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From the fixed-node diffusion Monte Carl®MC) results obtained by Ortiz and Ballohehys. Rev. B0,
1391(1994], we develop semianalytic expressions of the static local-field correti®@) for the dielectric
function describing exchange and correlation effects in a homogeneous electron gas. These expressions, cor-
recting some errors of earlier papers, are derived following the Vashista-SiRgws. Rev. BS, 875(1972)]
and Utsumi-IchimaryPhys. Rev. B22, 5203 (1980] schemes. Both satisfy physical requirements as the
“compressibility sum rule” for an interacting fermion system. The behavior of these LFC functions is dis-
cussed and compared with the well-known LFC’s given in the literature. More tractable density-dependent
expressions are given in order to allow easy calculations of physical properties without losing accuracy relative
to DMC numerical results.
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[. INTRODUCTION how the self-consistent calculation of the local-field correc-

tion may be replaced by a direct calculation following three

The local-field correctionLFC) function describes ex- approaches referenced by OB-STLS, OB-VS, and OB-UI
change and correlation effects in an electron gas. Its detefnd described shortly, respectively, in Secs. Il A, IIB, and
mination is one of the fundamental problems of physics andl C. In Sec. II D, we give simple and useful expressions very

stays always of topicality.*® Several theories based on the close to the numerical calculations carried out, respectively,

technique®-2°lead to various form&(q) of this important Carlo—derived LFC functions are discussed and compared to
quantity. The quantum Monte Carlo simulafidfiis an in- the corresponding self-consistent calculations and to other

teresting tool of investigation of the electron system. Ortizv"e”'kno"\’n LFC func_tlons n Se_c. lll. Finally, in Sec. IV we .
and Balloné& (OB) performed such calculations by using the pre_se”t our conclusion. Later in the paper we use atomic
variational Monte CarldVMC) method and the fixed-node UN'ts throughouth =m=e=1.

diffusion Monte CarlodDMC) method. These authors gave a

parametrized expression of the spin-dependent electron-pair Il. THEORETICAL BACKGROUND

correlation functiorg”""(r) from which one can deduce ina  The dynamical local-field correctio(q, ) and the di-
straightforward manner the totalnumber-number pair-  electric functions (q,w) are related through the most general
correlation functiorg(r) and the static electron structure fac- equatioi>?°
tor S(q). Within the “equation of motion” formalism,
Singwi et al?* (STLS) gaveG(q) as a functional of5(q). v(9) xo(q, @)
Bretonnet and Boulahbakusing this functional and OB &(g,0)=1~ 1+v(q)G(q,w)xo(0, )’
Monte Carlo results, obtained a semianalytical expression for
G(q). In their original papetrand in the applications to lig- where xo(q,) is the usual dynamical polarizability of a
uid metals which followed, they used a mathematical ap- free-electron gas ang(q) = 4/q? is the Fourier transform
proximation and omitted the spin-parallel contribution to of the Coulomb potential. One notes that the random-phase
G(q). Furthermore and beyond this remark, it is well approximation(RPA) corresponds td5(g,w)=0 and that
knowrf®Zthat the STLS approach leads to a lack of consisthe Hartree-Fock approximation corresponds G4q,w)
tency and a failure to satisfy the “compressibility sum rule” =1. Equation(1) serves in a sense as the usual definition of
which is very important for the study of metal properties. So,the dynamical LFC. The latter depends on the wave vegtor
in the present work, we take into account the improvementand the frequency although in the literatures(q,w) is
to the original formalism proposed by Vashista-Sintjwi thought to be weakly dependent @an So, in the static ap-
(VS) and Utsumi-Ichimart! (Ul) to get numerically the proximation, Eq.(1) is mostly written with only the static
local-field correctionG(q) and parametrize it with andd  local-field correctionG(q) in place of the dynamical one. In
hoc’ expression. the classical formalism, the fluctuation-dissipation
This paper is organized as follows: in Sec. Il, we intro- theorent**®takes an important place and leads to the funda-
duce briefly some of the main ingredients of the dielectricmental expression in which the static electron structure factor
function within the semiclassical formalism since a veryis given as a functional of the imaginary part of the dielectric
thorough description is given by many authors. We showfunction2®

