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Velocity-dependent effective inertial mass in superfluid3He
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We show that a solid body moving in superfluid3He acquires a velocity-dependent effective mass. The
effect is a consequence of the suppression of the superfluid density associated with depairing in a flowing BCS
fluid. The counterflow associated with the body’s motion is greater than for a simple inviscid fluid. To leading
order, the mass increase is quadratic in velocity. We show that this effect leads to nonlinearities in the motion
of a simple system such as a solid object subject to a linear restoring force. Our model may explain some of
the nonlinear behavior seen in vibrating wire oscillators at very low temperatures. The depairing term will also
contribute to the low-velocity counterflow mass increase in excess to what is expected from the ideal fluid
model.
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The many correspondences between phenomena
superfluid3He and the general paradigm of modern phys
have been emphasized by Volovik.1 Here we describe how
the relative motion of a superfluid changes its inertia, ana
gous to the relativistic mass increase. The question we
dress is, ‘‘What is the inertial mass of a probe particle mo
ing in the superfluid?’’ When a solid object moves with
velocity u through an inviscid background fluid, the potent
flow in the fluid couples extra inertia to the object.2 The extra
effective mass is proportional to the fluid’s density. In a BC
superfluid such as3He, the superfluid densityrs is a de-
creasing function of the superfluid velocity, defined as
relative velocity between the rest frame of the superfluid a
the background normal fluid:rs5rs(v). This decrease inrs
is accompanied by the creation of quasiparticles, equiva
to enhancing the normal component in the two-fluid desc
tion. A regime exists where the additional normal comp
nent,drn , is clamped to the moving body, also contributin
to the body’s inertia. These contributions, along with a d
namic contribution arising from the Cooper depairing, ad
term dm to the object’s static mass. Thus, the veloci
induced depairing phenomenon will render the termdm ve-
locity dependent. This paper focuses on estimating the m
nitude of the velocity dependent corrections to the iner
mass of a moving particle within the superfluid. We sho
that, to leading order, the effective mass of the moving
ject m(u)'mu50* (11u2/2c* 2), where u is the object’s
velocity, and the temperature-dependent velocity scalec* is
determined by the BCS energy gap and the Fermi fl
parameters.

We will discuss the case of low temperatures~i.e., T
!Tc), where the background density of quasiparticles
low. At the same time, we consider the motion of large o
jects, so that the quasiparticle mean free path is sma
comparison with the object size. In this regime, the quasip
ticles ~which are related to the suppression ofrs) are created
in the frame of the moving body, and are reabsorbed into
condensate when the body decelerates. We assume that
is no associated irreversible energy loss. At higher temp
0163-1829/2003/68~9!/092504~4!/$20.00 68 0925
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tures, the background density of the quasiparticles beco
comparable to that produced by the Cooper depairing, an
more detailed analysis of the effect would be required.

If the kinetic energy of an object has velocity terms oth
than quadratic, the object’s effective mass,m(u)[p(u)/u, is
velocity dependent. For an object moving throu
superfluid3He-B, this energy can be broken into four comp
nents: the kinetic energy of the solid body itself,Em , the
kinetic energy of the superfluid counterflowEk,s , the kinetic
energy of the quasiparticles, created via velocity suppres
of rs , Ek,n , and a termEC , associated with the breaking o
the Cooper pairs. The last three terms can be calculate
integrating position - dependent energy densities.

At low temperatures and small relative velocities w
choose to parameterize the superfluid density of3He by a
Taylor expansion~see Fig. 1!:

rs~v !5r0F12AS v
vc

D 2

2BS v
vc

D 4

1•••G , ~1!

wherer0 is the superfluid density at rest. The normal co
ponent density of helium at rest is negligible forT/Tc!1.
The characteristic depairing velocityvc is the ratio of the
superfluid energy gapD, to the Fermi momentumpF , vc

[pF
21D, and determines the velocity scale. The temperat

dependent, dimensionless coefficientsA andB can be deter-
mined from, for example, the theoretical calculation by Vo
hardtet al.3

The kinetic energy term due to the superfluid counterfl
~in the laboratory frame! can be calculated by integrating th
energy density in the potential velocity flow field induced
the moving object

Ek,s5
1

2EBulk
rs~r !v2~r !d3r

5
1

2
r0E

Bulk
v2~r !F12AS v~r !

vc
D 2

2BS v~r !

vc
D 4Gd3r .

~2!
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The next contribution to the kinetic energy is due to t
quasi-particles created in the frame of the moving solid bo
The number density of these is position dependent, bu
are assumed to move with the velocityu of the solid body.
The kinetic energy associated with these quasi-particle
expressed as the integral

Ek,n5
1

2
u2E @r02rs~r !#d3r

5
1

2
r0u2E

Bulk
FAS v~r !

vc
D 2

1BS v~r !

vc
D 4Gd3r . ~3!

The depairing term is the energy needed to break the C
per pairs. It is proportional to the number density of t
created quasiparticles and the depairing energyD per pair:

EC5
D

2m3
E ~r02rs!~r !d3r

5
r0

2m3
DE FAS v~r !

vc
D 2

1BS v~r !

vc
D 4Gd3r . ~4!

The total kinetic~velocity-dependent! energy of the mov-
ing object is the sum of these three terms, plus the kin
energy of the object itself. We will keep terms up to quar
in the solid body velocity. Quadratic contributions are fro
the object itself, the hydrodynamic counter-flow and Coo
depairing:

T25
1

2
Mu21

1

2
r0E

Bulk
v2~r !S 11

AD

m3vc
2D d3r . ~5!

FIG. 1. Superfluid density of3He as a function of the fluid
velocity at zero pressure, courtesy of a theoretical calculation
Vollhardt et al. ~Ref. 3!.
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This term will result in overall inertial mass increase com
pared to vacuum.

