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Six-dimensional model of icosahedral Al-Pd-Mn quasicrystals
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A six-dimensional cluster model of icosahedral Al-Pd-Mn (i -Al-Pd-Mn) quasicrystals used in the recent
structure refinement is described in detail. This model is based on five kinds of clusters located at vertices, edge
centers of the inflated three-dimensional Penrose pattern~3DPP! with an edge length of about 20 Å, and two
body-diagonal positions of each acute rhombohedron. Two kinds of 20 Å clusters, one of which is seen in
b-Al-Pd-Mn-Si, are located at even- and odd-parity 12-fold vertices of the inflated 3DPP. This is proved to
give small R factors (Rw50.055,R50.049) for 493 independent reflections and leads to the 1/1 and 2/1
approximant structures ofi -Al-Pd-Mn (a- and b-Al-Pd-Mn-Si) by introducing appropriate cubic phason
strains and taking a three-dimensional cut.

DOI: 10.1103/PhysRevB.68.094201 PACS number~s!: 61.44.Br, 36.40.Mr, 61.66.Dk
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I. INTRODUCTION

Since the report of the discovery1 of icosahedral Al-Mn
( i -Al-Mn) quasicrystals in 1984, extensive studies have b
made toward the structure determinations of quasicrys
s.~See Refs. 2 and 3 and references therein.! In particular, the
single-domain quasicrystals first found ini -Al-Cu-Fe ~Ref.
4! made it possible to determine their detailed structures
principle. However, theoretical difficulties still remain b
cause there are no established methods of description o
rametrizations of the quasicrystals. It is clear that in orde
describe aperiodic crystal structures such as quasicrys
the description in a higher-dimensional space is inevita
Then a nonperiodic structure in the three-dimensional~3D!
space can be given as a 3D intersection of a high
dimensional periodic structure.5–7 As a result, the number o
parameters necessary for the structure description beco
finite. Early works of the structure determination were bas
on simple large occupation domains~OD’s, windows, atomic
surfaces! placed at high symmetric points~Wyckoff posi-
tions, special positions! in a higher-dimensional space.8–11

Such a model can explain the intensity of strong reflectio
but a large data set given by the single-crystal method c
fied that it is not sufficient to describe detailed quasicrys
structures. In order to describe the structure more accura
it is very important to introduce the atom shift from the ide
position that is assumed in early works because diffrac
experiments are very sensitive to the position of atoms
order to introduce the shift parameters, one of the auth
~A.Y.! proposed a higher-dimensional cluster model at
early stage.12 This was recently proved to be efficient fo
describing detailed structures of quasicrystals by the succ
ful structure refinements for decagonal Al-Mn-P
(d-Al-Mn-Pd), d-Al-Ni-Co, and i -Al-Pd-Mn.13–15

The icosahedral quasicrystals have several structures
different space groups. They are roughly classified by
lattice constanta and their space group. The first-foun
icosahedral Al-Mn (i -Al-Mn) hasa.4.6 Å and space group
0163-1829/2003/68~9!/094201~13!/$20.00 68 0942
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Pm3̄5̄.8 i -Al-Cu-Li also belongs to this type.16,17 Another
type has a doubled lattice constanta and the space group

Fm3̄5̄. The third type has a 2t-times largera than that of the

first type with space group18 Pm3̄5̄ @t5(11A5)/2#. Their
detailed structures are not yet known except fori -Al-Pd-Mn,
solved recently. This belongs to the second type and thi
the key structure for understanding icosahedral quasicrys
Most icosahedral quasicrystals of good quality belong to t
type and the third type can be considered as its supers
ture. On the other hand, the quality of quasicrystals in
first type is generally poor except for Cd-based icosahe
quasicrystals andi -Zn-Mg-Sc found recently.19,20 Therefore
we analyzed thei -Al-Pd-Mn structure in the second type firs
in the series of icosahedral quasicrystal analyses in progr

A few structure determinations of icosahedral quasicr
tals includingi -Al-Pd-Mn have been tried by powder diffrac
tion and single-crystal methods.10,11,21–23In these analyses
large OD’s with spherical/ellipsoidal or polyhedral sha
were used. Atom positions were fixed at some ideal positi
and their occupation probabilities and thermal parame
were refined. In the case of spherical OD’s, the size of O
was also refined. This treatment sometimes causes very s
interatomic distances because of the violation of the clo
ness conditions.21 If we assume OD’s with simple polyhedra
shape, many kinds of incomplete clusters arise,24 which are a
part of the cluster with the highest symmetry. It seems t
all quasicrystals consist of a few kinds of clusters with hi
symmetry at least to a good approximation. This is in p
ticular evident in decagonal quasicrystals. In this case, e
cluster has a fivefold or tenfold symmetry.25–27 Therefore it
is important to obtain a model consisting of several clust
with icosahedral symmetry for icosahedral quasicrystals.
proposed such a model in a higher-dimensional sp
~higher-dimensional cluster model! for i -Al-Pd-Mn ~Refs. 28
and 29! and refined the structure based on x-ray data.15,30

In contrast to other models, the higher-dimensional clus
model has very complicated OD’s that consist of seve
small OD’s related to the OD’s for the cluster centers. Ea
©2003 The American Physical Society01-1
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small OD generates atom positions with the same local
vironment. Therefore, we can assume the same occupa
probability and thermal parameter for all such atoms. If
small OD is not on the special position with very high s
symmetry, the shift of the OD along some external~physical
or parallel! space directions is allowed. This enables us
give the refinement of the atom coordinates in a cluster.
cent analyses based on such a cluster model gave succe
results for decagonal Al-Ni-Co (d-Al-Ni-Co) and
i -Al-Pd-Mn quasicrystals, indicating the importance of t
refinement of atom positions. TheRw andR factors of 0.045
and 0.063 for 449 independent reflections are obtained
d-Al-Co-Ni ~103 parameters!, showing that the structure i
reliable. Fori -Al-Pd-Mn, a cluster model gave theRw andR
factors of 0.055 and 0.049 for 493 independent reflecti
~about 100 parameters!. The latter is the first successfu
structure refinement for icosahedral quasicrystals, whic
relatively difficult compared with the refinement of decag
nal quasicrystals.

