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Static local-field correction from Monte Carlo studies of the homogeneous electron gas
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From the fixed-node diffusion Monte Carlo~DMC! results obtained by Ortiz and Ballone@Phys. Rev. B50,
1391~1994!#, we develop semianalytic expressions of the static local-field correction~LFC! for the dielectric
function describing exchange and correlation effects in a homogeneous electron gas. These expressions, cor-
recting some errors of earlier papers, are derived following the Vashista-Singwi@Phys. Rev. B6, 875 ~1972!#
and Utsumi-Ichimaru@Phys. Rev. B22, 5203 ~1980!# schemes. Both satisfy physical requirements as the
‘‘compressibility sum rule’’ for an interacting fermion system. The behavior of these LFC functions is dis-
cussed and compared with the well-known LFC’s given in the literature. More tractable density-dependent
expressions are given in order to allow easy calculations of physical properties without losing accuracy relative
to DMC numerical results.
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I. INTRODUCTION

The local-field correction~LFC! function describes ex
change and correlation effects in an electron gas. Its de
mination is one of the fundamental problems of physics a
stays always of topicality.1–13 Several theories based on th
so-called ‘‘equation of motion’’14–25 or on diagrammatic
techniques26–29 lead to various formsG(q) of this important
quantity. The quantum Monte Carlo simulation6,10 is an in-
teresting tool of investigation of the electron system. Or
and Ballone6 ~OB! performed such calculations by using th
variational Monte Carlo~VMC! method and the fixed-nod
diffusion Monte Carlo~DMC! method. These authors gave
parametrized expression of the spin-dependent electron

correlation functiongs,s8(r ) from which one can deduce in
straightforward manner the total~number-number! pair-
correlation functiong(r ) and the static electron structure fa
tor S(q). Within the ‘‘equation of motion’’ formalism,
Singwi et al.24 ~STLS! gaveG(q) as a functional ofS(q).
Bretonnet and Boulahbak9 using this functional and OB
Monte Carlo results, obtained a semianalytical expression
G(q). In their original paper9 and in the applications to liq
uid metals which followed,8 they used a mathematical ap
proximation and omitted the spin-parallel contribution
G(q). Furthermore and beyond this remark, it is w
known20,23 that the STLS approach leads to a lack of cons
tency and a failure to satisfy the ‘‘compressibility sum rul
which is very important for the study of metal properties. S
in the present work, we take into account the improveme
to the original formalism proposed by Vashista-Singw20

~VS! and Utsumi-Ichimaru17 ~UI! to get numerically the
local-field correctionG(q) and parametrize it with an ‘‘ad
hoc’’ expression.

This paper is organized as follows: in Sec. II, we intr
duce briefly some of the main ingredients of the dielec
function within the semiclassical formalism since a ve
thorough description is given by many authors. We sh
0163-1829/2003/68~9!/094204~8!/$20.00 68 0942
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how the self-consistent calculation of the local-field corre
tion may be replaced by a direct calculation following thr
approaches referenced by OB-STLS, OB-VS, and OB
and described shortly, respectively, in Secs. II A, II B, a
II C. In Sec. II D, we give simple and useful expressions ve
close to the numerical calculations carried out, respectiv
in OB-VS and OB-UI schemes. The behavior of our Mon
Carlo–derived LFC functions are discussed and compare
the corresponding self-consistent calculations and to o
well-known LFC functions in Sec. III. Finally, in Sec. IV we
present our conclusion. Later in the paper we use ato
units throughout:\5m5e51.

II. THEORETICAL BACKGROUND

The dynamical local-field correctionG(q,v) and the di-
electric function«(q,v) are related through the most gener
equation22,25

«~q,v!512
v~q!x0~q,v!