The fourth order terms are

T45
r0

2 E
Bulk

v2~r !FAS u2

vc
D 2

2AS v~r !

vc
D 2

1
BD

m3vc
2 S v~r !

vc
D 2Gdr . ~6!

The flow velocity field in the superfluid is potential, eve
though the superfluid density varies as a function of positi
For a given flow geometry, one can in principle calculate
flow velocity field consistent with the boundary condition
imposed by the object’s shape, and then evaluate the var
contributions described above. This will remain the case
til the flow velocity reaches the depairing critical velocity
any point near the object surface. In this case, a s
consistent solution with variable boundary conditions wou
need to be found. However, our calculations here are ba
on the Taylor expansion estimates of the depairing effe
and are not expected to hold at these higher velocities. C
culations for a solid sphere and for a circular cross-sec
wire can be performed in closed form, and each of Eqs.~2!,
~3!, and~4! can be expressed in terms of the velocity of t
object.4

For a circular cross-section cylinder~such as the case of
section of a wire viscometer! the quadratic and the quarti
terms in the effective kinetic energy are

T25
1

2
Mu2F11

r0

rCylinder
S 11

AD

m3vc
2D G ~7!

T45
r0

2rCylinder

Mu4

vc
2 S 2

3
A1

BD

m3vc
2D . ~8!

The same calculations, performed for a solid sphere, g

T25
1

2
Mu2F11

r0

2rSphere
S 11

AD

m3vc
2D G ~9!

and

T45
r0

2rSphere

Mu4

vc
2 S 2

5
A1

BD

2m3vc
2D . ~10!

In both cases, the kinetic energy term can be expresse
a sum of the quadratic and quartic terms in the object’s
locity. The kinetic energy for the body immersed in3He can
be written as

T5
1

2
Mu2S 11

3

4

u2

c* 2D , ~11!

where the velocity scale is

y
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c* Cylinder
2 5

3vc
2rCylinder

4r0
S 2

3
A1

BD

m3vc
2D 21

,

c* Sphere
2 5

3vc
2rSphere

4r0
S 2

5
A1

BD

2m3vc
2D 21

. ~12!

The hydrodynamic correction to the ‘‘rest’’ mass is neglec
in the above formulas.

Equation~11! implies that an oscillator formed by a bod
immersed in superfluid3He and subject to a linear restorin
force, F52kx, is a nonlinear oscillator, equivalent to
semirelativistic oscillator in the small amplitude regime5

The frequency of such an oscillator is a function of the
cillator amplitude.6 At higher amplitudes the effective mas
is larger and the resonant frequency is reduced. The r
nance curve in the response vs. frequency dependence
surements would display deviation from Lorentzian sha
and if the dissipative term is small, such a system will e
hibit a hysteretic behavior.

The ‘‘rest mass’’ correction, in the case of a cylinder,

dm

m
5

r0

rCylinder
S 11

A~T!D~T!

m3vc
2 D , ~13!

will shift the central frequency of the resonance lower ev
for low amplitudes. The first contribution is the well-know
hydrodynamic backflow term which should shift the fr
quency byd f / f 'r0 /rCyl'0.5% for a Tantalum wire and
3He at zero pressure. The second contribution appears
because the superfluid density suppression has a quad
leading term, which is substantial in a BCS superfluid.15 The
magnitude of the correction is temperature dependent
both the superfluid energy gapD and the coefficientA are
temperature dependent. AtT50.5Tc , the magnitude of the
second contribution is'0.12%. In wire viscometer measure
ments~e.g., Ref. 7!, this effect appears to be masked by t
inertial contribution from the viscously clamped norm
component. The two contributions have different tempe
ire

n
o
ity

i-

09250
d

-

o-
ea-
,

-

n

ly
tic

as

-

tures and object sizes vs. viscous length dependencies
may be distinguishable in a detailed study.

A manifestation of the velocity-dependent mass will a
pear in an oscillator comprising the probe particle coup
to a linear restoring force. Such a system is a nonlinear
cillator characterized by a non-Lorentzian resonant l
shape and a hysteretic response. Such features have
identified for thin vibrating wires moving in3He at very low
temperatures. Since it is known that such vibrating wi
have intrinsic nonlinearities themselves, it is of interest
ask how much, if any, of the observed nonlinearities ori
nates within the superfluid itself. A less ambiguous measu
ment could be made using an oscillating magnetically s
pended microsphere.8

Nonlinear, hysteretic behavior had been observed in w
viscometer measurements by Gue´nault et al.9 at 0.14 mK.
Frequency shifts as large as 20 mHz (d f / f '31025) were
observed. Ko¨nig et al.10 attributed much of the effect to a
combination of wire heating artifacts and the low-energy e
citation levels present in the wire metal. The data provided
Ref. 9 allow us to estimate the wire velocity peak amplitu
~'1 cm/s at'50-mA drive!. The fractional frequency shift
evaluated using Ref. 6 with 0.2-mK values ofA50.023 and
B50.026 from Ref. 3, is'631026. Although the wire
diameter in Ref. 9 was only'20% of the estimated quas
particle mean free path, the proposed effect is of the sa
order as the observed effect.

In conclusion, we propose a model in which the hydrod
namic back-flow contribution to the mass of a solid obje
moving in a BCS superfluid acquires nonlinear, veloci
dependent terms. This effect should result in amplitu
dependent and hysteretic resonance response curves.
magnitude of the predicted effect is consistent with obser
low-temperature behavior of vibrating wire viscometers.

We wish to thank Dr. Shilpa Jain for showing how to tre
the classical nonlinear oscillator and Professor R. Littlejo
for explaining the difference between our semirelativis
treatment and the proper Lorenz-invariant treatment.
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