()
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1 (" 1 The latter equation[Eq. (6)] is precisely the self-
S(Q):—mq JO doly 2@’ (2)  consistency condition for the dielectric functietiq, ») ac-

cording to Kimball's analysi$ of the fluctuation-dissipation
theorem Eq. (2)]. Later in this paper, the coefficientin Eq.
consistent calculation of thés) is evaluated and interpreted in connection with the “com-

LFC and other quantities defined above combines previouBressibility sum rule.” The total(number-number pair--
equations and a closure relation to be found. This relatioffO'elation function is given in terms of the partial spin-
supposes a detailed knowledge of the electron system. Suélependent  electron-pair-correlation  functibng” (r),

a relation may be obtained if we solve the Born-Greenwhere the indexes,o’ denote spin ugf) or spin down(|).
“equation of motion”** relating the three-body distribution In the case of an unpolarized electron gas, we have
function to the two-body distribution function. With the aim

of solving the Born-Green equation, different approaches or 1 H 1

schemes with more or less justified assumptions and approxi- 9( =39 (N+g"(n]. (7)
mations were proposed in the past. Each of them leads to a

specific form of the closure relation. Another possibility of- The linearity of Eq(4) shows that similar expressions can be
fers interesting perspectives, the one that uses the results wtitten for each spin-parallel or spin-anti-parallel contribu-
Monte Carlo simulation. We choose this solution becauseion G''(q) andG'!(q). So, we must write the static local-
these results like those of Ortiz and BallBrend Ceperley field correction as

et al1® are more and more refined. In our work, in place of a

self-consistent calculation, we used the parametrized expres- 1

sion for the spin-dependent electron-pair-correlation function G(q)= E[G”(q) +G!(q)]. (8)
g"""(r) published by Ortiz and Ballorfeand performed a
straightforwardlyG(q) calculation by successively consider-
ing three different closure relations that we call also scheme
or approaches. The interest of the method that we used lies

whereng is the number density.
So, a semiclassical and self-

Using in Eq.(4) the fitted form ofg""'(r) given by Ortiz and
Ballone® Bretonnet and Boulahb&klerived the analytic ex-

the fact that physical requirements “sum rulg&efs. 3, 15, ession

and 19 impose drastic conditions af*“'(r) which are veri- 6 .

fied in the accurate OB-Monte Carlo calculation. G(m=1-g(0)—e *> C,xFyl1- %i 5;2), ©
n=0

A. STLS scheme where 1F,(«;7y;2) is the degenerate hypergeometric func-

In the past, Singwet al** (STLS) derived a famous rela- tion and z=(1/4)(97/4)?®7%/a. The coefficientsC, are
tion within the so-called “equation of the motion.” This re- related to the Monte Carlo fit parameters of the spin-

lation connects the local-field correcti@X(q) and the elec-  gependent electron-pair-correlation functigff (r) [see Eq.

tron static structure factds(q) through the functional (17) in Ref. 9] anda is one of those.
. N So, Eq.(9) gives the partial spin-spin-dependent contribu-
G(q)=— 1(aad [S(G—G)] dg 3) tionsG”7(q), namely,G'!(q) or G''(q). It should be nor-
3 .
No 2 (2m) mally indexed as shown below, EG.0)—Eq.(13). However,

to simplify the notation, the indices ando’, denoting spin

Shaw?? using the well-known reciprocal equation betweenUpP (1) or spin down(]), are conveniently omitted in Egs.
S(q) and the totalnumber-numbeérpair-correlation function (10—(13.

g(r), transformed Eq(3) into the more tractable form that !N their calculations, the same agttfb?%mployed the
we used, spin-anti-parallel contributiorG'!(q) instead of the total