11v~q!G~q,v!x0~q,v!
, ~1!

where x0(q,v) is the usual dynamical polarizability of
free-electron gas andv(q)5 4p/q2 is the Fourier transform
of the Coulomb potential. One notes that the random-ph
approximation~RPA! corresponds toG(q,v)50 and that
the Hartree-Fock approximation corresponds toG(q,v)
51. Equation~1! serves in a sense as the usual definition
the dynamical LFC. The latter depends on the wave vectoqW
and the frequencyv although in the literatureG(q,v) is
thought to be weakly dependent onv. So, in the static ap-
proximation, Eq.~1! is mostly written with only the static
local-field correctionG(q) in place of the dynamical one. In
the classical formalism, the fluctuation-dissipatio
theorem14,15 takes an important place and leads to the fun
mental expression in which the static electron structure fa
is given as a functional of the imaginary part of the dielect
function:26
©2003 The American Physical Society04-1
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S~q!52
1

4p2n0
q2E

0

`

dvI mF 1

«~q,v!G , ~2!

wheren0 is the number density.
So, a semiclassical and self-consistent calculation of

LFC and other quantities defined above combines prev
equations and a closure relation to be found. This rela
supposes a detailed knowledge of the electron system. S
a relation may be obtained if we solve the Born-Gre
‘‘equation of motion’’14 relating the three-body distributio
function to the two-body distribution function. With the aim
of solving the Born-Green equation, different approaches
schemes with more or less justified assumptions and app
mations were proposed in the past. Each of them leads
specific form of the closure relation. Another possibility o
fers interesting perspectives, the one that uses the resu
Monte Carlo simulation. We choose this solution beca
these results like those of Ortiz and Ballone6 and Ceperley
et al.10 are more and more refined. In our work, in place o
self-consistent calculation, we used the parametrized exp
sion for the spin-dependent electron-pair-correlation funct
gs,s8(r ) published by Ortiz and Ballone,6 and performed a
straightforwardlyG(q) calculation by successively conside
ing three different closure relations that we call also schem
or approaches. The interest of the method that we used lie
the fact that physical requirements ‘‘sum rules’’~Refs. 3, 15,
and 19! impose drastic conditions ongs,s8(r ) which are veri-
fied in the accurate OB-Monte Carlo calculation.

A. STLS scheme

In the past, Singwiet al.24 ~STLS! derived a famous rela
tion within the so-called ‘‘equation of the motion.’’ This re
lation connects the local-field correctionG(q) and the elec-
tron static structure factorS(q) through the functional

G~q!52
1

n0
E qW •qW 8

q82
@S~qW 2qW 8!#

dqW 8

~2p!3 . ~3!

Shaw,22 using the well-known reciprocal equation betwe
S(q) and the total~number-number! pair-correlation function
g(r ), transformed Eq.~3! into the more tractable form tha
we used,

G~h!512g~0!2E
0

`

dx
dg~x!

dx

sin~hx!

hx
, ~4!

whereh5 q/kF , kF is the Fermi wave vector, andx5kFr .
The behavior ofG(q) in the long- and short-range wave
length limits are, respectively,

lim
h→0

G~h!5gh2, ~5!

and,

lim
h→`

G~h!512g~0!. ~6!
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The latter equation@Eq. ~6!# is precisely the self-
consistency condition for the dielectric function«(q,v) ac-
cording to Kimball’s analysis19 of the fluctuation-dissipation
theorem@Eq. ~2!#. Later in this paper, the coefficientg in Eq.
~5! is evaluated and interpreted in connection with the ‘‘co
pressibility sum rule.’’ The total~number-number! pair-
correlation function is given in terms of the partial spi
dependent electron-pair-correlation functions3 gs,s8(r ),
where the indexess,s8 denote spin up~↑! or spin down~↓!.
In the case of an unpolarized electron gas, we have3,6

g~r !5
1

2
@g↑↓~r !1g↑↑~r !#. ~7!

The linearity of Eq.~4! shows that similar expressions can
written for each spin-parallel or spin-anti-parallel contrib
tion G↑↑(q) andG↑↓(q). So, we must write the static loca
field correction as

G~q!5
1

2
@G↑↓~q!1G↑↑~q!#. ~8!