In the icosahedral quasicrystals, there exist the cubic
and 2/1 approximants in some cases, which have the la
constants of about 12 and 20 Å. It is well known that thea
phase of Al-Mn (a-Al-Mn) and R-Al-Cu-Li are the ex-
amples of the 1/1 approximants ini -Al-Mn and
i -Al-Cu-Li. 31 For considering quasicrystal structures bas
on approximant structures, the 2/1 approximant is more s
able than the 1/1 approximant, since the quasicrystal ca
regarded as the crystal approximant with an infinite latt
constant. Although several 2/1 approximants have b
found, most of them are only obtainable as powders. T
only exceptional ones are the 2/1 approximants
i -Al-Pd-Mn and i -Al-Mg-Zn, single crystals of which have
been grown recently. Their structures were determined ba
on x-ray single-crystal diffraction data.32,33In the latter, how-
ever, single-domain quasicrystal samples have not yet b
obtained. The former shows that the approximant consist
an icosahedral cluster with a radius of about 20 Å. O
model of thei -Al-Pd-Mn is compatible with the 2/1 approx
imant: two kinds of large clusters are situated at the 12-f
vertices of the three-dimensional Penrose pattern~3DPP!
with an edge length of about 20 Å. One of the clusters
quite similar to that in the 2/1 approximant.

In this paper we describe the six-dimensional~6D! cluster
model used in the refinement ofi -Al-Pd-Mn in detail and
derive 1/1 and 2/1 approximant structures from the 6D mo
and compare with the real approximant structures. The
tailed results of the structure refinement will be repor
separately.

The paper is organized as follows. The 6D model build
process based on diffraction experiments is shortly descr
in Sec. II. The guiding principle of the present model
explained in Sec. III. This model is built based on the 6
cluster model scheme in Sec. IV. The atom positions in
3D space given by the model are shown in Sec. V. A gen
formulation for deriving crystal approximants by the line
phason is described shortly in Sec. VI and the 2/1 and
approximants are derived from the 6D model in Secs.
and VIII. The model is compared with the model propos
by Katz and Gratias24 in Sec. IX.
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II. SIX-DIMENSIONAL MODEL BUILDING

It is well known that the icosahedral quasicrystals are
scribed as a crystal~periodic structure! in 6D space.6 We
employ the coordinate system defined by the unit vect
di( i 51,2, . . . ,6) in thedirect space,7 which are given by

d15a0a31a08a6 ,

di5a0@~cia11sia2!s1ca3#1a08@~c2ia41s2ia5!s

2ca6# ~ i 52,3, . . . ,6!, ~1!

where ci5cos(2pi/5), si5sin(2pi/5), c5cosu51/A5, s
5sinu, a1 ,a2 ,a2 and a4 ,a5 ,a6 are the unit vectors in the
external~physical or parallel! and internal~complementary
or perpendicular! spaces, respectively, anda0 anda08 are the
lattice constants of the 6D icosahedral lattice. The latt
constanta0 cannot be determined uniquely in quasicryst
because of the self-similarity of the icosahedral lattice34,35

anda08 is arbitrary.7 We employa05a08.4.8 Å in this paper.
Then, Eq. ~1! can be written in the matrix formdi

5( j 51
6 Qi j aj with

Q5a0S 0 0 1 0 0 1

c2 s2 c c4 s4 2c

c3 s3 c c1 s1 2c

c4 s4 c c3 s3 2c

1 0 c 1 0 2c

c1 s1 c c2 s2 2c

D . ~2!

We shortly describe the process of a 6D model build
based on single-crystal x-ray data. First the location of la
OD’s can be estimated from the 6D Patterson map36 or the
recently developed low-density elimination method37

~LDEM!. In the present case, they are expected to be
(0,0,0,0,0,0), (1,0,0,0,0,0)/2, (1,1,1,1,1,1)/4, and
(3,1,1,1,1,1,1)/4. Next, we can refine the size of each oc
pation domain assuming a spherical shape and an approp
chemical arrangement for each domain. If necessary
spherical OD is divided into several shells, each of which
occupied by a different atom.11 This procedure can fix a
rough size of each OD~or shell!. In the present case, it wa
shown that there exist three large OD’s at (0,0,0,0,0,
(1,0,0,0,0,0)/2, and (3,1,1,1,1,1)/4 but no OD
(1,1,1,1,1,1)/4.37 Finally, we can construct a cluster mod
based on the result of the refinement as discussed be
This makes the refinement of a cluster structure possible
can improve theR factor as shown in a separate paper. D
ing the refinement, a small occupation domain was found
(1,0,0,0,0,0)/4.

III. HIGHER-DIMENSIONAL CLUSTER MODEL

The 6D model employed in the structure refinement
i -Al-Pd-Mn is a cluster model based on the 3DPP, wh
large clusters are located at the 12-fold vertices of the 3D
with an edge length of about 20 Å. Its OD is obtained fro
1-2
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SIX-DIMENSIONAL MODEL OF ICOSAHEDRAL Al-Pd- . . . PHYSICAL REVIEW B 68, 094201 ~2003!
the projection of the unit cell in the 6D icosahedral latti
onto the 3D internal space.6,38

The OD of the 3DPP is the rhombic triacontahedron w
an edge lengtha08 , and each edge of the triacontahedron
parallel to one ofdj

i ( j <6). ~The superscriptse and i repre-
sent the external and internal space components of a 6D
tor throughout the paper.! The 3DPP consists of two kinds o
rhombohedra with an edge lengtha0. An acute rhombohe-
dron has edges parallel tod1

e , d2
e , andd3

e , while, an obtuse
one tod4

e , 2d5
e , andd6

e .
From the self-similarity of the icosahedral lattice, th

3DPP with t3a0 (.20 Å) edges can be obtained from
rhombic triacontahedron with an edge length oft23a08 ,
wheret3 is the similarity ratio of the primitive icosahedra
lattice.34 The real i -Al-Pd-Mn quasicrystal is face-centere
and has a doubled lattice constanta52a0. We distinguish
the coordinates with respect toa and a0 by (x,y,z,t,u,v)
and (x,y,z,t,u,v)0. Then the same 3DPP is obtained fro
the rhombic triacontahedron at (0,0,0,0,0,0) a
(1,0,0,0,0,0)/2 and positions equivalent to them under
centering translations. The 32 centering translations of
face-centered icosahedral lattice are given by (0,0,0,0,0
(1,1,0,0,0,0)/2, (1,0,1,0,0,0)/2, . . . ,(1,1,1,1,1,1)/2. The
even-parity vertices of the 3DPP are generated by the O
at (0,0,0,0,0,0) and 31 other equivalent positions, while
odd-parity ones by the OD’s at (1,0,0,0,0,0)/2 and
equivalent positions.

We call the 3DPP with an edge length oft3a0 an inflated
3DPP. The inflated 3DPP can be considered to consist
dodecahedral star~DS!, rhombic icosahedron~RI!, rhombic
triacontahedron~RT! and obtuse rhombohedron~OR! with
an edge length ofa0 ~see Fig. 1!.