LFC given by Eq.(8). They also used the eighth-order de-
dg(x) sin(7x) velopment in Taylor’s series of the degenerate hypergeomet-
(4) ric function which appears in E9). So, we have derived an
equivalent expression which is a useful improvement for an
exact computation. Indeed, owing to properties of
1Fi(a;v;2), we rewrite Eq.(9) in terms of well-known

Gim=1-9(0)- | ax "G

where n= g/kg, kg is the Fermi wave vector, and=Kgr.
The behavior ofG(q) in the long- and short-range wave-

length limits are, respectively, functions,
: erf(z
fim G(n)=yr" ©® G(n)=P1(2)~Pal2iexp(~2)~Pa(2) :
D(z
and. P 10
lim G(7)=1-9(0). (6) ' _
700 The expressions for the polynomidg(z) are
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whereas erf]) is the well-known error function anB(z) is
Dawson’$? integral defined by

D(z)=exp —7°) J OZ exp(£2)dé. (12

From Eq.(5) and Eq.(10), we easily deduce the relationship

6

V= Tma? 2 (W DG (13
where @=(4/9m) and the spin-dependent coefficieids
are calculated fof7]) and (11). It is very important to re-
member that any implemented calculation of E§) or
equivalently Eqg.(10) with a set of optimal fit parameters
corresponding to the relative polarization of two spipar-
allel 17 or antiparallel|) gives only the partial contribu-
tions, respectivelyG''(q) andG'!(q). The behavior at the
long-wavelength limit ¢— 0) of the total local-field correc-
tion [Eq. (8)] is parabolic and the coefficient [Eq. (5)] is
expressed in terms of the quantitigs’ and y!! evaluated
according to Eq(13), i.e.,

1
y=5(y T, (14

PHYSICAL REVIEW B 68, 094204 (2003

B. Vashista-Singwi scheme

Vashista and Singwf (VS), following upon the preceding
work of Singwi et al,?® improve the inconsistent STLS
scheme by assuming thafisatZ [Eq. (29) in Ref. 2( that,
in the present context, we can rewrite with our notation

J

Gogvs(d) = Gop-stidd) + aos-vs( - g 7q
re d

3 o’?_rs) Gop-stLdd)- 17
In the precedent equation and hereafter, the abbreviation
OB-VS means that the static local-field correction is deduced
in the VS scheme from OB Monte Carlo data, and the OB-
STLS and OB-Ul are defined in a similar manner. Those
corresponding to self-consistent calculations are simply no-
tated as STLS, VS, or Ul. Likewise for E¢p), at the long-
wavelength limit, we may write

_ q\?
lim GOB—VS(q):'yOB—VS<k_F) . (18)

a—0

We select the parametapg.ys in Eq. (17) and consequently
the coefficientyqg.ys in EQ. (18) such that the “compress-
ibility sum rule” [Eq. (16)] is exactly verified. So, we get

3(YoB-sTLS™ YOB-VS)

aop-vs= (19

JdYoB-sTLS

2y0B-sTLst s ar
S

The coefficientypg.sT. s IS evaluated according to E¢l4)
and yog.vs is deduced from Eq(15) where the correlation
energyE(rs) is the one computed and interpolated by Ortiz
and Balloné in Perdew-Zungéf form. In the metallic-
density range, the fitted paramei&sg.ys is found to be a

At this stage, the main defect that STLS formalism pre-Very slowly varying function of 3 and is close to the value

sents lies on the “compressibility sum rule” which is not
fulfilled.?>?®Indeed, the compressibilit§ of the interacting

electron gas can be evaluated by two manners. It can first be

deduced from the correlation enerdy,(rs) through the
equationt’

Eo_ arg  a? ¢ d |1 dEc(ry)
= =1 + 6 I’Sdrs r—g ar. | (15

or it can be evaluated via the following “sum rulé®which
connectsy and E:

darg

| 10

s (16)