Using in Eq.~4! the fitted form ofgss8(r ) given by Ortiz and
Ballone,6 Bretonnet and Boulahbak9 derived the analytic ex-
pression

G~h!512g~0!2e2z(
m50

6

Cm31F1S 12
m

2
;
3

2
;zD , ~9!

where 1F1(a;g;z) is the degenerate hypergeometric fun
tion and z5(1/4)(9p/4)2/3h2/a . The coefficientsCm are
related to the Monte Carlo fit parameters of the sp
dependent electron-pair-correlation functiongss8(r ) @see Eq.
~17! in Ref. 9# anda is one of those.

So, Eq.~9! gives the partial spin-spin-dependent contrib
tionsGs,s8(q), namely,G↑↓(q) or G↑↑(q). It should be nor-
mally indexed as shown below, Eq.~10!–Eq.~13!. However,
to simplify the notation, the indicess ands8, denoting spin
up ~↑! or spin down~↓!, are conveniently omitted in Eqs
~10!–~13!.

In their calculations, the same authors8,9 employed the
spin-anti-parallel contributionG↑↓(q) instead of the total
LFC given by Eq.~8!. They also used the eighth-order d
velopment in Taylor’s series of the degenerate hypergeom
ric function which appears in Eq.~9!. So, we have derived an
equivalent expression which is a useful improvement for
exact computation. Indeed, owing to properties
1F1(a;g;z), we rewrite Eq.~9! in terms of well-known
functions,

G~h!5P1~z!2P2~z!exp~2z2!2P3~z!
erf~z!

z

2P4~z!
D~z!

z
. ~10!

The expressions for the polynomialsPk(z) are
4-2
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P1~z!512g~0!2
C3

2
2

C5

8
~522z2!, P3~z!5

Ap

2
C0 ,

~11!

P2~z!5C21C4S 12
2

3
z2D1C6S 12

4

3
z21

4

15
z4D ,

P4~z!5C11
C3

2
~122z2!1

C5

2 S 3

4
23z21z4D ,

whereas erf(z) is the well-known error function andD(z) is
Dawson’s22 integral defined by

D~z!5exp~2z2!E
0

z

exp~j2!dj. ~12!

From Eq.~5! and Eq.~10!, we easily deduce the relationsh

g5
1

12aa2 (
m50

6

~m11!Cm , ~13!

wherea5(4/9p)1/3 and the spin-dependent coefficientsCm
are calculated for~↑↓! and ~↑↑!. It is very important to re-
member that any implemented calculation of Eq.~9! or
equivalently Eq.~10! with a set of optimal fit parameter
corresponding to the relative polarization of two spins~par-
allel ↑↑ or antiparallel↑↓! gives only the partial contribu
tions, respectively,G↑↑(q) andG↑↓(q). The behavior at the
long-wavelength limit (q→0) of the total local-field correc-
tion @Eq. ~8!# is parabolic and the coefficientg @Eq. ~5!# is
expressed in terms of the quantitiesg↑↓ and g↑↑ evaluated
according to Eq.~13!, i.e.,

g5
1

2
~g↑↓1g↑↑!. ~14!

At this stage, the main defect that STLS formalism p
sents lies on the ‘‘compressibility sum rule’’ which is n
fulfilled.20,23 Indeed, the compressibilityJ of the interacting
electron gas can be evaluated by two manners. It can firs
deduced from the correlation energyEc(r s) through the
equation.17

J0

J
512

ar s

p
1

a2

6
r s

6 d

drs
F 1

r s
2

dEc~r s!

drs
G , ~15!

or it can be evaluated via the following ‘‘sum rule,’’26 which
connectsg andJ:

J0

J
512

4ar s

p
g, ~16!

where J05(3/2)EFn0 is the free-electron compressibility
EF is the Fermi level, anda has the same value as
Eq. ~13! whereas the electron-sphere radiusr s is related to
the electron densityn0 as r s5(3/4pn0)1/3. With both Eq.
~15! and Eq.~16! having to be equal, the STLS formalism
did not fulfill this condition.20,23 Thus the STLS scheme i
inconsistent.
09420
-
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B. Vashista-Singwi scheme

Vashista and Singwi20 ~VS!, following upon the preceding
work of Singwi et al.,23 improve the inconsistent STLS
scheme by assuming the ‘‘ansatz’’ @Eq. ~29! in Ref. 20# that,
in the present context, we can rewrite with our notation

GOB-VS~q!5GOB-STLS~q!1aOB-VSS 2
q

3

]

]q

2
r s

3

]

]r s
DGOB-STLS~q!. ~17!

