PHYSICAL REVIEW B 68, 092504 (2003

Velocity-dependent effective inertial mass in superfluid®He
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We show that a solid body moving in superfluitie acquires a velocity-dependent effective mass. The
effect is a consequence of the suppression of the superfluid density associated with depairing in a flowing BCS
fluid. The counterflow associated with the body’s motion is greater than for a simple inviscid fluid. To leading
order, the mass increase is quadratic in velocity. We show that this effect leads to nonlinearities in the motion
of a simple system such as a solid object subject to a linear restoring force. Our model may explain some of
the nonlinear behavior seen in vibrating wire oscillators at very low temperatures. The depairing term will also
contribute to the low-velocity counterflow mass increase in excess to what is expected from the ideal fluid
model.
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The many correspondences between phenomena tares, the background density of the quasiparticles becomes
superfluidHe and the general paradigm of modern physicscomparable to that produced by the Cooper depairing, and a
have been emphasized by Volovilkdere we describe how more detailed analysis of the effect would be required.
the relative motion of a superfluid changes its inertia, analo- If the kinetic energy of an object has velocity terms other
gous to the relativistic mass increase. The question we adhan quadratic, the object’s effective masgu)=p(u)/u, is
dress is, “What is the inertial mass of a probe particle mov-velocity dependent. For an object moving through
ing in the superfluid?” When a solid object moves with a superfluidHe-B, this energy can be broken into four compo-
velocity u through an inviscid background fluid, the potential nents: the kinetic energy of the solid body itsdf,,, the
flow in the fluid couples extra inertia to the objécthe extra  kinetic energy of the superfluid counterfldgy 5, the kinetic
effective mass is proportional to the fluid’s density. In a BCSenergy of the quasiparticles, created via velocity suppression
superfluid such asHe, the superfluid densitgs is a de-  of pg, Ey ,, and a termE, associated with the breaking of
creasing function of the superfluid velocity, defined as thehe Cooper pairs. The last three terms can be calculated by
relative velocity between the rest frame of the superfluid andntegrating position - dependent energy densities.
the background normal fluigis= ps(v). This decrease ipg At low temperatures and small relative velocities we
is accompanied by the creation of quasiparticles, equivalerthoose to parameterize the superfluid density’ldé by a
to enhancing the normal component in the two-fluid descripTaylor expansior(see Fig. I
tion. A regime exists where the additional normal compo-
nent, p,, is clamped to the moving body, also contributing
to the body’s inertia. These contributions, along with a dy-
TG Tt uton aig M the CODSr SR, 36 4y s th supertid dersiy a rest. The nmal com:

induced depairing phenomenon will render the tefm ve- ponent density of helium at rest is negligible fofTc=<1.
. . - The characteristic depairing velocity, is the ratio of the
locity dependent. This paper focuses on estimating the mag-

nitude of the velocity dependent corrections to the inertiaZUp??lu'd ednzrgiy ga_er, t'?h the IFe_rtml mcl)m(?rr;;tur;pp, Ve i
mass of a moving particle within the superfluid. We show Pe -2, and determines the velocily scale. The temperature

that, to leading order, the effective mass of the moving opdependent, dimensionless coefficieAtandB can be deter-

ject m(u)~m*_ (1+ U2/2c* 2) where u is the object's mined frorg, for example, the theoretical calculation by Voll-
~Mu=0 )
velocity, and the temperature-dependent velocity scalés hardtet al.

. . . The Kkinetic energy term due to the superfluid counterflow
Sg:g:qné?:g by the BCS energy gap and the Fermi ﬂu'Ol(in the laboratory framecan be calculated by integrating the

We will discuss the case of low temperaturée., T energy density in the potential velocity flow field induced by

<T.), where the background density of quasiparticles isthe moving object

low. At the same time, we consider the motion of large ob- 1 5 5
jects, so that the quasiparticle mean free path is small in Ek,szifBulkps(f)v (r)dr
comparison with the object size. In this regime, the quasipar-

4

v
— +...

2
ps(v)=po 1—A(Ui) -B A

Uc

ticles (which are related to the suppressiornpgf are created 1 5 v(r)\? v(r)\4 5

in the frame of the moving body, and are reabsorbed into the = EPOJ v (f)[l—A< 5 ) - B( 5 ) d-r.
condensate when the body decelerates. We assume that there Bulk ¢ ¢

is no associated irreversible energy loss. At higher tempera- (2
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T T T T v This term will result in overall inertial mass increase com-
F =6.04 | pared to vacuum.
The fourth order terms are

2
Ve Ve

BA (v(r))2
+

m3v§ Uc

1.0 4

‘/t¢’° 1 Po
Ti=—= v2(r)
02 ] 2 Jaui (

dr. (6)

The flow velocity field in the superfluid is potential, even
though the superfluid density varies as a function of position.
For a given flow geometry, one can in principle calculate the
flow velocity field consistent with the boundary conditions
imposed by the object’s shape, and then evaluate the various
! 09 | contributions described above. This will remain the case un-
———— til the flow velocity reaches the depairing critical velocity at
— — * —— any point near the object surface. In this case, a self-
consistent solution with variable boundary conditions would

v2/8 0" need to be found. However, our calculations here are based
on the Taylor expansion estimates of the depairing effects

FIG. 1. Superfluid density ofHe as a function of the fluid and are not expected to hold at these higher velocities. Cal-
velocity at zero pressure, courtesy of a theoretical calculation byulations for a solid sphere and for a circular cross-section
Vollhardt et al. (Ref. 3. wire can be performed in closed form, and each of EBs.

