling fixed point. That is, an
(26) of Ref. 27, within aN/2 factor stemming from a differ- underscreened, completely symmetric, effective impurity
ent definition of the Kondo coupling[cf. Eq.(1)of Ref. 27  weakly coupled to a gas of free electrons with a phase shift
and of the Casimifcf. Eq. (17) of Ref. 27], and a change in indicating that there are alreadiN ) electrons screening
the notationsf =q andn,=2S. the original impurity. In the completely antisymmetric case
Notice that the excitation energi@sE? andAE,, inthe  (25=1), the phase shift corresponds to the unitary linit,
large N limit, are independent o5, and related by the = /2, for SU(2), and is dunctior* of q/N for SU(N),
particle-holetransformationq— N—gq, characteristic of the reaching the unitary limit fog=N/2.

problem with a purely antisymmetric impurity,S21 (see If, on the contrary, the effective coupling is antiferromag-
Appendix Q. netic, the perturbation is relevant, this strong-coupling fixed

point is unstable and it does not describe the low-energy
physics of the model.
lll. STABILITY OF THE STRONG-COUPLING In this section we explicitely calculate the effects of hop-
FIXED POINT ping on the strong-coupling fixed point to the lowest order in
perturbation theory, that is, second ordert.itWe will con-

We have identified the strong-coupling fixed point in theSider the case with an arbitrary numbeg of conduction

r in ion. F he low ner rre- e . . .
preceding section. Faf—c, the lowest energy state corre electrons in site 1 generalizing the cagg=1 considered in

sponds ton,=(N—q) electrons partially screening the im- S e

purity at the origin, and isolated from the rest of the bum:ﬁi:é;ﬂi T:flsthvt\e”it?cl)lr?\l\ic%i tﬂnunﬁféztargijn:he origin of the

which may be described by a chain of electrons, for conve- y OT the £ g pling i point. .
Before switching on the hopping term, let us consider

nience. .
In order to better understand the low-energy physics ofround statesof the form |GSNna)=Z|GSolng)1, with ng
the system, we can perform a strong-coupling analysis con- E,

sidering a finite Kondo coupling and allowing virtual hop-
ping from and to the impurity site. These processes generate
interactions between the composite at site 0 and the conduc-
tion electrons on neighboring sites, which can be treated as
perturbations of the strong-coupling fixed point. Applying an
analysis similar to that of Nozies and Blanditt to the na-

ture of the excitations, we can argue whether or not the
strong-coupling fixed point remains stable once virtual hop-
ping is allowed.

We consider a system with an additional site next to the
dressed impurity, filled witmy electrons. The ground state E,
consists of two multiplets, with different symmetry proper-
ties. Once the hopping is turned on, the degeneracy is lifted,
and each multiplet acquires a different energy shift denoted
by AES and AEA, respectively(see Fig. 6. We can repro-
duce this spectrum by considering an effective coupling be-
tween the spin of the dressed spin at site 0, and the spin of
the ny electrons on site 1. IES lies (above below EA, the
effective coupling igantiferromagneticferromagnetic.

Thus, if the coupling between the effective spin at the (b) antiferromagnetic effective coupling case
impurity site and that of the electrons on site 1 is ferromag- FIG. 6. Second-order perturbation theory energy shift of the
netic we know, from the scaling analysis at weak coupling strong-coupling ground state in the cases of a ferromag(atand
that the perturbation is irrelevant, and the low-energy physicantiferromagneticb) effective coupling.
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[ 1 1d] [ 1] |GSng)S and|GS ny)” separately, without mixing the states.
d d We will thus denote the shifts b;&Eg’ and AES, respec-
1GS,na)S — |12 . 1GSnay* — 4 tively.
] P The hopping term is of the form
[ (o

FIG. 7. Strong-coupling ground states in the presenceof Hy=H;+ sztz cha+t2 dlca, (Hl)T:HZ,
conduction electrons on site 1 coupled either symmetrically or an- o a@

tisymmetrically to the dressed impurity on site 0. . - .
Y y P whered! creates an electron on site 1. We can distinguish

two types of processes, corresponding to different intermedi-

electrons on site 1. According to the SU( symmetry there ate stated’ The first type, which we denote process 1, cor-
are two possible configurations, depending on whethenghe responds to an electron hopping from site 1 into site O first,
electrons are coupled symmetrically or antisymmetrically toprobing excited statg&sS+1)S#, and then hopping back to
the composite on site 0. This corresponds to the Clebschsite 1. The indices,A correspond to the two possible inter-
Gordan series[2S—1]®[ng]—[2S,1" 1@ [25—1,1]. mediate states depending on whether the conduction electron
We denote the states BBSng)S, and |GSny)”, respec- that hops to site 0 is symmetrically or antisymmetrically cor-
tively (Fig. 7). related with the dressed impurity as we will see in detail

The SUN) symmetry is preserved by the hopping. Thatbelow. The contribution of the process 1 to the energy shift is
means that the perturbation will shift the energies ofthe following:

(GSngldlics GS+1ng—1)(GS+1ny—1[cld,|GSNg)
(Eo—EY) ’

2> Z

a,B

with i =S,A (see Appendix B
In process 2, the electron hops from site 0 to site 1 first and then back to site 0, pifG&ing.), leading to a contribution
to the energy shift of the form
s (GSnglchdgGS—1ng+1)(GS—-1,n4+1]d]c,|GSny) |
a, (EO_ EZ)

Hence, the energy shifts for the symmetric and antisymmett9) to the ny=1 result in Ref. 27, we see that there is an
ric configurations are, respectively, additional contributiorM?, present fomy>1.

S IVE S
Ml Ml MZ

AES= + + :
® Eo-E} E,—E} Eo—E:

(7) A. Process 1. Symmetric configuration

We consider first the case where thg electrons in the
site 1 are coupled to the site-0 state in the most symmetric

Mf M? configuration. In the shorthand notation that we use for the
E _EA + Eo—E,’ (®) Young tableaux, it corresponds to the stp2S—1]®[1"d]

o =1 —[2S,1""1]. Here, as opposéfito the caseny=1, the
where the expressions in the denominatorg,ES)  Hamiltonian transforms the ground state
=—AE}, (Eo—E})=—AE?, and Ey— E,)=—AE, mea-
suring the energy of the excited states compared to the en- |GSng)S=(dld]---d)|GS), (10)
ergy of the ground state are given in Table Il. The matrix

elementsM will be introduced below as we will study the into a linear combination of two excited staté&S+ 1,

contribution of each process. The energy difference between . —_— ‘
the two states, —1)S, with energyEg, and|GS+1,n4—1)5, with energy

E, depending on whether the additional conduction electron
Mf M_f— M’f M §— M§ in site 0 i§ coupled symmetrically. or antisym_metrigally to the
n () dressed impurity. The_ state obtained by acting vmjtj(, on
EO—Ef Eo—E/i\ Eo—E, the ground state defined by E(LO) has to be computed
explicitely, and the result written as a linear combination of
determines the sign of the effective interaction and the stathe excited states, Fig. 8. The latter are obtained by coupling
bility of the strong-coupling fixed point. If we compare Eq. the site-0 states withng— 1) conduction electrons on site 1.