It is known that the DS is located at each vertex of t
inflated 3DPP, the RI is at the edge center of each edge
the RT is at two positions on the body diagonal of each ac
rhombohedron of the inflated 3DPP~Fig. 2!.39 Therefore we
consider three kinds of clusters accommodated in these t
polyhedra, which are calledcageshereafter. The OR appear
in a gap of them in the inflated OR@Fig. 2~f!#.

The building units of the inflated 3DPP can be decora
based on the polyhedral occupation domains with the s
shape as the building units in Fig. 1 but the length of ea
edge ist23a08 . ~Note that building units in Fig. 1 are th
polyhedra in the external space, while OD’s discussed h
are those in the internal space.! For convenience, polyhedra

FIG. 1. The building units of the inflated 3D Penrose pattern.~a!
The dodecahedral star~DS!, ~b! the rhombic icosahedron~RI!, and
~c! the rhombic triacontahedron~RT! with the edge length ofa0.
They appear also as the building units of occupation domains
higher-dimensional cluster model. In this case, the edge leng
t23a08 .
09420
s

c-

d
e
e
),

’s
e
e

a

nd
te

ee

d
e

h

re

OD’s with edge lengths oft23a08 anda08 are hereafter called
the small and large OD’s. If we decorate DS, RI, and
constituting the inflated 3DPP in a similar manner, we c
obtain a clear cluster model, where the same atom clus
appear at each vertex, edge center, or two body-diag
positions of the acute rhombohedron, although the fa
centered lattice requires different clusters for the even-
odd-parity vertices. Such a model can be given on the b
of the small RT placed at (1,1,1,1,1,1)/4 and (3,1,1,1,1,1
of the face-centered icosahedral lattice as shown be
~Note that there are 64 OD’s related to them in the unit c
because of the 32 centering translations.! From the self-
similarity of the 3DPP, the small RT’s centered at these t
positions give the inflated 3DPP. The edge center of the
flated 3DPP is derived from the small RI at (1,0,0,0,0,0)
while the body-diagonal two positions are obtained from
small DS at the origin and (1,0,0,0,0,0)/2 as discussed in
next section.

IV. ATOM POSITIONS IN SIX-DIMENSIONAL SPACE

It is well known that the 3DPP with the edge length ofa0

is generated by the RT with the edge length ofa08 placed at
the origin of the primitive icosahedral lattice.6,38 Similarly,
the edge center of the 3DPP is given by the RI
(1,0,0,0,0,0)0/2 and the body-diagonal two positions of th
acute rhombohedron, the DS at (1,1,1,1,1,1)0/2.40 For the
corresponding sites in the inflated 3DPP is easily obtaina
by the similarity transformation for the icosahedral lattic

a
is

FIG. 2. The inflated rhombohedra composed of building un
shown in Fig. 1.~a! The dodecahedral stars located at vertices of
inflated acute rhombohedron.~b! The rhombic icosahedra at edg
centers.~c! Two rhombic triacontahedra at the body diagonal.~d!
The dodecahedral stars at vertices of the inflated obtuse rhomb
dron. ~e! The rhombic icosahedra at the edge centers.~f! The six
obtuse rhombohedra. In~c! the two rhombic triacontahedra sha
one obtuse rhombohedron and in~d!, one acute rhombohedron i
shared by two dodecahedral stars on the short diagonal of the
flated obtuse rhombohedron.
1-3
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FIG. 3. ~Color! The independent parts of large occupation domains at~a! (0,0,0,0,0,0),~b! (1,0,0,0,0,0)/2,~c! (3,1,1,1,1,1)/4, and~d!
(1,0,0,0,0,0)/4. For visibility, a small gap is introduced between small occupation domains. The edge length of each polyhedron it23a08 .
Domains without shading are not occupied by any atoms ini -Al-Pd-Mn but added for discussions~see text!. Green, red, yellow, and blue
OD’s are assumed to be statistically occupied by Al/Mn, Pd/Mn, Mn/Al, and Mn/Pd. In each pair, the first species was expecte
predominant in the initial model of the refinement. Arrows show the fivefold~5f!, threefold~3f! and twofold~2f! axes passing through th
center of the large occupation domains.@Note that the OD No. 38 is at (1,0,0,0,0,0)/4 in~d!.#
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The similarity transformation matrixS for the face-centered
icosahedral lattice is given by

S5
1

2 S 1 1 1 1 1 1

1 1 1 21 21 1

1 1 1 1 21 21

1 21 1 1 1 21

1 21 21 1 1 1

1 1 21 21 1 1

D . ~3!

On the other hand, that of the primitive icosahedral latt
is given byS3.34 This inflates the external component of
6D vector byt3 while deflates the internal component by t
factor of t23. The three kinds of cluster centers in the i
flated 3DPP mentioned above are therefore obtained f
small RT, small RI, and small DS placed at (0,0,0,0,0,00 ,
S3(1,0,0,0,0,0)0/2, andS3(1,1,1,1,1,1)0/2 respectively. In the
face-centered icosahedral lattice, these points are eq
alent to (0,0,0,0,0,0), (1,0,0,0,0,0)/2, (0,1,1,1,1,1)
(2,1,1,1,1,1)/4, (1,1,1,1,1,1)/4, and (3,1,1,1,1,1)/4. The
positions for RI are however equivalent under the inversi
We assume inversion symmetry throughout the paper.

In the structure analysis, the origin is taken at the cen
of small DS. In this coordinate system, the coordinates
small RT and small DS are interchanged and those of RI
(21,0,0,0,0,0)/4. The latter is equivalent to (1,0,0,0,0,0
as mentioned above. We use this setting in the following

We consider real atom positions in the cages. In
higher-dimensional cluster model, the OD’s creating ato
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around the cluster centers are obtained from the ODs for
centers by shifting them along the external space.12 In a re-
alistic model, the shifts are strongly constrained. As is cl
from the electron density given by the experiments, the la
OD’s are observed only at (0,0,0,0,0,0), (1,0,0,0,0,0)/2,
(3,1,1,1,1,1)/4. This means that the shifted small OD’s h
to be a part of the large OD’s.~Otherwise, many small OD’s
located separately are expected.!

Such a subdivision of the large OD’s into small ones
achieved inversely by reconstructing the experimentally
tained OD’s with small OD’s. This reconstruction is practic
because only rough size and shape of each large OD ca
obtained from the experiment. The OD’s at (0,0,0,0,0,0) a
(1,0,0,0,0,0)/2~called the OD’sA and B hereafter! can be
constructed mainly by the three kinds of small occupat
domains shown in Fig. 1~a!–1~c!. As mentioned above, the
small DS’s are situated at the centers of OD’sA andB. For
the reconstruction of the OD’sA and B, we can use the
connection of small OD’s, which is similar to the cage co
nections in the external space. As shown later, this subd
sion leads to the cluster appearing in the 2/1 approxim
The positions of the independent small occupation doma
are shown in Figs. 3~a! and 3~b! and Table I.~Note that Table
I uses the coordinate system with respect to the lat
constanta0.!