T

where E o= (3/2)Egn, is the free-electron compressibility,
Er is the Fermi level, andx has the same value as in
Eqg. (13) whereas the electron-sphere radiyss related to
the electron density as rs=(3/4mwny)*%. With both Eq.
(15 and Eq.(16) having to be equal, the STLS formalism
did not fulfill this condition?>2® Thus the STLS scheme is
inconsistent.

given in Ref. 20,ays=2/3. We found

aop.vs=0.61033+0.020 33,—0.001 492+ 1.606 92
X1075r3. (20)

Combining Eq.(6) and Eq.(17), it follows the expression of
the asymptotic value,

0BVS d[1-9g(0)]
3 s '

a
lim Gog.ys(q)=1—9(0)—

q—® arS
(21)
From Table |, we verify the inequality
lim Gop.vs(d)=<lim Gop.st Q). (22
q—® g—o°
Likewise, ShaW” inequalities are verified as
1 1
5= lim Gogstidd)<1, 7= lim Gog.vs(q)<1.
q~>:>c q~>:>0
(23
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TABLE I. Numerical values ofy defined in Eq(5), and of the limitq—co of LFC functions versus.

re 1 3 5 10
b% OB-STLS|this work: Eqgs.(8) and(10)] 0.4547 0.5114 0.5454 0.5814
STLS (Ref. 29 0.4561 0.5107 0.5378 0.5715
OB-VS [this work: Eq.(17)] 0.2567 0.2722 0.2850 0.3079
VS (Ref. 20 0.24284 0.27433 0.29184
OB-UI [this work: Eq.(27)] 0.2584 0.2664 0.2708 0.2751
Ul (Ref. 179 0.29 0.32 0.33
TW (Ref. 25 0.25 0.25 0.25 0.25
lim G(q) OB-STLS|this work: Eqgs.(8) and(10)] 0.7276 0.9078 0.9768 0.9976
q—e OB-VS [this work: Eq.(17)] 0.6941 0.8781 0.9594 0.9940
VS (Ref. 20 0.7619 0.9958 1.0644 1.0724
OB-UI [this work: Eq.(27)] 0.7095 0.8893 0.9689 0.9964
Ul (Ref. 19 0.724 0.893 0.953
TW (Ref. 25 0.762 0.762 0.762 0.762

Undoubtedly Eq.(21) shows that the LFC deduced ac- where x=4(4/97)Y5(rs/m)Y? and 1 ,(x) is the modified
cording to the Vashista-Singwi scheme is not in agreemenBessel’s function of the first kind. We have found ttais
with Kimball's self-consistent conditiofEq. (6)], whereas very close to 1.0, as in Yasuhara’s paper:
this condition is exactly verified in the STLS scheme. Nev-

ertheless, this ascertainment must be relativized since it is {=0.98492+0.004 72<r. (26)
known that the Kimball analysis is based on the static ap-
proximation for the dielectric function, i.e., with static LFC C. Utsumi-Ichimaru scheme

function G(q) in place of the dynamical on&(q,w) in Eq.

(1). Precisely, Niklassoff considering the frequency-
dependent theory of the LFC, obtained the self- con5|stenc¥
condition given by Eq(24),

The method that Utsumi and Ichimafwsed consists of
splitting the LFC function into two parts corresponding, re-
pectively, to the exchange contributi@)(q) and the cor-
relation effectG.(q), so that

lim G(q,w) —[1 g(0)]. (24) G(q)=Gx(q) +G¢(q). (27)

q—c These authors adopt the following expression for the ex-

o _ change term:
However, Hola¥® inquired further into the matter and,

taking account of the so-called “kinetic-energy 7? 15772

correlation”*? neglected previously, has shown that the large Cx(@)= 175 128 11+ 4

g behavior is actually a parabolic type. Such a correlation

corresponds to the difference between the kinetic energy of a 3(4—7°)(28+57%) |2+ 7| : _q
noninteracting electron system and the exact kinetic energy + 167 In 2— 7]\ with 7= k_F
of an interacting electron systethNevertheless, in the the-