AES=

AES—-AEQ=

094410-7



ANDRES JEREZ, MIREILLE LAVAGNA, AND DAMIEN BENSIMON PHYSICAL REVIEW B 68, 094410 (2003

1GSna)s IGS+1,ng4—1)% IG5+T,ng-1)° |GS,ng)t [GS+1,ng—1)4
- i N - ahy ~  tie— et
[ [ Id] [ [ [e] [ 1 [d] [ ] [ ]
d d c d c
d ctdo d 4+ | 1d d clds d
€| lc| Cj cld cld
L€ K2  C | 1€ 1<
LC €] L€} L€} L}
FIG. 8. Whenny conduction electrons are coupled symmetri-  FIG. 9. Whenng conduction electrons are coupled antisym-

cally to the dressed impurity at the origin, the tecfd,,, acting on  metrically to the dressed impurity at the origin, the tecjd,
the ground state, generates a linear combination of two excitedcting on the ground state, generates state proportional to a given

states with an additional conduction electron at the origin. excited state, with additional conduction electron at the origin.
The explicit expressions for these states are given in Appen- A 1 Mgl
: GSn = ————|\25-1 d/ ||G
dix D, and they lead to the result | d)abe. ..o J25tn,-1 IHZ y;|1GSaa
nd+1 nd+1
_yi-1 t
(E cf,d,,) |GSng)® + 1.22 (=1 (ilm dyi) |Gs>ayj}
25+ng—1 s 4
=Q T|GS+1,nd_1> in the notationy;=a. As in theny=1 case, the hopping
term transforms the state defined by E#4) into a state
25-1-—— proportional to a given strong-coupling excited stdigy. 9).
+Ayng—1 ¥|GS+ 1ng—1)> (11)  In order to obtain the corresponding matrix element, we have
computed explicitly
where the normalization coefficierts, Q T A A
= (25+q-1)/(25+N—1) andA=(q—1)/(N-1) are ( 2 ¢;0,|IGSng* *|GSt1ng— 1),

independent ofiy, as we are considering hopping of a single ) . )
electron. From here, we obtain the following matrix ele-and then we have normalized the resulting state. The details

ments: can be found in Appendix D. We have
T A_ _1\A
M= [%(GS+ 1ng— 1]H,|GSng) (2 cld, |08~ AGS+ Lg%
2 2S+ny—1\/2S+g-1 17 and the matrix element
B 2S 2S+N-1) 12 -1
M%=|%GS+ 1,nd—1|H1|GS,nd>A|2=t2nd( N_1>.
MS=|S(GS+ 1,ng— 1|H,|GSny)S (19
25-1\/q—1 Notice the dependence oy, and the fact that the matrix
=t?(nyg— 1)(2—S> (m) . (13 element does not depend 08.2Combining togetheM f and
M’f as it appears in Eq9), we have
We see right away tha!$ is proportional to (i4—1), and MS—MA= _t2 25+ nd_l) ( q—l) 16
vanishes fomy=1, whereasM$ depends noticeably ony o 2S N—1/

only for 2S<ng=<N. This is a term with the samey dependence asl; but with

the opposite sign.

B. Process 1: Antisymmetric configuration

Next, we consider the case where the electrons on site 1 C. Process 2: The frick

are coupled to the effective spin on site 0 accordin§28 Both in the symmetric and antisymmetric configurations
—1]®[1"]—[2S—1,19]. In the preceding section it was in process 2 there is a one-to-one correspondence between
easy to write the strong-coupling ground state by just puttinghe state obtained by the actionldf, and the excited state
together the effective spin and thg electrons in the highest with the same symmetfy (Fig. 10. The evaluation of the
weight state possible, to obtain EL0). Here we have to remaining matrix eIementsM§ and Mé, associated with
work out the necessary SNj Clebsch-Gordan coefficients. process 2 is simplified by using the following trick connect-
We present some of these coefficients in Table VII of Appending the matrix elements of processes 1 and 2, respectively.
dix D. The explicit form of the ground state is On the one hand, we have in the process 1,
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STRONG-COUPLING FIXED POINT INSTABILITY IN . .. PHYSICAL REVIEW B68, 094410 (2003

1GS,ng)s |GS—1,ng+1)% A o A o N—q
[T 1d] T[4 M5=t“(nc—ng) + M7=t [N_(nd+1)](_N—l)’
@ T4 dee T4 19
A a 25+ng—1}(N
€] 1C S_ MA_MSLMS_ MA_12 Na— —q9
[c] [d] M2~ Mz =M+ My—Mi=t 28+N—1)<N—1)'
1GS,na)* IGS-1,nq+14 (19
 snsmmt—
[ ] ] [ ]
d d
() q dtes q IV. DISCUSSION
2 d z d Having computed the different matrix elements in the pre-
? d] ceding section, we are now in the position of deriving the

expressions of the energy shifmsEg and AEQ of the sym-

FIG. 10. The termd!c,, acting on the ground state with metric and antisymmetric configurations, respectively, within
electrons on site 1, coupled symmetricaldy or antisymmetrically  the second-order perturbation theory in the hopping term. We
(b) to the impurity. The result is a state proportional to an excitedpropose to transcribe the results in terms of an effective
state with one less electron at the impurity site, coupledrtp (- Hamiltonian describing the charge and spin interactions be-
+1) electrons symmetricallfg) or antisymmetrically(b). tween the dressed impurity at site 0, and the conduction elec-
trons in amounty at site 1. We will then discuss the impli-
cations of the derived effective Hamiltonian on the behavior
of the system.

(i) The sign of the effective coupling—ferromagnetic ver-
oS it . S sus antiferromagnetic—controlling the stability of the

=t E (d, (8561 = C4Cor)dy) strong-coupling fixed point, determines the onset of two dif-
77 ferent regimes. Whemg<N/2, the effective coupling is
found to be ferromagnetic, the perturbation is proved to be
12> % (d'd,)S- oMS, irrelevant by use of scaling argumenitd. Eq. (1)], and the
7 strong-coupling fixed point is stable. Whep>N/2, on the
where sMS=t2s_%(cld’, d,c,/)S and the expectation contrary, the effective coupling is found to be antiferromag-
value %()S should be considered over the ground statenetic, the perturbation becomes relevant, and the strong-
|GSny)°. On the other hand, the following property holds coupling fixed point is unstable.
for the matrix elements of process 2 (II) There is an effective Charge interaction at site 1, in-
duced by the virtual hopping of electrons between the impu-
rity site and its nearest-neighbor site. The change in the na-
ture of this interaction—from repulsive to attractive—is
found to happen at the same place where the strong-coupling
fixed point becomes unstable. On the one hand, in the regime

MS+MS=t2>,° (GSngld! ¢, cld,|GSng)®

(TU'/

M$=t2>,° (GSnglc! . d,dlc,|GSng)S

'
[oxen

— S 1/ AT T R . . L
—tZE oo <C(r’(50'0"_da'do")co'>s when the strong-coupling fixed point is stalgjecN/2, the
interaction is repulsive. On the other hand, in the reggne
:tZEs (cTc >5_ SMS >N/2,_the intera_ction is z_attraptive. Howe\{er, we empha;ize
o ora ' the point that this attraction is never realized as such since

. . ‘the strong-coupling fixed point is then unstable.
where in the last line, we have exchanged the dummy vari- Even though the charge interaction remains a weak per-

ableso ando’. The same relation exists for the antlsymmet-turbation of the full system, its study allows us to better

fe corlflguratlon (with  expectation values taken on understand the physical properties of the model and the onset
1GSng)") of instability of the strong-coupling fixed point at a particular
value ofq. Indeed, this charge interaction is already present
MA=12> " (dld,)A— sMA, in the case of an antisymmetric impurity, as we will show
7 below. There, the low-energy physics is controlled by the
strong-coupling fixed point for all values gf Nevertheless,
M’Z*:tZEA (c:r,cg>A— SMA, there is a change in the sign of the effective charge interac-
7 tion atq=N/2, a consequence of tlie—~N—qg symmetry in
Thus, using the trick, we obtain the antisymmetric case. The fact that the couplihg; is the
. same(in the largeN limit) for the general L-shaped impurity
M§=t2(nc—nd)+(Mf+ Mf) as for the completely antisymmetric case, indicates that the
properties observed in the former case are linked togthe
25+N_2> 17) —N-—q transformation of the fermionic component of the
2S+N-1)’ impurity.