For OD C, we need to consider new connection of t
small OD’s. This is formed by the small RT’s centered
(3,1,1,1,1,1)/4 and at (1,1,1,0,0,0)0

i from it. The latter can be
subdivided into two small rhombic dodecahedra~RD’s!
along the two-fold axis and small four acute rhombohe
1-4
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TABLE I. The positions of the independent OD’s in the six-dimensional model. The first column shows the Wyckoff symbol~WS!, with
the number indicating the multiplicity. The second column denotes its site symmetry~SS!. The position of each OD is given byx01xi . The
assumed atom pair and the occupation domain in Fig. 1 are listed in the fourth and fifth columns. In the fifth column,~d!, ~e!, and ~f!
represent a small rhombic dodecahedron, and a small acute rhombohedron, and five acute rhombohedra, respectively~see Fig. 3!. The OD
is numbered in the last column. The OD’s with asterisks~41 and 42! are added to the original OD’s to generate some atom positions in
1/1 crystal approximant. In Figs. 5–12, the atom pairs Al/Mn, Pd/Mn, Mn/Pd, and Mn/Al are represented by green, red, blue, and
respectively. The structure refinement showed that in most cases, the first atom in each pair is predominantly occupied.

WS SS xi Atom OD No. WS SS xi Atom OD No.

OD A x05(0,0,0,0,0,0)0 OD B x05(1,0,0,0,0,0)0
20a 3m t22(21,1,0,0,1,0)0

i Al/Mn ~a! 20 12a 5m t22(21,1,0,0,1,0)0
i Mn/Al ~a! 6

20a 3m t21(21,1,0,0,1,0)0
i Al/Mn ~a! 23 20a 3m t21(21,1,0,0,1,0)0

i Pd/Mn ~a! 9
60a 2 t21(2t,t,21,0,0,0)0

i Al/Mn ~a! 27 12a 5m (1,0,0,0,0,0)0
i /2 Mn/Pd ~b! 4

60a 2 (2t1,1,0,0,0,0)0
i Al/Mn ~a! 26 60a m (21,2,0,0,0,0)0

i /2 Pd/Mn ~b! 7
60a 2 (1,t2,0,0,0,0)0

i Al/Mn ~a! 31 12a 5m (23,0,0,0,0,0)0
i /2 Pd/Mn ~b! 8

12a 5m (21,0,0,0,0,0)0
i /2 Al/Mn ~b! 17 60a m (21,2,0,0,2,0)0

i /2 Al/Mn ~b! 11
60a m (21,2,0,0,0,0)0

i /2 Al/Mn ~b! 21 1a m35 (0,0,0,0,0,0)0
i Mn/Al ~c! 3

12a 5m (23,0,0,0,0,0)0
i /2 Al/Mn ~b! 22 12a 5m (21,0,0,0,0,0)0

i Mn/Pd ~c! 5
60a m (21,2,0,0,2,0)0

i /2 Al/Mn ~b! 25 30a 2mm (21,1,0,0,0,0)0
i Pd/Mn ~c! 10

60a m (24,1,0,0,0,0)0
i /2 Al/Mn ~b! 30 20a 3m (21,1,0,0,1,0)0

i ~c! 13
1a m35 (0,0,0,0,0,0)0

i Mn/Pd ~c! 16 60a 2 t21(2t,t,21,0,0,0)0
i Al/Mn ~f! 12

12a 5m (21,0,0,0,0,0)0
i Al/Mn ~c! 19 20a 3m (22,0,0,0,0,0)0

i Al/Mn ~f! 14
12a 5m (22,0,0,0,0,0)0

i Al/Mn ~c! 28
30a 2mm (21,1,0,0,0,0)0

i Al/Mn ~c! 24
20a 3m (21,1,0,0,1,0)0

i Al/Mn ~c! 29

OD C x05(3,1,1,1,1,1)0/2 OD D x05(1,0,0,0,0,0)0/2
20a 3m (0,0,0,0,0,0)0

i Pd/Mn ~a! 32 12a 5m t23(25,2,2,2,2,2)0
i /2 Al/Mn ~a! 37

30a 2mm t23(22,2,0,1,1,0)0
i /2 Pd/Mn ~d! 33 12a 5m (0,0,0,0,0,0)0

i Al/Mn ~b! 38
20a 3m t23(21,1,1,1,121)0

i /2 Pd/Mn ~e! 34 12a 5m t23(22,1,1,1,1,1)0
i /2 Al/Mn ~c! 40

20a 3m t23(23,3,1,1,321)0
i /2 Pd/Mn ~e! 35 12a 5m 2t23(22,1,1,1,1,1)0

i /2 ~c! 41*
30a 2mm t23(23,3,0,2,2,0)0

i /2 Al/Mn ~d! 36 12a 5m 2t23(25,2,2,2,2,2)0
i /2 ~a! 42*
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around the three-fold axes.@Exactly speaking, a small part o
the RD in OD 36 in Fig. 3~c! has to be removed but this i
neglected in this paper.# The symmetry operations create 2
interpenetrating small RT’s sharing a small RD@No. 33 in
Fig. 3~c!# and a part of another RD~No. 36!. Each of these
20 small RT share a small obtuse rhombohedron with
central small RT~No. 32!. This leads to Fig. 4~c!.

During the structure refinement additional small OD
around (1,0,0,0,0,0)/4 shown in Fig. 3~d! were introduced. In
the reali -Al-Pd-Mn, nonshaded small OD’s are not occupi
and the OD No. 40 is statistically occupied with a sm
occupation probability. It is noted that the symmetry of t
occupation domain around (1,0,0,0,0,0)/4 is 5m in contrast
to other three large OD’s. This is because of the site sym
try of the OD’s: the other three OD’s@Figs. 4~a!–4~c!# are
situated at the special position with the site symmetry
m3̄5̄, while the former is at the special position with 5m.

For the structure refinement, we assign a pair of atoms
each small OD together with the temperature factor and
shift from the ideal position along the external space. T
occupation ratio of the second species of the pair for e
OD is refined together with the total occupation probabil
of some atoms by the least-squares program. The assu
pair for each small OD is listed in the fourth column in Tab
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I. The pairs Al/Mn, Pd/Mn, Mn/Al, and Mn/Pd are repre
sented by green, red, yellow, and blue in Figs. 3 and 5–
The Pd/Mn~red! and Mn/Pd~blue! pairs are equivalent, bu
for all pairs including these two, the first species was

FIG. 4. The total occupation domains used in the refinemen
i -Al-Pd-Mn. ~a! the occupation domainA at (0,0,0,0,0,0),~b! B at
(1,0,0,0,0,0)/2, ~c! C at (3,1,1,1,1,1)/4, and ~d! D at
(1,0,0,0,0,0)/4. The unoccupied OD’s shown as unshaded pol
dra in Fig. 3 are not written.
1-5
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sumed to be predominant in the initial model for the refin
ment. The final result of the refinement proved that this a
sumption is correct for most OD’s.