oretical schemes that we used and for which the kinetic en- (283

ergy is that of a noninteracting electron systésee, for in- and from the Heisenberg “equation of motion,” they ap-
stance, Ref. 23 and the Appendix of Ref)2this “kinetic-  proximateG.(q) as
energy” part of LFC is neglected. Therefore, the studied
LFC’s converge to a constant at large enoggbalues. This - -
constant is in keeping with the approximate relation connect-  Gc(@) =~ n_f WK(q,k)SWS(k)[SQq— kD)
ing the local-field correction and the pair-correlation function 0
[Eg. (4) in the STLS case or, with Vashista-Singwi improve- —Sue(|G— R|)], (28b)
ments, Eq.(17)]. In comparison, one will now consider a
LFC, which is compatible with the Holas result. This one iswhere the kerneK(d,k) has the form
obtained by extensive diffusion Monte Carlo simulations per-
formed by Moroniet al° . G-k §-(G-k

It is also interesting to note thg(0), calculated from OB K(q,k)= TR (29
Monte Carlo dat&,verifies the analytical form of Yasuhafa: |G-k

>

Sue(q) andSy5(q) are, respectively, the Hartree-Fock struc-
(25) ture factor and the Wigner-Seitz screening factor whose ex-
pressions are given by

2

¢
9(0)=§ 0
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TABLE Il. Expression ofD,(rs), ne[0,5] [Eqg. (32)] in OB-VS expansion, accurate in the ranges
1<rs=<3 and 3<r =5b.

1srg=3
Do(rs)=0.59334+0.10489 ,— 0.00491 2+ 1.74007% 10 *r3—8.95027 10 °r2
D4(rg)=—0.329510.21230,+0.009652+ 130.4400% 10 *r3—145.9502% 10 °r?
D,(rs)=5.30593 1.31679,+0.212082— 1684.2599% 10 *r3+ 1560.0497% 10 >r?
Ds(rg)=—15.07056- 3.26070,— 1.377732+ 7830.9400K 10 *r3—7529.9502% 10 °r?
D4(rs)=22.02554- 4.4894T .+ 2.619182— 13727.7599% 10 *r+ 13490.0497% 10 °r?
Ds(rg)=—9.81589-2.40712,— 1.4771F2+7868.5400% 10 “r3—8063.9502% 10 °r?
3=rs=5
Do(rs)=0.64995+0.09479—0.011912+ 16.3000 10 *r3—0.12052< 10 °r2
D4(rg)=3.29115-2.55653 -+ 0.434122+6.94645< 10 *r3—2.39052< 10 3r?
Dy(rs)=—24.7798% 21.24814,— 3.782822+ 747.2464% 10 *r3+11.7094& 10 °r?
D(rs)=116.18740-88.97349,+ 15.724662— 3562.3535% 10 “r3—41.9505% 10 3r?
Dy4(re)=—211.6554% 156.15424,— 27.611892+ 7240.34645% 10 *r3+63.13948& 10 3r?
Ds(re) =136.96029-97.22916,+ 17.260222— 4878.0535% 10 “r3—38.0805% 10 r?

S 1197 M G(7)=Dy-D_1+ 2t y240 1) (34)
————— <Kg, im =Dy—D_ — .
Su(q)=1 4 ke 16/ke - (30 e B B
1 9>k, On the other hand, the term with the coefficiént ; does
and not appear if the local-field correction is limited, as it is in
5 the case of the present work. The coefficieDtgrs) which
9 31) contain the physical information on the exchange and corre-
Sws(@) = q°+ qsvs' lation effects are really unknown. They may be obtained by a
. o fitting as in this work. From the properties of the Lindhard
whereqys is a characteristic wave numbgsee Ref. 1b function, one can write three criteria that these coefficients

should verify,
D. New expression of parametrized local-field correction

The expressions of OB-STLS local-field correctidis).
(9) or Eq.(10)] are very complex and those in OB-V{&q. Do(r)= lim G if the LEC is limite 35
(17)] or OB-UI [Eqg. (27)] schemes are obtained numerically. o(T's) () d. 39
So, we give here a very simple analytical expression which
accurately reproduces these numerical values in the whole