In the precedent equation and hereafter, the abbrevia
OB-VS means that the static local-field correction is dedu
in the VS scheme from OB Monte Carlo data, and the O
STLS and OB-UI are defined in a similar manner. Tho
corresponding to self-consistent calculations are simply
tated as STLS, VS, or UI. Likewise for Eq.~5!, at the long-
wavelength limit, we may write

lim
q→0

GOB-VS~q!5gOB-VSS q

kF
D 2

. ~18!

We select the parameteraOB-VS in Eq. ~17! and consequently
the coefficientgOB-VS in Eq. ~18! such that the ‘‘compress
ibility sum rule’’ @Eq. ~16!# is exactly verified. So, we get

aOB-VS5
3~gOB-STLS2gOB-VS!

2gOB-STLS1r s

]gOB-STLS

]r s

. ~19!

The coefficientgOB-STLS is evaluated according to Eq.~14!
and gOB-VS is deduced from Eq.~15! where the correlation
energyEc(r s) is the one computed and interpolated by Or
and Ballone6 in Perdew-Zunger16 form. In the metallic-
density range, the fitted parameteraOB-VS is found to be a
very slowly varying function ofr s and is close to the value
given in Ref. 20,aVS52/3. We found

aOB-VS50.610 3310.020 33r s20.001 49r s
211.606 92

31025r s
3 . ~20!

Combining Eq.~6! and Eq.~17!, it follows the expression of
the asymptotic value,

lim
q→`

GOB-VS~q!512g~0!2
aOB-VS

3
r s

]@12g~0!#

]r s
.

~21!

From Table I, we verify the inequality

lim
q→`

GOB-VS~q!< lim
q→`

GOB-STLS~q!. ~22!

Likewise, Shaw22 inequalities are verified as

1

2
< lim

q→`

GOB-STLS~q!<1,
1

2
< lim

q→`

GOB-VS~q!<1.

~23!
4-3
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TABLE I. Numerical values ofg defined in Eq.~5!, and of the limitq→` of LFC functions versusr s .

r s 1 3 5 10

g OB-STLS @this work: Eqs.~8! and ~10!# 0.4547 0.5114 0.5454 0.5814
STLS ~Ref. 24! 0.4561 0.5107 0.5378 0.5715

OB-VS @this work: Eq.~17!# 0.2567 0.2722 0.2850 0.3079
VS ~Ref. 20! 0.24284 0.27433 0.29184

OB-UI @this work: Eq.~27!# 0.2584 0.2664 0.2708 0.2751
UI ~Ref. 17! 0.29 0.32 0.33
TW ~Ref. 25! 0.25 0.25 0.25 0.25

lim
q→`

G~q! OB-STLS @this work: Eqs.~8! and ~10!# 0.7276 0.9078 0.9768 0.9976
OB-VS @this work: Eq.~17!# 0.6941 0.8781 0.9594 0.9940

VS ~Ref. 20! 0.7619 0.9958 1.0644 1.0724
OB-UI @this work: Eq.~27!# 0.7095 0.8893 0.9689 0.9964

UI ~Ref. 17! 0.724 0.893 0.953
TW ~Ref. 25! 0.762 0.762 0.762 0.762
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Undoubtedly Eq.~21! shows that the LFC deduced a
cording to the Vashista-Singwi scheme is not in agreem
with Kimball’s self-consistent condition@Eq. ~6!#, whereas
this condition is exactly verified in the STLS scheme. Ne
ertheless, this ascertainment must be relativized since
known that the Kimball analysis is based on the static
proximation for the dielectric function, i.e., with static LF
functionG(q) in place of the dynamical oneG(q,v) in Eq.
~1!. Precisely, Niklasson,18 considering the frequency
dependent theory of the LFC, obtained the self-consiste
condition given by Eq.~24!,

lim
q→`

G~q,v!5
2

3
@12g~0!#. ~24!

