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Number theory implications on the physical properties of elementary cubic networks
of Josephson junctions
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Number theory concepts are used to investigate the periodicity properties of the voltage vs applied flux
curves of elementary cubic networks of Josephson junctions. It is found that equatorial gaps appearing on the
unitary sphere, on which points representing the directions in space for which these curves show periodicity are
collected, can be understood by means of Gauss condition on the sum of the squares of three integers.
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After the discovery of high-Tc superconductivity1 the
study of the electrodynamic properties of Josephson junc
networks~JJN’s! has been undertaken by a growing numb
of researchers.2–11 JJN’s, indeed, can be adopted as circu
models of these novel superconductors whenever the
product of the fabrication technique adopted is a granu
sample.4 However, the interest in JJN’s is not only connect
to fundamental aspects of research, but it is also linked
technological applications. In fact, there have been rec
proposals for so-called three-dimensional~3D! supercon-
ducting quantum interference devices~SQUID’s!12,13 whose
basic circuital model consists of a current-biased cubic n
work of twelve resistively shunted Josephson Junctions~JJ’s!
in the overdamped limit immersed in a uniform magne
field. This model system can lead to construction of an
trasensitive vectorial magnetic field sensor in the same
as the two-junction interferometer has allowed realization
dc SQUID’s.14,15 In the present work we study, by means
known theorems in number theory, the physical implicatio
of the mathematical form of observable periodicities in t
time-averaged voltagêv& vs normalized applied fluxcex
curves of tridimensional cubic JJN’s.

In order to investigate the very rich dynamical propert
of the 3D SQUID model, some of the authors16 have adopted
an analytical approach based on matrix notation and lin
algebra concepts. In this way, the periodicities of the tim
averaged voltagêv& with respect to the normalized applie
flux cex can be derived for a given direction in space of t
external magnetic field. The electrodynamic response of
system is studied through the invariance properties of
vectorial dynamical equation16

d

dt
w1sinw1

1

2pb
Aw5 f ~1!

written for the twelve-component gauge-invariant superc
ducting phase difference vectorw. In Eq. ~1! the variablet
5 (2pRIJ /F0) t is a normalized time,R and I J being the
resistive parameter and the maximum Josephson curre
the JJ’s in the network, respectively, and the parameterb is
defined asb5 l I J /F0 , l being the self-inductance of
single network branch andF0 the elementary flux quantum
The matrixA in Eq. ~1! contains information on the self- an
mutual inductance coefficients and the vectorf is the exter-
nal forcing term, written in terms of the bias currentI B and
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of the normalized applied magnetic fluxcex5m0Ha2/F0 ,
wherem0 is the permeability of vacuum,H is the magnetic
field amplitude, anda is the length of the side of the cubi
network. We may here notice that the dynamical equati
for the two gauge-invariant superconducting phases in a
SQUID can be formally written16 in the same way as in Eq
~1!. Analogously to the case of a dc SQUID, then, the inst
taneous voltage v(t)5(12A) (d/dt) w, where1 is the 12
312 unitary matrix, is found by solving the above set
nonlinear ordinary differential equations, given in Eq.~1!, by
standard numerical routines. However, it can be analytic
proven16 that the^v& vs cex curves are periodic with respec
to external flux only for directionsĤ of the applied magnetic
field HW which can be expressed as

Ĥ5
~ i x̂1 j ŷ1kẑ!

Ai 21 j 21k2
, ~2!

wherei , j , andk are integers andx̂, ŷ, andẑ are the unitary
vectors along the three Cartesian axes, which correspon
the directions of the orthogonal sides of the cubic netwo
Moreover, the possible periods in the^v& vs cex graphs are
found to be of the following form:

Dcex5Ai 21 j 21k2. ~3!

Therefore, we shall here study the mathematical implicati
of Eqs.~2! and ~3! on the physical properties of the system
From Lagrange’s theorem17 every positive integer can be ex
pressed as the sum of four squares. However,Dcex

2 is the
sum of only three squares, so that there might exist non
gative integers which do not correspond to any value
Dcex

2 , whatever values of the indicesi , j , k we might
choose. Indeed, according to Gauss condition,18 the equation

n5 i 21 j 21k2, ~4!

wheren, i , j , k are integers (n being, in particular, nonne
gative! is solvable if and only ifnÞ4a(8b17), with a and
b nonnegative integers. Therefore, it follows that the perio
icities of the type

Dcex* 52aA8b17, ~5!