N—q

:2 —_
t“(N—ng) N_1
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A. Energy shifts AES and AES of two multiplets, according to the Clebsh-Gordan series

71 S A . .
Incorporating the expressions of the matrix elements, Eqd.2S~ 1]®[1"]—[2S,1%""°6[2S—1,17]%, in which the
(12), (16), and (19), and those of the excitation energies superindicesS and A indicate the symmetric and antisym-

(Table 1) into Egs.(8) and(9), one finds metric states, respectively. The energies shifts induced by
’ Hqs can be calculated as before with the aid of Casimir
AEA (2t2) ( Ng ( q-1 ) operators, Eq(4), and we get
Eo=—|—
J/IIN=1/\N-gq—Q/N s A
AE[zs,lnu-l]_AE[zs—l,lﬂd]
f[qo e ) N-d H (20) J
N-1/1a+Q/N/J’ = S HC[28,177 1) ~Cy([28-1,1)))
s A
AEO_AEO Jeff , ,
12 =- T(ZSJF Ng— DY 2510011~ Y 251,14 ]
=—(2S+ nd—l)(—>
’ = ﬂ(2s+ ng—1)
" [ 2S+qg-1 2 d =n
28(2S+N—-1)[2S+N—q—(2S+q—1)/N] where we have used the results of Table I. Since both states
N-—q have Young tableaux with the same number of boxgs;

=2S+ny4—1, the energy difference depends only on the sec-

+
(N=1)(2S+N—-1)[q+(2S+q—1)/N] ond constraintB7), V.sr=QefY' (see Appendix B As a

q-1 consequence, the dependence o%{2,—1) is factored
T 2SIN=I)[N—q—(25+q=1)/N]|" (21)  out exactly as in Eq(21) and we get by identification
2
The dependence of\E;— AES) on (25+ng—1) is lin- Jor= _(Ai)
ear and appears factored out. AS thcreases, the energy J

difference AES—AEj) becomes smaller. Moreover, the ef-

2S+q-1
fect of ng on (AEg—AEé) is weak as long apy<2S. X
Until now, we have presented results for arbitrétyIn 25(25+N-1)[25+N—-q—(25+q-1)/N]
the rest of the paper, we will frequently consider the laxye- N—q

limit taking 2S/N and g/N finite. To leading order in N,

Jf_
we can write (N=1)[2S+N—-1)(q+(2S5+g—1)/N]

qg-1
A——Z—FHB)—(@)(N(N—_M)” - 2S(N-1)[N—g—(2S+q—1)/N } 4
AEG=~ q rrEnsit (22 (N—1)[N—g—(2S+q—1)/N]
2t2[2S+ng—1| [ N(N—-2q) Ut L (N-a 4l ) 25
AE(S,—AEQ:—J—N 28+l\?—q)( q(N_q? (23) e N-1\g+Q/N N—g—-Q/N @9

with the additive constant tern€ equal to  2t%/J)(N
The energy differenceE5—AEp) is O(1/N), and both  —q)/(q+Q/N).
energy levelsAE; andAEj, have the same leading term in  In the largeN limit with 2S/N andqg/N finite, we have
O(1) which is almost independent ofS2 The only depen-
dence in B appears in the difference\E;— AE}). 4t* (N-2q) 1

Ty qiN-g 2StN-g P

B. Effective Hamiltonian

2 (N—
The energy shiftd E5 and AEf can be reproduced from effzzi (N—2q) 27)
the following effective Hamiltonian, to within an additive J q(N-q)

constant ternC to be defined later on, with C equal to (2t2/3)(N—q)/q. Note thatJy; is
25-1] 1] O(1/N?) and depends of @, while Uy is O(1/N) and in-

Hetr=Uers Na+ JepSES 1S, dependent of 8. Furthermorel ., is repulsive wherd ¢ is
whereU,; andJ,; are the effective charge and spin inter- ferromagnetic, and attractive whdgy; is antiferromagnetic.

actions, respectively, between the dressed impurity at site 0 . . . N
in the strong-coupling limit and the conduction electrons at ~ C. Sign of the effective coupling and stability of the

site 1. In the notations which are use®?5~ and St strong-coupling fixed point
represent the corresponding spin operators in the representa- In Fig. 11 we plotl.¢; in the largeN limit as a function of
tions[ 25— 1] and[ 1"4], respectively. The spectrum consists g/N, for different values of 3. The effective couplinglq¢s
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N A
4 1
UNSTABLE STRONG COUPLING
FIXED POINT
T ATTRACTIVE
2k |== 28=N
— 25S=10N 0.5 —eo
2 STABLE STRONG COUPLING
Q FIXED POINT
& REPULSIVE
s .
— Lol
0.1 2S/N

-] FIG. 12. Phase diagram of the modkrgeN, 2S/N finite), as

a function of the impurity parametersSIN andg/N. As soon as
g>N/2 the strong-coupling fixed point becomes unstable. ¢or
=N/2, the strong-coupling fixed point remains stable only for mod-
- erate values of @/N (short line ending in a poit

0 : 025 05 075 1 The strong-coupling fixed point at=N/2 becomes unstable
g/N already at moderately large values ®fThe corresponding
FIG. 11. Effective couplingl(; as a function ofg/N, for dif- ~ Phase diagram of the model in the lafyeimit, as a func-
ferent values of 8, in the largeN limit. tion of the impurity parameters,2N andqg/N is reported in
Fig. 12.
changes of sign a=N/2 as can be seen by inspection of the
numerator of the right-hand side of E@6). Notice that the D. Sign of the effective charge interaction

value of Jg¢¢ is independent of the number of conduction |, Fig. 13 we report the dependance@f;; on g/N, in

electronsng on site 1 and coincides with the result obtainedy,o largeN limit. By comparisons of Eqs26) and(27), one

in Ref. 27 for the casag=1. This 'S due o the cancellation 5 see that the change of sign of the effective interaction

of the (25+ny—1) factor in AE;—AE,) that we have _. s directly connected to the change of sign of the effec-

mentioned above. , , tive couplingJe¢ (see also Fig. J1 This result has the im-
The effective coupling remains ferromagnetic as long aspegiate following physical consequence. In the former re-

q<N/2 corresponding to the situati@<Ey. We can then gime, g<N/2, where the strong-coupling fixed point is

use the same scaling argument 8¢ that we used fod in  stable, the effective interactidde>0 is repulsive, and the

the weak coupling regime. Incorporating the value of thejowest energy expressed in Eg2) is obtained fomngy=1. In
effective coupling in the renormalization-group equatioh

Eq. (1)], one can prove the perturbatidp;; to be irrelevant I I I
and the strong-coupling fixed point to be stable. The low-
energy physics corresponds then to a system of free electror 40
that are weakly coupled to an effective impurity spin.

When q>N/2, on the contraryEg<ES, the effective
coupling is found to be antiferromagnetit,;; grows in the
renormalization process, and the strong-coupling fixed point
(J=00) is unstable.

The caseq=N/2 requires particular attention, since the -
leading contribution td.¢; vanishes. Taking into account the % 0

=}
o]

whole expression for the effective coupling, we find that the
strong-coupling fixed point for an impurity witg=N/2 is -
stable as long as the bosonic param&és smaller than the
critical value 201~

*_1< 2N )
A v ol

In the largeN limit we have

0.1 0.3 0.5 0.7 09
o/N
% _ \/5_ 1 4+ \/E - E FIG. 13. Effective charge interactidt.¢; as a function ofy/N,
S N+ +O(1/N) . (28) , Y
4 8 10 in the largeN limit.
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0 d] d
d

[ ] d

[c] c|d

E cid

L€ ] €]

g< N/2 g> N/2

g FIG. 15. Strong-coupling ground-state configurations in the fer-
< mionic case, where only hopping to the nearest-neighbor site has
ﬁ been included. Wheq>N/2, the impurity site attractsl—1 con-

duction electrons.

present, due to the fermionic component, the degeneracy of
the states due to the bosonic component leads to the instabil-
ity of the strong-coupling fixed point at the same point as
where the the dressed impurity starts attracting the conduc-
tion electrons on site 1.