However, Holas13 inquired further into the matter and
taking account of the so-called ‘‘kinetic-energ
correlation’’12 neglected previously, has shown that the la
q behavior is actually a parabolic type. Such a correlat
corresponds to the difference between the kinetic energy
noninteracting electron system and the exact kinetic ene
of an interacting electron system.12 Nevertheless, in the the
oretical schemes that we used and for which the kinetic
ergy is that of a noninteracting electron system~see, for in-
stance, Ref. 23 and the Appendix of Ref. 24!, this ‘‘kinetic-
energy’’ part of LFC is neglected. Therefore, the stud
LFC’s converge to a constant at large enoughq values. This
constant is in keeping with the approximate relation conne
ing the local-field correction and the pair-correlation functi
@Eq. ~4! in the STLS case or, with Vashista-Singwi improv
ments, Eq.~17!#. In comparison, one will now consider
LFC, which is compatible with the Holas result. This one
obtained by extensive diffusion Monte Carlo simulations p
formed by Moroniet al.10

It is also interesting to note thatg(0), calculated from OB
Monte Carlo data,6 verifies the analytical form of Yasuhara:21

g~0!5
z

8 F x

I 1~x!G
2

, ~25!
09420
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-
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where x54(4/9p)1/6(r s /p)1/2 and I n(x) is the modified
Bessel’s function of the first kind. We have found thatz is
very close to 1.0, as in Yasuhara’s paper:

z50.984 9210.004 723r s . ~26!

C. Utsumi-Ichimaru scheme

The method that Utsumi and Ichimaru17 used consists of
splitting the LFC function into two parts corresponding, r
spectively, to the exchange contributionGx(q) and the cor-
relation effectGc(q), so that

G~q!5Gx~q!1Gc~q!. ~27!

These authors adopt the following expression for the
change term:

Gx~q!5
h2

128F111
15h2

4

1
3~42h2!~2815h2!

16h
lnU21h

22hUG with h5
q

kF
,

~28a!

and from the Heisenberg ‘‘equation of motion,’’ they a
proximateGc(q) as

Gc~q!52
1

n0
E d3kW

~2p!3 K~qW ,kW !SWS~k!@S~ uqW 2kW u!

2SHF~ uqW 2kW u!#, ~28b!

where the kernelK(qW ,kW ) has the form

K~qW ,kW !5
qW •kW

k2
1

qW •~qW 2kW !

uqW 2kW u2
. ~29!

SHF(q) andSWS(q) are, respectively, the Hartree-Fock stru
ture factor and the Wigner-Seitz screening factor whose
pressions are given by
4-4
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TABLE II. Expression ofDn(r s), nP@0,5# @Eq. ~32!# in OB-VS expansion, accurate in the rang
1<r s<3 and 3<r s<5.

1<r s<3
D0(r s)50.5933410.10489r s20.00491r s

211.7400731024r s
328.9502731025r s

4

D1(r s)520.3295120.21230r s10.00965r s
21130.4400731024r s

32145.9502731025r s
4

D2(r s)55.3059311.31679r s10.21208r s
221684.2599331024r s

311560.0497331025r s
4

D3(r s)5215.0705623.26070r s21.37773r s
217830.9400731024r s

327529.9502731025r s
4

D4(r s)522.0255414.48947r s12.61918r s
2213727.7599331024r s

3113490.0497331025r s
4

D5(r s)529.8158922.40712r s21.47717r s
217868.5400731024r s

328063.9502731025r s
4

3<r s<5
D0(r s)50.6499510.09479r s20.01191r s

2116.3000031024r s
320.1205231023r s

4

D1(r s)53.2911522.55653r s10.43412r s
216.9464531024r s

322.3905231023r s
4

D2(r s)5224.77987121.24814r s23.78282r s
21747.2464531024r s

3111.7094831023r s
4

D3(r s)5116.18740288.97349r s115.72466r s
223562.3535531024r s

3241.9505231023r s
4

D4(r s)52211.655471156.15424r s227.61189r s
217240.3464531024r s

3163.1394831023r s
4

D5(r s)5136.96029297.22916r s117.26022r s
224878.0535531024r s

3238.0805231023r s
4

3 q 1 q 3
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SHF~q!5H 4 kF
2

16UkF
U q<kF ,

1 q.kF ,

~30!