The whole domains are obtained from the independe
parts shown in Fig. 3 by symmetry operations. The lar
OD’s A, B, C, andD occupied by atoms are shown in Fig. 4
For OD shown in Fig. 3~d!, the center~OD No. 38! is on the
fivefold axis and the same OD’s in shape but with differe
orientations are located at 12 equivalent positions. They
isolated from each other and from OD’sA, B, andC.

FIG. 5. ~Color! The decoration of the dodecahedral star in Fig.
located at the even-parity vertices of the inflated 3DPP~green, Al/
Mn; red, Pd/Mn; blue, Mn/Pd; yellow, Mn/Al!.

FIG. 6. ~Color! The decoration of the dodecahedral star in Fig.
located at the odd-parity vertices of the inflated 3DPP~green, Al/
Mn; red, Pd/Mn; blue, Mn/Pd!.
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From the constraint of the nearest-neighbor distances, t
OD’s at the origin and (22,1,1,1,1,1)/2 cannot overlap when
they are projected into the internal space. Similarly the ODB
at (0,1,1,1,1,1)/2 cannot overlap with the ODC at
(3,1,1,1,1,1,1)/4. These closeness conditions are fulfilled
the present model. This 6D model gives the point density o
0.0628 Å23, which is comparable with the value of
0.063 Å23 obtained from the refinement of the 2/1 crysta
approximant.32

In the structure refinement, we assume the same tempe
ture factor, occupation probability, and shift of atoms within

FIG. 7. ~Color! The decoration of the rhombic triacontahedron
in Fig. 2 located on the body-diagonal of the inflated 3DPP~green,
Al/Mn; red, Pd/Mn; blue, Mn/Pd!.

FIG. 8. ~Color! The decoration of another rhombic triacontahe
dron in Fig. 2 located on the body-diagonal of the inflated 3DP
~green, Al/Mn; red, Pd/Mn!.
1-6
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SIX-DIMENSIONAL MODEL OF ICOSAHEDRAL Al-Pd- . . . PHYSICAL REVIEW B 68, 094201 ~2003!
each small OD. This implies that each small OD plays th
role of an independent atom in usual crystals, for which t
coordinate, temperature factor, and occupation probabi
are given. Therefore the number of parameters is limited
the number of small independent OD’s. For the temperatu
factor, we can consider the anisotropic temperature factor
well as the isotropic factor as in crystals. It is essential
important for obtaining smallR factors to introduce the shift
of small OD’s from the ideal positions along the extern
space. This enables the relaxation of atom positions with

FIG. 9. ~Color! The decoration of the rhombic icosahedron i
Fig. 2 located at the edge center of the inflated 3DPP~green, Al/Mn;
red, Pd/Mn; blue, Mn/Pd!. In ~b! and~d!, the OD’s 4, 7, and 37 are
on the fivefold axis of the RI.
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the clusters, although the cluster centers are still at the id
positions and the symmetry of the cluster maintains tha
the site symmetry of the corresponding cluster center.

V. ATOM POSITIONS IN THREE-DIMENSIONAL SPACE

The OD’s described in the preceding section give a cl
model, which has three-atom clusters at the vertex of
inflated 3DPP, its edge center, and two body-diagonal p
tions of the acute rhombohedra, respectively. They are
commodated in the corresponding cages described in
III. As mentioned in Sec. IV, the center of the cages a
generated by the small RT, RI, and DS and their decora
atom positions are obtained from the small OD’s with t
same shape. The atom positions of a cluster around e
cluster center can be obtained from the 3D cut pass
through the center of the small OD that generates the clu
center. Therefore, the clusters in the DS cages are given
the 3D cuts passing through (1,1,1,1,1,1)/4 a
(3,1,1,1,1,1)/4~Figs. 5 and 6!. These two cuts give differen
structures because (1,1,1,1,1,1)/4 and (3,1,1,1,1,1)/4 are
equivalent in the face-centered icosahedral lattice. Simila
the atom arrangement in the RT cage is obtained by the
through (0,0,0,0,0,0) and (1,0,0,0,0,0)/2~Figs. 7 and 8!. The
cluster in the RI cages is only one, but has a polarity. This
obtained from a 3D cut through (1,0,0,0,0,0)/4~Fig. 9!. Note
that there is no occupation domain at (1,1,1,1,1,1)/4. T
means that no atom is located at one of the DS cage cen
@See Fig. 5~a!#.

As is easily seen from Fig. 3, the atom positions in the
cages are obtained from OD’s 32, 6, 9, 12, 15, 20, 23, 26,
37, and 42No ~the No superscript means that these OD’s
ose in
FIG. 10. ~Color! The 12 shells~a!–~l! of the 20 Å clusters at (1,1,1,1,1,1)/4. These shells are essentially the same as th
b-Al-Pd-Mn-Si ~green, Al/Mn; red, Pd/Mn; yellow, Mn/Al!.
1-7
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FIG. 11. ~Color! The 11 shells~a!–~k! of another 20 Å cluster at (3,1,1,1,1,1)/4. This cluster does not appear inb-Al-Pd-Mn-Si but is
essential for a face-centeredi -Al-Pd-Mn. In ~a!, the cluster center is obtained from the OD No. 32, while other 12 are from the OD No
~green, Al/Mn; red, Pd/Mn; blue, Mn/Pd!.
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not occupied by atoms! ~Figs. 5 and 6!. Similarly, the atom
positions in the RT cages are generated by OD’s 3No, 5, 10,
13 No, 16, 19, 24, 29, and 41No, while those in the RI cage
are given by OD’s 4, 7, 11, 17, 21, 25, 30, and 38.~Figs.
7–9!. The OD 28 gives 12 sites on the fivefold axis of the R
at the distance 2a0 from the center of the RT shown in Fig
7 but they are out of the RT. They are not drawn in Fig.
The OD’s 8 and 22 create the sites on the fivefold axis of
RI but they are out of the RI. They appear in the DS ca
because the RI cage is located between two DS cages.@Figs.
5~a! and 6~a!#. For the same reason, the sites on the surf

FIG. 12. ~Color! Two Mackay-like clusters~a!–~c! and ~d!–~f!,
which are located at the body-diagonal two positions of the ac
rhombohedron in 3DPP~green, Al/Mn; red, Pd/Mn; blue, Mn/Pd!.
09420
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of the DS cages are on the surface of the RI cages. Such
are shown in Figs. 7~d! and 8~d!.