D,l(rs)IO,

7—

g-range variation and for metallic densities. We assume the > Dy(re)=0, (36)
following expansion ofG(#») in terms of the usual Lindhard "
function Z( %), and for y already defined in E(5),
1
G(n)=[1—Z(77)]><2 Dn(rs)Z(m)", (32 [ TP N[Dp(rs) =Dp-1(rg)]. (37)
with
Ill. RESULTS AND DISCUSSION
1 4—9% [2+479 q _ _ _ _
Z(np)=5+——In|z7—, =+, (33 We carried out the local-field correctida(q) following
2 87 2—7 ke

the three theoretical approaches described in the previous
whereD,(ry) are density-dependent coefficients of the ex-Sections. For every considered case, we used the spin-
pansion and the prefactpt —Z(7)], in the right-hand side dependent electron-pair-correlation functigh? (r) and the

of Eq. (32), ensures the requireme(0)=0. There is no  correlation energ\E.(rs), both parametrized by Ortiz and
reason for supposing that the exponerin Eq. (32) is posi-  Ballone® Our numerical results are displayed from Table | to
tive if one does not want to restrict the generality. In fact, if Table Il and in Fig. 1 to Fig. 5.

we consider the class of local-field corrections which have In Table I, the limit behavior in the long and short wave-
the Holas parabolic behavior at the short-wavelength limitengths of calculated LFC’s are reported for different values
(Refs. 10-13 the development must be considered as &f ry. The accurate fitting parameteds,(r¢) defined in Eq.
Laurent series whose first term[i® _1(rs)1/Z(7%) . In this  (32) are reported in Table I{OB-VS casg¢ and in Table IlI
case, the Lindhard function appears as a singularity of théOB-IU case.

LFC (Z=0). Indeed at a short-wavelength limit, we have We plot in Fig. 1 the shape of the spin-anti-parallel con-
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TABLE Ill. Expression of D,(rs), ne[0,6] [Eq. (32)] in OB-Ul expansion, accurate in the range

1<r <5.

Isrg=5
Do(rs)=0.57353+0.15100,— 0.014722—0.51000% 10 °r3+1.17066< 10 “r?

D4(rs)=—0.28578-0.78691 ,— 0.120152+71.5299K 10 3r3— 69.12934 10 *r?

D,(rs)=12.50176+ 3.83749 -+ 1.112582—554.4800% 10 3r3+531.37066 10 “r
Dj(rg)=—61.25749-11.63239,— 4.218292+ 2035.0399% 10 °r3—1952.6293% 10 *r2

D4(rs)=167.31876-20.85378,+ 7.663032— 3744.6400K 10 3r 3+ 3608.57066 10 *r2
Ds(r)=—186.10675 18.8385%,— 6.792382+3367.4799% 10 °r3—3256.5293% 10 *r?
Dg(rs)=70.45671 6.56586 .+ 2.347712—1173.6800K 10 3r+1137.67066 10 *r?

tribution G''(q) in the STLS schemthe curve called “ex- according to the initially self-consistent screening theory of
act OB-STLS(1])" ] calculated exactly according to Ed.0) Vashista and Singw(ithe numerical values are from Table IV
and under the control of Eq4) which also may be carried in Ref. 20. We should notice here that both curves are re-
out numerically. We reproduce in the same fig@é'(q) markably identical folq=2kg . The differences for highey
calculated following Bretonnet-Boulahbaknd Boulahbak values which one observes between OB-VS and (¥&f-
et al® according to Eq(9) and using as these authors the consistentare, from a theoretical point of view, significant.
eighth-order expansion of the degenerate hypergeometrithey show the limit of the theoretical model in the short-
function [the curve called “approximate OB-STL&])" . range correlation. We explain the differences for laggeal-
As may be seen, the mathematical approximation assumages by the fact that, in real space and for small distances, the
by these authors is only found in the range1.2kz. The VS radial distribution functiong(r) has an unsatisfactory
correct total STLSG(q) [the curve called “exact total OB- behavior. It takes even unphysical negative values rfor
STLS” including (1]) and(11) contributiong calculated ac- = 1/2kg (Fig. 2 in Ref. 20. On the other hand, as input in
cording to Eq.(8) and Eq.(10) is also reproduced. the OB-VS calculatior{present work the functiong(r) is