and

SWS~q!5
q2

q21qWS
2 , ~31!

whereqWS is a characteristic wave number~see Ref. 15!.

D. New expression of parametrized local-field correction

The expressions of OB-STLS local-field corrections@Eq.
~9! or Eq. ~10!# are very complex and those in OB-VS@Eq.
~17!# or OB-UI @Eq. ~27!# schemes are obtained numerical
So, we give here a very simple analytical expression wh
accurately reproduces these numerical values in the w
q-range variation and for metallic densities. We assume
following expansion ofG(h) in terms of the usual Lindhard
function Z(h),

G~h!5@12Z~h!#3(
n

Dn~r s!Z~h!n, ~32!

with

Z~h!5
1

2
1

42h2

8h
lnU21h

22hU, h5
q

kF
, ~33!

whereDn(r s) are density-dependent coefficients of the e
pansion and the prefactor@12Z(h)#, in the right-hand side
of Eq. ~32!, ensures the requirementG(0)50. There is no
reason for supposing that the exponentn in Eq. ~32! is posi-
tive if one does not want to restrict the generality. In fact
we consider the class of local-field corrections which ha
the Holas parabolic behavior at the short-wavelength li
~Refs. 10–13!, the development must be considered as
Laurent series whose first term is@D21(r s)#/Z(h) . In this
case, the Lindhard function appears as a singularity of
LFC (Z50). Indeed at a short-wavelength limit, we have
09420
h
le
e

-

f
e
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a

e

lim
h→`

G~h!5D02D211
21

4
h21OS h2D . ~34!

On the other hand, the term with the coefficientD21 does
not appear if the local-field correction is limited, as it is
the case of the present work. The coefficientsDn(r s) which
contain the physical information on the exchange and co
lation effects are really unknown. They may be obtained b
fitting as in this work. From the properties of the Lindha
function, one can write three criteria that these coefficie
should verify,

D21~r s!50,

D0~r s!5 lim
h→`

G~h! ~ if the LFC is limited!, ~35!

(
n

Dn~r s!50, ~36!

and forg already defined in Eq.~5!,

g52
1

12(
n

n@Dn~r s!2Dn21~r s!#. ~37!

III. RESULTS AND DISCUSSION

We carried out the local-field correctionG(q) following
the three theoretical approaches described in the prev
sections. For every considered case, we used the s
dependent electron-pair-correlation functiongs,s8(r ) and the
correlation energyEc(r s), both parametrized by Ortiz an
Ballone.6 Our numerical results are displayed from Table I
Table III and in Fig. 1 to Fig. 5.

In Table I, the limit behavior in the long and short wav
lengths of calculated LFC’s are reported for different valu
of r s . The accurate fitting parametersDn(r s) defined in Eq.
~32! are reported in Table II~OB-VS case! and in Table III
~OB-IU case!.

We plot in Fig. 1 the shape of the spin-anti-parallel co
4-5
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TABLE III. Expression of Dn(r s), nP@0,6# @Eq. ~32!# in OB-UI expansion, accurate in the rang
1<r s<5.