(3), and(4) can be expressed in terms of the velocity of the

The next contribution to the kinetic energy is due to theobject?
guasi-particles created in the frame of the moving solid body. For a circular cross-section cylindéuch as the case of a
The number density of these is position dependent, but akection of a wire viscometethe quadratic and the quartic
are assumed to move with the velocityof the solid body. terms in the effective kinetic energy are
The kinetic energy associated with these quasi-particles is

expressed as the integral 1 Po AA
T,==Mu?/ 1+ 1+ 5 (7
1 2 Pcylinder M3v ¢
En=50° | Toopalr) 1o
) y T po Mu? 2A+ BA ®
1 v(r v(r 4= = .
ZEpousz | A( : )) +B( IE )) dr. (3 2pcyinder v2 \3 mgy?
u Cc Cc

o ) The same calculations, performed for a solid sphere, give
The depairing term is the energy needed to break the Coo-

per pairs. It is proportional to the number density of the 1 AA
created quasiparticles and the depairing eneérgyer pair: T,=-Mu?3 1+ Po 44 . (9)

2 2pSphere msv

A 3
Ec=2—maf (po—ps)(r)d°r and
v(N\2  _[v(n)\* Mu? /(2 BA

=ﬂAf A( ()) +B( ()) }d“"r. (4) 1= MU (2 . (10)

2ms Uc Uc 2PSphere Ug 5 2m3v§

. The. tota'l Kinetic(velocity-dependejenergy of the MOV=" n both cases, the kinetic energy term can be expressed as
ing object is the sum of these three terms, plus the kineti

U sum of the quadratic and quartic terms in the object’s ve-

in the solid body velocity. Quadratic contributions are from be written as
the object itself, the hydrodynamic counter-flow and Cooper
depairing:

1
T=§Mu2

1 1
T2:§MU2+ EPOJBulkvz(r)

1+ 5 d3r. (5

mzvu ¢

where the velocity scale is
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302pcyinger| 2 BA | 1 tures and object sizes vs. viscous length dependencies and
c* (Z:ylmder: °4 Y §A+ > , may be distinguishable in a detailed study.
Po M3v ¢ A manifestation of the velocity-dependent mass will ap-

_1 pear in an oscillator comprising the probe particle coupled

(12) to a linear restoring force. Such a system is a nonlinear os-
cillator characterized by a non-Lorentzian resonant line

) _ ) shape and a hysteretic response. Such features have been

The hydrodynamic correction to the “rest” mass is neglectedigentified for thin vibrating wires moving ifHe at very low

in the above formulas. . temperatures. Since it is known that such vibrating wires

~ Equation(11) implies that an oscillator formed by a body haye intrinsic nonlinearities themselves, it is of interest to

immersed in superfluidHe and subject to a linear restoring ask how much, if any, of the observed nonlinearities origi-

force, F=—kx, is a nonlinear oscillator, equivalent to a pates within the superfluid itself. A less ambiguous measure-

semirelativistic oscillator in the small amplitude regime. ment could be made using an oscillating magnetically sus-
The frequency of such an oscillator is a function of the 0Spended microsphefe.

cillator amplitude® At higher amplitudes the effective mass Nonlinear, hysteretic behavior had been observed in wire
is larger and the resonant frequency is reduced. The resQjscometer measurements by @aelt et al® at 0.14 mK.
nance curve in the response vs. frequency dependence Megequency shifts as large as 20 mHf(f~ x 10~5) were
surements would display deviation from Lorentzian shapegpserved. Kaig et al® attributed much of the effect to a
and if the dissipative term is small, such a system will ex-combination of wire heating artifacts and the low-energy ex-
hibit a hysteretic behavior. . citation levels present in the wire metal. The data provided in
The “rest mass” correction, in the case of a cylinder,  Ref. 9 allow us to estimate the wire velocity peak amplitude
(=1 cm/s at=50-uA drive). The fractional frequency shift,
1+ A(T)AET) ’ (13) evaluated using Ref. 6 with 0.2-mK valuesA# 0.023 and
Mzv ¢

2

2
2 _3Ucp8pher 2A+ BA
5 2m3UC

C Spheré— 4p, IS

om Po

M Pcylinder

B=0.026 from Ref. 3, is~6x10 °. Although the wire

diameter in Ref. 9 was only=20% of the estimated quasi-

will shift the _central freqqency of t_he resonance lower eVeMharticle mean free path, the proposed effect is of the same
for low amplitudes. The first contribution is the well-known . qer as the observed effect.

hydrodynamic backflow term which should shift the fre- |, conclusion, we propose a model in which the hydrody-

quency by 6t/f~po/pcy1~0.5% for a Tantalum wire and  pamic back-flow contribution to the mass of a solid object
He at zero pressure. The second contribution appears onlyying in a BCS superfluid acquires nonlinear, velocity-

because the superfluid density suppression has a quadrafigpendent terms. This effect should result in amplitude-

leading term, which is substantial in a BCS superffii@he dependent and hysteretic resonance response curves. The

magnitude of the correction is temperature dependent, §agnitude of the predicted effect is consistent with observed
both the superfluid energy gap and the coefficienA are oy temperature behavior of vibrating wire viscometers.
temperature dependent. At=0.5T., the magnitude of the

second contribution is=0.12%. In wire viscometer measure-  We wish to thank Dr. Shilpa Jain for showing how to treat
ments(e.g., Ref. 7, this effect appears to be masked by thethe classical nonlinear oscillator and Professor R. Littlejohn
inertial contribution from the viscously clamped normal for explaining the difference between our semirelativistic
component. The two contributions have different temperatreatment and the proper Lorenz-invariant treatment.
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