The atom positions out of the cages mentioned here ar
some cases in another cage. For example, OD’s 8 and
create the first shells of the cluster in the RD cages@Figs.
5~a! and 6~a!#. These positions are created by small RT
located atta08 from the center of the large OD’s shown i
Figs. 3~b! and 3~a!. In the former, the RT’s consist of th
OD’s 8 and 14 and a part of the OD 12~a small obtuse
rhombohedron!. Similarly, it is composed of the OD 22 an
parts of the OD’s 27 and 28 in the latter. The some atom s
created by the OD 28 are located at the surface of anothe
as shown in Fig. 8~f!.

The OD’s 33, 34, 35, and 36~and a small part of OD 32!
form the 20 RT’s on the threefold axes around OD 32, wh
are interpenetrated@see Fig. 4~c!#. These OD’s generate at
oms at the tips of the DS cages located at the even-pa
vertices of the inflated 3DPP.@Fig. 5~g!#. As a result in the
DS at the even-parity vertex of the inflated 3DPP, the ato
are at every tip on the threefold axis. This leads to the de
ration which is shown in Fig. 5. On the other hand, no su
atoms are present for the DS at the odd-parity vertex~Fig. 6!.

It should be noted that the decoration of the RT in Figs
and 8 has a three-fold symmetry, reflecting the point symm
try of the center of the RT in the inflated 3DPP. Similarly, t
decoration of RI is of fivefold-symmetric. The structure r
finement, however, showed that the OD’s with No sup
scripts are not occupied by atoms. They are added for
cussion later in this section.

The decoration of each cage determines the whole
te
1-8
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SIX-DIMENSIONAL MODEL OF ICOSAHEDRAL Al-Pd- . . . PHYSICAL REVIEW B 68, 094201 ~2003!
structure ofi -Al-Pd-Mn since the locations of these cages
the inflated 3DPP are known. There are 24 types of vert
with different neighbors in the~inflated! 3DPP6,38 and their
frequency is known.41 Each vertex is a point from which
several edges along the fivefold axes go out or is a comm
point over several acute and obtuse rhombohedra with
to face contact. The number of edges going out or the di
tion of the edges is different depending on the types of v
tices. The local symmetry of the vertex is generally differe
because of different edge arrangements. We will disc
some typical features of the present model that are due to
arrangement of cages in the inflated 3DPP. As a result of
arrangement of the edges of the inflated 3DPP, there e
large icosahedral clusters at the even- and odd-parity 12-
vertices of the inflated 3DPP. There are 12 RI cages on
fivefold axes around the DS cage at the 12-fold vertex.~Note
that a RI cage is situated at each edge center of the infl
3DPP.! These clusters are about 20 Å in diameter~which is
equal tot3a0). They consist of 12 or 11 shells as shown
Figs. 10 and 11. One of these clusters~Fig. 10! is quite
similar to the 20 Å cluster in the 2/1 approximant
i -Al-Pd-Mn, that is,b-Al-Pd-Mn-Si.29,32Both clusters consis
similar shells. This suggests that the present model is reli
and the structure refinement based on the model will be
cessful if the 2/1 approximant has a local environment si
lar to that ofi -Al-Pd-Mn.

Other small icosahedral clusters are located at the RT
the two body-diagonal positions of each inflated acute rho
bohedra in the inflated 3DPP@Fig. 2~c!#. They are shown in
Fig. 12. The first shells of the clusters are generated by
OD’s 29 and 40. The OD 29 causes 20 atom positions, w
a short interatomic distance (.1.8 Å), so that they have to
be occupied statistically with an occupation probability le
than 0.5. On the other hand, the OD 40 gives 12 atom s
forming a regular icosahedron with a reasonable interato
distance (a0/2.2.3 Å). This means that the same icosah
dral shell may be considered ini -Al-Pd-Mn. If we use OD
41 instead of OD 29, we get such a cluster. In this case,
both clusters are quite similar to the so-called Mackay cl
ter. However, the structure refinement showed that one of
two is highly disordered and is statistically occupied.

A very small icosahedral cluster appearing at the cente
the DS cages shown in Fig. 6~a! also appears at each tip o
the DS cages shown in Fig. 5~g!. This is due to the shape o
the total OD at the origin or (1,1,1,1,1,1)/2~OD A) as ex-
plained below.~The OD’s at these two positions are the sa
because the lattice is face-centered.! For the former, the clus-
ter center is given by the OD 32, while that of the latter
generated by the rest of the total OD~OD C) at
(3,1,1,1,1,1)/4@Fig. 4~c!#. The atoms of the first shell are o
the fivefold axes and are distant from the center byt21a0.
The distances between (1,1,1,1,1,1)/2 and (3,1,1,1,1,1)
the external and internal spaces aret21a0 and ta08 . When
the OD C is projected onto the internal space pass
through (1,1,1,1,1,1)/2, the center comes to the point on
fivefold axis with the distanceta08 from the center of the OD
A and the projected ODC is completely included in the OD
A distance. This ensures that around every site created b
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OD C, there are 12 atom sites forming an icosahedron w
the radius oft21a0, which are generated by the correspon
ing parts of the 12 OD’s~OD A) around the ODC. ~Note
that the site symmetry of the center of the ODC is the
icosahedralm3̄5̄.! There exist such clusters in the 2/1 a
proximant. The cluster centers are the atoms in the 12th s
of the 20 Å cluster, which correspond to the atom positio
in Figs. 5~g! or 10~l!. ~See Fig. 5 in Ref. 42.! The 12 atom
positions in each small cluster are generated by OD’s 21,
27, and 28.

VI. LINEAR PHASON IN ICOSAHEDRAL
QUASICRYSTALS

As is well known, the crystal approximant structure c
be obtained from a 6D model by introducing linear phas
strain. This is specified by the strain tensor shown bel
When the unit vectors of the distorted lattice are given b

di85(
j 51

6

Qi j aj85(
j 51

6

~QT! i j aj , ~4!

T gives the strain tensor for the linear phason strain, wh
has the following form:

T5S I 3 U

0 I 3
D , ~5!

where I 3 is a 333 unit matrix andU is a general 333
matrix.