wherea andb are nonnegative integers, are not observa
in the ^v& vs cex curves for any directionĤ of the external
©2003 The American Physical Society11-1
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FIG. 1. ~Color! ~a! Representa-
tion on the unitary sphere of the
directions in space as specified b
Eq. ~2! in the text for the value of
n, given by Eq.~4!, ranging from
1 to 400.~b! Equivalent represen-
tation of the directions in space a
specified by Eq.~2! in the text for
the value ofn, given by Eq.~4!,
ranging from 1 to 1000. The
equivalent representation is ob
tained by wrapping a sheet o
length 2p and height 2 around the
unitary sphere and by projectin
the points on the sphere on th
sheet itself, which can now be
thought to be a circumscribing
cylinder. Finally, the sheet is un
wrapped and the points can be v
sualized on the subset@2p,1p#
3@21,11# of R2.
o
of
itary
qua-
ints
magnetic field. We might therefore argue that, no matter h
large we take the numbern in Eq. ~4!, it is never possible to
completely fill the unitary sphereS1 with points correspond-
ing to field directions giving a periodicity equal toAn. In
order to illustrate this point, let us show, in Fig. 1~a!, all the
directions onS1 giving a period equal toAn, for the value of
09251
wn ranging from 1 to 400. The colors of points in Figs. 1~a!
and 1~b! range from red to violet, in the iris, as the value
n increases. We notice the presence of regions on the un
sphere where points are absent. We call these regions e
torial gaps. We may thus try to increase the number of po
plotted onS1 , by lettingn range from 1 to 1000, in order to
1-2
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see whether these regions are still present. We do this
opportunely giving an equivalent~area preserving! represen-
tation of the points on the subset@2p,1p#3@21,11# of
R2 and the results are shown in Fig. 1~b!. In Fig. 1~b! we
notice that, even though regions between equatorial g
tend to be filled with more points, the same equatorial g
do not disappear. This is in accordance with what noted
Duke and Schulze-Pillot19 who have proven that points o
S1 , representing the directions in space as specified by
~2!, tend to become equidistributed onS1 for increasing
squarefree integersn given by Eq. ~4!, with nÞ4a(8m
17). We recall that a squarefree integer is a product
distinct prime factors~i.e., all appearing to the first power!.
Naturally, gaps corresponding to not allowed values ofn,
according to the Gauss condition, should still appear even
very large values of squarefree integersn. Notice that in
stating this theorem we only take a single value ofn. For our
purposes, this is sufficient, since we do not need to cons
just one high enough valuen5ns f of this type of integers,
but all the contributions on the unitary sphere obtained
considering the ‘‘allowed’’ directions in space for positiv
integersn, such thatn<ns f , as done in Figs. 1~a! and 1~b!,
where a whole range of values forn is considered.

We might now ask for what field directionsĤ we have
integral periodicitiesDcex5m. This is a trivial question for
fields directed along the coordinate axes, since the perio
ity is always an integer in this case. For fields lying along
coordinate planes, where only one of the indicesi , j , andk
is equal to zero, integral periodicities are obtained for
directions in which the period and the two nonzero indic
form a Pythagorean triple. The question is rather subtle
fields for which all of the above indices are different fro
zero. In this respect, Hurwitz’ theorem20 states that every
squares2, where s is an integer different from 2m and
5(2m), m being a nonnegative integer, is the sum of t
tt
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squares of three integers. Apparently, then, we can hav
many integral periods as we want except forDcex52m and
Dcex55(2m), when the magnetic field lies along the dire
tions Ĥ having all components different than zero. Natural
these selection rules are only valid for the specific set of fi
directions we are considering. In fact, if we consider dire
tions Ĥ for which it is possible to have one zero in its com
ponents, for example, we immediately see that periodici
of the typeDcex55(2m) are allowed, while those of the typ
Dcex52m are still excluded. The latter integral periodicitie
reappear if we consider all field directions, including tho
lying along the coordinate axes. Finally, notice that, for fie
orientations not lying along the coordinate axes the low
observable integral period isDcex53 ~since we haveDcex

5A(62)21(62)21(61)2 and all other possible permuta
tions of the index with unitary absolute value!.

In conclusion, we might state that number theory is use
in determining the directions in space in which the exter
field can induce periodicities in thêv& vs cex curves of a
so-called 3D SQUID. We have noticed that equatorial ga
appearing on the unitary sphere, where field directions allo
ing periodicities in the electrodynamic response of the 3
SQUID model are represented, can be understood by m
of Gauss condition. Finally, when one examines the fi
directions giving integral periodicities, known theorems
the theory of numbers allow us to establish selection ru
whose validity is limited to the particular set of direction
considered. These results can be helpful in solving the
verse problem related to the external magnetic field vecto
reconstruction by a hypothetical magnetic field sensor ba
on three-dimensional Josephson junction network mod
Further work is still needed, however, to transfer the ma
ematical properties of the model system to the actual per
mance of a so-called 3D SQUID, whose prototype is yet
be constructed.
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