] | ]
0.25 0.5 0.75 1

/N E. Physical properties of the model
FIG. 14. Leading-order term in the energy sh¥Eg~AE3, as We finish by making some remarks on the physical prop-

a function ofg/N, for 1<ny<(N—1) (shaded region and in the  erties of the model in the different regimes. As is common to
limiting casesng=1 (dashed lingandny=(N—1) (straight ling. all models with an antiferromagnetic Kondo coupling, there

Notice that the value a/N=1/2 is equal to—2t%/J, for anyny. will be a crossover from weak coupling above a given
Note that forq/N<0.5 the energy is minimized fary=1, while for  Kondo scaleT to a low-energy regime. When the strong-
g/N>0.5 the minimization is obtained fory=(N—1). coupling fixed point is stable, we should expect Toe Ty a

weak coupling of the effective impurity at site O with the rest
of the electrons. The physical properties at low temperature
are controlled by the degeneracy of the effective impurity,
d([2S—1])=C\; 3s_,. Thus, we should expect a residual
entropy S'~InC\,3s , and a Curie susceptibility,y'
~CN73s_,/ T, with logarithmic correction§:*? This is the
result that we would expect for a purely symmetric impurity.
A The difference with respect to the case at hand is that in the
As has be/?n r_10t<_ad bef(_)re,Eo IS |ndeper_1dent of & . L-shaped impurity model onlyN—q) electrons are allowed
Th'ergfore,AEo coincides W'th_ the energy shift for a ferml- at the origin, instead ofN—1). Thus, we would expect to
onic impurity (completely antisymmetric representalic® inq gifferent results for quantities that involve the scattering
is checked in Appendix C. When the impurity is fermionic, haqe shift of electrons off the effective impurity. Consider,
there is no degeneracy of the strong-coupling fixed point,, instance, the =1 case. The phase shif of the con-

which is always stable, and the lowest-order perturbationyqtjon electrons scattered off the impurity site, characterizes
theory just shifts the ground-state energy. Nevertheless, theg e impurity contribution to the resistivity'. At zero tem-

are two regimes, repulsive and attractive, depending on thﬁerature and magnetic field, we ha¥e

value ofq, and characterized by the value mf that mini- ’

mizes the energy. This behavior is a consequence of the i sings 29
particle-hole symmetry in the fermionic case, given by the p '

transformationg|— (N—q) andng—(N—ng) (cf. Appendix  The phase shift for antisymmetric impurities in SQ(was

C). The behavior of a fermionic impurity with is the same  computed in Ref. 41. In the completely screened case it reads
as in the caseN —q), if we reinterpret the electrons as holes

and the impurity as made out of holes. Thereforey & 1 e2id— _ g-im(1-20/N) (30)
minimizes the energy foq<<N/2 (electron repulsion then '

the energy for &@oleimpurity, made out of l—q) fermions,  |f we choose the phase shift so that< /2, we have
is minimized by the state that repels the hold$—(ny) =1,

the latter regimeq>N/2, the effective interactiot) ;>0

is attractive, and the energy is minimized fof=(N—1).
We have plottedﬁEé in Fig. 14. The shaded region corre-
sponds to the possible valuesmEé for the whole range of
ng, bounded by the limiting casesg=1 andng=(N—-1).
Note that atg=N/2, AES(q=N/2)=—2t?/J for any value
of nq.

implying an attraction of electronag=(N—1). This behav- q
ior is shown in Fig. 15. 77(—), g<N/2
The addition of a bosonic component to the impurity, N
leading to the formation of a row in the L-shaped Young o= (31)
tableau representing the impurity, breaks this particle-hole _W(B) q>N/2.
symmetry. Whereas the two regimes described above are still '
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The unitary limit,|8|= /2 is reached in the particle-hole integrable®® In the cases studied until now, the electron can
symmetric caseg=N/2. We see that this corresponds to thecouple to the impurity in two different ways: symmetrically
point whereAE; is independent ofiy, indicating the change or antisymmetrically. This leads to the usu&imatrix that
from the attractive to the repulsive regime. appears in impurity integrable models. The novelty of the

In the g>N/2 regime, it is reasonable to think that there impurity studied here is that the electron can couple to it in
would be a magnetic contribution to the entropy, and athree different ways. This is an important property, and it
Curie-like contribution to the susceptibility, since the impu-was already noticed in Refs. 26 and 27 that it leads to the
rity remains unscreened. This behavior is different from thainstability of the strong-coupling fixed point. However, this
of the multichannel Kondo model, which is characterized bysame property spoils integrability. Even though it is possible
an intermediate coupling fixed point where the impurityto construct integrable models with a spin impurity in an
magnetic degrees of freedom are completely quen¢héd. arbitrary representatiods this is done at the price of adding
is in the scattering properties that we might be able to see thextra electron-impurity terms, which will likely change com-
anomalous features of this new fixed point more clearly. pletely the physics of the system.
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sive to attractive, of the effective interaction between the

dressed impurity and the conduction electrons in the neigh- APPENDIX A: COMPOSITION OF THREE

boring sites. This change is already present in the purely FUNDAMENTAL REPRESENTATIONS OF SU (3)
fermionic case, where it happens at the particle-hole symme-

try point, gq= N/2. The On|y role of the bosonic degrees of Before dealing with the general prObIem of ConStrUCting
freedom of the impurity is to allow for a degeneracy of thethe highest weight impurity states in SNJ( in Appendix B,
strong-coupling fixed point, which is lifted by hopping, lead- we will write in detail all the three-particle states with SU(3)

ing to an effective spin coupling,;. The properties of this Symmetry?® This will allow us to see how the states con-
coup”ng, as well as the effective Charge Coup“ng, are theitructed with different numbers of bosons and fermions can

controlled by the fermionic component of the impurity. be the basis for representations with the same Young tableau.

We have followed a systematic approach in order to obWe will also see the role of the SU(3) and SU(11) su-
tain the explicit form of the states needed for our calculaPersymmetry groups induced by the realization in terms of
tions. As a result, our work can be used as the starting poirffosons and fermions.
for the study of richer systems, such as the multichannel The direct producB®3®3 of three fundamental repre-
case. sentations of SU(3) gives the following Clebsh-Gordan

Obviously, the interesting open problem now is to fully series:
understand the physics in thg>N/2 regime. This issue
might have important future applications for the lattice prob- 3©323=(306)®(33)=10s8'a8a1, (Al)
lem, with potential consequences for the understanding of
non-Fermi-liquid behavior observed in heavy-fermion sys-where we identify each representation by its dimension. In
tems. In order to gain some insight it would be desirable taerms of Young tableaux, we have

carry out a nonperturbative study, either using NRG or Bethe
ansatz techniques. Here, we would like to point out some of [1®[ |®[ ] (e[ I ])e (D@B)
((Here e @

the limitations of these methods when applied to the model

it

under consideration. The effects described in our work ap-
pear forN>5. That is, each lattice site can be filled with up
to five electrons. Furthermore, the simplest impurity that dis-
plays an intermediate fixed point corresponds to a multiplet i — .
with 45 elements. Such a large Hilbert space limits the per] N€ répresentation8 and3 result from the composition of
formance of a NRG study. The difficulties of the Bethe an-WWO fundamental representations

satz method are of a different nature. Due to the properties of

the impurity, the model with just a Kondo coupling is not 323=6@3. (A2)
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|aa)f=fib}|0)

is already symmetrized. To obtain the highest WeighEof
we first have to find a state with the same quantum numbers
in 6, by acting withT_,=(f/f,+b]b,) on|aa)?, to get

1
lab)f=—(fibl+flb})|0),

V2
and find a state orthogonal tab)?,
1
V2

This process is described in Fig. 17. It is easy to see that the
states with the subindeixare related to those with the sub-
Uindex b by the SU(11) supersymmetric operatop

labys=—(f{bl—flb})|0).

FIG. 16. Weight diagram for the fundamental representation of= Eab;fa, so thatf|(---))¢= V2 (- Mo -
SU(3), with thestates and the relevant lowering operators.

Consider now the three-particle states. The easiest state to
write is the highest weight state in the most symmetric rep-

In addition to Young tableaux, we can use weight diagramsesentation10 (cf. Fig. 18,

to describe the states in the representation, Fig. 16. In
SU(3), weassociate a triangle to the fundamental represen-
tation, 3. Each vertex corresponds to a particular state of th

|aaa)l®=|a)%aa)®.

multiplet, and the different states are related by the action %ith Eq. (B1)

the lowering operators. In Fig. 17 we include the weight
diagrams associated with EGA2).

The representatioB is completely symmetric. Its states
are realized in terms of Schwinger bosons. For instance, its
highest weight state can be written as

|aaa)i’=

6) and a fermionfrom 3),

1
N

Here, and in the following, the values of SU(3) spin are

laa)p=——=(b})?|0).

niently expressed in terms of fermions. For the highest
weight state, we have

|ab)?=1af5/0).

There is another way to realize bcﬁhand?using one boson
and a fermion. Being symmetric, the highest weightas
easy to write, since

|aaa);®=

a3 %= (2l fab)* o) ad)),  (a3)

which leads to

|aab)i’=

T-

-

(bb)® (ab)6

(aa)®

(be)®

Vv

(bc)?

(ab)3

1
31

Alternatively, we can use a realization with two bosginem

1
7<b2>2b£|0>,

I

& can be easily expressed in terms of bosons in agreement

(b})3|0).