It is convenient to use two sets of unit vectors of t
external and internal spaces. Pentagonal, cubic, and trig
quasicrystals can be derived from the icosahedral quasic
tals, as shown by Ishii.43 ~In the usual sense, the definition o
the quasicrystal excludes a structure with a crystallograp
point group. We call, however, an aperiodic structure o
tained from a quasicrystal with noncrystallographic po
group by a linear phason strain a quasicrystal for con
nience.! For pentagonal quasicrystals,ai( i 51,2, . . . ,6)
given by Eq.~1! are convenient but another unit vector set
more appropriate for the latter two, although both sets
express all possible distortions. This is because two axea3
anda6 are parallel to the fivefold axis in Eq.~1!. Then non-
zeroU115U22 andU33 give the pentagonal quasicrystals.
order to treat the latter two cases, it is convenient to take
vectorsaj

c parallel to the twofold axes,40 which are defined
by di5( j 51

6 Qi j
c aj

c with

Qc5
a0

A21t S 1 t 0 t 21 0

t 0 1 21 0 t

t 0 21 21 0 2t

0 1 2t 0 t 1

21 t 0 2t 21 0

0 1 t 0 t 21

D . ~6!

The phason strain matrixT in this setting is defined in Eq.~4!
by replacingai with ai

c and Qi j with Qi j
c . Then nonzero

U115U225U33 gives cubic quasicrystals andU125U23
1-9
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5U31 and U135U215U32 lead to trigonal quasicrystals
Such a quasicrystal with a crystallographic point group
comes a crystal in a particular case as shown in the n
section.

VII. 2 Õ1 CUBIC CRYSTALLINE APPROXIMANTS

Crystalline approximants are obtained when three linea
independent 6D lattice points are on the 3D external sp
passing through the origin. The coordinateszi with respect to
ai

c of the lattice vectorn5( j 51
6 njdj8 are given by

zi5(
j 51

6

~ T̃Q̃c! i j nj , ~7!

where the tilde means the transpose. From the condition
der which the internal space components are zero, we
obtain the strength of the phason strain. Let the origin a
the three pointsn1, n2, n3 be on the external space. Then t
nine internal space components of the three lattice vec
n1, n2, n3 should be zero. This determines the nine mat
elements of the 333 matrix U. The condition can be ex
pressed in the matrix form,ŨRN1SN5O, whereR and S

are the upper and lower 336 matrices ofQ̃c, O is a 333
zero matrix, andN is a 633 matrix (n1,n2,n3). Thus the
matrix Ũ is given by

Ũ52~SN!~RN!21. ~8!

In the case of the 2/1 cubic approximant, the exter
space passes through the origin andn15(1,2,2,0,1̄,0)8, n2

5(2,0,0,1,2,1)8, and n35(0,1,1̄,2̄,0,2)8, where the prime
means coordinates with respect to the deformed unit vec
di8 . Therefore if they are the unit vectors in the crystalli
approximant, their internal components are zero. Th
from Eq. ~8! we have U115U225U335t25 and Ui j 50
for iÞ j .40 Similarly, for the 1/1 approximant structure
we have n15(1,1,1,0,1̄,0)8, n25(1,0,0,1,1,1)8, and n3

5(0,1,1̄,1̄,0,1)8. This leads toU115U225U3352t23. It is
easy to show that for the cubic approximant represented
consecutive Fibonacci numbersFn11 /Fn (F050, F151,
Fn5Fn221Fn21 for n.1) the nonzero matrix elements a
U115U225U3352(21)nt2322n (n>1).

Even if we fix the period, we will obtain a different crys
talline approximant structure with different symmetries
choosing the external space passing through a different p
tion in the 6D space.44 In general the symmetry of the ap
proximant is equal to that of the special position with t
highest symmetry on the 3D hyperplane and the cubic
proximants are obtained from the 3D hyperplane pass
through 6D points with the point symmetrym3̄5̄. The other
special positions have a symmetry equal to 5m or lower than
m3̄ and the former point group is not a supergroup of
cubic point groupm3̄. Therefore we need to choose a 3
hyperplane passing through the points withm35 symmetry
under no phason strain in order to obtain a cubic appro
mant.~We consider approximants with a symmorphic spa
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group. For the case of nonsymmorphic space groups suc
Pa3̄, we need different considerations.! There are four such
points in the face-centered icosahedral lattice: (0,0,0,0,0,8,
(1,0,0,0,0,0)8/2, (1,1,1,1,1,1)8/4, and (3,1,1,1,1,1)8/4.
Among them, the hyperplane passing throu
(1,1,1,1,1,1)8/4 gives the structure corresponding to the re
1/1 and 2/1 approximant structures (a- and
b-Al-Pd-Mn-Si).

The model given by the OD’s in Fig. 3 gives a 2/1 crys
approximant structure, which is essentially the same as
real approximant. As shown by Sugiyamaet al.,32 the ap-
proximant consists of 20 Å clusters that can be well d
scribed by 12 shells. The shells of the calculated 2/1 appr
imant are the same as those in Fig. 10. The 12 shells a
well with those of the 2/1 approximant structure determin
recently ~see Fig. 1 of Ref. 32!. The cluster center of this
model is empty as in the approximant. The nearest in
atomic distance of the fourth shell in Figs. 10 and 11, one
them coming from a part of OD 15 and the other from O
26, aret22a0.1.7 Å. These sites should be statistically o
cupied as in the 2/1 approximant. These distance may
relaxed by the shifts of OD’s 15 and 26 from the ideal po
tions along the external space.

b-Al-Pd-Mn has a slightly different small cluster aroun
the body center, which is not reproduced from the 6D mod
The Mackay icosahedron is situated in the calculated app
imant, which is the same as in Figs. 12~a!–12~c!, while in
b-Al-Pd-Mn-Si, the first shell has a different structure a
some atoms in the third shell in Fig. 12~c! are missing. Con-
sequently the Mackay icosahedron is broken in the r
approximant.

VIII. 1 Õ1 CUBIC CRYSTALLINE APPROXIMANTS

The 1/1 approximants have larger phason distortion t
the 2/1 approximants discussed in the preceding section
the derivation of this structure from the 6D model is mo
challenging. Figure 13 gives the shell structures of the
approximant given by the 3D hyperplane passing throu
(1,1,1,1,1,1)8/4. They are quite similar to those of th
a-Al-Pd-Mn-Si except for several shells. The shell structu
of the cluster at the origin are similar to those of the inn
shells of theb-Al-Pd-Mn-Si except for the fourth shell
where 24 of 60 atoms appear in the 1/1 approximant. On
other hand, the cluster at the body center is completely
ferent. In the 2/1 approximant, the cluster is the so-cal
Mackay icosahedron as mentioned in the preceding sec
while it is rather similar to the cluster at the origin in the 1
approximant. In particular, the second shell is part of
second shell at the origin. This is because the 3D hyperp
used passes through (1,1,1,1,1,1)8/4 in both cases and at th
same time through the point equivalent to (0,0,0,0,0,0) in
2/1 approximant but through (3,1,1,1,1,1)8/4 in the 1/1 ap-
proximant. The OD 16 at the origin generates the cente
the Mackay icosahedron ini -Al-Pd-Mn. On the other hand
the OD 32 at (3,1,1,1,1,1)/4 creates the center of the clu
at the odd-parity vertex of the inflated 3DPP. Therefore
inner shells in Fig. 11 appear at the body center of the
approximant.
1-10
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IX. DISCUSSION

As shown in a separate paper,15 the structure refinemen
based on the present model could explain the diffraction
tensity very well. The model is a cluster-based model. T
existence of clusters in quasicrystals is confirmed by the
servation by high-resolution transmission electron micr
copy ~HRTEM!. In particular, it is evident in decagonal qu
sicrystals. Although the projection along nonperiod
directions obscures it for icosahedral cases and it is imp
sible to verify only from the HRTEM images whether th
observed clusters are the same or not, we can expect t
dense packing of stable clusters will stabilize the format
of quasicrystals.