1<r s<5
D0(r s)50.5735310.15100r s20.01472r s

220.51000931023r s
311.1706631024r s

4

D1(r s)520.2857820.78691r s20.12015r s
2171.5299931023r s

3269.1293431024r s
4

D2(r s)512.5017613.83749r s11.11258r s
22554.4800131023r s

31531.3706631024r s
4

D3(r s)5261.25749211.63239r s24.21829r s
212035.0399931023r s

321952.6293431024r s
4

D4(r s)5167.31876120.85378r s17.66303r s
223744.6400131023r s

313608.5706631024r s
4

D5(r s)52186.10675218.83851r s26.79233r s
213367.4799931023r s

323256.5293431024r s
4

D6(r s)570.4567116.56586r s12.34771r s
221173.6800131023r s

311137.6706631024r s
4

he
et

m

-

lly

of
V
re-

t.
rt-

, the

r
n

t
r
p

d

tribution G↑↓(q) in the STLS scheme@the curve called ‘‘ex-
act OB-STLS~↑↓!’’ # calculated exactly according to Eq.~10!
and under the control of Eq.~4! which also may be carried
out numerically. We reproduce in the same figureG↑↓(q)
calculated following Bretonnet-Boulahbak9 and Boulahbak
et al.8 according to Eq.~9! and using as these authors t
eighth-order expansion of the degenerate hypergeom
function @the curve called ‘‘approximate OB-STLS~↑↓!’’ #.
As may be seen, the mathematical approximation assu
by these authors is only found in the rangeq&1.2kF . The
correct total STLSG(q) @the curve called ‘‘exact total OB
STLS’’ including ~↑↓! and ~↑↑! contributions# calculated ac-
cording to Eq.~8! and Eq.~10! is also reproduced.

We compare, in Fig. 2, the LFC determined numerica
within a Monte Carlo OB-VS scheme@Eq. ~17!# to the LFC

FIG. 1. Static local-field correction in the STLS scheme forr s

53. Our exact calculation@Eq. ~10!# of the anti-parallel-spin par
OB-STLS ~↑↓! ~short-dash-dotted line! is compared with the othe
one based on Eq.~9! with the hypergeometric function expanded u
to eighth order~dotted line! as in Ref. 9. The exact total local-fiel
correction OB-STLS@Eq. ~8! and Eq.~10!# including ~↑↓! and~↑↑!
contributions, is also shown~continuous line!.
09420
ric

ed

according to the initially self-consistent screening theory
Vashista and Singwi~the numerical values are from Table I
in Ref. 20!. We should notice here that both curves are
markably identical forq&2kF . The differences for higherq
values which one observes between OB-VS and VS~self-
consistent! are, from a theoretical point of view, significan
They show the limit of the theoretical model in the sho
range correlation. We explain the differences for largeq val-
ues by the fact that, in real space and for small distances
VS radial distribution functiong(r ) has an unsatisfactory
behavior. It takes even unphysical negative values for
& 1/2kF ~Fig. 2 in Ref. 20!. On the other hand, as input i
the OB-VS calculation~present work!, the functiong(r ) is
positive in the whole range of distancer and satisfies main
physicals requirements~‘‘sum rules’’!.6 Both LFC curves of
OB-VS obtained numerically according to Eq.~17! or by our
fitting expression@Eq. ~32!# can practically not be distin-

FIG. 2. Static local-field correction in the VS scheme forr s

53. The VS self-consistent calculation~Ref. 20! ~short-dashed line!
is compared with our results: the exact OB-VS@Eq. ~17!# ~continu-
ous line! and the accurate fitting of OB-VS@Eq. ~32!# ~dotted line!
can practically not be distinguished in the wholeq range. The ab-
solute value of their difference~error! is scaled by a factor of 10
~dash-dot-dotted line, right scale!.
4-6
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guished in the wholeq range. They are in agreement
within 1%. Their difference~‘‘absolute value of the error’’!
is also shown in the same figure with another scale and
be neglected.

Our results performed in the OB-UI scheme are displa
in Fig. 3. For the sake of comparison with the correspond
self-consistent LFC curve shown in Refs. 15 and 17, so
points are picked up from the latter and are reported in
same figure. The calculations are carried out withr s54 and
we used a logarithmic scale for the abscissa. One can m
the same comments as those for Fig. 2. First OB-UI and
~self-consistent! are in good agreement for long-range wav
lengths~from q50 to q'2kF) and for the short-range wave
length limit (q→`) ~see Table I!. As regards the intermedi
ate range, the sharp logarithmic singularity atq52kF is
enhanced in the self-consistent calculation. On the o
hand in our Monte Carlo–based work~OB-UI!, the mini-
mum is deeper than the one corresponding to the s
consistent calculation. Once again our fitting expression@Eq.
~32!# reproduces very accurately OB-UI obtained nume
cally in the wholeq range.