1
—f1(b])2/0).

N

denoted bya, b, andc. Likewise, the representatiod is ~ Other states of the representation are obtained by the re-
completely antisymmetric, and its states are more convePeated action of lowering operators. For instance,

v A.
(ac)® -

(ac)3

(cc)b

FIG. 17. Weight diagram for the Clebsch-Gordan series of the product of two fundamental representatio(3)of SU
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T- T-
(aab)10 (2a2)!®  (abb)®  (aab)®

\ ; U
(aac)®
(abc)3

(ach)8

FIG. 18. Weight diagram for the Clebsch-Gordan series of the pra@@iiét We indicate some of the states and outline the process of
obtaining Clebsch-Gordan coefficients.

1
|aab>f1°=%[2f;b;b T+l b2 labc)® = ET laac)®
— = (|albe)"+ Ib)lac) - 2/c)ab)?)
The octets,8 are mixed symmetry representations that \/—
have to be built by a combination of fermions and bosons.
The Clebsch-Gordan seriéa1) indicates thaB!, built from 1 Fipipt fT ot fT h
the product3® 6 is naturally realized by states with one fer- %( abpbe+fpbabe—2fcb, b)|0>

mion and two bosons, Fig. 18, wheregtsis realized by the
product of one boson and two fermior@%(3), Fig. 19. The  This state is degenerate, since there is another state in the

highest weight statetaab)gl, of the octeB? is orthogonal to m_ult|plet with the silme quantum numbe_rs. In order_ to find
|aab)° defined in Eq(A3), this last state]ach)®, we have to combine the action of

lowering operators with orthogonality with respect to

labc)®. Acting with U~ on |abb)®" leads to a state that is

L1 not orthogonal tdabc}gl. Therefore, we write

|aab)j = —=(|a)¥ab)*~ y2|b)%aa)®)
V3 U~ |abb)8'=\2(a |abc)® + 8 |ach)®)).

1 There are two ways of reaching states with quantum numbers
= —=b(flb]-tlb})[0), Y 9 a

J3 {abc} starting from|aab)®’. We use this and the fact that
[T",U"]=0,[T"=(T")"], to derivea,
in agreement with the general expression of the state 2a=+/28(abdU~|abb)® =8(aad T*U T |aab)®
given in Eq.(B3). . .
As usual, the other states of the octet are built by the =8(aablU"T"U T |aab)®
repeated action of generators ™ =(flf,+b/b,), U~ _81 . o
— (Ff,+bib.), andV~ = (f1f.+blby), of SU(3). For in- ="(aabT' T U U " |aab)” =1.
stance, Hence one deduces=1/2 and8=+/3/2 and one gets the
expression of the last statac b}ﬁlof the octet
T- g 1 31y )6 3 6
@b 17 (aab)® lacb)y = —(|a)’|bc)°—|b)7|ac)®)
V2
U- (abc)!
; ®A. - e 1
-~ =5 (fabsbe— fababe)[0).

To summarize, the rule is to describe the highest weight
state of the octetaab), using the bosonic representation,
¥, and hence to derive the other states of the octet by the
above construction allowing to recover the Clebsch-Gordan

FIG. 19. Weight diagram for the Clebsch-Gordan series of thecoefficients involved in the spin composition related to the
product3® 6. direct product % 6.

(abc)®
(ach)8
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The highest w@ht state of the oc8tis also the highest n=3 n;=0 10
weight state of3® 3,
X _ Zyl N\
|aab)f =a)%ab)*=blf1f]|0),
in agreement with the general expression of the stateEq. m=2np=1 8 i b] 10’
(B4). The construction of the other states follow the same
lines as in the case of tt& octet. For instance,

Zed o N\
2097 = 512120 b)ea)) hetws o [0
7l
= 5 elilil-biflillo) oo
lach)¥ = %<|a>3|bc>3+|b>3|ca>5—2|c>3|ab>§> =0, ny =3 1
_ %(b;f;fﬁ-bgflf;—Zbe;fENO). replr:el(sz-énZt(;.tiOSr:zS:\.tes witlQ = (n,+n;) grouped according to SU(3)

Once again, the two basis of states corresponding to théhe introduction of an additional supersymmetric operator,
same Young tableau, are related by the SWjloperators, z;rq=f;fqba, acting on the highest weight states. The states

6" and . _ L _ 10and10/, respectively, are identicdhs well asl and1’)
Finally, the singlet stat¢abc) is built by orthogonality 55 far as the SU(3) symmetry is concerned. This is not the
with the stategabc)®, and|ach)®, from the octet in the case of the two stated and82, which correspond to differ-
product3® 3 (Fig. 19, ent spin representations even if the associated Young tab-
leaux are the same. Altogether, one recovers the expected

1 = = = total of 27 different states.

labc 1=ﬁ(la>3|b0>3+|b>3lca>3+|C>3Iab>3), (A4)

) . . ) APPENDIX B: IMPURITY STATES AND LOW-LYING

n agreement with the expression of the states in the com- STATES IN THE STRONG-COUPLING LIMIT

pletely antisymmetric representation of the sgBR). The

simplest way to realize this state is with three fermions. Then We present in this appendix the explicit form of the high-

est weight(spin) states for the impurity and for the low-lying

labo)i=f1flf!|0). (A5)  states in thel—o limit. We discuss in detail the use of

Young tableaux both to describe the symmetry properties of

'the states and to study the SWU(generalization of the com-

position of several spins.

But it can also be written with one boson and two fermions
either by acting withd on Eq.(A5) or by substituting on Eq.
(A4),

L1 1. Impurity state
labe),=— Before studying the general case of a L-shaped Young

ﬁ(b;fgfy biflfl+blflfl)|0).
tableau representation of spin, we will consider the two lim-

We have shown how to construct the states for differeniting cases of a completely symmetificosoni¢ and an an-
representations of 3). These results can be summarizedtisymmetric(fermionic) representation of the spin in SNJ.
as tables of Clebsch-Gordan coefficients like the ones that The case of a completely symmetric representation of the
we presented in Tables IV-VII for SB). spin is equivalent to a system oB2dentical particles sym-

Let us make some comments about the number of stategetric under the permutation of two of them. The associated
The direct product of three fundamental representations ofoung tableau is made of a single line o® Boxes

SU(3) generates a space of dimension 27, which breaks 25
down as a direct sum of irreducible representations according —"—
to the Clebsch-Gordan seri¢d1). By considering all the E[D:D‘_’ Z P,

realizations of these states in terms of bosons and fermions PeSas

subject only to the constrai@=n;+n,= 3, we are working expressed in shorthand notation2§]. Associated with the
on the higher dimensional space of a representation oYoung tableau, there is a symmetrizer operator made out of
SU(33) with a total of 38 states, as represented in Fig. 20the sum of all the permutations ofSxlements. It is conve-
The figure also reports the relation between these states withient to use an explicit representation of the localized spin in
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terms of N species of Schwinger bosofisee, for instance,

28
Ref. 46, b, («=a,b, ... ry) subject to the constraint g—1 {H ®ﬁ \

[ [T
ﬁbzz beQIZS. 25-1 — ®
a —N— /‘ L
q by
The (N>—1) components of the spin operator can be repre- @
sented a§A=Ea5eraﬁbﬁ, while the highest weight state
[the analog of the state with the largest value 5f in FIG. 21. Two ways of obtaining a L-shaped representation out
SU(2)], can bewritten as of the direct product of a symmetric and an antisymmetric IS)J(
representation.
|(a)?9)1?S=———(b)?90), (B1) The generators of SW) in this realization areS"
V(29)! =2a5f11{§5f5, and the highest weight state of the represen-

where |0) denotes the vacuum state for the bosons. Othel@tion can be written as

states of the representation can be obtained from this one by (19 tet T

the repeated action of lowering operators, taking advantage |ab- - Ty =fafp 'frq|0> (B2)
of the underlying SU(2) subalgebras within ¢ Take,
for instance, the (8+1) states{|(a)*(b)¥)!?S} with x+y
=2S. They transform as a regular, &), spin-S multiplet
under the action of the SW() operatorsT,,=blb,, T/,
=blby, andTZ,=(blb,—b/by)/2. In particular,

involving a set{a,b, ...y} of q different indices. Other
states of the representation can be obtained from this one by
the repeated action of lowering operators such Tag
=f£fa, taking advantage of the underlying SU(2) subalge-
bras. Note that the states are SU(2) doublets with respect to

T |a25>[251=\/2—8 ()25 1p)l2s] these subalgebras. The dimension of the representation is
ab ' given by Cy.
or, in terms of bosons, An important property of both kinds of representations is
that the states are nondegenerate. That is, each set of allowed
N 1 b (@25 Dt quantum numl_)ers completely determine _the state. This is not
(@)% Hh) "= \/:|(ba) bp|0). the case for mixed symmetry representations, as we are about
(2=t to see.