The present 6D model is constructed so as to fulfill s
eral conditions imposed by experimental results.~1! the clus-
ter in the 2/1 approximant should be reproduced from the
model by the introduction of appropriate linear phas
strain.29 ~2! The electron density map obtained from the lo
density elimination method should be consistent with
OD’s used. ~3! The point density of the quasicrystal
similarly equal to that of the 2/1 approximant or the re
quasicrystal.

The condition~1! can be fulfilled if we employ a higher
dimensional cluster model.12 In order to get the 20 Å cluster
it is assumed, in the construction of the model, that the 2
cluster observed in the 2/1 approximant32 is situated at each
even-parity 12-fold vertex of the inflated 3DPP. In th
higher-dimensional cluster model, large OD’s are construc
by simple OD-generating cluster centers. However, the c
struction process leads to complicated large OD’s at the s
time. In the present case, we assumed five clusters, which
located at the even- and odd-parity vertices of the infla
3DPP, its edge centers and the two body-diagonal posit
of the acute rhombohedra of the inflated 3DPP as mentio

FIG. 13. The five shells~a!–~e! of the cluster located at the
origin in the 1/1 approximant structure obtained from the 6D mo
and four shells at the body center.~f!–~i!. In ~f!, the OD No. 32
generates the center of the cluster, while the OD No. 22, gene
the other 12 sites. Atoms in the 1/1 approximants,a-Al-Pd-Mn-Si,
in each shell are also shown.
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in Secs. III–V. This leads to the 20 Å cluster located at t
even-parity 12-fold vertices. This is one of prominent fe
tures of the present model and differs from the clusters
other models where 5 Å~smaller by t23) clusters are
considered.45–48The 20 Å cluster is observed only in the 2
approximant of i -Al-Pd-Mn, which has the space grou

Pm3̄. The 2/1 approximants for other quasicrystals found

far consist of 5 Å clusters and has the space groupPa3̄,33,49

as predicted from the canonical cell tiling.45 Therefore it is
reasonable to consider thati -Al-Pd-Mn is composed of the
20 Å clusters.

Condition~2! gives a restraint for the rough volume of th
large OD’s because the electron density map cannot pro
a fine shape of the OD’s. However, this is helpful to co
struct a model. Condition~3! just restrains the total volume
of the OD’s.3

We compare the present model with the model propo
by Katz and Gratias~KG! model,24 which consists of three
OD’s with simple shape. In the latter, it is known that the
exist many kinds of clusters with several different symm
tries and a few of them have icosahedral symmetry. Thi
due to the fact that the large OD’s have simple shape
contrast, the present model has complicated large O
which are shown in Fig. 4. They generate only five clust
that pack total 3D space without large vacancies, and a
result of the arrangement of these clusters, the observed
cluster is formed at every even-parity 12-fold vertex as de
onstrated in Sec. V. Therefore the difference in the shap
the large OD’s causes the difference in the kinds of clus
and their symmetry. It seems to be natural that we cons
the clusters observed in the approximants to be energetic
stable. Then the dense packing of such clusters will stabi
the quasicrystal. On the other hand, the KG model gi
another quasicrystal structure composed of many lo
symmetry clusters without random phasons. The reason
the existence of such lower-symmetry clusters is not ea
conceivable. For this reason we employed the high
dimensional cluster model in our analysis.

We introduced an OD with the point symmetry 5m @Fig.
4~d!# which is located at (1,0,0,0,0,0)/4. In the model used
the refinement, OD’s 37 and 40 are placed on the fivef
axis around the odd-parity body center.@See Fig. 1~c! in Ref.
15.# In this paper, they are shifted along the fivefold directi
in the external space by (0.52t21)a0.0.5 Å. Then the
shifted OD’s are on the fivefold axis at (1,0,0,0,0,0)/4, whi
is shown in Fig. 3~d!. These two models are equivalent b
cause the difference exists only in the position of OD’s in t
external space, and both models will lead to the same fi
structure with the refinement of the shift parameters. T
position of OD 40 in Ref. 15 gives too short an interatom
distance for the innermost shell of the Mackay cluster@see
Fig. 12~a!#. This is improved in the present model. The OD
corresponding to 37, 38, and 40 are not present in the
model but OD 38 is necessary to generate atom position
the ninth shell of the cluster in the 2/1 approximant@Fig.
10~i!#. ~It should be noted that the constraint condition im
posed for each OD is that its shape should have the sym
try given by its site symmetry, that is, 5m in this case.!
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In real quasicrystals, the random phason always exists
because of the random phason, it may be difficult to dis
guish one model from the other since this weakens the
fraction intensity with a diffraction vector having a larg
internal space components. As a result, many such reflec
cannot be observed. On the other hand, a large intensity
ference between these models can be expected in such r
tions.

The present model was able to explain the diffraction
tensities ofi -Al-Pd-Mn. A detailed analysis ofi -Al-Pd-Mn
~or i -Al-Cu-Fe) based on the KG model has not been p
formed yet. Therefore the direct comparison is impossible
the moment. In order to obtain a detailed structure from
structure refinement based on diffraction experiments, su
visions of large OD’s as employed in the present model
necessary for introducing different atom shifts from the id
position, temperature factor, and occupation probability
atoms in different local environments. The KG model h
simple OD’s but the subdivisions based on the different lo
e
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atom environments are not simpler than the present one48

This suggests that the use of complicated subdivisions is
avoidable for a detailed structure refinement of quasicryst

X. SUMMARY

This paper described in detail a 6D model structure tha
based on a higher-dimensional cluster model and an elec
density ofi -Al-Pd-Mn obtained from an x-ray analysis. Th
model was shown to be consistent with the 2/1 approxim
structure ofi -Al-Pd-Mn, andb-Al-Pd-Mn-Si. The 1/1 and
2/1 approximant structures calculated from the 6D model
the introduction of the linear phason strain were shown a
compared with the structures ofa- andb-Al-Pd-Mn-Si.
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