Finally, our results are collected in Fig. 4 and are co
pared to the Toigo-Woodruff25 ~TW! density-independen
LFC which was obtained numerically in a ‘‘first-principle
calculations.’’ One remarks on the singular behavior of
OB-STLS curve in the short-range limit in connection wi
the STLS inconsistency. All LFC curves except OB-STL
are in good agreement in the short range fromq50 to q
'0.5kF . Furthermore, we observe that OB-VS agrees w
TW in the rangeq50 to q'kF .

FIG. 3. Static local-field correction in the UI scheme forr s

54. The few points of UI’s LFC picked up from Ref. 17~open
circles! are compared with our corresponding LFC’s: the ex
OB-UI @Eq. ~27!# curve ~continuous line! practically masks the ac
curate fitting@Eq. ~32!# of the OB-UI curve~dotted line!. The ab-
solute value of their difference~error! is scaled by a factor of 10
~dash-dot-dotted line, right scale!.
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FIG. 4. Our exact Monte Carlo–derived results are grouped
gether to be compared: OB-STLS~dash-dot-dotted line!, OB-VS
~continuous line!, and OB-UI ~short-dashed line!. The LFC of
Toigo-Woodruff ~Ref. 25! ~TW! is also presented~dotted line!.

FIG. 5. Our exact Monte Carlo–derived results are grouped
gether to be compared to the LFC curve~open circles! obtained by
Moroni et al. ~Ref. 10! ~MCS! from extensive diffusion Monte
Carlo simulations with 38, 54, and 66 particles and within t
density-density~linear-! response function: OB-VS~continuous
line! and OB-UI ~short-dashed line!. The Toigo-Woodruf~Ref. 25!
~TW! function is also reported~dotted line!.
4-7
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One common feature of the foregoing LFC’s lies in t
fact that they have a finite limit behavior at largeq. On the
contrary, Fig. 5 reveals the monotonic increase of the L
given by Moroniet al.10 ~MCS!. This noticeable feature sug
gests that the MCS results may be in agreement with
q2-limit behavior foreseen by Holas.13 As has been empha
sized previously, this typical behavior is in keeping with t
‘‘kinetic correlation effect’’ whose contribution is included i
MCS results and neglected in the other LFC’s. Indeed,
LFC of MCS is extracted directly from the ‘‘full density
density response function’’10 obtained by extensive diffusion
Monte Carlo simulations with 38, 54, and 66 particles. T
‘‘kinetic correlation effect’’ part of the LFC function, de
noted asGn by Richardson and Ashcroft,11 vanishes at smal
q values and is substantial atq values roughly beyond 2kF
~Fig. 3 of Ref. 11!. It follows that MCS results are signifi
cantly larger than those of the LFC considered previously
q*kF for OB-VS or atq*2kF for OB-UI. Otherwise, our
OB-VS curve agrees well with the quantum Monte Carl
derived LFC obtained by MCS betweenq'0 andq'kF and
our OB-UI curve is in good agreement with MCS resu
betweenq'0 andq'2kF .
ys

.

09420
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e

e

e

t

IV. CONCLUSION

From Monte Carlo results presented in the literature
Ortiz and Ballone, we carried out numerically the local-fie
correction using three schemes within the so-called ‘‘eq
tion of motion’’ formalism. Each of them corresponds to th
manner for truncating the Bogoliubov-Born-Gree
Kirkwood-Yvon hierarchy of the kinetic equation. We ind
cate the origin of some inaccuracies in earlier publish
work. We discuss precisely the domain of validity of th
classical formalism. Finally, we give a simple analytical e
pression to implement the calculations in VS and UI schem
which furthermore captures the main physical features gi
by Monte Carlo simulation.
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