Note that each index in the set of quantum numbers, Let us now consider the general L-shaped representation
{a,B....pss, describing the states of the representationOf SPin, Fig. 1, which interpolates between the previous two

can takeN values independently of the rest of the set, andimits. Its dimension can be easily obtained using Robinson’s
that for each set of values there is only one state. The dimerformula® the result is [28/(2S+9—1)]C{3 25 1CR -1

sion of the representation is thus given ®§, ,s_,, corre-  (Table IV). The L-shaped representation is the result of the

sponding to the number of ways of choosing&ements out  direct product of a symmetric and an antisymmetric repre-

of a group of N+2S—1). sentation. This can be done in two nonequivalent wW&yg.

The other limiting case corresponds to a completely anti2D : either as th§19™1]®[2S5]-[2S,19 *]& - - Clebsch-
symmetric representation of the spin. It is equivalent to thé30rdan series, or 449]®[2S—-1]—[2519""]&---. The
case ofq identical particles antisymmetric under the permu-construction of the highest weight states for each of the cases
tation of two of them. The associated Young tableau is madé detailed at the end of this subsectifoi. Egs.(B9) and
out of a single column ofj boxes, (B12)] and leads to

Pp=|(2)2%0- - -1 )25

q «— Y 6pP, 1 (b1)2s1
Pes, = a
V25+g—1 {(2S-1)!

A(bgfife- - £1)]0)

and expressed in shorthand notatior] 8%] with q<N. As- (B3)
sociated with the Young tableau, there is an antisymmetrizegyq
operator made out of the sum of all the permutations of

elements weighted by &= +1 factor as for antisymmetric a1 (b;)zs—l
identical particles. It is convenient to use an explicit repre-#¢=|(a)2%- - -r Y1251 1= ———(flflfl... 1] )|0),
sentation of the localized spin in termsMfspecies of Abri- (25-1)! ‘
kosov pseudofermiofi§f, (a=a,b, ... ry) subject to the (B4)
constraint where A(- - -) is the antisymmetrizer. The impurity spin op-
erator has a form that is independent of eith&rd2 q and is
A= =g, given byS=_2aB(era5bB+f;raﬁfg). The first constraint
@ has to do with the conservation of the number of particles
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Q) -
N—N)—y.

Q=(n;+np)=(2S+q-1), (B5)

where (5+qg—1) denotes the number of boxes in the
L-shaped Young tableau. In the limiting cases discussed pr
viously, once the value o is fixed, the representation is ; X . . L
completely determined. Here, however, it is necessary to adﬁ%)_IS fulfilled, the mvarpnc_e of _the Casm@ is ensured
a second constraint to identify states with the right symmetryProvided that the operatgfis invariant too. This leads to the
To that end, it is worth noticing that the set of statgsand  Second constraint
s form a basis for a representation of the larger, supersym- S _
metric group SUK|N), with generators given as linear com- Y=Q(q-29). (B7)
binations of the operatorlslbﬁ, flfﬁ, beﬁ, flbﬁ_ Thus, Itis easy to check that the operata@rsand 8" commute with

all the L-shaped impurities that interpolate between the sym& and2, which implies that the constraints are also compat-
metric and the antisymmetric case are related by the supeible with the SU(11) supersymmetry. Note that this was not

symmetric group. As a matter of fact, the constraints that fixhe case for the operatd? =n;—n,+ (1/Q)[ 6,6'] defined
the SUN) representation are obtained from operators injy Eq. (10) of Ref. 26.

Q (B6)

C(R) =2, sA.sA%
A

Fere, J=O(n;—ny) +[6,6']. Once the first constraint, Eq.

SU(NJ|N) diagonal in spin, such as, Ny, 6=Eablfa, and The constraints completely determine the representation,
6". Consider, for instance, the action &f on i, but they cannot distinguish between the statgsand .
The physical properties of the system depend only on the
0"(b))2S AL If L - 'f:rq) |0) Young tableau associated with the Kondo impurity, and not
. 95-1, etetet + on the particular way the representation basis is constructed.
=(28+q—1)(ba) = H(fafpfe- - -7 )[0), We finish this section by describing in detail the construc-

tion of the relevant states of the impurity multiplet.
The direct product of irreducible representations of
SU(N) decomposes into a direct sum of irreducible represen-

where the right-hand side correspondsyta This leads to
the relations

0 = 251q—1 o, tations (Clebsch-Gordan serigsA well-known example is
Vo q Vi the addition of angular momentum in §2). In order to find
0 Yi=\25+q—1 . the states in the new badileading to the Clebsch-Gordan

coefficients CGCO)], we follow a similar procedure to the one
Notice also that' ;= 0y, =0. The operator® and 6" re-  used for angular momentufsee also Appendix A That is,
late states that transform under a representation oN$U( we first identify the highest weight state of the product of
given by the same Young tableau. Together V\f@h they  representations, which is always nondegenerate, with the
form the SU(11) supersymmetric a|getﬂ6a{0,0’r}:©_ hlghest.we|ght state of the mosymmetncof the represen- .
Furthermore, the operatorsP,=(1/Q)0#6" and P; tations in the QIebsch-Gordan series. Then, we use lowering
=(1/Q) 6" 4 are the projectors out of the bosonig and the operators [particular comblnatlor!s of the generators c_)f
fermionic y; states, respectively. The statés and i, are SU(N)]_to generate other states in the same represgntatlon.
the exact analog of the familiar example of the formation of OF arbitraryN there might be more than one state with the
the two octets8 and 8, out of the composition of three S&ME guantum numbers in the same representgiom the
fundamental representations in &). In Appendix A we SU(?’? oc_tetB a_nd8 Ik and.we will haye to find orthogonal
construct the states explicitely in this example and derive th§ombinations. Finally, we find states in the next representa-
corresponding Clebsch-Gordan coefficients. tion by looking for additional orthogonal states with the

. . N . same quantum numbers, and acting on them with lowerin
The second constraint is then given Pya bilinear com- operatgrs 9 g

bination of the operatorny Ny, 6,6'} since it is a conse-  The direct product of a symmetric and an antisymmetric
quence of the invariance of the Casimir operafor[the  representation of SUN) can be expressed as a direct sum of
SU(N) generalization of S>=S(S+1)], which for a two L-shaped representations, according to the Clebsh-
L-shaped representation is given by Gordan series

[2S-1] ® [19 = [28,1971) ® 28 —1,19]
e [T11] L]
D:D:D@‘I{E‘q{r_ ® (g+1){

- ]

with dimensions
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_ 2S _ (a)zs_lbcd. cerar [25-1,19]
Cl2\18+21572 Cﬁ:—23+q—1 Cﬁizs—l C%Ji | q q+1>
1 q
2S-1 - = ————=|\25-1 [(2)** H*> Hlbcd. - -r )+
*55rg=1 Chies2 Cloa V2S+g-1
'q
We proceed now to write the states in each L-shaped rep- + Zb (—1)%¢(a)?52p)l2s~H
resentation. Thenost symmetri¢highest weight stajeof the =
product[2S—1]®[19] is .
X|bc: - -rq(no BT ). (B12)
|(a)25-1y25-1japc. - .rq>[1q],
where 25 particles have the same quantum numaeT his 2. Ground state

state is also the highest weight state of the most symmetric of

The explicit form of the highest weight state for the
the representation§2S,197 1], P I g

ground state corresponds to E§),

|(a)%he- - .rq>lzs,1‘1‘1lz |(a)25 125 U|apc. - .rq>[1q1_

~ 1 ~
(B8) |G5>£§}Saal]=m(b;)zs YA),
Notice that the lowering operators that transform the value
into e[b,r,] affect the[2S—1] state only, since thgl9]
term is completely antisymmetric. Thus, these states are also 1
nondegenerate |A)=—A
Y

with

ot 1 [T el

ﬁ:qurl

a Zsflbc. (5 2., .r [zsqu—l]
l(a) (8)°--1g) y=+(2S+N-1)Cq L.