We compare, in Fig. 2, the LFC determined numericallypositive in the whole range of distanceand satisfies main
within a Monte Carlo OB-VS schenf&q. (17)] to the LFC  physicals requirement$sum rules”).® Both LFC curves of

OB-VS obtained numerically according to E47) or by our

T j fitting expressionEg. (32)] can practically not be distin-
0 exact total OB-STLS (this work, Eq. 8/10)
£ —-—- exact OB-STLS (1) (this work, Eq.10) - .
< - - - imate OB-STLS (Tl f. [9 -
2 1.0 ERRERELES (el [ exact OB-VS (this work: Eq. 17)
) T - - = fitted OB-VS (this work: Eq. 32)
= g 1,0 =—--- abs. val. of the error (right scale) 40,10
@ e e - = — % -=== VS self-consistent, ref. [20]
= PP 7 -
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FIG. 1. Static local-field correction in the STLS scheme rfgr FIG. 2. Static local-field correction in the VS scheme fqr

=3. Our exact calculatiofEqg. (10)] of the anti-parallel-spin part =3. The VS self-consistent calculati¢Ref. 20 (short-dashed line
OB-STLS (7)) (short-dash-dotted linds compared with the other is compared with our results: the exact OB-M3y. (17)] (continu-
one based on E9) with the hypergeometric function expanded up ous line and the accurate fitting of OB-VEEQ. (32)] (dotted ling
to eighth order(dotted ling as in Ref. 9. The exact total local-field can practically not be distinguished in the whojegange. The ab-
correction OB-STLSEq. (8) and Eq.(10)] including(1]) and(17) solute value of their differencéerron is scaled by a factor of 10
contributions, is also showttontinuous ling (dash-dot-dotted line, right scale
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1,5 ———— —————— 0,15 : T
exact OB-UlI (this work: Eq. 27) =« =+ exact OB-STLS (this work: Eq. 8/10)
- fitted OB-UI (this work: Eq. 32) 5 exact gg-t/”S (:jls WOLlf:EEq-2177)
=== abs. val. of the error (right scale) 21,0 - ==== gxact OB-UI (this work: Eq. 27)
T O Ul self-consistent, ref.[17] g == = TWref. [25] 2
aE> o cE> ! '
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=) x ¢ e el :'_‘_'
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3 G 0
© S g N
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FIG. 3. Static local-field correction in the Ul scheme for FIG. 4. Our exact Monte Carlo—derived results are grouped to-

=4. The few points of UI's LFC picked up from Ref. 1pen  gother to be compared: OB-STL@ash-dot-dotted line OB-VS
circleg are compared with our corresponding LFC's: the eXact . ,ntinuous ling and OB-UI (short-dashed line The LFC of

OB-UI [Eq. (27)] curve (continuous ling practically masks the ac- Toigo-Woodruff(Ref. 25 (TW) is also presentetotted ling.
curate fitting[Eq. (32)] of the OB-UI curve(dotted ling. The ab-

solute value of their differencéerron is scaled by a factor of 10
(dash-dot-dotted line, right scale

guished in the wholeg range. They are in agreement to

within 1%. Their differencg“absolute value of the errop’

is also shown in the same figure with another scale and can

be neglected. exact OB-VS (this work: Eq. 17)
Our results performed in the OB-Ul scheme are displayed ==== exact OB-Ul (this work: Eq. 27)