—1(2)25-25\[25-1]| gpe. . .r 319
(@) 9) |abe: g} (B9) Notice the additional tern€{_} in the normalization factor
Other states with 8 of the a; equal toa, can be obtained 78S compared to E¢B3), due to the presence of two kinds

A . T T . . .
from Eq.(B8). They are also nondegenerate. For instance th@f fermions,f, andc, . We adopt the bosonic realization of

state with the valuey replaced byr . ; is the impurity ¢, which simplifies the calculations. We
would like to emphasize that all the results are independent

o5, o [25197 1] of the realization chosen, since only the form of the Young
(@)% bed: - -rgrq.a(no v) tableau is relevant to the interaction.
=|(a)25—1>[25—1]|abcd~ S Tglqr2(NO 7)>[1q]_ _Other s_tates ir_l the san[ész— 11] multiplet can be ob-

tained by just acting on thebQ) S~1 term. For instance,

T |GS>{a}aa: V25-1 |GS>{a}ab

(B10)

Altogether, there arg states of this typéf we restrict thea;
to the rangda,rq4]).

Next, we construct the states [12S,197 1] where (5 =(25-1) bl (b1)2572|A),
—1) of the «; are equal toa and the rest of labels are v(2s-1)!
different and take values in the ranggr,.,]. There areq (B13)

linearly independent states of this kind. For instance, acting
with T, on (B10) we get - 1 o tos o
U |GS>{a}ab:|GS>{a}ac:m be(ba)?>"%[A),

Tae (2)25bCd: - -1 grq1(n0 7))2S1" 7Y (B14)
=28 |(a)?5 bcd- - .rqrq+1>[28,1q’1] and
=25-1 [(2)%5 2y)25 Ujabe- - -rgr g 4(no y))t" 1 oot
] |GS>{a}ab:\/ﬁbb(ba)2372|A>y
+|(a)25 )25 Hped: - rgr )t (B11) (25-2)!
The orthogonalization of thesg states leads to the firgt 1 t 25—
rows of Table VII of CGC. The last line in the table corre- G (ajoo= 2(25-3)1 (bp)?(b2)?5%[A),

spond to a state with the same quantum numbers

((a)>>"'bed: - -rqrq41), and orthogonal to all the states in

[2S,19]. This state is the highest weight [@S—1,19]. It is G — bt(b1H25-2|A
easy to see that it must be of the form G J(2s-2)! o(ba)™14)
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TABLE lll. Clebsch-Gordan coefficients for the excited states

|Gs>{a}bcz—bgbz(b;)%ﬂm)_ (B15)  with one additional electron, corresponding to the product
V(25—-3)! [1]®[2S—1], and to states with quantum nubefsa}abc}. The
normalization factor is YN, and ay/ is understood over each
3. Excited states coefficient(Ref. 49. The minus sign indicates a negative sign in

from of the square root- /.
Let us now write the expression of the excited states of

the strong-coupling fixed point. The state$ @S+ 1)° trans- N C;|GS>{a}bc CE|G3>{a}ac CllGS>{a}ab

form as the completely symmetric representafias]. The

highest weight state can be obtained by acting thIcnn the QIGSt 1>i\a}abc 25 25-2 1 1

ground state, A|GS+ 1>{a}abC 25(25-1) 2S-2 1 —(25—1)?
A|GS+ l>{a}acb 25-1 1 —(25-2) 0

s _1;
|GS+ 1>{a}aaa_ﬁca| G${a}aa-
We finish this section with the excited states correspond-
where the normalization factor, Q)  ing to the multiplei GS— 1), characterized by one less con-
=\/2S+q—1/(2S+N—1), appears because the additional duction electron than in the ground state. They transform as
c electron has to be antisymmetrized with respect to the ( [2S—1,1N 1], and the highest weight state is
—q) electrons already present on site 0. Other states in the

multiplet can be obtained by repeated action of the lowering 1 R
operators, as in Eq$B13) and (B15). For instance, |GS-1)= m(ba)ZHIM

1 1 :

|GS+ 1>{Sa}aab:5 \/?S[ V25— 1C;| GS>{a}ab with
iN-1
+¢}|GS)fajadl, (B16) A >——A[ (H f )( 11 c;”|o>,
a=iz B=lg+1
|GS+ 1>{Sa}abc \/—[ V2S— 20a|GS>{a}bc+ Cb|GS>{a}ac ’y’ = \/(28+ N— 2)Cﬁ:11
+¢1|G9) sl Here,|A’) transforms as th&l-dimensional[ 1N 1], repre-
C asa

sentation of SUY).
States in|GS+ 1) transform as[2S—1,1]. The highest

. . A . .
weight state i§GS+ 1)(3a4p, @nd it will be orthogonal to APPENDIX C: THE CASE OF THE ANTISYMMETRIC

the state defined in EqB16). Thus, IMPURITY
1 1 The ground state for the strong-coupling fixed point of a
|GS+ 1>?a}aab:K \/?S[CQGSXa}ab Kondo model with a fermionic impuritfcompletely anti-
symmetric representatibxriGS}”N], is a singlet formed with
— /25— 1CE|GS>{a}aa], (N—q) conduction electrons at site 0, and has the same form

as|A), in Eq. (6), but with a different normalization factor,
with?” A=/(q—1)/(N—1). Notice the difference with re-

spect to the normalization factor. Onfy depends on 3. \ in
Other states ifGS+ 1)* are obtained in a very similar |G 1= ( H f )( [T C};) |0). (CD)
way to the construction of the octe®, and8? in SU(3) (see vC a=iy B=lg+1

A ixA). Fori . I
ppendix A. For instance, The hopping Hamiltonian leads to two types of processes, as

described earlier, where the intermediate states have either

|GS+ 1>A ——[J2S5-2¢ |G5>b one more or one less conduction electron. With the help of
fajabe™ A V25(25—-1) 2 ¢ Table | we can write the excitation energies
+
+Cb|GS>aC_(ZS_ 1)ce[GSasl, TABLE IV. Clebsch-Gordan coefficients for the procesk]
®[2S—1]—[2S]®[2S-1,1]. The label |{a}aab) indicates a
1 1 state of[ 2S], whereag{a}aa,b) denotes the highest weight state
_ t +
|GS+ 1>{Aa}acb_K ﬁ[CJGS)bc —V25-2¢0|GSad.  in[2s-1.1].
We collect the coefficients for the states with quantum®2? N |a)|{a}ab) [b)l{a}aa)
numbers {{a}abc} in Table Ill, which shows Clebsch- [{a}aab) 25 25—1 1

Gordan coefficients corresponding to the direct prodddt  |{a}aa,b) 25 1 —(25-1)
®[2S—1] in SU(N), following the notation of Ref. 49.
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TABLE V. Same as Table IV, but for states with quantum num-  TABLE VI. Same as Table IV, but for states with quantum
bers @)>5 ?bb. numbers )% ?bc. Notice the degeneracy 2S—1,1]. We de-
note corresponding orthogonal states|{g}ab,c) and|{a}ac,b).

abb N |a)|{a}bb) |b)|{a}ab)
b N b b b

\{a}abb) ’s 752 ) abc la){atbc] [b)[{atac) |c)|{a}ab)

|{a}ab,b) 2s 2 —(2S8-2) |{a}abc) 2s 2S-2 1 1
[{a}ab,c) 2S(2S-1) 2S-2 1 —(25-1)?
[{a}tac,b) 2S-1 1 —(25-2) 0

AE ~J(N+1 N A ~J(N+1
175 | J(N—Q), AB=5 | — /9
2t2\[ ng q N—ng/N—q
Itis clear thatAE, andAE, are related by thearticle-hole AEf=- JJ)INT1\N=q) " N+1\ q ||
transformationg— (N—q).
The ground state witimy electrons on site 1 is In the largeN limit, this result is equivalent to Eq22). To
leading order in M, the energy shift of the strong-coupling
|GSng)=(dldy- - -d)|GS). fixed point is determined by the fermionic component, and

the behavior under the particle-hole transformation.
Since there is only one intermediate state for each process,
we can use the trick described in Sec. Ill C, and write APPENDIX D: DETAILS OF THE CALCULATIONS OF THE
MATRIX ELEMENTS

Here we construct explicitely the excited states that are
involved in the second-order perturbation theory, and then
As long asng>1, the second term in EGC2) vanishes for ~We compare them to the action of the hopping terajd),
o#0'. c, acting on|GSny) just counts the number of ©ON the ground state. First, we ada &lectron to the ground
terms where there is@, . There areC_, such terms. Thus, State, and then we combine it witin{—1) electrons from

My=t2 ng— >, (GS,ndlc:erj;,dch,|GS,nd)). (C2

’
a0

site 1.
Ci_ N—q
Tt _ N-1)_
;(;, <Gs’nd|codo’dvco’|GS’nd>_nd( Cﬁ )_nd( N ) 1. Symmetric process]GS,ng)S
The strong-coupling excited sta{&S+1)S is easy to
and compute, since it is the highest weight state in the product
[2S—-1]®[1]—[2S]®[2S—1,1]. We have
q
M1=t2nd—. 1
N |GS+1)3aa= g CHlGSaa

Finally, following Eg.(18), ) o

with the normalization factorQ?=(2S+q—1)/(2S+N
—1). Other states within the same representation, which
transform ag2S], can be obtained by acting with the corre-
sponding lowering operators. For instance,

N—q
N

Mp=t?(ne—ng) + Ml:tz(N_nd)(

M, andM, are related by the same transformatiogs~+(N

o . 1
—0, Ng—N=—ny) as the excitation energies. That means that  |Gg+1)S =—— (25— 1 ¢!|GS) ., +¢|G _
the energy shift is invariant under these transformations | Jaan 0428 CSapt €t/ CSaa)

TABLE VII. Some of the CG coefficients for the product kf=ny electrons, and an effective impurifi2S—1], ([1¥]®[2S—1]
—[251¢1@[25-1,1® - --). Here we only keep the coefficients for the representati@$1<~*] and[2S—1,1¢] (last row). States
from [1X] are denoted by a column of labels,); those from[2S—1] are denoteda), and are statesloseto the highest weight
state, denotefn). The states if12S,1“1] are labeledab,c,d, .. .) and those if25—1,1], |a,b,c,- - -).

[25—1]

1¥e[25 -1 N )b : : :
[14]s[25-1] N LK T BIDEENES ) |)o)
{atabc, ... ,uv

lab,c, ... u,v) 25(25-1) 25-1 (25 —1)? 0 0 0
lac,b, ... u,v) 25(28+1) —(25-1) 1 (25)? 0 0
lau,b, ...,t,0) (28 +k—2)(25+k—3) (—D*25—1) —(—1)* (— 1) coe o (284 k—3)? 0
lav,b, ....t,u)  (2S+k—1)(25+k—2) (—D*Y25-1) —(=DF (=Dt ... 1 (28 +k—2)?
la,b, ...u,v) (2S+k—1) (25-1) -1 1 (=D ! (—D*
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The highest weight state of the antisymmetric multipletwith a different normalization factorA?=(q—1)/(N—1).
|GS+1)A, which transforms a§2S—1,1], is a state or- Other states can be obtained from these three. The results are

thogonal to|GS+1)3,,, that is, summarized in Tables IV-VI of Clebsch-Gordan coeffi-
cients.
Next, we have to add theng— 1) electrons on site 1. The
1 results of the calculations are summarized in Table VII. We
A __ & it _ Joa_q ot
|GS+ 1>aab_A\/2—S(Ca|GS>ab 25-1 Cb|GS>aa) have
|
1

GS+1n4—1 ————
| d— >aab W

Ng Nd
|GS+1)3.at 2 <—1>J’1( I[ df
j=2 i=1i#]j

|GS+ 1>aax :|

a1
|

Ng
s (H 0l
1=2 !

cllGS)aa

1
02525+ ng—1) 2
Nd
+22 —-1l- 1( 11_[ dT)(\/ZS 1 Ca|GS>ax+C |Gs>aa)}
= i=1j#

for the symmetric state in the symmetric configuration, and

Nd

- - j : T
\/ZS(nd {2( g ( J;Lj %

|GS+1ng—1)5ap...u=

|GS+ 1>aax

(C;|Gs>axj_ V2S—-1 CIJ-|GS>aa> )

for the antisymmetric state in the symmetric configuratinp=a). From here, it is easy to show that the effect oicqg) on
the ground state is given by E(L1).

2. Antisymmetric process:|GS,ng)*

The action of (:f,d(,) on the ground statgGSny)”, with ny electrons on site 1 coupled antisymmetrically, produces

(—1)nd71 ng+1 ng+1
(2 czda)les,ndx:b...f— V2s-13, (-0 11 df|ci|69aa
o = i=2j+

V2S+ng—1
ng+1 -1 ng+1 ng+1 ng+1
+ > (_1)1—1[2 (_1)|—1(. I d+ > (—1)I(_ T dr) cIJGS)aX},
=2 =1 i=1i#j,l I=j+1 i=1i#j,l )
(D1)
which is proportional to a given strong-coupling excited state. Since we can writtDEpas
(—1)nd71 nd+1 I’]d+1
T A | t T T
c,d,||GShy5p...,=—F———— -1 d, |(¥25—1 ¢, |G —c,|G
(; o O’)| d>ab v m[ = ( )(i—g¢l X|)( x|| S>aa al S>ax|>
ng+1 j—-1 ng+1 ng+1 ng+1
S e e T a) S co e ees.,
j=2 = i=1i=j,l I=j+1 i=1i#j,l )

after some algebra, we get
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(—1)nd71 ng+1 ”d+1
(Z c2d0)|Gs,nd>§b...v=ﬁ 2 (—D'{(i I dii)(JZS— 165 |GS)aa—cl|GSay,
o d— = =<
-1 ng+1
_E (_1)] . H d; (Cl|GS>ax-_C;|GS>ax)-
=2 i=1i#j,l 1 ) ] !

This expression can be written using the antisymmetric st@&s-1)”, with the help of the following relations:

A(V2S |GS+1)g, = V25-2 [GS+1)5, ) = V25— 1(cx|GS)ax —Cx [Gax).
AV2S [GS+1)55,=cllGSay— V251 ¢}|GSaa,

to obtain
(—l)ndflA ng+1 ng+1
T A I+1 T A
c,d,||GShy)sp..., = -1 d, |v2S(25—-1) |GS+1
(; o o’)l d>ab v \/(28+nd—1)(28—1) Izl ( ) {(i—l;i[;ﬁl X|) S( ) | >aax|
-1 ng+1
_122(_1)1(”11“(’;)(@ |GS+1)5x,— V25—2 [GS+ 1) |-
Finally, since
(E CZ'd0'> |GS’nd>§b---vo<|GS+ 1’nd_1>§b---u' (DZ)
we just have to normalize the previous state in order to obtain the excited G&tel,ny— 1)§b.._v . Up to a sign, we have
1 ng+1 ng+1
GS+1ng—1)a, . .= -1+t di |V25(25-1) |GS+1)4
| d >ab--~v \/nd(28+nd—1)(28—1) Izl ( ) [(i];!::#l X; S( ) | >aax1
-1 ng+1
> (=i I df|(V2s|GS+1)A  —V25-2|GS+1)A
X, axjx| ax|xj
=2 i=1j#j,1

and

(2 ci,d,,) |GSNg)ab. ., = (AVNg) | GST Lng—1)3...,

3. Tables of Clebsch-Gordan coefficients sumed to be under the sign of the square root. For instance,

The calculation of the excited states involves the use of (2S—1) corresponds te-y2S—1. The states should be
some Clebsch-Gordon coefficients. We have evaluated thestvided by the normalization factofN. Tables IV-VI are
quantities explicitely for arbitrary 8 nq, andN, following required when one electron is added to the effective impurity,
the steps outlined in Appendix B1. We summarize our result§[ 1]®[2S—1]). Table VII corresponds to the addition of
in Tables IV=VII. In the tables, all the coefficients are as-electrons.
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