. . . . . = = = TWref. [25]

in Fig. 3. For the sake of comparison with the corresponding O MCS ref. [10] o o

self-consistent LFC curve shown in Refs. 15 and 17, some

points are picked up from the latter and are reported in the

same figure. The calculations are carried out with 4 and

we used a logarithmic scale for the abscissa. One can make

the same comments as those for Fig. 2. First OB-Ul and Ul

(self-consistentare in good agreement for long-range wave-

lengths(from g=0 to g~ 2kg) and for the short-range wave-

length limit (q—<) (see Table)l As regards the intermedi-

ate range, the sharp logarithmic singularity et 2kg is

enhanced in the self-consistent calculation. On the other

hand in our Monte Carlo—based wofl©B-Ul), the mini-

mum is deeper than the one corresponding to the self-

consistent calculation. Once again our fitting exprespitm

(32)] reproduces very accurately OB-Ul obtained numeri-

cally in the wholeq range. 00 . . .
Finally, our results are collected in Fig. 4 and are com- "0 2 4

pared to the Toigo-Woodrdfff (TW) density-independent gkt

LFC which was obtained numerically in a “first-principles g1, 5. our exact Monte Carlo—derived results are grouped to-

calculations.” One remarks on the singular behavior of thegether to be compared to the LFC curtemen circley obtained by

OB-STLS curve in the short-range limit in connection With pmoroni et al. (Ref. 10 (MCS) from extensive diffusion Monte

the STLS inconsistency. All LFC curves except OB-STLScarlo simulations with 38, 54, and 66 particles and within the

are in good agreement in the short range frgm0 to g  density-density(linear) response function: OB-VScontinuous

~0.5g . Furthermore, we observe that OB-VS agrees withline) and OB-UI(short-dashed line The Toigo-Woodruf(Ref. 25

TW in the rangeq=0 to g~Kkg. (TW) function is also reporteddotted ling.

1,5 T T

0’5 R 'I [l A

Local-Field Correction: G(g/kf) (comparison)
]
Il

094204-7



HELLAL, GASSER, AND ISSOLAH PHYSICAL REVIEW B68, 094204 (2003

One common feature of the foregoing LFC’s lies in the IV. CONCLUSION
fact that they have a finite limit behavior at large On the
contrary, Fig. 5 reveals the monotonic increase of the LFC From Monte Carlo results presented in the literature by
given by Moroniet al*® (MCS). This noticeable feature sug- Ortiz and Ballone, we carried out numerically the local-field
gests that the MCS results may be in agreement with theorrection using three schemes within the so-called “equa-
q*-limit behavior foreseen by HoldS.As has been empha- tion of motion” formalism. Each of them corresponds to the
sized previously, this typical behavior is in keeping with themanner for truncating the Bogoliubov-Born-Green-

“kinetic correlation effect” whose contribution is included in jrkwood-Yvon hierarchy of the kinetic equation. We indi-
MCS results and neglected in the other LFC's. Indeed, theate the origin of some inaccuracies in earlier published

LFC of MCS is extracted directly from the “full density- . \we discuss precisely the domain of validity of the
density response functiort® obtained by extensive diffusion classical formalism. Finally, we give a simple analytical ex-

Monte Carlo simulations with 38, 54, and 66 particles. Thepression to implement the calculations in VS and Ul schemes

“kinetic correlation effect” part of the LFC function, de- . . ; .
. . which furthermore captures the main physical features given
noted asG,, by Richardson and Ashcroft,vanishes at small X .
by Monte Carlo simulation.

g values and is substantial gtvalues roughly beyondkz
(Fig. 3 of Ref. 1). It follows that MCS results are signifi-
cantly larger than those of the LFC considered previously at

q=kg for OB-VS or atq=2k. for OB-Ul. Otherwise, our ACKNOWLEDGMENTS
OB-VS curve agrees well with the quantum Monte Carlo—
derived LFC obtained by MCS betwegr=0 andq~kg and Thel authors are very grateful to Professor C. Regnaut
our OB-UI curve is in good agreement with MCS results (Faculte des Sciences—Paris Xlffor many valuable and
betweenq~0 andg~2kg. stimulating discussions.
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